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Abstract

Model pruning can enable the deployment of neural networks in environments
with resource constraints. While pruning may have a small effect on the overall
performance of the model, it can exacerbate existing biases into the model such
that subsets of samples see significantly degraded performance. In this paper,
we introduce the performance weighted loss function, a simple modified cross-
entropy loss function that can be used to limit the introduction of biases during
pruning. Experiments using biased classifiers for facial classification and skin-
lesion classification tasks demonstrate that the proposed method is a simple and
effective tool that can enable existing pruning methods to be used in fairness
sensitive contexts.

1 Introduction

Deep learning models are large, requiring millions of operations to make an inference [1]. Deploying
large neural networks to environments with limited computational resources, such as mobile and
embedded devices, may be infeasible.

Pruning is a simple and common method for reducing the size of a neural network [2]. It involves
identifying parameters that do not significantly affect the model’s output and removing them from
the network. Pruning enables the deployment of performant neural networks in resource constrained
environments [3, 4]. However, recent research has shown that while overall accuracy of the model
may be maintained while the model is compressed, pruning can exacerbate existing model biases,
disproportionately affecting disadvantaged groups [5]. Pruning methods that are designed to preserve
overall model performance may not prioritize the preservation of parameters that are only important
for a small subset of samples.

This effect has significant implications for the implementation of pruning in real-world situations.
Biases have been observed in artificial intelligence systems such as those used to classify chest X-ray
images [6], recognize faces [7] and screen resumes [8]. Biases in models can increase the risk of
unfair outcomes, preventing the implementation of the model. If pruning exacerbated a model’s
biases, it could increase the risk of unfair outcomes or limit the deployment of the pruned model. It is
therefore important to prune in a manner that does not aggravate a model’s biases.

In this paper, we propose the performance weighted loss function as a simple method for boosting
the fairness of data-driven methods for pruning convolutional filters in convolutional neural network
image classifiers. The goal of our method is to enable the pruning of a significant number of model
parameters without significantly exacerbating existing biases. The loss function consists of two
small tweaks to the standard cross-entropy loss function to prioritize the model’s performance for
poorly-classified samples over well-classified samples. These tweaks can be used to extend existing
data-driven pruning methods without requiring explicit attribute information.

We demonstrate the effectiveness of our approach by pruning classifiers using two different pruning
approaches for the CelebA [9] and Fitzpatrick17k [10] datasets. Our results show that the performance
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weighted loss function can enable existing pruning methods to prune neural networks without
significantly increasing model bias.

2 Related Work

Many different pruning approaches have been proposed to reduce the size of CNNs while minimally
impacting model accuracy. Pruning methods typically involve assigning a score to each parameter or
group of parameters, removing parameters based on these scores and retraining the newly pruned
network to recover lost accuracy [2].

The procedure by which parameters are identified to be pruned is the primary differentiator between
pruning methods. There are a wide variety of scoring approaches used to identify parameters that are
unimportant or redundant and can be removed from the network. Many approaches use parameter
magnitudes to identify parameters to prune [11, 12]. Other approaches use gradient information [13],
Taylor estimates of parameter importance [14, 15, 16] and statistical properties of future layers [17].
Some approaches involve learning the scores via parameters that control the flow of information
through the network [18, 19].

However, almost all novel pruning approaches focus on the overall accuracy of the model after
pruning. There are few papers that aim to improve or analyze the fairness of a pruned model. Hooker
et al. [5] propose auditing samples affected by model compression, called Compression Identified
Exemplars, as an approach for identifying and managing the negative effects of model compression.
Paganini [20] demonstrates how class fairness can be affected by pruning approaches that only
consider overall accuracy. Wu et al. [21] propose Fairprune, a method for improving model bias
using pruning. Instead of seeking to compress a model, Fairprune prunes parameters using a saliency
metric to increase model fairness [21]. Xu and Hu [22] propose the use of knowledge distillation
and pruning to reduce bias in natural language models. Joseph et al. [23] propose a multi-part loss
function intended to improve the alignment between predictions between the original and pruned
model. They demonstrate that their method can have beneficial effects for fairness between classes.
Marcinkevičs et al. [24] propose a debiasing procedure that involves pruning parameters using a
gradient based influence measure.

