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ABSTRACT

An important challenge in multi-agent reinforcement learning is partial observ-
ability, where agents cannot access the global state of the environment during
execution and can only receive observations within their field of view. To ad-
dress this issue, previous works typically use the dimension-wise state. This state
is obtained by applying MLP or dimension-based attention on the global state
for decision-making during training and relying on a reconstructed dimension-
wise state during execution. However, dimension-wise states tend to divert agent
attention to specific features, neglecting potential dependencies between agents,
making optimal decisions more difficult. Moreover, the inconsistency between
the states used in training and execution further increases additional errors. To
resolve these issues, we propose a method called Reconstruction-Guided Policy
(RGP) to reconstruct the agent-wise state, which represents information of inter-
agent relationships, as input for decision-making during both training and exe-
cution. This not only preserves the potential dependencies between agents but
also ensures consistency between the states used in training and execution. We
conducted extensive experiments on both discrete and continuous action environ-
ments to evaluate RGP, and the results demonstrate its superior effectiveness. Our
code is public in https://github.com/Muise4/RGP4/tree/main

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (Cooperative MARL) (Neto, 2005; Bukharin et al.,
2024) refers to the scenario where multiple agents work together within an environment towards a
common goal through maximizing a global reward. Due to its practical applications in fields like
robot collaboration (Orr & Dutta, 2023), intelligent traffic systems (Mushtaq et al., 2023), distributed
energy management (Zhu et al., 2022), network resource allocation (Allahham et al., 2022) and
virtual simulations (Liang et al., 2022), this area has gained significant attention in recent years.

A typical challenge in multi-agent reinforcement learning is partial observability (Tuyls & Nowé,
2005; Panait & Luke, 2005), where each agent can only access observations within its field of
view instead of the global state, which represents the complete information about all agents and the
environment. One direct approach to addressing this issue is to reconstruct the global state (Chen
et al., 2022; Xu et al., 2024) within a centralized training and decentralized execution framework
to enhance decision-making. As shown in Figure 1 (c), these methods input the dimension-wise
state, which is obtained by applying an MLP or dimension-wise attention on the global state, into
the policy during training to obtain actions for interacting with the environment, and then optimize
the policy based on the rewards from the environment. Simultaneously, the global state is used
to train a reconstructor, which is designed to reconstruct the global state (or the dimension-wise)
when it becomes unavailable. During the execution phase, since the global state is inaccessible, the
reconstructed state is used as a substitute input for the policy network to generate actions and interact
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Figure 1: (a) and (b) illustrate a toy example of UAV exploration and rescue. The global state is
an 8-dimensional vector: the first two dimensions represent the the state of environment, and the
remaining six correspond to the start and end coordinates of the coverage areas for x0, x1, and x2.
(c) represents the training and execution process of previous state reconstruction methods, which
have inconsistent state input for decision-making. (d) represents the training and execution process
of our RGP, which has consistent state input for decision-making. (e) shows the mean win rates of
previous state reconstruction methods PTDE (Chen et al., 2022) and SIDiff (Xu et al., 2024) in both
centralized and distributed execution.

with the environment. However, these methods have two limitations: (1)State inconsistency. Using
a reconstructor to replace the true state with a reconstructed state during execution can introduce
additional errors. The policy is trained on the true state, but during execution, it operates on the
reconstructed state, which may differ due to reconstruction inaccuracies. This discrepancy reduces
the policy’s robustness, as it was never trained to handle imperfect states. Therefore, to minimize
this error, it is crucial to ensure consistency between the states used during training and execution.
(2) Inadequacy of dimension-wise state. The dimension-wise state is a simplified low-dimensional
representation of the global state, which may cause the agents to overly focus on specific dimensions
rather than on concrete interactive objects. In a toy scenario of UAV search and rescue in Figure
1(a), x1 may overly focus on (0, 1) in the global information instead of the information of x0 (1,
3), leading to overlap with x0 during exploration, as illustrated in the figure. To enable agents to
focus on interaction targets rather than specific dimensions, a better approach is to split the global
state by agent (as shown in Figure 1 (b)), creating an agent-wise state that accounts for inter-agent
relationships to improve decision-making.

With that consideration, we propose a method called Reconstruction-Guided Policy (RGP), which
consists of two modules: the decision module and the guidance module. The decision module is
active during both training and execution, it reconstructs the agent-wise state and feeds the agent-
wise state to make decisions. The guidance module is only active during training and is used to guide
the agent-wise state reconstruction. As shown in Figure 1 (b), the guidance module shifts the focus
to the agents rather than the dimensional feature. By dynamically adjusting attention for each agent,
potential relationships between agents are explicitly captured, avoiding overlap and improving the
decision-making. Since both training and execution rely on the reconstructed agent-wise state for
decision-making, as shown in Figure 1 (d), the inter-agent relationships are incorporated into the
agent-wise state, and the additional error is reduced through state consistency, enhancing decision-
making effectiveness. To evaluate the performance of RGP, we conduct extensive experiments on
discrete and continuous environments, experimental results demonstrate the effectiveness.

In summary, our contributions are: i) We propose a novel method that maintains consistency be-
tween training and execution, reducing error accumulation. ii) Our method reconstructs a more
comprehensive agent-wise state, which is extracted based on agents rather than the dimension-wise
state, capturing inter-agent relationships and enhancing their performance. iii) Experimental results
show that our method outperforms existing knowledge distillation-based approaches, especially in
dynamic, complex environments.

