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ABSTRACT

Despite the recent successes of multi-agent reinforcement learning (MARL) algo-
rithms, efficiently adapting to other agents in mixed-motive environments remains
a significant challenge. One feasible approach is to use Theory of Mind (ToM) to
reason about the mental states of other agents and model their behavior. However,
these methods often encounter difficulties in efficient reasoning and utilization of
inferred information. To address these issues, we propose Planning with Theory
of Mind (PToM), a novel multi-agent algorithm that enables few-shot adaptation
to unseen policies in sequential social dilemmas (SSDs). PToM is hierarchically
composed of two modules: an opponent modeling module that utilizes ToM to
infer others’ goals and learn corresponding goal-conditioned policies, and a plan-
ning module that employs Monte Carlo Tree Search (MCTS) to identify the best
response. Our approach improves efficiency by updating beliefs about others’ goals
both between and within episodes and by using information from the opponent
modeling module to guide planning. Experimental results demonstrate that in three
representative SSD paradigms, PToM converges expeditiously, excels in self-play
scenarios, and exhibits superior few-shot adaptation capabilities when interacting
with various unseen agents. Furthermore, the emergence of social intelligence
during our experiments underscores the potential of our approach in complex
multi-agent environments.

1 INTRODUCTION

Constructing agents being able to rapidly adapt to previously unseen agents is a longstanding
challenge for Artificial Intelligence. We refer to this ability as few-shot adaptation. Previous work has
proposed well-performed MARL algorithms to study few-shot adaptation in zero-sum games (Vinyals
et al., 2019; Vezhnevets et al., 2020) and common-interest environments (Barrett et al., 2011; Hu
et al., 2020; Mahajan et al., 2022; Team et al., 2023). These environments involve a predefined
competitive or cooperative relationship between agents. However, little attention has been given to the
challenge of adapting to new opponents1 in mixed-motive environments, where cooperation coexists
with defection. A majority of realistic multi-agent decision-making scenarios can be abstracted into
mixed-motive environments (Komorita & Parks, 1995; Dafoe et al., 2020).

We focus on few-shot adaptation of unseen agents in sequential social dilemmas (SSDs), a widely-
studied kind of mixed-motive environments. SSDs extend classic matrix-form social dilemmas
temporally and spatially. They enable the observation of others’ trajectories and modification of
one’s own strategies within one episode (Leibo et al., 2017). SSDs are inherently complex, requiring
the dynamic identification of potential partners and competitors. Decision making in SSDs should
balance short-term interests with long-term rewards, while also considering the trade-off between
self-interest and group benefit. Many algorithms struggle to perform well in SSDs despite success in
zero-sum and pure-cooperative environments, because they use efficient techniques specific to reward
structures, such as minimax (Littman, 1994; Li et al., 2019), Double Oracle (McMahan et al., 2003;
Balduzzi et al., 2019) or IGM condition (Sunehag et al., 2017; Son et al., 2019; Rashid et al., 2020),
which are not applicable in SSDs. These challenges make autonomous decision-making and few-shot
adaptation more difficult in SSDs compared with zero-sum and pure-cooperative environments.

1In this paper, we use ”opponent” and ”other agent” interchangeably to refer to agents that coexist with the
focal agent in the same environment.
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According to cognitive psychology and related disciplines, humans’ ability to rapidly solve previously
unseen problems depends on hierarchical cognitive mechanisms (Butz & Kutter, 2016; Kleiman-
Weiner et al., 2016; Eppe et al., 2022). This hierarchical structure unifies high-level goal reasoning
with low-level action planning. Meanwhile, researches on machine learning also emphasize the im-
portance and effectiveness of hierarchical goal-directed planning for few-shot problem-solving (Eppe
et al., 2022). Inspired by the hierarchical structure and theory of mind - the ability to understand
others’ mental states (like goals and beliefs) from their actions (Baker et al., 2017), we propose an
algorithm, named Planning with Theory of Mind (PToM), for tackling few-shot adaptation in SSDs.

PToM consists of two modules: an opponent modeling module and a planning module. The opponent
modeling module estimates opponents’ behavior by inferring their goals and learning their goal-
conditioned policies. Based on the opponent’s behavior, the planning module generates the next action
to take. To test PToM’s few-shot adaptation ability, we construct three typical SSD environments:
sequential stag-hunt game (SSH), sequential snowdrift game (SS), and sequential prisoner’s dilemma
(SPD). They are extensions of the three most representative paradigms of social dilemmas(Rousseau,
1999; Rapoport & Chammah, 1966; Rapoport et al., 1965; Santos et al., 2006), in terms of space, time,
and number of participants. A detailed description of these environments is provided in Sec. 5.1.

