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ABSTRACT

We introduce RNA-FRAMEFLOW, the first generative model for 3D RNA back-
bone design. We build upon SE(3) flow matching for protein backbone generation
and establish protocols for data preparation and evaluation to address unique
challenges posed by RNA modeling. We formulate RNA structures as a set of
rigid-body frames and associated loss functions which account for larger, more
conformationally flexible RNA backbones (13 atoms per nucleotide) vs. proteins (4
atoms per residue). Toward tackling the lack of diversity in 3D RNA datasets, we
explore training with structural clustering and cropping augmentations. Addition-
ally, we define a suite of evaluation metrics to measure whether the generated RNA
structures are globally self-consistent (via inverse folding followed by forward
folding) and locally recover RNA-specific structural descriptors. The most perfor-
mant version of RNA-FRAMEFLOW generates locally realistic RNA backbones of
40-150 nucleotides, over 40% of which pass our validity criteria as measured by a
self-consistency TM-score ≥ 0.45, at which two RNAs have the same global fold.

1 INTRODUCTION

Designing RNA structures. Proteins, and the diverse structures they can adopt, drive essential
biological functions in cells. Deep learning has led to breakthroughs in structural modeling and design
of proteins (Jumper et al., 2021; Dauparas et al., 2022; Watson et al., 2023), driven by the abundance
of 3D data from the Protein Data Bank (PDB). Concurrently, there has been a surge of interest in
Ribonucleic Acids (RNA) and RNA-based therapeutics for gene editing, gene silencing, and vaccines
(Doudna and Charpentier, 2014; Metkar et al., 2024). RNAs play several roles: they are carriers of
genetic information coding for proteins (mRNA) or may remain non-coding (tRNA). There are several
families of RNA, which we focus on in this work, whose functions depend on their tertiary structure1.
While there is growing interest in designing such structured RNAs for a range of applications in
biotechnology and medicine (Mulhbacher et al., 2010; Damase et al., 2021), the current toolkit for
3D RNA design uses classical algorithms and heuristics to assemble RNA motifs as building blocks
(Han et al., 2017; Yesselman et al., 2019). However, hand-crafted heuristics are not always broadly
applicable across multiple tasks and rigid motifs may not fully capture the conformational dynamics
that govern RNA functionality (Ganser et al., 2019; Li et al., 2023a). This presents an opportunity for
deep generative models to learn data-driven design principles from existing 3D RNA structures.

What makes deep learning for RNA hard? The primary challenge is the paucity of raw 3D RNA
structural data, manifesting as an absence of ML-ready datasets for model development (Joshi et al.,
2023). Protein structure is primarily driven by hydrogen bonding along the backbone, and current
geometric deep learning models incorporate this inductive bias through backbone frames to represent
residues (Jumper et al., 2021). RNA structure, however, is often more conformationally flexible and
driven by base pairing interactions across strands as well as base stacking between rings of adjacent
nucleotides (Vicens and Kieft, 2022), all of which can only be learnt implicitly at present2.

Additionally, RNA nucleotides, the equivalent of amino acids in proteins, include significantly more
atoms as part of the backbone (13 compared to 4) which necessitates a generalization of backbone
frames where the placement of most atoms needs to be parameterized by torsion angles. These

1We acknowledge the presence of other families whose function may depend on sequence (like miRNA, siRNA).
2See Eric Westhof’s talk contrasting RNA and protein structure.
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Figure 1: The RNA-FRAMEFLOW pipeline for 3D backbone generation. Our implementation
establishes RNA-specific protocols for data preparation and evaluation for FrameFlow (Yim et al.,
2023a). (1) Each nucleotide in the RNA backbone is converted into a frame to parameterize the
placement of C4′ by a translation, C3′−C4′−O4′ by a rotation, and the rest of the atoms via 8 torsion
angles Φ. (2) We train generative models on all RNA structures of length 40-150 nucleotides from
RNAsolo (Adamczyk et al., 2022). We also explore training with structural clustering and cropping
augmentations to tackle the lack of diversity in 3D RNA datasets. (3) We introduce evaluation
metrics to measure the recovery of local structural descriptors and global self-consistency of designed
structures via inverse-folding with gRNAde (Joshi et al., 2023) followed by forward-folding with
RhoFold (Shen et al., 2022).

complexities have contributed to relatively poor performance of deep learning for RNA structure
prediction compared to proteins (Kretsch et al., 2023; Abramson et al., 2024). Additionally, structure
prediction models cannot directly be used for designing or generating novel RNA structures with
desired constraints, which our work aims to do.

Our contributions. We develop RNA-FRAMEFLOW, the first generative model for 3D RNA
backbone design, illustrated in Figure 1. We adapt FrameFlow (Yim et al., 2023a), an SE(3)
equivariant flow matching model for proteins to RNA. We introduce RNA-specific modifications
to the data preparation and loss formulation, including representing RNA nucleotides as rigid-body
frames that parameterize all 13 atoms. We also introduce an evaluation pipeline to benchmark RNA
backbone design models’ capabilities at recovering local and global structure. Our best model is
trained on RNAs of lengths 40-150 from the PDB and can unconditionally sample locally plausible
backbones with over 40% validity as measured by a self-consistency TM-score ≥ 0.45.

Through this study, we aimed to evaluate the extent to which generative models for proteins can
be adapted for RNA. This brought up critical challenges and limitations of deep learning for RNA
modelling, such as a lack of explicit representations of the physical interactions that drive RNA
structure as well as biases in 3D RNA datasets, which we have made preliminary efforts towards
addressing. Together with our engineering contributions, we hope this work will stimulate future
research in generative models for RNA design.

2 THE RNA-FRAMEFLOW PIPELINE

Overview. We are concerned with building a generative model that unconditionally outputs all-
atom RNA backbones, sampled from a distribution of realistic 3D RNA structures. Formally, given
an RNA sequence length of Nnt nucleotides, we aim to generate a real-valued tensor X of shape
Nnt × 13× 3 representing 3D atomic coordinates for each of the 13 backbone atoms per nucleotide.
In the following sections, we will describe how we adapt FrameFlow (Yim et al., 2023a), an SE(3)
equivariant flow matching model for protein backbones, to our setting.

2.1 REPRESENTING RNA BACKBONES AS FRAMES

As shown in Figure 1, the RNA backbone consists of nucleotides with a phosphate group
(P,OP1, OP2, O5′), a ribose sugar (C1′ − C5′, O2′, O3′, O4′), and a nitrogen atom N at the
stem of the base. We represent the group of atoms within each nucleotide as a rigid-body frame.