2 PRELIMINARY

Dec-POMDP: A fully cooperative multi-agent reinforcement learning task comprising n agents
can be represented by a Decentralized Partially Observable Markov Decision Process (Dec-
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POMDP) (Oliehoek et al., 2016), which is defined as ⟨N ,A,S,P,O,Ω, r, γ⟩, where N =
{1, ..., n} is a set of agents, A =

{
Ai

}
i∈N is the set of joint actions at =

{
ait
}
i∈N at time

step t. S is a set of global states st, which is computed by state transition function P(st+1|st,at) :
S × A × S 7→ [0, 1]. Global state st is a high-dimensional vector which contains the information
of all agents and environment at time t. For agent i, we denote the vector that indicates its inter-
relationships with other units as the agent-wise state s̄it. O is a set of local observations oit, which
is generated by the joint observation function Ω(ot+1|at, st+1) : S ×A 7→ O. All agents share the
same reward function r(st,at) : S × A 7→ (R) and γ ∈ [0, 1) is the discount factor. Each agent
has an action-observation history τ i ∈ J ≡ (Ω × A)∗. Based on this history, the agent conditions
a stochastic policy πi(ait|τ it−1, o

i
t) : J × A 7→ [0, 1]. The joint action-observation history τ ∈ J

is defined similarly. Based on the observed history τ i, we introduced a trajectory state h̄it for the
agent, which is a high-dimensional vector represents the action-observation history of agent i. The
joint policy π has a joint action-value function: Qπ

tot(st,at) = Est+1:∞,at+1∼π[Gt|st,at], where
Gt =

∑
T
k=0γ

krt+k. The ultimate goal is to obtain an optimal joint policy π∗ with the optimal joint
action-value function Qπ∗

tot = Q∗.

Diffusion Probabilistic Models: Diffusion models (Ho et al., 2020; Rombach et al., 2022) generate
samples matching the target data distribution by denoising Gaussian noise. The models consist of a
forward process and a denoising process. The diffusion process introduces noise into the original dis-
tribution p(x) until it becomes a pure Gaussian noise distribution, and can be described as a Markov
process: q(xk|xk−1) = N (xk;

√
1− βkxk−1, βkI), where x0, ...,xK are latent variables, and I

is an identity matrix. βk is the noise schedule measuring the proportion of noise added at each step.
Given αk = 1−βk and αk =

∏k
i=1 (1− βi), then q(xk|x0) = N (xk;

√
αkx0, (1−αk)I). The de-

noising process starts with a Gaussian noise distribution p(xK) = N (0, I) and restores the original
data step by step, which can be described as: pψ(xk−1|xk) = N (xk−1;µψ(xk, k),

∑
ψ (xk, k)),

where µψ(xk, k) =
√
αk(1−ᾱk)
1−ᾱk−1

xk+
√
ᾱk−1βk

1−ᾱk
Gψ(xk, k), and G presents a model used to reconstruct

x. It can be optimized by:
L(ψ) = Ek∼[1,K],x0∼q(x0),ζ∼N (0,I) ∥ ζ − ζψ(xk, k) ∥2 (1)

3 RELATED WORK

Multi-agent reinforcement learning faces the partial observability issue. To address this, Centralized
Training with Decentralized Execution (CTDE) uses the global state to optimize the network during
centralized training (Claus & Boutilier, 1998) while relying only on local observations for decen-
tralized execution (Tan, 1993). To further mitigate partial observability, some methods (Guan et al.,
2022; Wang et al., 2021) adopt agent communication, which allows agents to exchange informa-
tion with each other. However, such methods typically require expensive communication channels.
Information-sharing methods provide additional information for training and gradually reduce the
additional information for distributed execution, such as SUPER (Gerstgrasser et al., 2024), which
shares prioritized experience; MACPF (Wang et al., 2022), which shares the actions of other agents;
and CADP (Zhou et al., 2023), which shares suggestions between agents. But this can reduce the
performance of the agent during the execution phase. Other methods adopt a modeling approach.
Opponent modeling methods (Papoudakis et al., 2021; Sun et al., 2024) overlook the potential en-
vironmental information. World model methods (Liu et al., 2024) are employed to model the entire
environment directly. However, modeling errors can be progressively amplified through interac-
tions and feedback loops between agents, thereby affecting the overall learning performance and
the convergence of strategies. State reconstruction methods aim to learn a model to reconstruct the
global state during execution. For instance, PTDE (Chen et al., 2022) uses knowledge distillation to
train a student network that reconstructs linear mapping of the global state. SIDiff (Xu et al., 2024)
reconstructs the global state through diffusion. They have incorporated the inconsistent dimension-
wise state for decision-making in training and execution, which introduces additional errors and
suboptimal decisions.

4 METHOD

To capture the inter-agent relationships and decrease the additional errors, we propose a method
called Reconstruction-Guided Policy (RGP), which consists of a decision module and a guidance
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Figure 2: The framework of RGP. Figure (a) illustrates the Decision Module, which is active during
both training and execution, reconstructing agent states s̄it to assist in decision-making and action
selection. Figure (b) shows the Guidance Module, which is only active during training, generating
agent states sit as ground truth to guide the training of the generative model. Both modules are
optimized through the same mixing network.

module. As illustrated in Figure 2, the decision module is designed to reconstruct the agent-wise
state and make decisions, which is active in both training and execution. The guidance module is
designed to guide the learning of the decision module, which is only active in the training. In the
following, we first describe the decision module, followed by the guidance module.

4.1 THE DECISION MODULE

As we discussed previously, the dimension-wise state lacks inter-agent dependencies, which is un-
favorable for decision-making. Therefore, the decision module takes the observation and trajectory
to reconstruct the agent-wise state, and makes decisions based on the agent-wise state.

Specifically, at arbitrary step t given the agent i’s observation oit and latest reconstructed trajectory
state hit−1, our decision module takes the following steps to make the decision ait.