Experimental results illustrate that across all the three typical paradigms of SSDs, PToM exhibits
superior few-shot adaptation ability compared with baselines, including the well-established MARL
algorithms LOLA, social influence, A3C, and prosocial-A3C. Meanwhile, PToM exhibits expeditious
convergence and achieves high rewards after convergence, showing its exceptional decision-making
ability in SSDs. In addition, we observe self-organized cooperation and alliance of the disadvantaged
emerging from the interaction between multiple PToM agents.

2 RELATED WORK

MARL has explored multi-agent decision-making in SSDs. One approach is to add intrinsic rewards
to incentivize collaboration and consideration of the impact on others, alongside maximizing ex-
trinsic rewards. Notable examples include ToMAGA (Nguyen et al., 2020), MARL with inequity
aversion (Hughes et al., 2018), and prosocial MARL (Peysakhovich & Lerer, 2018). However, many
of these algorithms rely on hand-crafted intrinsic rewards and assume access to other agents’ rewards,
which can make them exploitable by self-interested algorithms and less effective in realistic scenarios
where others’ rewards are not visible (Komorita & Parks, 1995). To address these issues, Jaques et al.
(2019) have included intrinsic social influence reward that use counterfactual reasoning to assess the
effect of an agent’s actions on its opponents’ behavior.

LOLA Foerster et al. (2018) and its extension (such as POLA (Zhao et al., 2022), M-FOS (Lu et al.,
2022)) consider the impact of one agent’s learning process, rather than treating them as a static part
of the environment. However, LOLA requires knowledge of opponents’ network parameters, which
may not be feasible in many scenarios. LOLA with opponent modeling relaxes this requirement, but
scaling problems may arise in complex sequential environments that require long action sequences
for rewards.

Our work relates to opponent modeling (see (Albrecht & Stone, 2018) for a comprehensive review).
I-POMDP (Gmytrasiewicz & Doshi, 2005) is a typical opponent modeling and planning framework,
which maintains dynamic beliefs over the physical environment and beliefs over other agents’ beliefs.
It maximizes a value function of the beliefs to determine the next action. However, the nested belief
inference suffers from serious computational complexity problems, which makes it impractical in
complex environments. Unlike I-POMDP and its approximation methods (Doshi & Perez, 2008;
Doshi & Gmytrasiewicz, 2009; Hoang & Low, 2013; Han & Gmytrasiewicz, 2018; 2019; Zhang &
Doshi, 2022), PToM explicitly uses beliefs over other agents’ goals and policies to learn a neural
network model of other agents (MOA), an MCTS planner to compute next actions. PToM avoids
nested belief inference and performs sequential decision-making more efficiently.

Theory of mind (ToM), originally a concept of cognitive science and psychology (Baron-Cohen
et al., 1985), has been transformed into computational models over the past decade and used to infer
agents’ mental states such as goals and desires. Bayesian inference has been a popular technique
used to make ToM computational (Baker et al., 2011; Track et al., 2018; Wu et al., 2021; Zhi-Xuan
et al., 2022). With the rapid development of the neural network, some recent work has attempted to
achieve ToM using neural networks (Rabinowitz et al., 2018; Shu & Tian, 2018; Wen et al., 2019;
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Moreno et al., 2021). PToM gives a practical and effective framework to utilize ToM, and extend its
application scenarios to SSDs, where both competition and cooperation are involved and the goals of
opponents are private and volatile.

Monte Carlo Tree Search (MCTS) is a widely adopted planning method for optimal decision-making.
Recent work, such as AlphaZero (Silver et al., 2018) and MuZero (Schrittwieser et al., 2020) have
used MCTS as a general policy improvement operator over the base policy learned by neural networks.
However, MCTS is limited in multi-agent environments, where the joint action space grows rapidly
with the number of agents (Choudhury et al., 2022). We avoid this problem by estimating opponent
policies and planning only for the focal agent’s actions.

3 PROBLEM FORMULATION

We consider multi-agent hierarchical decision-making in SSDs, which can be described as a Markov
game (Liu et al., 2022) with goals, specified by a tuple < N,S,A, T,R, γ, Tmax,G >.

Here, agent i ∈ N = {1, 2, · · · , n} chooses action from action space Ai = {ai}. A = A1 ×A2 ×
· · · ×An is the joint action space. The joint action a1:n ∈ A will lead to a state transition based on
the transition function T : S×A×S → [0, 1]. Specifically, after agents take the joint action a1:n the
state of the environment will transit from s to s′ with probability T (s′|s,a1:n). The reward function
Ri : S ×A → R denotes the immediate reward received by agent i after joint action a1:n is taken
on state s ∈ S. The discount factor for future rewards is denoted as γ. Tmax is the maximum length
of an episode. πi : S ×Ai → [0, 1] denotes agent i’s policy, specifying the probability πi(ai|s) that
agent i chooses action ai at state s.