2
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Frames enable inferring the positions of all atoms within the nucleotide via a frame center and
orientation (described subsequently). However, the 13 atoms per nucleotide in the RNA backbone
is significantly greater than protein residues with 4 atoms (Cα, N,C,O). In proteins, it is standard
to represent each residue by a frame centered at Cα with vectors along Cα −N and Cα − C, and
O is placed assuming an idealized planar geometry (Jumper et al., 2021). No such canonical frame
representation exists for RNAs.

RNA frames. We use the C4′, C3′, and O4′ atoms to create the frame for each nucleotide, as
in Morehead et al. (2023). All other backbone atoms are inferred with 8 torsions Φ = {ϕ1 →
ϕ8}, ϕi ∈ SO(2) that are predicted post-hoc after frame generation. The Gram-Schmidt process is
used on v1, v2 defined by the vectors along the C4′ − O4′ and C4′ − C3′ bonds; C5′ is imputed
based the positions of the other 3 atoms and tetrahedral geometry. Given the 8 torsion angles, we
autoregressively place non-frame atoms in order of the torsions Φ in Figure 1, constructing the final
set of all-atom RNA nucleotides. We describe this imputation of non-frame atoms in Appendix B.4.

Choice of frame atoms. We had two main considerations for selecting the atoms to create RNA
frames: (1) the atoms should have roughly the same spatial orientation w.r.t. each other; and (2)
the atoms should be reasonably close to the centroid in the nucleotide to reduce error accumulation
when placing the furthest non-frame atoms. We choose {C3′, C4′, O4′} as these atoms spatially
shift the least in naturally occurring RNA (Harvey and Prabhakaran, 1986). The non-frame backbone
atoms – the remaining atoms in the ribose ring and the phosphate group atoms – are parameterized
by torsion angles to account for their relative conformational flexibility. This choice of frame enables
models to learn ring puckering, the planar rotation of the ribose ring about the C4′ −C5′ bond which
affects how the RNA interacts with partners to form complexes (Clay et al., 2017). We are actively
evaluating alternate choices of RNA frames.

2.2 SE(3) FLOW MATCHING ON RNA FRAMES

Input. Given a set of 3D coordinates, a simultaneous rotation and translation (r, x) forms an
orientation-preserving rigid-body transformation of the coordinates. The set of all such transforma-
tions in 3D is the Special Euclidean group SE(3), which composes the group of 3D rotations SO(3)
and 3D translations in R3.

We can represent an RNA frame T = (r, x) as a translation x ∈ R3 from the global origin to place
C4′ and a rotation r ∈ SO(3) to orient C3′ − C4′ − O4′. Compared to working with raw 3D
coordinates for each backbone atom, using the frame representation entails performing flow matching
on the space of SE(3). This is an inductive bias to reduce the degrees of freedom the generative
model needs to learn. Instead of predicting 13 correlated 3D coordinates independently (39 quantities)
for each nucleotide, we instead predict one 3D coordinate (of C4′) and one 3×3 rotation matrix
(12 quantities). We follow Chen and Lipman (2024) and Yim et al. (2023a)’s framework for flow
matching on SE(3), which we summarise subsequently.

Overview. Flow matching generates or learns how to place and orient a set of N frames T =
{T (n)}Nn=1, where T (n) = (r(n), x(n)), to form an RNA backbone of length N . To do so, we
initialize frames at random in 3D space at time t = 0, and train a denoiser or flow model to iteratively
refine the location and orientation of each frame for a specified number of steps until time t = 1.

Suppose p0(T0) and p1(T1) are the marginal distributions of randomly oriented and ground truth
frames from our dataset of RNA structures, respectively. Suppose a non-unique time-dependent
vector field ut leads to an ODE between the two distributions p0 and p1, i.e., assume there is a way
to map from noisy samples to the corresponding true samples. This solution forms a ground truth
probability path pt between the two distributions at time t ∈ [0, 1], which we can use to transform
samples from noise to the true distribution. The continuity equation ∂p

∂t = −∇ · (ptut) relates the
vector field ut to the evolution of the probability path pt.

Given a noisy frame T0 sampled from p0(T0) and the corresponding ground truth frame T1 sampled
from p1(T1), we construct a flow Tt by following the probability path pt between T0 and T1 for any
time step t sampled from U(0, 1). As shown by Chen and Lipman (2024) for the SE(3) group (and
other manifolds), the geodesic between the states T0 and T1 can be used to define an interpolation:

Tt = expT0
(t · logT0

(T1)). (1)

3
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Here, exp(·) and log(·) are the exponential and logarithmic maps that enable moving (taking random
walks) on curved manifolds such as the SE(3) group. As we can decompose a frame T = (r, x) into
separate rotation and translation terms, we can obtain closed-form interpolations for the group of
rotations SO(3) and translations R3. This gives us two independent flows:

Translations: xt = tx1 + (1− t)x0 , (2)
Rotations: rt = expr0(t · logr0(r1)) . (3)

The random translation x0 is sampled from a zero-centered Gaussian distribution N (0, I) in R3, and
the random rotation r0 is sampled from U(SO(3)), a generalization of the uniform distribution for the
group of rotations, SO(3). For an RNA backbone consisting of a set of N frames T = { T (n)}Nn=1,
we can define the interpolation for each frame in parallel via the aforementioned procedure.

Training. During training, we would like to learn a parameterized vector field vθ(Tt, t), a deep
neural network with parameters θ, which takes as input the intermediate frames Tt at time t sampled
from U(0, 1), and predicts the final frames T̂ = {T̂ (n)}Nn=1, where T̂ (n) = (r̂

(n)
t , x̂

(n)
t ). The ground

truth vector field ut for mapping from the intermediate frames Tt to the ground truth frames T1 can
also be decomposed into a ground truth rotation and translation for each frame T (n):

Translations: ut(x
(n)|x(n)

0 , x
(n)
1 ) = x

(n)
1 , (4)

Rotations: ut(r
(n)|r(n)0 , r

(n)
1 ) = log

r
(n)
t

(r
(n)
1 ) . (5)

To train the model vθ, we compute separate losses for the predicted rotation r̂t ∈ SO(3) and
translation x̂t ∈ R3. The combined SE(3) flow matching loss over N frames is as follows:

LSE(3) = E t, p0(T0), p1(T1)

[
1

(1− t)2

N∑
n=1

∥∥∥x̂(n)
t − x

(n)
1

∥∥∥2
R3︸ ︷︷ ︸

L(n)

R3

+
∥∥∥ logr(n)

t
(r̂

(n)
1 )− log

r
(n)
t

(r
(n)
1 )

∥∥∥2
SO(3)︸ ︷︷ ︸

L(n)

SO(3)

]
.