First, it takes the observation oit and latest reconstructed trajectory state hit−1 as a condition to
reconstruct the agent-wise state of agent i, which represents its inter- relationships with other units
as we discussed previously. Considering the generative models (Kelkar & Anastasio, 2021; Qi et al.,
2023; Chen et al., 2018)are effective for reconstruction, we apply a generative model to reconstruct
the agent-wise state of the agent:

sit = G([oit, hit−1]), (2)

where [·, ·] denotes the concatenation. sit denotes the reconstructed agent-wise state of agent i. G(·)
denotes the generative model and we implement the G(·) with diffusion model, which reconstructs
the agent-wise state by iteratively conducting Eq. (3) K times to obtain sit,0, and use sit,0 as sit:

sit,k−1 =
sit,k√
αk

− βk√
αk(1− ᾱk)

ζψ(s
i
t,k, [o

i
t, h

i
t−1], k)+

√
βkζ, ζ ∼ N (0, I), for k = K, ..., 1. (3)

βk is the noise schedule measuring the proportion of noise added at each step, and αk = 1− βk. It
is worth noting that although we chose diffusion models as the generative model in this work, other
generative models are also applicable (we compared the results of reconstructing the agent-wise
state using different generative models, and the detailed results can be found in Appendix C.2.)

Then, the reconstructed agent-wise state is concatenated with the observation and fed to a function
f to predict the optimal action and the corresponding individual Q-value of the optimal action:

hit, a
i
t, Qi = f([sit, o

i
t], h

i
t−1), (4)

where function f is composed of a recurrent neural network (RNN) (Zaremba, 2014; Graves &
Graves, 2012; Chung et al., 2014) and an individual Q-network (Mnih, 2013). Particularly, the
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concatenation of reconstructed agent-wise state sit and observation oit is first fed to a RNN to obtain
the reconstructed trajectory state of the current step:

hit = RNN([sit, o
i
t], h

i
t−1), (5)

where RNN(·) denotes the RNN, and we implemented with Gated Recurrent Unit (GRU)(Chung
et al., 2014). hit, h

i
t−1 denote the reconstructed trajectory state of the current step and previous step,

and ht0 is initialized with a zero vector, that is hit = 0. Then, the reconstructed trajectory state of the
current step is fed to the individual Q-network, which is implemented with multiple-layer perceptron
(MLP), to predict the individual Q-value of each action and obtain the action.

ait = ϵ-Greedy(argmax
a

MLP(hit, a)) , (6)

Qi = MLP(hit, a
i
t) , (7)

where ait is the action taken by agent i to interact with the environment. ϵ is the hyperparameter in
training, and ϵ = 0 in execution, Qi denotes the individual Q-value.

It is obvious that the reconstruction of the agent-wise state is uncontrollable within the decision
module, which might lead to bad decisions in Eq.(6). Therefore, we introduce a guidance module to
guide the reconstruction.

4.2 THE GUIDANCE MODULE

The guidance module is a semi-siamese network paired with the decision module, guiding the recon-
struction and the learning of the decision module. As shown in Figure 2 (b), the guidance module
guides the decision module by incorporating the global state of the environment to estimate the
agent-wise state s̄it and trajectory state h̄it. They are derived from the true global state and can there-
fore act as constraints that guide the decision module to reconstruct the high-fidelity reconstructed
agent-wise state and reconstructed trajectory state when the global state is unavailable. It is impor-
tant that the primary function of the guidance module is to guide the learning of the decision module,
therefore, it is active only during training. In the following, we will first introduce the pipeline of
the guidance module and then explain how it guides the decision module.

The Pipeline of the Guidance Module. At arbitrary step t given the agent i’s observation oit and
the global state st, our guidance module works with the following steps and produces the guidance
agent-wise state s̄it and guidance trajectory state h̄it (Here, we prefix the variables produced by the
guidance module with “guidance” to avoid confusion).

Since st is a vector that contains the state of all the agents in the environment (if environmental
information is present, we treat it as an independent agent), we first decompose the global state
by agent, mapping each agent’s state to the same dimension d, stacking them into a matrix St.
St ∈ Rn×d, each row of the matrix St denotes the state of one agent. Then we encode the ID of the
agent, and concatenate them with global state matrix and observation. That is:

S̄t = [S,P ], ōit = [oit, p
i], , (8)

where P is the embedding matrix of agents’ ID, which is a learnable matrix and each row vector
of which corresponds to one agent. pi is the i-th row vector of P , which denotes the embedding of
agent i’s ID. Then, we apply a multi-head attention on S̄t and ōit to compute the guidance agent-wise
state, which represents the inter- relationships with other units:

s̄it = Attn(fq(ōit), fk(S̄t) , fv(S̄t)), (9)

where fq, fk, fv are implemented with MLP. Att(·) denotes the multi-head attention, in which
fq(ō

i
t), fk(S̄t), fv(S̄t) act as the query, key and value correspondingly. s̄it denotes the guidance

agent-wise state of agent i. Next, we feed the guidance agent-wise state s̄it to f (Eq.4) to obtain
guidance trajectory state, guidance action and guidance Q-value:

h̄it, ā
i
t, Q̄i = f([s̄it, o

i
t]) . (10)
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The Guidance on Decision Module. To guide the reconstruction of the agent-wise state, we treat
s̄it as the ground truth data that diffusion model G is supposed to reconstruct given the latest trajectory
state and observation. Therefore, we apply the learning target of the diffusion model to guide the
agent-wise state reconstruction in decision module.

Ll = Ek∼[1,K],s̄i0∼q(s̄i0),ζ∼N (0,I) ∥ ζ − ζψ(
√
ᾱks̄

i
t +

√
1− ᾱkζ, [o

i
t, h̄

i
t−1],m) ∥2, (11)

Recall that one of the factors influencing the decision made by the decision module is the trajectory
state (hit−1 in Eq.(4)), which is computed from the agent-wise states of previous steps sit−1. As
decisions are made sequentially over multiple time steps, any slight inaccuracy in the reconstructed
agent-wise state at each step can accumulate in the trajectory state, affecting subsequent decisions.
To address this, we utilize the guidance trajectory state generated by the guidance module to refine
the reconstruction of the agent-wise state in an indirect manner. Specifically, the guidance trajectory
state is employed to constrain the trajectory state derived from the reconstructed agent-wise state:

Lt = ED[(h̄
i
t − hit)

2] . (12)

4.3 MODEL LEARNING

Although the guidance module guides the agent-wise state reconstruction of the decision module,
the parameters of both the decision and guidance modules are randomly initialized. The constraints
from Eq.(11) and Eq.(12) can only make the local and trajectory states generated by the two modules
closely approximate each other, but cannot guide them toward convergence in a direction favorable
for making optimal decisions. Following previous work, we also adopt a Mixing network (Rashid
et al., 2020) to further constrain the agent’s decisions. Specifically, we apply two TD losses (Peng
& Williams, 1993; Mnih et al., 2015) to constrain the actions produced by the decision module and
the guidance module.