The environments we study have a set of goals, denoted by G = G1 × G2 × · · · × Gn, where
Gi = {gi} represents the set of goals for agent i. For any two agents i and j, j’s true goal is
inaccessible to i. However, i can infer j’s goal based on its action sequence. Specifically, i maintains
a belief over j’s goals, bij : Gj → [0, 1], which is a probability distribution over Gj .

Here, algorithms are evaluated in terms of self-play and few-shot adaptation to unseen policies
in SSDs. Self-play involves multiple agents using the same algorithm to undergo training from
scratch. The performance of algorithms in self-play is evaluated by their expected reward after
convergence. Self-play performance demonstrates the algorithm’s ability to make autonomous
decisions in complex and dynamic SSDs. Few-shot adaptation refers to the capability to recognize
and respond appropriately to unknown policies within a limited number of episodes. The performance
of algorithms in few-shot adaptation is measured by the rewards they achieve after engaging in these
brief interactions.

4 METHODOLOGY

In this section, we propose Planning with Theory of Mind (PToM), a novel algorithm for multi-agent
decision-making in SSDs. PToM consists of two main modules: an opponent modeling module to
infer opponents’ goals and predict their behavior and a planning module to plan the focal agent’s best
response guided by the inferred information from the opponent modeling module.

Based on the hypothesis in cognitive psychology that others’ behavior is goal-directed (Gergely
et al., 1995; Buresh & Woodward, 2007), and that agents behave stably for a specific goal (Warren,
2006), the opponent modeling module models opponent behavior with two levels of hierarchy. At
the high-level, the module employs ToM to infer opponents’ internal goals by analyzing their action
sequences. Based on the inferred goals and the current state of the environment, the low-level
component learns goal-conditioned policies to model the atomic actions of opponents.

In the planning module, MCTS is used to plan for the best response of the focal agent based on
the inferred opponents’ policies. To handle the uncertainty over opponents’ goals, we sample
multiple opponent goal combinations from the current belief and return the action that maximizes
the average return over the sampled configurations. Following AlphaZero (Silver et al., 2018) and
MuZero (Schrittwieser et al., 2020), we maintain a policy and a value network to boost MCTS
planning and in turn use the planned action and its value to update the neural network.

Figure 1 gives an overview of PToM, and the pseudo-code of PToM is provided in Appendix A.
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Figure 1: Overview of PToM. PToM consists of an opponent modeling module and a planning
module. The opponent modeling module models opponent behavior by inferring opponents’ goals
and learning their goal-conditioned policies. Estimated opponent behavior is then fed to the planning
module to select a rewarding action of the focal agent.

4.1 OPPONENT MODELING WITH EFFICIENT ADAPTATION

In goal-inference (as the light yellow component shown in Figure 1), PToM summarizes the opponents’
objectives based on the interaction history. However, it faces the challenge of the opponent’s goals
potentially changing within episodes. To solve these issues, we propose two update procedures
based on ToM: intra-ToM, which infers the opponent’s immediate goals within a single episode, and
inter-ToM, which summarizes the opponent’s goals based on their historical episodes.

Intra-ToM reasons about the goal of opponent j in the current episode K according to j’s past
trajectory in episode K. It ensures that PToM is able to quickly respond to in-episode behavior
changes of other agents. Specifically, in episode K, agent i’s belief about agent j’s goals at time t,
bK,t
ij (gj), is updated according to:

bK,t+1
ij (gj) = Pr(gj |sK,0:t+1, aK,0:t

j )

=
Pr(gj |sK,0:t, aK,0:t−1

j )Pr(aK,t
j |sK,0:t, aK,0:t−1

j , gj)Pr(sK,t+1|sK,0:t, aK,0:t
j , gj)

Pr(sK,t+1, aK,t
j |sK,0:t, aK,0:t−1

j )

=
1

Z1
bK,t
ij (gj)Pri(a

K,t
j |sK,0:t, gj),

(1)

where Z1 is the normalization factor that makes
∑

gj∈Gj
bK,t+1
ij (gj) = 1. The likelihood term

Pri(a
K,t
j |sK,0:t, gj) is provided by the goal-conditioned opponent policies, whose detailed descrip-

tion is given in the following.