(6)

The architecture of the flow model vθ is similar to the structure module from AlphaFold2 comprising
Invariant Point Attention layers interleaved with standard Transformer encoder layers, following Yim
et al. (2023a;b). We use an MLP head to predict torsion angles Φ.

Auxiliary losses. The inclusion of auxiliary loss terms to the objective in Equation (6) can be seen
as a form of adding domain knowledge into the training process (Yim et al., 2023b). We include 3
additional losses that operate on the all-atom structure inferred from the predicted frames, weighted
by tunable coefficients to modulate their contribution to the total loss:

Ltot = LSE(3) + Lbb + Ldist + Ltors . (7)

Suppose S = {C4′, C3′, O4′} is the set of frame atoms3 and the sequence length is N . We summarise
the auxiliary losses subsequently.

• Coordinate MSE Lbb: A direct all-atom MSE is computed between generated and ground truth
coordinates. Here, a, â are the ground truth and predicted atomic coordinates for the frame atoms:

Lbb =
1

|S|N

N∑
n=1

∑
a∈S

∥a(n) − â(n)∥2. (8)

• Distogram loss Ldist: A distogram D ∈ RNS×NS containing all-to-all coordinate differences
between the atoms in an RNA structure is computed. Let D(nm)

ab = ∥a(n)− b(m)∥ be the elements
of the distogram for the ground truth structure. Here, atom a belongs to nucleotide n and atom
b to nucleotide m. Given the corresponding predicted distogram D̂

(nm)
ab , we compute another

difference between the tensors:

Ldist =
1

(|S|N)2 −N

N∑
n,m=1
n ̸=m

∑
a,b∈S

∥D(nm)
ab − D̂

(nm)
ab ∥2. (9)

3In Appendix C.1, we show how including more backbone atoms better accounts for larger RNA nucleotides
and improves validity of generated samples.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Generative 
Model

Inverse
Folding

Structure
PredictionAUUCG...

Noise Backbone Sequence All-atom

Compute self-consistency (TM, RMSD, GDT_TS)

Figure 2: Structural self-consistency evaluation. We sample a backbone from our model and pass
it through an inverse folding model (gRNAde) to obtain Nseq = 8 sequences. Each sequence is fed
into a structure prediction model (RhoFold) to get the predicted all-atom backbone. Self-consistency
between each predicted backbone and the generated sample is measured with TM-score (we also
report RMSD and GDT_TS). For a given generated sample, we thus have Nseq = 8 TM-scores of
which we take the maximum as the scTM score for that sample.

• Torsional loss Ltors: An angular loss between the 8 predicted torsions by the auxiliary MLP head
and the angles from the ground truth all-atom structure. Suppose ϕ ∈ Φn and ϕ̂ ∈ Φ̂n are the
ground truth and predicted torsion angles for residue n, we compute:

Ltors =
1

8N

N∑
n=1

∑
ϕ∈Φn

(
∥ϕ− ϕ̂∥2

)
. (10)

Sampling. To generate or unconditionally sample an RNA backbone of length N , we initialize a
random point cloud of frames. We use our trained flow model vθ within an ODE solver to iteratively
transform the noisy frames into a realistic RNA backbone. For each nucleotide, we begin with a noisy
frame T0 = (r0, x0) at time step t = 0, and integrate to t = 1 using the Euler method for a specified
number of steps NT , with step size ∆t = 1/NT . At each step t, the flow model vθ predicts updates
for the frames via a rotation r̂1 and translation x̂1:

Translations: xt+∆t = xt +∆t · (x̂1 − xt) , (11)
Rotations: rt+∆t = exprt( c∆t · logrt(r̂1)) , (12)

where c = 10 is a tunable hyperparameter governing the exponential sampling schedule for rotations.

Conditional generation. The unconditional sampling strategy described above aims to generate
realistic RNA backbone structures sampled from the training distribution. However using generative
models in real-world design tasks entails conditional generation based on specified design constraints
or requirements (Ingraham et al., 2022; Watson et al., 2023), which we are currently exploring. For
example, unconditional models can leverage inference-time guidance strategies (Wu et al., 2024), be
fine-tuned conditionally (Denker et al., 2024) or in an amortized fashion for motif-scaffolding (Didi
et al., 2023). For sequence conditioning and structure prediction, we can incorporate embeddings
from language models (Penic et al., 2024; He et al., 2024).

3 EXPERIMENTS

3D RNA structure dataset. RNAsolo (Adamczyk et al., 2022) is a recent dataset of RNA 3D
structures extracted from isolated RNAs, protein-RNA complexes, and DNA-RNA hybrids from the
Protein Data Bank (as of January 5, 2024). The dataset contains 14,366 structures at resolution ≤ 4
Å (1 Å = 0.1nm). We select sequences of lengths between 40 and 150 nucleotides (5,319 in total) as
we envisioned this size range contains structured RNAs of interest for design tasks.

Evaluation metrics. We evaluate our models for unconditional RNA backbone generation, analogous
to recent work in protein design (Yim et al., 2023b;a; Bose et al., 2023; Lin and AlQuraishi, 2023);
see Figure 2. We generate 50 backbones for target lengths sampled between 40 and 150 at intervals
of 10. We then compute the following indicators of quality for these backbones:

• Validity (scTM ≥ 0.45): We inverse fold each generated backbone using gRNAde (Joshi et al.,
2023) and pass Nseq = 8 generated sequences into RhoFold (Shen et al., 2022). We then compute

5
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the self-consistency TM-score (scTM) between the predicted RhoFold structure and our backbone
at the C4′ level. We say a backbone is valid if scTM ≥ 0.45; this threshold corresponds to
roughly the same fold between two RNAs (Zhang et al., 2022). Alternatively, we use an RMSD
threshold of 4.3 Å, corresponding to the median RMSD of RhoFold on RNAsolo sequences.

• Diversity: Among the valid samples, we compute the number of unique structural clusters formed
using qTMclust (Zhang et al., 2022) and take the ratio to the total number of samples. Two
structures are considered similar if their TM-score ≥ 0.45. This metric shows how much each
generated sample varies from others across various sequence lengths.

• Novelty: Among the valid samples, we use US-align (Zhang et al., 2022) at the C4′ level to
compute how structurally dissimilar the generated backbones are from the training distribution.
For a set of samples for a given sequence length, we compute the TM-score between all pairs
of generated backbones and training samples, and for each generated backbone, we assign the
highest TM-score. We call the average across this set, pdbTM.