Ld = ED[(r + γmax
at+1

Qtot(τt+1,at+1, st+1; θ
−, ψ−)−Qtot(τt,at, st; θ, ψ))

2
], (13)

Lg = ED[(r + γmax
āt+1

Q̄tot(τ̄t+1, āt+1, st+1; θ
−, η−)− Q̄tot(τ̄t, āt, st; θ, η))

2
], (14)

where ψ are the parameters of the generative model, η are the parameters of the attention and θ are
the parameters of the other networks. ψ−, η− and θ− represent the parameters of the target network,
which are periodically copied the parameters and kept constant for a definite number of iterations.
It is important to note that although the actions generated by the guidance module are not used for
interaction with the environment, constraining them helps guide the agent-wise state and trajectory
states to converge toward optimal actions.

Therefore, the learning target of our method is:

L = Ll + Lt + Ld + Lg. (15)

The details of training are illustrated in Appendix A.1, algorithm1.

5 EXPERIMENTS

We conduct extensive experiments to evaluate the performance of RGP, and we particularly focus
on the research questions: i) How does RGP perform compared with other methods (RQ1)? ii) Can
RGP reduce the gap between training and execution (RQ2)? iii) Why does RGP can achieve better
performance than other methods(RQ3)? iv) Can RGP explore the potential relationships between
agents? (RQ4)? v) Can RGP adapt to continuous action environments? (RQ5)? vi) How does the
RGP perform under more challenge partially observable conditions? (RQ6)?

5.1 EXPERIMENT SETTING

Environments. We primarily evaluated RGP on SMAC (Samvelyan et al., 2019) and SMACv2 (El-
lis et al., 2024). SMAC is the most widely used discrete multi-agent environment, while SMACv2
introduces stochasticity based on SAMC. We set up the SMACv2 maps with 5 ally agents against 5
enemies. Additionally, to further demonstrate the portability of RGP, we conducted experiments in
continuous predator-prey and continuous cooperative navigation scenarios (Lowe et al., 2017). For
detail of continuous predator-prey and continuous cooperative navigatio, see Appendix B.
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MAP VDN QMIX QPLEX CADP PTDE SIDiff RGP

27m vs 30m 92.5±6.0 96.4±3.5 96.7±3.0 92.6±4.5 96.6±1.9 93.2±3.9 98.1±2.1
MMM2 88.3±5.4 92.7±5.4 94.8±2.9 92.0±4.2 94.7±3.4 87.2±8.4 95.1±3.5

3s5z vs 3s6z 65.9±5.4 70.8±6.4 30.6±37.3 90.2±3.1 67.4±6.9 10.0±8.7 76.9±2.8
corridor 86.9±6.9 92.1±4.6 30.5±39.9 87.8±4.3 91.4±2.7 70.7±17.0 93.3±3.0
6h vs 8z 23.3±17.9 38.1±28.3 7.6±2.3 51.8±16.3 52.4±8.5 23.8±15.9 73.1±4.6

Protoss 360 58.8±5.2 69.4±4.6 70.0±5.3 64.6±6.8 64.4±3.4 25.3±11.4 76.2±3.6
Terran 360 65.1±6.6 72.8±5.9 74.6±6.5 70.2±5.9 63.4±6.3 47.8±10.9 75.0±5.9
Zerg 360 51.6±7.1 55.6±5.3 40.9±28.7 56.7±7.7 55.3±5.6 46.6±8.9 61.4±7.1

HPN-
QMIX

RGP+
HPN

99.5±0.7 100.0±0.0
99.4±0.3 100.0±0.0
94.7±2.2 96.6±2.3
96.4±3.4 96.7±2.9
94.4±3.5 95.6±2.3

79.4±4.8 84.5±4.3
78.0±5.2 82.8±4.4
67.4±7.0 70.1±7.0

Table 1: The mean win rate (%) of different methods on SMAC and SMACv2, with ± denoting
the standard deviation. We applied RGP to QMIX, denoted as RGP. Protoss 360 indicates that in
the protoss map, agents have a 360° field of view. Similarly, zerg 360 and terran 360 represent
analogous settings for the zerg and terran maps. We further applied RGP to HPN-QMIX, denoted
as GRP+HPN. The corresponding training plots are provided in Appendix C.1 for reference.

Baselines. In discrete action environments, we used traditional CTDE methods as baselines, in-
cluding VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2020), QPLEX (Wang et al., 2020),
and HPN-QMIX (Jianye et al., 2022). Additionally, we compared RGP with CADP (Zhou et al.,
2023), which enhances CTDE by providing agents with supplementary information during execu-
tion. We further evaluated our method against PTDE (Chen et al., 2022) and SIDiff (Xu et al.,
2024), which reconstruct the dimension-wise state through local observations during decentralized
execution. In continuous action environments, we compared RGP with policy-based methods, such
as MADDPG (Lowe et al., 2017) and FACMAC (Peng et al., 2021).

Implementation Details. Our model was trained on a setup with 4 NVIDIA A40 GPUs, an Intel
Gold 5220 CPU, and 504GB of memory, optimized using the Adam optimizer (Kingma & Ba, 2014).
Due to limited computational resources, we replaced the Unet used in the original paper DDPM (Ho
et al., 2020; Rombach et al., 2022) with an MLP. We set the timestep of diffusion to 10, and the
heads of attention to 4. The details of other hyperparameters can be found in Appendix A.2 table
4. We also referred to PyMARL2 (Hu et al., 2021) for extensive tuning and proper training of all
baselines to ensure they achieved optimal performance.