However, intra-ToM may suffer from inaccuracy of the prior (i.e., bK,0
ij (gj)) when past trajectories

are not long enough for updates. Inter-ToM makes up for this by calculating a precise prior based on
past episodes. Belief update between two adjacent episodes is defined as:

bK,0
ij (gj) =

1

Z2
[αbK−1,0

ij (gj) + (1− α)1(gK−1
j = gj)], (2)

where α ∈ [0, 1] is the horizon weight, which controls the importance of the history. As α decreases,
agents attach greater importance to recent episodes. 1(·) is the indicator function. Z2 is the nor-
malization factor. The equation is equivalent to a time-discounted modification of the Monte Carlo
estimate. Inter-ToM summarizes other agents’ goals according to all the previous episodes, which is
of great help when playing with the same agents in a series of episodes.

The goal-conditioned policy (as the light yellow component shown in Figure 1) πω(a
K,t
j |sK,0:t, gj),

which is obtained through a neural network ω.

To train the network, a set of (sK,t
j , aK,t

j , gK,t
j ) is collected from episodes and sent to the replay

buffer. ω is updated at intervals to minimize the cross-entropy loss:

L(ω)=E[−
∑

a∈Aj

1(aK,t
j =a) log(πω(a|sK,0:t, gK,t

j ))]. (3)
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4.2 PLANNING UNDER UNCERTAIN OPPONENT MODELS

Given the policies of other agents estimated by the opponent modeling module, we can leverage
planning algorithms such as MCTS to compute an advantageous action. However, a key obstacle
to applying MCTS is that opponent policies estimated by the opponent modeling module contain
uncertainty over other agents’ goals. Naively adding such uncertainty as part of the environment
would add a large bias to the simulation and degrade planning performance. To overcome this
problem, we propose to sample opponents’ goal combinations according to the belief maintained by
the opponent modeling module, and then estimate action value by MCTS based on the samples. To
balance the trade-off between computational complexity and planning performance, we repeat the
process multiple times and choose actions according to the average action value. In the following, we
first introduce the necessary background of MCTS. We then proceed to introduce how we plan for a
rewarding action under the uncertainty over opponent policies.

MCTS. Monte Carlo Tree Search (MCTS) is a type of tree search that plans for the best action at
each time step (Silver & Veness, 2010; Liu et al., 2020). MCTS uses the environment to construct
a search tree (right side of Figure 1) where nodes correspond to states and edges refer to actions.
Specifically, each edge transfers the environment from its parent state to its child state. MCTS
expands the search tree in ways (such as pUCT) that properly balance exploration and exploitation.
Value and visit of every state-action (node-edge) pair are recorded during expansion (Silver et al.,
2016). Finally, the action with the highest value (or highest visit) of the root state (node) is returned
and executed in the environment.

Planning under uncertain opponent policies. Based on beliefs over opponents’ goals and their
goal-conditioned policies from the opponent modeling module, we run MCTS for Ns rounds. In
each round, other agents’ goals are sampled according to the focal agent’s belief over opponents’
goals bij(gj). Specifically, at time t in episode K, we sample the goal combination g−i = {gj ∼
bK,t
ij (·), j ̸= i}. Then at every state s̃k in the MCTS tree of this round, other agents’ actions ã−i are

determined by ã−i ∼ πω(·|s̃k,g−i) from the goal-conditioned policy.

In each round, MCTS gives the estimated action value of the current state Q(sK,t, a,g−i) = V (s̃′(a))

(a ∈ Ai), where s̃′(a) is the next state after taking ã0−i ∪ a from s̃0 = sK,t.

We average the estimated action value from MCTS in all Ns rounds:

Qavg(s
K,t, a) =

∑Ns

l=1
Ql(s

K,t, a,gl
−i). (4)

Agent i’s policy follows Boltzmann rationality model (Baker et al., 2017):

πMCTS(a|sK,t) =
exp(βQavg(s

K,t, a))∑
a′∈Ai

exp(βQavg(sK,t, a′))
, (5)

where β ∈ [0,∞) is rationality coefficient. As β increases, the policy gets more rational. We choose
our action at time t of the episode K based on πMCTS(a|sK,t).

Note that the effectiveness of MCTS is highly associated with the default policies and values provided
to MCTS. When they are close to the optimal ones, they can offer an accurate estimate of state value,
guiding MCTS search in the right direction. Therefore, following Silver et al. (2018), we train a
neural network θ to predict the policy and value functions at every state following the supervision
provided by MCTS. Specifically, the policy target is the policy generated by MCTS, while the value
target is the true discounted return of the state in this episode.

As for state s̃k in the MCTS, the policy function πk
θ guides the exploration by having an impact on

the pUCT functions. The value function vkθ estimates the return and provides the initial value of s̃k

when s̃k is first reached.