• Local structural measurements: We measure the similarity between bond distances, bond
angles, and dihedral angles from the set of generated samples and the training set. To do so, we
compute histograms for each of the local structural metrics and use 1D Earth Mover’s distance to
measure the similarity between generated and training distributions.

Hyperparameters. We use 6 IPA blocks in our flow model, with an additional 3-layer torsion
predictor MLP that takes in node embeddings from the IPA module. Our final model contains 16.8M
trainable parameters. We use AdamW optimizer with learning rate 0.0001, β1 = 0.9, β2 = 0.999.
We train for 120K gradient update steps on four NVIDIA GeForce RTX 3090 GPUs for about 18
hours with a batch size B = 28. Each batch contains samples of the same sequence length to avoid
padding. Further hyperparameters are listed in Appendix B.1.

4 RESULTS

4.1 GLOBAL EVALUATION OF GENERATED RNA BACKBONES

We begin by analyzing RNA-FRAMEFLOW’s samples using the aforementioned evaluation metrics.
For validity, we report percentage of samples with scTM ≥ 0.45; for diversity, we report the ratio
of unique structural clusters to total valid samples; and for novelty, we report the highest average
pdbTM to a match from the PDB. For each sequence length between 40 and 150, at intervals of 10,
we generate 50 backbones. Table 1 reports these metrics across different variants for the number
of denoising steps NT . The average scTM and scRMSD of valid samples are 0.641 ± 0.161 and
2.298± 0.892 respectively. We compare our model to protein-RNA-DNA complex co-design model
MMDiff (Morehead et al., 2023), a diffusion model. As the original best-performing version of
MMDiff was trained on shorted RNA sequences, we retrain it on our training set. We also inverse-fold
MMDiff’s backbones using gRNAde.

We identify NT = 50 as the best-performing model that balances validity, diversity, and novelty;
furthermore, it takes 4.74 seconds (averaged over 5 runs) to sample a backbone of length 100, as
opposed to 27.3 seconds for MMDiff with 100 diffusion steps. We note that increasing NT does not
improve validity despite allowing the model to perform more updates to atomic coordinate placements.
Our model also outperforms MMDiff. On manual inspection, samples from MMDiff had significant
chain breaks and disconnected floating strands; see Appendix D.1.

Table 1: Unconditional RNA backbone generation. We evaluate the performance of RNA-
FRAMEFLOW for multiple values for denoising steps NT . The best-performing model uses NT = 50
steps, taking 4.74s to sample a backbone of length 100. We also provide the average self-consistency
TM-score and RMSD value for all valid samples. We green-highlight the best result per column.

Model Timesteps NT % Validity ↑ Diversity ↑ Novelty ↓

RNA-FRAMEFLOW 10 16.7 0.62 0.70
50 41.0 0.61 0.54
100 20.0 0.61 0.69
500 20.0 0.57 0.67

MMDiff 100 0.0 - -
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Figure 3: Validity and novelty of generated backbones. (Left) scTM of backbones of lengths
40-150 with the mean and spread of scTM for each length; we select the top 10 structures with the
best validation scores per length. (Middle) Scatter plot of self-consistency TM-score (scTM) and
novelty (pdbTM) across lengths. Vertical and horizontal dotted lines represent TM-score thresholds
of 0.45. (Right) Selected samples with high pdbTM scores (colored) with the closest, aligned match
from the PDB (gray). Our model generates valid backbones for certain sequence lengths and tends to
recapitulate the most frequent folds in the PDB (e.g., tRNAs, small rRNAs).

4.2 LOCAL EVALUATION WITH STRUCTURAL MEASUREMENTS

For our best-performing model using diffusion timesteps NT = 50, we plot histograms of bond
distance, bond angles, and dihedral angles in Figure 4. We include the Earth Mover’s distance (EMD)
between measurements from the training and generated distributions as an indicator of local realism
(using 30 bins for each quantity). An ideal generative model will score an EMD close to 0.0 (i.e.
consistent with the training set comprising naturally occurring RNA). In Table 2, we observe EMD
values from our best-performing model’s backbones being significantly closer to 0.0 compared to
MMDiff. We include histograms of local structural descriptors for MMDiff in Appendix D.1.

We also show RNA Ramachandran angle plots for generated samples and the training distribu-
tion in Figure 4. Keating et al. (2011) introduced η − θ plots, similar to Ramachandran angle
plots for proteins, that track the separate dihedral angles formed by {C4′i, Pi+1, C4′i+1, Pi+2} and
{Pi, C4′i, Pi+1, C4′i+1} respectively, for each nucleotide i along the chain. We observe that the
dihedral angle distribution from RNA-FRAMEFLOW closely recapitulates the angular distribution
from naturally occurring RNA structures in the training set.

4.3 GENERATION QUALITY ACROSS SEQUENCE LENGTHS

We next investigate how sequence length affects the global realism of generated samples (measured
by scTM). Figure 3 (Left) shows the performance of RNA-FRAMEFLOW for different sequence
lengths. We observe our model generates samples with high scTM for specific sequence lengths
like 50, 60, 70, and 120 while generating poorer quality structures for other lengths. We believe the
overrepresentation of certain lengths in the training distribution causes the fluctuation of TM-scores.
We can also partially attribute this to the inherent length bias of RhoFold; see Appendix B.2. With
better structure predictors, we expect more samples to be considered valid. We provide additional
local evaluations of angular distributions in Appendix D.3.

We also analyze the novelty of our generated samples (measured by pdbTM) in Figure 3 (Middle).
We are particularly interested in samples that lie in the right half with high scTM and low pdbTM,
which means that the designs are highly likely to fold back into the sampled backbone but are
structurally dissimilar to any RNAs in the training set. It is worth noting that our training set has
high structural similarity among samples: running qTMclust on our training dataset revealed only
342 unique clusters from 5,319 samples, which indicates that the model does not encounter a diverse
set of samples during training. This contributes to many generated samples from our model looking
similar to samples from the training distribution. We include two such examples in Figure 3 (Right).
Both generated RNAs yield relatively high pdbTM scores and look similar to their respective closest
matching chain from the training set: a tRNA at length 70 and a 5S ribosomal RNA at length 120,
respectively. We include comparative results on validity and novelty for MMDiff in Appendix D.1,
finding that MMDiff does not generate any samples that pass the validity criteria.
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Table 2: Local structural metrics. Earth
Mover’s Distance for local structural measure-
ments compared to ground truth measurements
from RNAsolo. We also include EMD scores
from a 50/50 train split as a sanity check. Our
model shows improved recapitulation of local
structural descriptors compared to baselines.