5.2 BENCHMARK RESULTS

We compare RGP to baseline methods with respect to the normalized battle mean win rate obtained
during online evaluation. We conducted 3 trials with different seeds, reporting the average results
and standard deviation. The results of RGP and baseline methods are summarized in Table 1.

From Table 1, we can observe that (RQ1): (1) Compared with the methods without reconstructing
the states, such as VDN, QMIX, QPLEX, our RGP achieves the best performance, which demon-
strates that relying solely on local observations is insufficient in distributed execution. Additional
information is needed to assist the agent in decision-making to achieve better performance. (2) We
noticed that RGP outperformed QMIX in most cases, which has exactly the same backbone with
QMIX. Similarly, RGP+HPN also outperformed HPN-QMIX. That demonstrates that the recon-
structed agent-wise state provided by the decision module beneficial for the decision of agent. (3)
Compared with the methods that reconstruct the states, such as PTDE and SIDiff, our RGP achieves
the best performance in most cases, which shows that our method provides agents with more refined
additional information, specifically the agent-wise state, through the decision and guidance modules,
which can effectively enhance the agents’ decision-making performance.

5.3 PERFORMANCE RETENTION

To investigate whether RGP reduces the performance gap between training and execution (RQ2), we
compare the retention ratio of RGP with the PTDE and SIDiff, which also reconstruct the state for
decision making, on the environment of SMAC and SMACv2, and illustrate the results in Table 2.
From Table 2, we can observe that: PTDE and SIDiff exhibit significant performance discrepancies
between centralized training and distributed execution, with both methods having a lower perfor-
mance retention rate than our proposed RGP. Since both PTDE and SIDiff aim to reconstruct the
dimension-wise state and have an inconsistent state in decision-making of training and execution,

7



Published as a conference paper at ICLR 2025

PTDE SIDiff RGP

Map CE DE PRR CE DE PRR CE DE PRR

3s5z vs 3s6z 77.6±6.2 67.4±6.9 86.9±11.3 10.5±2.8 10.0±8.7 95.2±8.7 79.3±2.1 76.9±2.8 97.0±4.4
6h vs 8z 71.2±5.3 52.4±8.5 73.6±13.1 29.7±22.8 23.8±15.9 80.1±81.6 76.5±6.1 73.1±4.6 95.6±9.7

protoss 360 73.2±5.5 64.4±3.4 88.0±8.1 59.8±5.7 25.3±11.4 42.3±19.5 76.9±4.1 76.2±3.6 99.1±7.1
terran 360 71.6±4.8 63.4±6.3 88.5±10.6 68.1±6.5 47.8±10.9 70.2±17.4 73.1±3.8 75.0±5.9 102.6±9.7

Table 2: The mean win rates (%) and performance retention ratios (%) (Chen et al., 2022) of different
methods on SMAC. We tested their results under both centralized and decentralized execution. CE
stands for centralized execution, DE stands for decentralized execution. PRR stands for Performance
Retention Rate, which can be calculated by dividing the win rates of DE by it of CE. The uncertainty
of PRR is measured by the standard deviation propagation technique.
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Figure 3: The ablation study. We tested the mean win rate under different variants of RGP. Pro-
toss 90 indicates that the agents have a 90° field of view in the protoss map, and zerg 90 represents
a similar setting for the zerg map.

this result suggests that learning the reconstruction of the agent-wise state and adopting a consistent
state in decision-making is beneficial.

5.4 ABLATION STUDY

To further investigate the factors that support the performance of RGP (RQ3), we conduct the abla-
tion study. specifically, we compare the performance of RGP with the following variants:

• -LLoss removes the constraint (Ll, Eq. 11) in the guidance module. That means the reconstruc-
tion of the agent-wise state is only guided by the constraint on trajectory state (Lt).

• -TLoss removes the constraint on the trajectory state (Lt, Eq.12) in the guidance module. That
means the reconstruction of the agent-wise state is only guided by the constraint on agent-wise
state (Ll).

• -QLoss removes the constraint (Lg , Eq.14) on the Q-value.
• Gstate applies the global state reconstruction in decision module and make decision based on

the the reconstructed global state.
• Istate applies the inconsistent state in training and execution on RGP.

The results are illustrated in Figure 3, from which we have following findings: (1) Removing the
constraint on the Q-value of guidance module (-QLoss) significantly decreased the performance
of RGP and introduced greater variance. This is because without the constraint of Lg , the guidance
module struggles to guide the reconstructed agent-wise state and trajectory state to optimal-favorable
states, hindering the agent’s ability to make optimal decisions. (2) Removing Ll (-LLoss) and Lt
(-TLoss) decrease the performance. This is because both Ll and Lt is used to guide the agent-
wise state reconstruction. Removing one of them affects the reconstruction of the agent-wise state,
thereby impacting overall performance. Also, we observed that the impact of both settings on per-
formance is less significant than that of -QLoss. This is because removing one constraint still leaves
the other constraint in place to properly guide the reconstruction of the agent-wise state. (3) Making
decisions based on the reconstructed global state (GState) instead of the agent-wise state decreases
the performance. We believe this is due to two facts. On one hand, making decisions directly based
on the global state without considering the agent-wise states of the agents results in decisions that
do not align with the actual circumstances of the agents. On the other hand, the global state it-
self is discrete, and the diffusion models we implemented may not be adept at generating discrete

8



Published as a conference paper at ICLR 2025

Figure 4: The attention weight of each agent.
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(a) Predator-Prey (3 agents, 1 prey)
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(b) Predator-Prey (6 agents, 2 prey)
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(c) Cooperative Navigation (3 agents)

MADDPG FACMAC RGP+MADDPG RGP+FACMAC

Figure 5: The average reward of different methods. RGP+MADDPG denotes using MADDPG
as the subsequent information processing and critic network, and RGP+FACMAC refers to using
FACMAC as the critic network. The experiment is conducted using three random seeds. The thick,
dark-colored lines represent the mean, while the shaded area indicates the standard deviation.

data, leading to inherent biases in the reconstructed global state. 4) Applying inconsistent states
to make decisions in training and execution (IState) decreases the performance. The reason as we
discussed previously, the policy is trained on the true state, never trained to handle imperfect states
(the reconstructed one), which might be slightly different from the actual one due to reconstruction
inaccuracies. Feeding the imperfect states to policy increase the suboptimal action.