The network θ is updated based on the overall loss:
L(θ) = Lp(πMCTS , πθ) + Lv(r, vθ), (6)

where Lp(π1, π2) = E[−
∑

a∈Ai

π1(a|sK,t)log(π2(a|sK,t)],

Lv(r, v) = E[(v(sK,t)−
∑∞

l=t
γl−trK,l

i )2].
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Agents are tested in three representative paradigms of SSDs: sequntial stag-hunt game (SSH),
sequential snowdrift game (SS), and sequential prisoner’s dilemma (SPD) (see Appendix C).

(a) SSH (b) SS (c) SPD

Figure 2: Overview of three representative
paradigms of SSDs. There are four agents, repre-
sented by colored circles, in each paradigm. (a)
Agents catch prey for reward. A stag with a re-
ward of 10 requires at least two agents to hunt
together. One agent can hunt a hare with a reward
of 1. (b) Everyone gets a reward of 6 when an
agent removes a snowdrift. When a snowdrift
is removed, removers share the cost of 4 evenly.
(c) Agents get a reward of 10 for collecting an
apple, and a reward of −1 for cleaning a bag of
waste. Apples respawn at a rate 1− 2.5x, where
x represents the percentage of waste in the river.

In SSH, four agents are rewarded for catching
prey. As shown in Figure 2(a), each agent has
six actions: idle, move left, move right, move
up, move down, and hunt. If there are obstacles
or boundaries in an agent’s moving direction, its
position stays unchanged. Agents can hunt prey
in their current grid, and there are two types of
prey: stags and hares. A stag provides a reward
of 10, and requires at least two agents located
at its grid to execute “hunt” together. These co-
operating agents will split the reward evenly. A
hare provides a reward of 1, and each agent can
catch a hare alone. After a successful hunting,
both the hunters and the prey disappear from the
environment. The game terminates when the time
Tmax = 30 runs out, or terminates 5 timesteps
after the first successful hunting in each episode.
The dilemma in SSH is a tension between max-
imizing benefit (i.e., hunting stags) and minimiz-
ing risk (i.e., hunting hares). The 5-timesteps
termination rule ensures that the tension between
payoff-dominant cooperation and risk-dominant
defection is maintained. Without this rule, agents
would have enough time to hunt hares if failing to hunt a stag, and the dilemma would be diluted.

In SS (Figure 2(b)), there are six snowdrifts located randomly in an 8× 8 grid. Similar to SSH, at
every time step the agent can stay idle or move one step in any direction. Agents are additionally
equipped with a “remove a snowdrift” action, which removes the snowdrift in the same cell as the
agent. When a snowdrift is removed, removers share the cost of 4 evenly, and every agent gets
a reward of 6. The game ends when all the snowdrifts are removed or the time Tmax = 50 runs
out. The game’s essential dilemma arises from the fact that an agent can obtain a higher reward by
free-riding, i.e., waiting for other agents to remove the snowdrifts, than by removing a snowdrift
themselves. However, if all agents take free rides, no one will remove any snowdrifts, and the group
will not receive any reward. On the other hand, if any agent is satisfied with a suboptimal strategy
and chooses to remove snowdrifts, both the group benefit and individual rewards increase.

Finally, we investigate SPD (Figure 2(c)), inspired by the environment Cleanup from the Melting Pot
benchmark (Leibo et al., 2021). In this 8× 8 grid, there is a river in the top two rows and a forest with
apples in the bottom two rows. Bags of waste are scattered throughout the river. Waste is produced in
the river at a constant rate of 0.25, and the river becomes saturated with waste when it covers 40% of
the river. Apples respawn at a rate of 1 − 2.5x, where x represents the percentage of waste in the
river. Agents receive a reward of 10 for collecting an apple, and a reward of −1 for cleanup a bag
of waste. The game terminates after Tmax = 100 timesteps. At the beginning of each episode, the
river is saturated with waste and no apple is present, so agents must consistently clean up waste to
ensure the growth rate of the apple population. However, cleaning up waste hinders agents to collect
apples since they are located far away in the environment. Agents receive less reward for cleaning
up waste, regardless of what their opponents do, but no one receives a reward if no agents clean up
waste, which is the central dilemma of SPD.

In all three environments, four agents have no access to each other’s parameters, and communication
between them is not allowed. Appendix D introduces the goal definition of these games.