While not a pruning method, the work of Mahabadi and Henderson [25] is also relevant as their
“Debiased Focal Loss” resembles the weighting scheme of the loss function proposed in this paper.
Instead of using their loss function for model compression, they aim to debias a model using the
output of a trained bias-only model.

3 Method

3.1 Motivation

In the unfair pruning situation described by Hooker et al. [5], model performance was more signifi-
cantly impacted for certain sample subgroups. The highly impacted subgroups were characterized
by poor representation in the training data and worse subgroup performance by the original model
when compared to unimpacted groups. The performance decrement induced by the pruning process
disproportionately impacts subgroups which are underrepresented and poorly classified.

To rectify this inequality, we can design a pruning process that prioritizes maintaining the performance
of samples from the impacted subgroups. However, we do not need to develop a new pruning method
from scratch to achieve this objective. Many existing pruning methods use data to identify which
model parameters should be removed. Some methods use parameters learned via a loss minimization
process whereas others values derived from gradients calculated with respect to a loss function. By
modifying the loss function to prioritize samples from impacted subgroups, we can boost the fairness
of existing pruning methods.

3.2 The Performance Weighted Loss Function

We make two different modifications to the standard cross-entropy loss function to transform it into
the performance weighted loss function (PW loss). We first apply sample weighting to ensure that

2



samples from impacted groups have a larger contribution to the loss function. We then transform the
sample labels to ensure that we are not reinforcing undesirable model behaviours.

As the attribute information required to identify impacted subgroups is not always readily accessible,
our weighting scheme does not depend on any external information. We instead use the output of
the original model to determine each sample weight. We assign larger weights to samples for which
the original model was not able to confidently classify. The form of the scheme resembles the focal
loss [26]. However, as the samples are weighted using the outputs of the original model the weights
do not depend on the current output of the model and will not change during training. The weight
assigned to the ith data sample, wi, is given by the following equation:

wi = θ + (1− ŷi)
γ (1)

where ŷi is the predicted probability given by the original model for the sample’s true class, θ ∈ [0, 1]
is the minimum weight value and γ ≥ 0 controls the shape of the relation between ŷi and wi.

We also emphasize the model performance through the use of corrected soft-labels in the cross-entropy
function. Rather than using the true labels of each sample, we use the output of the original model for
the loss function in the pruning process. Without this change, the preservation of an originally poorly
classified sample’s prediction probability would result in a greater loss value than the preservation
of an originally well classified sample’s prediction probability. The use of true labels implicitly
prioritizes the preservation of model performance for samples that have predictions closer to their
true labels. Using the model output as soft-labels alleviates this implicit prioritization.

However, as we are assigning higher weights to samples that are originally classified by the original
model while also using the original model’s output as our labels, we are consequently assigning
the highest weights to incorrect labels. To avoid emphasizing incorrect behaviours we correct the
soft-labels. The corrected soft-label, ŷ∗

i is defined as:

ŷ∗
i =

{
ŷi if Ĉi = Ci

yi otherwise
(2)

where ŷi contains the prediction probabilities derived from the model output for the ith sample, yi is
the true label vector of the ith sample, Ĉi is predicted class of the ith sample and Ci is the true class
of the ith sample. The corrected soft-label takes on the value of the model’s prediction probabilities
when the prediction is correct and the true label when the prediction is incorrect.

By the application of the performance weighted scheme and corrected soft-labels onto the standard
cross-entropy function, the performance weighted loss function, LPW , is defined by:

LPW =

N∑
i=1

wilCE(ŷ
∗
i , ŷ

′
i) (3)

where ŷ′
i contains the prediction probabilities derived from the model output for the ith sample

after pruning, lCE(ŷ
∗
i , ŷ

′
i) is the cross-entropy between the corrected soft-label and the prediction

probabilities of the pruned model for the ith sample, and N is the number of samples in the batch.

By using this loss function with existing data-driven pruning methods, we can reduce the bias
exaggerating effect of pruning by emphasizing samples that are more likely to be negatively affected
by pruning.