5.5 AGENT-WISE STATE FOR AGENT

To further verify whether our RGP indeed accounts for the potential relationships between agents
(RQ4), we randomly select an arbitrary agent and visualize the weight of attention assigned to
other agents when computing the agent-wise state for decision-making. The results are illustrated
in Figure 4, in which the agent is denoted in Agent 1, and other agents are denoted with Agent
2− 5. The horizontal axis represents time steps. Each cell indicates the attention weight that Agent
1 assigns to other agents when calculating the agent-wise state. The redder the color, the higher the
weight of the corresponding agent’s state in Agent 1’s agent-wise state.

From Figure 4, we observed that: (1) Before step 15, Agent 1 focuses on its own state, but after
step 15, its reliance on its own state decreases. This is likely because, in the early stages, it needs
its own state to position itself in the environment, but once positioning is complete, it relies only
on local observations and no longer needs its own state. (2) Before step 15, the weight of Agent 2
is relatively high, while after step 15, the weight of Agent 3 increases more than that of Agent 2.
We assume that it is likely because, Agent 1 dynamically adjusts its cooperation strategy based on
the evolving importance of other agents, first relying more on Agent 2 and later shifting its focus to
Agent 3 as the context changes. This suggests that the system is able to flexibly respond to varying
circumstances, optimizing collaboration as needed throughout the task. These results demonstrate
that RGP effectively captures inter-agent relationships and selects information of important agents.

5.6 PORTABILITY ON CONTINUOUS ACTION ENVIRONMENT

To further investigate the portability of RGP on continuous action environment (RQ5), we transport
the decision module and the guidance module of RGP to the MADDPG (Lowe et al., 2017) and
FACMAC (Peng et al., 2021), which tackle continuous action scenarios, and compare their perfor-
mance in the continuous action environment: Cooperative Navigation and Predator-Prey (Lowe
et al., 2017). The results are illustrated in Figure 5, in which RGP+MADDPG denotes the setting
we transport the RGP to MADDPG, and RGP+FACMAC denotes the setting we transport RGP to
FACMAC (for the details of implementation please refer Appendix A.1, Algorithm 2).
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Metric protoss 360 protoss 90 protoss 30 terran 360 terran 90 terran 30 zerg 360 zerg 90 zerg 30

QMIX 69.4±4.6 27.6±8.2 7.2±1.6 72.8±5.9 41.9±5.3 5.2±2.0 55.6±5.3 23.2±5.6 2.1±0.6
RGP 76.2±3.6 37.2±6.5 10.1±5.0 75.0±5.9 46.3±4.1 9.4±1.2 61.4±7.1 30.0±4.7 4.2±1.1
PIR 9.8±5.2 34.8±25.7 40.3±70.0 3.0±8.1 10.5±9.8 80.8±38.7 10.4±12.8 29.3±21.5 100.0±59.7

HPN QMIX 79.4±4.8 47.5±5.8 8.8±3.6 78.0±5.2 49.5±7.4 4.4±2.8 67.4±7.0 17.1±5.3 2.5±2.3
RGP+HPN 84.5±4.3 53.9±6.5 10.2±3.6 82.8±4.4 60.0±5.6 12.8±3.4 70.1±7.0 26.3±8.0 4.1±1.6

PIR 6.4±5.4 13.5±13.8 15.9±41.4 6.2±5.7 21.2±11.8 190.9±144.0 4.0±10.4 53.8±49.7 64.0±87.0

Table 3: The winning rates (%) and performance improving ratios (PIR)(%) of different methods
on SMACv2. We tested their results under decentralized execution and calculated the performance
improving ratio during decentralized execution. Protoss 30 indicates that the agents have a 30° field
of view. Similarly, zerg 30 and terran 30 represent analogous settings for the zerg and terran maps,
respectively. The uncertainty of PIR is measured by the standard deviation propagation technique.

We can observe from Figure 5 that: (1) RGP+MADDPG achieves better performance than MAD-
DPG, and RGP+FACMAC achieves better performance than FACMAC in all the settings. That
shows introducing our RGP benefits the performance, and our RGP is not only applicable to discrete
action environments but also to continuous action environments. (2) In the Predator-Prey (Figure 5
(a) and (b)), RGP+FACMAC achieves the average return which several times than FACMAC. Espe-
cially in the setting with 6 agents and 2 prey, the average reward of FACMAC is around 1200, while
the average reward of RGP+FACMAC is around 1600! We assume that is because the introduction
of agent-wise states helps agents effectively cooperate with surrounding agents, facilitating their
collaboration to better corner the prey.

5.7 FURTHER INVESTIGATION

In multi-agent decision-making, the field of view of an agent is a key factor affecting its decisions; a
smaller field of view makes it more likely for the agent to make suboptimal decisions. To investigate
the performance of RGP under more challenging partially observable conditions (RQ6), we tested
RGP’s performance across different fields of view (360°, 90°, and 30°) and compared it with QMIX
and HPN-QMIX under the same settings.

The results are illustrated in Table 3, in which both RGP+HPN and RGP incorporate the decision
module and the guidance module, whereas HPN-QMIX and QMIX lack these modules. Moreover,
QMIX is the backbone of RGP, and HPN-QMIX is the backbone of RGP+HPN. From Table 3, we
can observe that: (1) Regardless of the field of view, RGP outperforms the QMIX and RGP+HPN
outperforms the HPN-QMIX, which demonstrates the effectiveness of our method again. (2) In all
settings, as the field of view decreases, the difference between the setting of introducing the deci-
sion module and guidance module and the setting without these two modules becomes increasingly
pronounced. It suggests that our method can reconstruct a state that better characterizes the actual
state of the agent for decision-making.