Baselines. Here, some baseline algorithms are introduced to evaluate the performance of PToM.
During the evaluation of few-shot adaptation, baseline algorithms serve a dual purpose. Firstly, they
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act as unfamiliar opponents during the evaluation process to test the few-shot adaptation ability of
PToM. Secondly, we evaluate the few-shot adaptation ability of the baseline algorithms to demonstrate
PToM’s superiority. LOLA (Foerster et al., 2018; Zhao et al., 2022) agents consider a 1-step look-ahead
update of opponents, and update their own policies according to the updated policies of opponents.
SI (Jaques et al., 2019) agents have an intrinsic reward term that incentivizes actions maximizing their
influence on opponents’ actions. The influence is accessed by counterfactual reasoning. A3C (Mnih
et al., 2016) agents are trained using the Asynchronous Advantage Actor-Critic method, a well-
established reinforcement learning (RL) technique. Prosocial-A3C (PS-A3C) (Peysakhovich &
Lerer, 2018) agents are trained using A3C but share rewards between players during training, so
they optimize the per-capita reward instead of the individual reward, emphasizing cooperation
between players. The ablated version of PToM, direct-OM, retains the planning module, removes the
opponent modeling module, and uses neural networks to model opponents directly (see details in
Appendix F.3). In addition, we construct some rule-based strategies that are extreme strategies specific
to the game. Random policy takes a valid action randomly at each step. An agent that consistently
adopts cooperative behavior is called cooperator, and an agent that consistently adopts exploitative
behavior is called exploiter. In SSH, the goals of cooperators and exploiters are hunting the nearest
stag and hare, respectively. In SS, cooperators keep moving to remove the nearest snowdrift, and
exploiters randomly take actions other than ”remove a snowdrift”. In SPD, cooperators always move
to clean the nearest waste, and exploiters move to collect apples if they exist.

5.2 PERFORMANCE

The experiment consists of two phases. The first phase focuses on self-play training, where agents
using the same algorithm are trained until convergence. Self-play ability is measured by the algo-
rithm’s average reward after convergence. The second phase evaluates the few-shot adaptation ability
of PToM and learning baselines. Specifically, a focal agent interacts with three opponents using a
different algorithm for 2400 steps. The focal agent’s average reward during the final 600 steps is
used to measure its algorithm’s few-shot adaptation ability. At the start of the adaptation phase, any
policy’s parameters are the convergent parameters derived from the corresponding algorithms in
self-play. During the phase, policies can update their parameters if possible. Implementation details
are given in Appendix E. The results of self-play and that of few-shot adaptation are displayed in
Table 1 and Table 2, respectively.

Table 1: Self-play performance of PToM and baseline algorithms. Shown is the normalized score
after convergence in the self-play training phase.

PToM LOLA SI A3C PS-A3C direct-OM
SSH 0.9767± 0.0117 0.9038± 0.0117 0.9125± 0.0233 0.9708± 0.0087 0.7347± 0.0029 0.9417± 0.0146

SS 0.9900± 0.0047 0.6200± 0.0070 0.7133± 0.0060 0.6933± 0.0113 0.9500± 0.0093 0.7933± 0.0080

SPD 0.0181± 0.0012 0.0064± 0.0008 0.0064± 0.0005 0.0000± 0.0000 0.4333± 0.0031 0.0163± 0.0007

SSH. As demonstrated in Table 1, PToM and A3C perform comparably in self-play, close to the
best possible reward. They both learn effective strategies that prioritize hunting stags. LOLA and
SI agents have worse self-play performance than PToM and A3C. PS-A3C agents obtain the lowest
reward. PS-A3C tends to delay hunting, as early hunting leads to leaving the environment and failing
to obtain the group reward from subsequent hunting. Additionally, PS-A3C does not effectively learn
the relationship between hunting and receiving rewards, since they can get rewards without hunting
by itself. These reasons lead to PS-A3C may take suboptimal actions in the last few steps and thus
fail to hunt.

PToM gains considerable returns when adapting to all other types of opponents (see Table 2(a)).
Although LOLA is not as good as A3C in self-play, both have their own advantages in terms
of adaptation. SI performs significantly worse than LOLA on the adaptation test, although they
perform similarly in self-play. Direct-OM consistently underperforms compared with PToM across
all adaptation scenarios, with some instances revealing notable disadvantages. PS-A3C, as a result of
the aforementioned reasons, has fewer successful hunts, leading to inferior performance.

We would like to provide further intuition on why PToM is capable of efficiently adapting its policy
to unseen agents. Take the experiment facing three exploiters (always attempting to hunt the nearest
hare) as an example. There are two goals here: hunting stags or hunting hares. At the start of the
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Table 2: Few-shot adaptation performance of PToM and baselines in (a) SSH, (b) SS, and (c) SPD.
The interaction happens between 1 agent using the row policy and 3 other agents using the column
policy. Shown are the min-max normalized scores, with normalization bounds set by the rewards
of LI-Ref and the random policy. See detailed description of LI-Ref and corresponding analysis in
Appendix F.1. The results are depicted for the row policy from 1800 to 2400 step.