Model Earth Mover’s Distance (↓)
distance angles torsions

50/50 train split 6.25× 10−2 8.97× 10−4 7.24× 10−5

RNA-FRAMEFLOW
(NT = 50) 0.17 0.11 2.36

MMDiff (original) 1.38 0.43 3.06
MMDiff (retrained) 0.39 0.21 3.23
Gaussian noise 29.00 6.35 4.37

Table 3: Impact of data preparation strategies.
Increasing the diversity of the training dataset us-
ing a combination of strategies improves diversity
and novelty of generated structures but leads to
fewer designs passing the validity threshold.

Model % Validity ↑ Diversity ↑ Novelty ↓

Base 41.0 0.62 0.54
+ Clustering 12.0 0.88 0.49
+ Cropping 11.0 0.85 0.47
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Figure 4: Local structural metrics from 600 generated backbone samples, compared to random
Gaussian point cloud as a sanity check. Our model can recapitulate local structural descriptors.
(Subplots 1-3) Histograms of inter-nucleotide bond distances, bond angles between nucleotide
triplets, and torsion angles between every four nucleotides. (Subplot 4): RNA-centric Ramachandran
plot of structures from the training set (purple) and generated backbones (green).

4.4 DATA PREPARATION PROTOCOLS

Due to the overrepresentation of RNA strands of certain lengths (mostly corresponding to tRNA
or 5S ribosomal RNA) in our training set, our models generate close likenesses for those lengths
that achieve high self-consistency but are not novel folds. To avoid this memorized recapitulation
and promote increased diversity among samples, we sought to develop data preparation protocols to
balance RNA folds across sequence lengths. We identically train RNA-FRAMEFLOW on these data
splits for 120K gradient steps, with results reported in Table 3.

• Structural clustering: We cluster our training set using qTMclust. When creating a training
batch, we sample random clusters, and from each cluster, random structures. This ensures batches
do not solely contain samples for a single sequence length or are dominated by over-represented
folds. There are only 342 structural clusters for the 5,319 samples within sequence lengths 40-150,
highlighting the lack of diversity in RNA structural data. Each batch comprises padded samples
up to a maximum length of 150 from randomly selected clusters across sequence lengths.

• Cropping augmentation: We expand our training set by cropping longer RNA strands beyond
length 150 by sampling a random crop length in [40, 150] and extracting a contiguous segment
from the larger chains. As cropped RNA are not standalone molecules and serve only to augment
the dataset, we consider a randomly chosen 20% of the training set size to balance uncropped and
cropped samples; this gives 1,063 extra cropped samples.

We observe improved diversity and novelty at the cost of reduced validity. Randomly cropping
may introduce subsequences that fold into significantly different structures than the substructure
extracted from the original RNA; these subsequences may even unfold in real life. As a result, the
augmented dataset may contain folds that are unstable or implausible. The structure prediction and
inverse-folding models may not have encountered these folds loosely recapitulated by our model,
resulting in poor validity. We are actively developing principled cropping methods that capture unique,
realistic folds. We include additional results on these data preparation protocols in Appendix D.2.
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A

B C

D

E

Figure 5: Physical violations in generated samples. (A) Inter-chain clashes (highlighted yellow).
(B) Chain breaks and stray strands (highlighted yellow). (C)-(E) Excessive loops and helices.

5 LIMITATIONS AND DISCUSSIONS

Altogether, our experiments demonstrate that the SE(3) flow matching framework is sufficiently
expressive for learning the distribution of 3D RNA structure and generating realistic RNA backbones
similar to well-represented RNA folds in the PDB. Select examples are shown in Figure 6. We have
also identified notable limitations and avenues for future work, which we highlight below.

Physical violations. While well-trained models usually generate realistic RNA backbones, we do
observe some physical violations: generated backbones sometimes have chains that are either too
close by or directly clash with one another, are highly coiled, have excessive loops and unrealistically
intertwined helices, or have chain breaks. We highlight these limitations in Figure 5. RNA tertiary
structure folding is driven by base pairing and base stacking which influence the formation of helices,
loops, and other tertiary motifs (Vicens and Kieft, 2022) . Base pairing refers to nucleotides along
adjacent chains forming hydrogen bonds, while base stacking involves interactions between rings
of adjacent nucleotide bases along a chain. To our knowledge, all current deep learning models
operate on individual nucleotides, only implicitly learning base pairing and stacking. Developing
explicit representations of these interactions as part of the architecture may further minimize physical
violations and provide stronger inductive biases to learn complex tertiary RNA motifs. We analyze
steric clashes in our generated backbones in Appendix D.4.

Generalization and novelty. We observed that the best designs from our models (as measured by
scTM score) are sampled at lengths 70-80 and 120-130, and often have closely matching structures in
the PDB (high TM-scores). This suggests that models can recapitulate well-represented RNA folds in
their training distribution (e.g., both tRNAs at length 70-90 and small 5S ribosomal RNAs at length
120 are very frequent). However, self-consistency metrics were relatively poorer for less frequent
lengths, suggesting that models are currently not designing novel folds.

We would also like to note that the models we use for structure prediction and inverse folding may
be similarly biased to perform well for certain sequence lengths, leading to the overall pipeline
being reliable for commonly occurring lengths and unreliable for less frequent ones (see Appendix
B.2 for an analysis on RhoFold). We evaluated preliminary strategies for structural clustering and
cropping augmentations during training, which improved the novelty of designed structures but led
to fewer designs passing the validity filter. Overall, the relative scarcity of RNA structural data
compared to proteins necessitates greater care in preparing data pipelines for scaling up training
and/or incorporating inductive biases into generative models, which we hope to continue exploring.