6 CONCLUSION

In this paper, we propose a method called Reconstruction-Guided Policy (RGP), which consists of
a decision module and a guidance module. The decision module is responsible for reconstructing
the agent-wise state and making decisions, while the guidance module helps guide the agent-wise
state reconstruction. We conduct extensive experiments to evaluate the performance of RGP, and
the results demonstrate the effectiveness of the proposed method. We found that ensuring consis-
tency between training and execution states effectively prevents error amplification and improves
performance retention ratios during execution, particularly in dynamic and complex environments.
Additionally, considering the potential relationships between agents helps them identify interaction
targets, which is beneficial for promoting cooperation among agents.

However, our method still has limitations. In environments where complex information such as
images is used for state representation, it becomes difficult to decompose agent-specific information.
In the future, techniques like object detection or image segmentation could be introduced to address
this issue.
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A ALGORITHMS AND HYPERPARAMETERS

A.1 RGP WITH VALUE DECOMPOSITION METHOD AND POLICY GRADIENT METHODS

Our method can be effectively integrated with both value decomposition and policy gradient ap-
proaches, which we have summarized as Algorithm 1 and Algorithm 2, respectively.

A.2 HYPERPARAMETERS DETAIL

Details of RGP’s hyperparameters are provided in Table 4. For baseline VDN, QMIX, QPLEX,
they were implemented with the hyperparameters of PyMARL2 (Hu et al., 2021). For HPN-QMIX,
CADP, PTDE, and SIDiff, they were implemented with their optimal hyperparameters, as specified
in their respective papers (Jianye et al., 2022; Zhou et al., 2023; Chen et al., 2022; Xu et al., 2024).

B ENVIRONMENT DETAILS

B.1 CONTINUOUS PREDATOR-PREY

We followed FACMAC (Peng et al., 2021) and improved the simple tag scenario in MPE (Lowe
et al., 2017), which is a variant of the classic predator-prey problem. Each agent operates in a con-
tinuous two-dimensional action space and must capture faster-moving prey in a randomly generated
2D environment, where obstacles hinder movement. To create a fully cooperative environment, the
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Algorithm 1 Training of RGP with Value decomposition methods

1: Initialize Generative model and attention
2: Initialize individual Q networks and target networks
3: Initialize mixing network and target mixing network
4: Initialize replay buffer D
5: for each episode do
6: Initialize global state s0, guide hidden states and reconstruction hidden states
7: for each timestep t = 0 to T do
8: for each agent i = 1 to N do
9: Obtain the global state s0 and local observation oit

10: Calculate S̄t and ōit according Eq.8
11: Calculate agent-wise state s̄it according Eq.9
12: Calculate reconstructed agent-wise state sit according Eq.2
13: Select action ait according to sit with ϵ-greedy policy w.r.t Qi(oti, s

i
t, h

t−1
i )

14: end for
15: Take joint action at
16: Obtain the global reward rt+1, the next observation ot and the next global state st
17: Store the episode in replay buffer D
18: Sample a batch of episodes from replay buffer D
19: Update the parameters of the decision module, guidance module and the mixing network

according Eq. 15
20: Replace target parameters every M episodes
21: end for
22: end for

Algorithm 2 Training of RGP with policy gradient methods

1: Initialize Generative model and attention
2: Initialize individual actor and the critic
3: Initialize replay buffer D
4: for each episode do
5: Initialize global state s0, guide hidden states and reconstruction hidden states
6: for each timestep t = 0 to T do
7: for each agent i = 1 to N do
8: Obtain the global state s0 and local observation oit
9: Calculate S̄t and ōit according Eq.8

10: Calculate agent-wise state s̄it according Eq.9
11: Calculate reconstructed agent-wise state sit according Eq.2
12: Select action ait according to sit with distribution w.r.t πi(oti, s

i
t, h

t−1
i )

13: end for
14: Take joint action at
15: Obtain the global reward rt+1, the next observation ot and the next global state st
16: Store the episode in replay buffer D
17: for each agent i = 1 to N do
18: Sample a batch of episodes from replay buffer D
19: Fit value function by regression on mean-squared error and update critic
20: Update actor according to policy gradient methods
21: end for
22: Update target parameters by polyak averaging
23: end for
24: end for
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Module Hyperparameter Value

Decision
Module

Diffusion process timestep 10
Type of optimizer Adam

Learning rate 0.001
Batch size 128, (64 for 3s5z vs 3s6z)
TD lambda 0.6, (0.3 for 6h vs 8z)

Training epochs 10M, (8M for SMACv2)
Buffer size 5000, (2500 for 3s5z vs 3s6z)

Target update interval 200

Guidance
Module

Attention heads 4
Attention embedding dim 32

Agent information mapping dim 32

Table 4: Hyperparameter settings for the RGP training.

prey’s strategy was designed as a hard-coded heuristic, where it always moves to the farthest posi-
tion from the nearest predator at any given time. Agents can only receive rewards when they are
close enough to the prey.

To introduce partial observability, a vision radius was added for each agent. Agents can only receive
information within their vision radius (including other agents, prey, and obstacles), limiting their
ability to observe other agents to approximately 60% of the time.

B.2 CONTINUOUS COOPERATIVE NAVIGATION

The continuous cooperative navigation is a fully cooperative environment based on MPE (Lowe
et al., 2017). In a two-dimensional space, n agents must collaborate to cover landmarks scattered
in the environment. Agents receive rewards from the environment when they get close enough
to a landmark. They can only access information within their field of view, including their own
position and velocity, the position and velocity of other agents, and the location of the landmarks.
We implement the continuous action space by setting continuous actions=True in the code.
For more details, Further details are available in the official PettingZoo documentation 1.