(a) Performance in SSH
learning opponents rule-based opponents

PToM LOLA SI A3C PS-A3C random cooperator exploiter
PToM - 0.97± 0.02 0.96± 0.03 0.99± 0.02 0.88± 0.02 0.78± 0.07 1.00± 0.01 0.36± 0.03
LOLA 0.98± 0.02 - 0.94± 0.02 0.92± 0.04 0.82± 0.02 0.75± 0.04 1.00± 0.03 0.28± 0.03

SI 0.89± 0.02 0.77± 0.02 - 0.83± 0.01 0.74± 0.01 0.52± 0.03 0.87± 0.03 0.27± 0.02
A3C 0.96± 0.02 0.91± 0.02 0.96± 0.03 - 0.87± 0.02 0.55± 0.05 0.98± 0.02 0.25± 0.02

PS-A3C 0.32± 0.02 0.24± 0.03 0.20± 0.03 0.18± 0.02 - 0.29± 0.02 0.38± 0.01 0.06± 0.02
direct-OM 0.86± 0.01 0.95± 0.01 0.83± 0.03 0.84± 0.02 0.74± 0.03 0.60± 0.04 0.96± 0.03 0.31± 0.02

(b) Performance in SS
learning opponents rule-based opponents

PToM LOLA SI A3C PS-A3C random cooperator exploiter
PToM - 0.72± 0.05 0.55± 0.30 0.39± 0.09 -0.56± 0.39 0.36± 0.03 -1.75± 0.25 0.55± 0.01
LOLA -0.50± 0.10 - -1.18± 0.31 0.33± 0.07 -1.00± 0.29 0.14± 0.10 -2.00± 0.20 0.18± 0.01

SI -0.77± 0.14 0.67± 0.11 - 0.00± 0.05 -2.00± 0.33 -0.14± 0.04 -3.00± 0.35 0.24± 0.05
A3C -0.74± 0.15 0.14± 0.06 -1.64± 0.25 - -1.11± 0.38 0.20± 0.05 -2.50± 0.15 0.14± 0.01

PS-A3C -1.12± 0.11 0.58± 0.07 -0.82± 0.38 0.35± 0.04 - 0.24± 0.05 -4.25± 0.43 0.38± 0.02
direct-OM -0.61± 0.17 0.31± 0.11 -2.46± 0.23 0.12± 0.05 -0.78± 0.20 0.30± 0.05 -0.25± 0.28 0.34± 0.05

(c) Performance in SPD
learning opponents rule-based opponents

PToM LOLA SI A3C PS-A3C random cooperator exploiter
PToM - 1.40± 0.23 1.45± 0.23 1.28± 0.18 1.19± 0.02 0.27± 0.03 0.85± 0.01 0.84± 0.03
LOLA 0.75± 0.14 - 0.96± 0.09 1.07± 0.10 0.69± 0.02 0.05± 0.01 1.00± 0.01 0.92± 0.06

SI 1.00± 0.11 0.64± 0.12 - 1.07± 0.06 0.93± 0.03 0.10± 0.01 1.00± 0.00 1.00± 0.05
A3C 0.75± 0.09 0.66± 0.08 1.00± 0.16 - 1.02± 0.02 0.17± 0.01 1.00± 0.01 1.00± 0.00

PS-A3C -4.32± 0.12 -3.89± 0.12 -4.44± 0.19 -7.56± 0.18 - -0.12± 0.01 0.08± 0.09 -9.25± 0.22
direct-OM 1.51± 0.16 1.82± 0.20 1.20± 0.15 1.20± 0.12 0.28± 0.02 0.20± 0.03 0.71± 0.03 0.75± 0.06

evaluation phase, PToM holds the belief that every opponent is more likely to hunt a stag because
PToM has seen its opponents hunt stags more than hares during self-play. This false belief for
exploiters degrades PToM’s performance. Both intra-ToM and inter-ToM correct this false belief
by updating during the interactions with exploiters (see visualization of belief update in Figure 4 in
Appendix F.2). Intra-ToM provides the ability to correct the belief of hunting stags within an episode.
Specifically, as an opponent keeps moving closer to a hare, intra-ToM will update the intra-episode
belief for the opponent toward the goal “hare”, leading to accurate opponent models. Taking these
accurate opponent policies as input, the planning module can output advantageous actions. Inter-ToM
further accelerates the convergence towards true belief by updating the inter-episode belief, which is
used as a prior for intra-ToM at the start of every episode.

SS. As shown in Table 1, during self-play, PToM achieves the highest reward and it is close to
the theoretically optimal average reward in this environment (i.e. when all snowdrifts are removed,
resulting in a group average reward of 30.0). This outcome is a remarkable achievement in a fully
decentralized learning setting and highlights the high propensity of PToM to cooperate. In contrast,
LOLA, SI, and A3C prioritize maximizing their individual profits, which leads to inferior outcomes
due to their failure to coordinate and cooperate effectively. PS-A3C performs exceptionally well in
self-play, ranking second only to PToM. Like in SSH, it fails to achieve the maximum group average
reward due to the coordination problem, which is prominent when there is only one snowdrift left.
This issue highlights the instability of the strategy caused by the absence of action planning.