6 CONCLUSION

We introduce RNA-FRAMEFLOW, a generative model for 3D RNA backbone design. Our evaluations
show that our model can design locally realistic and moderately novel backbones of length 40 – 150
nucleotides. We achieve a validity score of 41.0% and relatively strong diversity and novelty scores
compared to diffusion model baselines and ablated variants. While generative models can successfully
recapitulate well-represented RNA folds (e.g., tRNAs, small rRNAs), the lack of diversity in the
training data may hinder broad generalization at present. We are actively exploring improved data
preparation strategies combined with inductive biases that explicitly incorporate physical interactions
that drive RNA structure. We hope RNA-FRAMEFLOW and the associated evaluation framework can
serve as foundations for the community to explore 3D RNA design, towards developing conditional
generative models for real-world design scenarios.
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Length: 40
scTM: 0.482
scRMSD: 2.41
scGDT: 0.681
pdbTM: 0.385

Length: 50
scTM: 0.458
scRMSD: 16.91
scGDT: 0.455
pdbTM: 0.492

Length: 70
scTM: 0.763
scRMSD: 1.54
scGDT: 0.803
pdbTM: 0.652

Length: 90
scTM: 0.627
scRMSD: 12.51
scGDT: 0.241
pdbTM: 0.611

Length: 120
scTM: 0.948
scRMSD: 0.88
scGDT: 0.943
pdbTM: 0.896

Length: 130
scTM: 0.493
scRMSD: 8.53
scGDT: 0.250
pdbTM: 0.598

Figure 6: Generated RNA backbones (colored) of varying lengths aligned with their RhoFold-
predicted structure (gray). We provide post-evaluation metadata obtained from our self-consistency
pipeline. Overall, our model is able to generate valid, novel RNA for certain lengths.
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A RELATED WORK

Here, we summarize recent developments in deep learning for 3D RNA modeling and design.

Recent end-to-end RNA structure prediction tools include RhoFold (Shen et al., 2022),
RoseTTAFold2NA (Baek et al., 2022a), DRFold (Li et al., 2023b), and AlphaFold3 (Abramson
et al., 2024), each with varying performance that is yet to match the current state-of-the-art for
proteins. Other approaches use GNNs as ranking functions (Townshend et al., 2021) together with
sampling algorithms (Boniecki et al., 2016; Watkins et al., 2020). However, structure prediction tools
are not directly capable of designing new structures, which this work aims to address by adapting an
SE(3) flow matching framework for proteins (Yim et al., 2023a). MMDiff (Morehead et al., 2023), a
diffusion model for protein-nucleic acid complex generation, can also sample RNA-only structures
in principle. Our evaluation shows that our flow matching model significantly outperforms both the
original and RNA-only versions of MMDiff that we re-trained for fair comparison.

Joshi et al. (2023) introduce gRNAde, a GNN-based encoder-decoder for 3D RNA inverse folding, a
closely related task of designing new sequences conditioned on backbone structures. Tan et al. (2023)
and Shulgina et al. (2024) have also developed GNNs for 3D RNA inverse folding. We use gRNAde
(Joshi et al., 2023) followed by RhoFold (Shen et al., 2022) in our evaluation pipeline to forward fold
designed backbones and measure structural self-consistency.

Independently and concurrent to our work, Nori and Jin (2024) propose RNAFlow, an SE(3) flow
matching model to co-design RNA sequence and structure conditioned on protein partners. At each
denoising step, RNAFlow uses a protein-conditioned variant of gRNAde (Joshi et al., 2023) to inverse
fold noised structures, followed by RoseTTAFold2NA (Baek et al., 2022a) to predict the structure
of the designed sequence. The performance of RNAFlow is upper-bounded by RoseTTAFold2NA
as a pre-trained structure generator, which is kept frozen and not developed for designed RNAs
which do not have co-evolutionary MSA information. Our work tackles de novo 3D RNA backbone
generation, an orthogonal design task of sampling RNA backbone structures. We train RNA structure
generation models from scratch, akin to recent developments in protein design (Yim et al., 2023b;a;
Bose et al., 2023; Lin and AlQuraishi, 2023). Backbone generation followed by inverse folding has
shown experimental success in designing functional proteins (Dauparas et al., 2022; Watson et al.,
2023; Ingraham et al., 2022), as the framework is flexible for including specific structural motifs and
sequence constraints.
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B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DENOISER HYPERPARAMETERS

Table 4: Hyperparameters for best performing denoiser model.

Category Hyperparameter Value
Invariant Point Attention (IPA) Atom embedding dimension Dh 256

Hidden dimension Dz 128
Number of blocks 6
Query and key points 8
Number of heads 8
Key points 12

Transformer Number of heads 4
Number of layers 2

Torsion Prediction MLP Input dimension 256
Hidden dimension 128

Schedule Translations (training / sampling) linear / linear
Rotations (training / sampling) linear / exponential
Number of denoising steps NT 50

B.2 RHOFOLD LENGTH BIAS

We investigate the performance of RhoFold on a representative subset of the training dataset used to
train RNA-FRAMEFLOW. Figure 7 shows that RhoFold has a sequence length bias where it predicts
accurate structures with low RMSDs (to the ground truth) for specific sequence lengths (like 70,
100, and 120) while predicting poor structures for other lengths. The performance across lengths is
disparate and may influence what is considered valid in our unconditional generation benchmarks.
This affects its efficacy when used in a self-consistency pipeline with the RMSD metric. To minimize
the influence of this length bias, we use TM-score for self-consistency because it does not penalize
flexible regions as much as RMSD.
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Figure 7: RhoFold length bias. The blue dotted line represents the median RMSD of RhoFold
predictions to the RNAsolo samples.
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B.3 UPPER BOUND PERFORMANCE OF THE SELF-CONSISTENCY PIPELINE

Our self-consistency pipeline to compute validity involves inverse and forward folding using gRNAde
(Joshi et al., 2023) and RhoFold (Shen et al., 2022). Placing upper bounds on the performance of our
RNA backbone design pipeline offers insights into areas of improvement using available open-source
tools.

To quantify the total error accumulated in our self-consistency pipeline, and its impact on downstream
validity, we study the extent to which gRNAde and RhoFold can retrieve the ground truth sequences
and structures from the RNAsolo training set. To assess RhoFold’s structure prediction performance,
we take all sequences of length 40 – 150 from RNAsolo, forward-fold (FF) them using RhoFold,
and compute self-consistency metrics (TM-score, RMSD) by comparing them with the sequences’
associated 3D folds. To assess gRNAde’s sequence recovery performance, we inverse-fold (IF) 3D
backbones from RNAsolo through gRNAde to get 16 likely sequences and pass them to RhoFold for
forward-folding.

As shown in the table below, the average self-consistency of the gRNAde-RhoFold pipeline with
RNAsolo ground truth backbone structures is 43.7%, close to RNA-FRAMEFLOW’s validity of
41.0%. This shows us that the generated backbones from RNA-FRAMEFLOW closely retain the
validity of RNAsolo backbones and corresponding sequences from gRNAde. In Figure 8, we also
show the self-consistency TM-scores per length bins.