C MORE EXPERIMENT

C.1 TRAINING CURVES

To clearly illustrate the training procedure of the model, we present our curves in Figure 6, in
which the x-axis represents the training episodes, while the y-axis represents the battle win rate in
executing. It can be found that RGP+HPN outperforms HPN-QMIX and performs optimally in most
cases. RGP also outperformed the rest of the baselines in most cases.

C.2 THE IMPACT OF GENERATIVE MODELS

Our original intent of applying diffusion is to generate the agent-wise state. Therefore, diffusion
serves as one module in our method. Theoretically speaking, any generative model, including VAE,
GAN, or even simple MLP, can replace the diffusion in our method. To further validate the impact
of generative models, we replaced the diffusion model in our RGP with MLP, VAE, and GAN
respectively and conducted experiments in the SMACv2 environment. Experimental results are
shown in Figure 7. We found that (1) Even though the diffusion model is replaced with VAE and
MLP, we can observe that RGP outperforms the baseline QMIX in both settings, demonstrating
the effectiveness of RGP. (2) Replacing the diffusion model with GAN, the performance slightly
decreases. We assume that because GAN requires simultaneous training of both the generator and
discriminator, and this stepwise training negatively affects the overall quality of generation. (3) We
can observe that replacing the diffusion model with VAE and MLP results in performance much

1https://pettingzoo.farama.org/environments/mpe/
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Figure 6: Training curves in SMACv2.
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Figure 7: Performance comparison across various generative models. Protoss 360 and Protoss 90
represent agents having 360° and 90° fields of view, respectively, in the protoss map. Similarly,
zerg 360 and zerg 90 represent analogous settings, respectively, in the zerg map.

closer to that of the diffusion setting. We assume the underlying reason is the substitution of the U-
Net used in the original paper DDPM (Ho et al., 2020; Rombach et al., 2022) with MLP (to save the
cost of computational resources). Nevertheless, the setting of diffusion still outperforms the setting
of VAE and MLP in most cases.

C.3 THE BIAS OF GENERATIVE MODELS

To explore the potential biases introduced by the generative model in state reconstruction, we con-
ducted experiments on zerg 90. Specifically, we sampled 1,000 trajectories from PTDE and RGP,
respectively, to calculate the cosine similarity between the true ground truth and the reconstruction.
The results are visualized in Figure 8, in which each grid represents the cosine similarity for the cor-
responding agent at a specific time step. We can observe that (1) the reconstruction of our method
is significantly closer to the true ground truth compared to the baseline. Furthermore, the similar-
ity between the reconstruction of our method and the true ground truth consistently exceeds 0.9,
demonstrating that our method introduces minimal bias during reconstruction. (2) The reconstruc-
tion performance of RGP in the first step is relatively poor compared to the subsequent steps. It is
likely because of the cold state, in which the length of interaction history is zero, interferes with the
reconstruction. However,even under this condition, the cosine similarity of RGP still remains above
0.9, indicating that this interference does not significantly impact the overall performance.

C.4 MORE COMPLEX ENVIRONMENTS

C.4.1 MORE AGENTS

To further explore RGP’s performance in scenarios with a larger number of agents, we conducted
experiments in the zerg 90 20 vs 20 environment. This setting involves 20 agents battling against
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Figure 8: Cosine Similarity of PTDE and RGP. The heatmap’s horizontal axis represents the
timesteps, while the vertical axis corresponds to the agents. The low-dimensional representation
of the true global information constructed by PTDE is denoted as z, and its reconstructed global
information is denoted as zp. To illustrate the detailed variations more clearly, we enhanced the
color band by adding more vibrant colors to the key intervals require emphasis.

20 enemies under the zerg 90 configuration, presenting a significantly higher challenge for the al-
gorithm. The experimental results are presented in Figure 9 (a). We observe that RGP outperforms
all baselines, demonstrating its scalability in environments with a larger number of agents.
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Figure 9: The winning rates (%) of different methods
on more complex environments.

RGP QMIX
zerg 7.4±4.5 2.7±1.9

protoss 14.2±4.2 1.6±0.1

Table 5: The winning rates (%) of differ-
ent methods on environment with changes
in the underlying states. Zerg indicates
that we trained on zerg 360 and executed
on zerg 360 epo, and protoss indicates
that we trained on protoss 360 and exe-
cuted on protoss 360 epo.

C.4.2 MORE HIGHLY DYNAMIC ENVIRONMENTS

To further explore RGP’s performance in environments with higher randomness, we conducted ex-
periments on the zerg 360 epo map. This map builds upon SMACv2 by introducing random mask-
ing of enemy observations for each agent. Specifically, in an episode, when an enemy is observed by
the first agent, the first agent is guaranteed to observe it as normal. Other agents have a 50% chance
of being unable to observe the enemy for the remainder of the episode. This significantly limits the
agents’ observation capabilities, further increasing environmental dynamics (for more details, refer
to the SMACv22). The experimental results are presented in Figure 9 (b). We observe that: (1) RGP
outperforms other methods in environments with higher dynamics. This demonstrates RGP’s scala-
bility to highly dynamic environments. (2) PTDE performs poorly, likely because the inconsistency
between states used during training and execution is further amplified in more complex settings.
This magnification of inconsistency errors causes its performance to fall below RGP and QMIX.

C.5 ROBUSTNESS

To explore the robustness of RGP under changes in the underlying states of the environment, we
trained on zerg 360 and executed on zerg 360 epo. Similarly, we trained on protoss 360 and exe-
cuted on protoss 360 epo. The results are shown in Table 5. We can observe that under such strict
environmental constraints, QMIX is almost entirely unable to achieve any victories. In contrast,
RGP retain a certain level of decision-making capability. This demonstrates that our approach main-

2https://arxiv.org/pdf/2212.07489
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tains robustness in environments with latent state changes. Even when unexpected variations in state
dynamics occur, our method continues to maintains a clear advantage over the baseline.
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