PToM demonstrates the most effective few-shot adaptation performance (Table 2(b)). Specifically,
when adapting to three exploiters, PToM receives substantially higher rewards than other policies.
This highlights the effectiveness of PToM in quickly adapting to non-cooperative behavior, which
differs entirely from opponent behavior in PToM’s self-play. In contrast, A3C and PS-A3C do not
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explicitly consider opponents. They have learned the strategies tending to exploit and cooperate,
respectively. Therefore, A3C performs effectively against agents that have a higher tendency to
cooperate, such as PToM and cooperator. However, its performance is relatively poor when facing
agents unlikely to cooperate. Conversely, PS-A3C exhibits the opposite behavior. Direct-OM only
performs well when facing cooperators, and performs poorly when facing relatively exploitative
agents such as LOLA, SI, and A3C.

SPD. In the scenario of decentralized training with no communication, a group of agents that
optimize for their own returns can easily fall into the Nash equilibrium where individuals never clean
up the waste and always try to pick apples. During self-play, PToM, along with other self-interested
baselines (LOLA, SI, and A3C), converges to the equilibrium, which is attributed to the inherent
characteristics of the prisoner’s dilemma game (Table 1). PS-A3C agents gain high returns and escape
the undesirable equilibrium to a certain extent, as they aim to maximize the collective benefit.

The adaptation results between PToM, LOLA, SI, A3C and direct-OM underscore that self-interested
agents often sink into the undesirable Nash equilibrium in SPD (Table 2(c)). PToM obtains less
reward than other self-interested algorithms when playing with rule-based cooperators. When faced
with a new opponent, PToM tends to engage in exploratory cooperative actions to understand the
opponent’s characteristics. This leads to relatively lower returns for PToM. When facing an agent
exhibiting dynamic behavior, such as PS-A3C, it becomes imperative for the agent to think further.
In such scenarios, some apples are available, and the focal agent needs to contend with opponents
for apples. It is important to choose apples to pick and plan the path for picking those apples. The
planning module within PToM empowers the agent to navigate and optimize its path and thus ensures
a competitive advantage. PS-A3C aims to maximize the collective average reward. Thus, it is
vulnerable to exploitation by other agents, leading to low returns when playing with self-interested
opponents in SPD.

Overall, this study demonstrates the remarkable adaptation ability of PToM across three distinct
social dilemma paradigms. While the advantages of PToM may not be significant in specific test
scenarios against particular opponents, its overall performance consistently surpasses the baselines.
Meanwhile, PToM exhibits advantages during self-play.

Ablation study indicates that inter-ToM and intra-ToM play crucial roles in adapting to agents with
fixed goals and agents with dynamic goals, respectively. Moreover, if opponent modeling is not
conditioned on goals, the self-play and few-shot adaptation abilities are greatly weakened. Further
details are provided in Appendix F.3.

We observe the emergence of social intelligence, including self-organized cooperation and an alliance
of the disadvantaged, during the interaction of multiple PToM agents in SSDs. Further details can be
found in Appendix G.

6 CONCLUSION AND DISCUSSION

We propose Planning with Theory of Mind (PToM), a hierarchical algorithm for few-shot adaptation
to unseen opponents in SSDs. It consists of an opponent modeling module for inferring opponents’
goals and behavior and a planning module guided by the inferred information to output the focal
agent’s best response. Empirical results in three typical SSD paradigms (SSH, SS, and SPD) show
that PToM performs better than state-of-the-art MARL algorithms, in terms of dealing with complex
SSDs in the self-play setting and few-shot adaptation to previously unseen opponents.

Whilst PToM exhibits superior abilities, there are several limitations illumining our future work. First,
in any environment, a clear definition of goals is needed for PToM. To enhance PToM’s ability to
generalize to various environments, a technique that can autonomously abstract goal sets in various
scenarios is needed. Second, we investigate complex SSDs with the expectation that PToM can
facilitate effective decision-making and adaptation in human society. Despite selecting diverse
well-established algorithms as opponents, none of them adequately model human behavior. It would
be interesting to explore how PToM can perform in a few-shot adaptation scenario involving human
participants. As PToM is self-interested, it may not always make decisions that are in the best interest
of humans. One way to mitigate this risk is leveraging PToM’s ability to infer and optimize for human
values and preferences during interactions, thereby assisting humans in complex environments.
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