Pipeline Self-consistency (%) ↑ Avg scTM ↑ Avg scRMSD ↓
RNAsolo + FF only 55.1 0.690 2.804
RNAsolo + IF + FF 43.7 0.663 3.085

RNA-FRAMEFLOW + IF + FF (ours) 41.0 0.641 2.298
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Figure 8: Self-consistency scores on RNAsolo samples by sequence length. We observe that
generated backbones from RNA-FRAMEFLOW retain the self-consistency of gRNAde-predicted
sequences.
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B.4 IMPUTING NON-FRAME ATOMS FROM TORSION ANGLES

A

BC

C
Here, we describe how we autoregressively impute the remaining
non-frame atoms using 8 torsion angles Φ = {ϕ1 → ϕ8}. For a
nucleotide n along the generated RNA backbone, we assume we
have its final frame T (n) = (r(n), x(n)) obtained from the denoiser’s
output after NT diffusion timesteps. Going by our choice of frame
{C3′, C4′, O4′}, we place non-frame atoms in the following order:
C2′, C1′, N1/N9, O3′, O5′, P,OP1, OP2, each corresponding to
its respective ϕi ∈ Φ as shown in Figure 1.

Referring to the figure on the right, suppose we have three atoms A,
B, and C with coordinates (xA, yA, zA), (xB , yB , zB), (xC , yC , zC).
They are connected by bonds AB and BC denoted by vectors

−−→
AB =

B−A and
−−→
BC = C−B with lengths rAB = |

−−→
AB| and rBC = |

−−→
BC|

respectively. To rotate BC around AB by some angle ϕ, we perform
the following procedure:

1. Compute unit vector u⃗AB =
−−→
AB
rAB

along bond AB by normalizing
−−→
AB.

2. Compute a vector perpendicular to u⃗AB by choosing a random normal vector n⃗ (like [1, 0, 0]T or
[0, 1, 0]T ) and taking their cross product to get u⃗1 = u⃗AB × n⃗.

3. Compute the unit vector u⃗rot rotated by ϕ around AB using Rodrigues’ rotation formula:

u⃗rot = cos (ϕ) · u⃗1 + sin (ϕ) · (u⃗AB × u⃗1) + (1− cos (ϕ))(u⃗AB · u⃗1) · u⃗AB .

4. Compute the coordinates of atom C as follows:

(xC , yC , zC) = (xB , yB , zB) + rBC · u⃗rot .

We use predetermined bond lengths between atoms in the idealized geometry of the Adenine (A)
nucleotide from OpenComplex (Jingcheng et al., 2022) in the same way Yim et al. (2023b;a) use
Alanine for generated protein backbones. We use the following atom triplets and predicted torsion
angles to build the all-atom nucleotide, starting from the ribose sugar ring towards the 5′ end:

Fixed bond Non-frame atom Torsion angle
C4′ − C3′ C2′ ϕ1

C4′ −O4′ C1′ ϕ2

O4′ − C1′ N9 (or N1) ϕ3

C4′ − C3′ O3′ ϕ4

C4′ − C5′ O5′ ϕ5

C5′ −O5′ P ϕ6

O5′ − P OP1 ϕ7

O5′ − P OP2 ϕ8
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C ABLATIONS

C.1 COMPOSITION OF BACKBONE COORDINATE LOSS

We also analyze how changing the composition of atoms in the inter-atom losses affects performance.
We increase the number of atoms being supervised in the Lbb loss described above. Aside from the
frame comprising C3′, C4′, and O4′, we try two settings with 3 and 7 additional non-frame atoms
included in the loss. For the 3 non-frame atoms, we additionally choose C1′, P , and O3′, and for the
7 non-frame atoms, we choose a superset C1′, P , O3′, C5′, OP1, OP2, and N1/N9. We posit the
additional supervision may increase the local structural realism, which may further improve validity,
as shown in Table 5.

We indeed observe increasing validity as we increase the frame complexity in the auxiliary backbone
loss. The minute RMSD contributions from disordered fragments of the RNA may be minimal,
accounting for greater likeness to the RhoFold predicted structures, scoring relatively higher scTM
scores. However, the original frame-only baseline model has better diversity and novelty which we
attribute to high local variation in atomic placements. This variation causes two generated structures
for the same sequence length to look very different at an all-atom resolution.

Table 5: Ablating composition of backbone loss Lbb. Supervising more non-frame atoms improves
validity but worsens diversity and novelty. Best result per column is highlighted.

Frame composition in Lbb % Validity ↑ Diversity ↑ Novelty ↓

Frame only (baseline) 41.0 0.62 0.54
Frame and 3 non-frame 45.0 0.28 0.79
Frame and 7 non-frame 46.7 0.35 0.85

C.2 COMPOSITION OF AUXILIARY LOSS

We ablate the inclusion of different auxiliary loss terms that guide our SE(3) flow matching setup;
results are in Table 6. Although, there is an increase in EMD for bond distances as we remove
distance-based losses like backbone coordinate loss Lbb and all-to-all pairwise distance loss (Ldist).
However, we also observe the model still learns realistic distributions despite removing different loss
terms, indicating that each loss makes up for the absence of the other. Moreover, the best model still
uses all losses with any removal causing a drop in validity. Further inspecting the samples from the
models without each loss term reveals structural deformities at the all-atom level. Figure 9 shows
such artifacts resulting from not enforcing geometric constraints through explicit losses.

Table 6: Ablations of loss terms on Earth Mover’s Distance scores for structural measurements
compared to ground truth measurements from the training set. The first row corresponds to the
baseline model. Distance-based losses like the backbone coordinate loss (Lbb) and all-to-all pairwise
distance loss (Ldist) are necessary to learn geometric properties like bond distances adequately.

Lbb Ldist LSO(3) EMD (distance) ↓ EMD (angles) ↓ EMD (torsions) ↓ % Validity ↑

✓ ✓ ✓ 0.17 0.11 2.36 41.0

✓ ✓ 0.18 0.14 3.85 35.0
✓ ✓ 0.23 0.11 3.72 13.3

✓ ✓ 0.18 0.18 3.59 16.7
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A B

C

D

Figure 9: Not including auxiliary losses causes structural deformities in generated RNAs. (A) RNA
backbone from our baseline model with expected adherence to bonding between nucleotides. (B)
Not including the rotation loss LSO(3) causes nucleotides to have random orientations, preventing
them from connecting contiguously. (C) Not including the backbone atom loss Lbb causes intra-
residue atoms to be placed too close to one another resulting in bonds that should not exist. (D)
Not including the all-to-all pairwise distance loss Ldist causes fusing between adjacent frames and
deformed nucleotide placements, especially along helices and loops.

C.3 CHOICE OF FORWARD-FOLDING MODEL

In our work, we rely on RhoFold (Shen et al., 2022) to forward fold the inverse-folded sequences
from gRNAde. Here, we reperform our evaluation from Section 4.1 with Chai-1 (Boitreaud et al.,
2024), a recent open-source structure prediction model with results similar to AlphaFold2, replacing
RhoFold in the self-consistency pipeline in Figure 2. We do not use MSAs for Chai-1.

We do not observe any major differences in self-consistency between the two forward-folding models.
For RNA-FRAMEFLOW with RhoFold, we report a validity of 41.0% while RNA-FRAMEFLOW with
Chai-1 gives a validity of 39.5%. Recent benchmarks (Tarafder et al., 2024) also observe that existing
RNA structure prediction tools like RhoFold, RF2NA (Baek et al., 2022b), and trRosettaRNA (Wang
et al., 2023) perform similarly due to similarities in their architectures and training data. We compare
the scTM distribution among valid samples between RhoFold and Chai-1 predicted backbones in
single-sequence mode in Figure 10.
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Figure 10: Correlation between RhoFold and Chai-1 scTM scores. Horizontal and vertical dotted
lines indicate the average scTM score from each method among valid samples.
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D ADDITIONAL RESULTS

D.1 EVALUATION OF MMDIFF SAMPLES

Here, we document global and local metrics from samples generated by MMDiff. MMDiff has a
validity score of 0.0% as all the samples have a poor scTM score below the 0.45 threshold to the
RhoFold predicted backbones. Even though none of the samples are valid, we show the average
pdbTM scores for the samples, which are trivially low as there are no structures from the PDB that
match them due to poor quality.

While MMDiff’s samples locally resemble RNA structures given realistic, manual inspection reveals
multiple chain breaks and disconnected floating strands, resulting in 0.0% validity. In Figure 12
(Subplot 1), we see inter-residue C4′ distances slightly varying, causing the chain breaks and clashes.
Furthermore, the Ramachandran plot in Figure 12 (Subplot 4) reveals a more complex angular
distribution than found in the training set, which may be a consequence of excessively folded regions
or substructures that may have folded in on themselves.
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Figure 11: Validity and novelty of retrained MMDiff’s top-10 generated backbones. (Left) scTM of
backbones of lengths 40-150 with the mean and spread of scTM for each length. (Middle) Scatter plot
of self-consistency TM-score (scTM) and novelty (pdbTM) across lengths. Vertical and horizontal
dotted lines represent TM-score thresholds of 0.45. Overall, MMDiff retrained on our training set
does not generate realistic RNA structures.
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Figure 12: Structural measurements from samples generated by MMDiff. (Subplots 1-3) Left:
histogram of inter-nucleotide bond distances in Angstrom. Middle: histogram of bond angles between
nucleotide triplets. Right: histogram of torsion (dihedral) angles between every four nucleotides.
(Subplot 4): RNA-centric Ramachandran plot of structures from the training set (purple) and
MMDiff’s generated backbones (green).
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D.2 EVALUATION OF DATA PREPARATION STRATEGIES

We include global evaluation metrics for the two data preparation strategies presented in the main
text, namely structural clustering and cropping augmentation.
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Figure 13: Validity and novelty of top-10 generated backbones from the model trained with only
structural clustering. (Left) scTM of backbones of lengths 40-150 with the mean and spread of scTM
for each length. (Middle) Scatter plot of self-consistency TM-score (scTM) and novelty (pdbTM)
across lengths. Vertical and horizontal dotted lines represent TM-score thresholds of 0.45.
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Figure 14: Validity and novelty of top-10 generated backbones from the model trained with structural
clustering and cropping. (Left) scTM of backbones of lengths 40-150 with the mean and spread
of scTM for each length. (Middle) Scatter plot of self-consistency TM-score (scTM) and novelty
(pdbTM) across lengths. Vertical and horizontal dotted lines represent TM-score thresholds of 0.45.
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D.3 COMPREHENSIVE LOCAL EVALUATION OF ANGULAR DISTRIBUTIONS

Following the empirical structural analysis of RNA by Gelbin et al. (1996), we compare local
bond angle distributions among triplets of atoms from the generated backbones. We sample 50
all-atom backbones for each sequence length in [70, 90, 110, 130, 150], sieve out the valid samples,
and extract relevant bond angles. As shown in Figure 15, we observe that RNA-FRAMEFLOW
can retrieve angular distributions between distant and nearby atoms in the nucleotides, providing
preliminary evidence that modern protein design models are sufficiently expressive to model RNA
tertiary structure.
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Figure 15: Bond angle distributions between triplets of atoms. We select these atomic triplets
from the empirical study of RNA’s 3D geometry by Gelbin et al. (1996).
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D.4 MEASURING ALL-ATOM STERIC CLASHES

We compare the all-atom-level steric clashes between filtered RNAsolo samples used for training and
the generated backbones from RNA-FRAMEFLOW. We say two unbonded atoms i, j clash if the
distance between them rij is within a threshold dsteric:

dsteric = vi + vj − 0.6 (13)

Iij =
{
1 rij ≤ dsteric

0 otherwise
(14)

# clashes =
∑
i,j

Iij . (15)

Here, vi, vj ∈ R are the Van der Waals (VdW) radius of the atoms i, j in Angstrom. Based on
its identity, each atom has its own VdW radius which we factor into our computation. We leave a
generous tolerance of 0.6 Å (corresponding to half the Hydrogen atom’s VdW radius of 1.20 Å)
to account for random deviations in atomic placements. We ignore Phosphodiester and Glycosidic
bonds when computing clashes because the covalent radius is smaller than the VdW radius. As
our nucleotides are constructed using idealized bond distances, there may be fewer inter-nucleotide
clashes, resulting in fewer clashes for RNA-FRAMEFLOW backbones.

In Figure 16, we compare the steric clashes across sequence length bins. We observe that RNA-
FRAMEFLOW generates backbones that have a similar distribution of inter-atom steric clashes as
samples from RNAsolo. We also include validity for each sequence length bucket. We see that
samples from certain sequence lengths (like 70, 80, 120) contain relatively fewer steric clashes
across samples within that length bucket since they are over-represented in RNAsolo. This means
RNA-FRAMEFLOW might be better at recapitulating atomic positions for such lengths than others.
The steric clashes are normalized by the number of heavy atoms in the molecules, giving us steric
clashes per 100 atoms. For the RNAsolo samples, we see 10.03± 1.52 clashes per 100 atoms while
our generated backbones have 25.55± 5.43 clashes per 100 atoms.
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Figure 16: All-atom steric clashes by sequence length. We observe a similar number of steric clashes
between training and generated backbones across sequence lengths. We include the (% validity) for
generated samples from each sequence length below the length labels along the horizontal axis.
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