4 Experiments

4.1 Experimental Set-up

We applied the PW loss to two different pruning methods. The first method is AutoBot [18], an
accuracy preserving pruning method that uses trainable bottleneck parameters that limits the flow
of information through the model. The second method uses an importance metric derived from
the Taylor expansion of the loss function [14]. In both of our implementations, we pruned whole
convolutional filters rather than individual neurons. As pruned filters can be fully removed from
the model, rather than being set to zero, filter pruning is a simple method for directly reducing the
FLOPS of a model.
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In the AutoBot method, the bottlenecks are optimized by minimizing a loss function that includes the
cross-entropy between the original and pruned model outputs, as well as terms that encourage the
bottlenecks to limit information moving through the model, achieving a target number of FLOPS [18].
We applied the performance weighted loss function to the method by replacing the cross-entropy
term in the loss function with the performance weighted loss function. Additionally, we also used the
performance weighted loss function when retraining the model after pruning.

The importance metric of the Taylor expansion method is formed using the gradient of the loss
function with respect to each feature map and the value of each feature map [14]. This method
alternates between training the network and pruning a filter. In our implementation, a filter is pruned
every five iterations. We applied the performance weighted loss function by replacing the loss
functions used in the gradient calculation and model training with the performance weighted loss
function. Once again, we also used the performance weighted loss function when retraining the
model after pruning.

We also evaluated a random pruning method in which filters are selected and pruned from the network
until only the desired number of FLOPS remain. We use this method as a reference.

We implemented the methods using the PyTorch library [27]. The methods were implemented as
three step pipelines in which the model is first pseudo-pruned by setting parameters to zero, fully
pruned using the Torch-Pruning library [28] and retrained. Pseudo-pruning allows for fast pruning
during the pruning process while the full pruning step removes the unused parameters, reducing the
number of operations required for prediction. Due to dependencies between parameters introduced
by structures such as residual layers, the achieved theoretical speedup often slightly differs from
the target theoretical speedup. All hyperparameters for the pruning methods were selected using a
hold-out validation set. Hyperparameters for the pruning methods were selected without the PW
loss applied and were used for both unmodified and PW loss method variants. We repeated each
experiment three times. All figures displaying model performance after pruning are displaying the
average of all trials.

4.1.1 Metrics

Our primary concern is the degradation of a model’s behaviour towards different subgroups due to
pruning. We therefore evaluated the models by comparing the change in the areas under the receiver
operator curves (ROC-AUC) for various subgroups for five different degrees of pruning. As it is a
threshold agnostic performance metric, the ROC-AUC is a good measure of the model’s understanding
and separability for a subgroup [29]. For non-binary classification we used the one-vs-one ROC-AUC.

We measured the degree to which a model is pruned using the theoretical speedup, defined as the
FLOPS of the original model divided by the FLOPS of the pruned model.

4.2 Evaluating Fairness and Performance

All methods were tested with and without the PW loss on two different classification tasks.

Our first task was the celebrity face classification task using the CelebA dataset [9] as outlined by
Hooker et al. [5], in which a model is trained to identify faces as blonde or non-blonde. The CelebA
dataset contains over 200 000 images of celebrity faces with various annotations. While blonde
non-male samples make up 14.05% of the training data, blond male samples make up only 0.85%
of the training data. We used the provided data splits with 80% of the available data being used for
training with the remaining data split evenly for validation and testing.

Our second task is the skin lesion classification task using the Fitzpatrick17k dataset [10]. The
Fitzpatrick17k dataset consists of 16 577 images of skin conditions. We trained our models to classify
the samples as non-neoplastic, benign or malignant. Due to missing and invalid images we were only
able to use 16 526 images. Each sample in the dataset is assigned a Fitzpatrick score that categorizes
the skin tone of the sample. We trained our models on only samples with light skin tone scores of 1
or 2, and evaluated the model on medium skin tone scores of 3 or 4 as well as dark skin tone scores
of 5 or 6. We used a random 25% of the medium and dark skin tones as a validation set with the
remainder used as a test set.

4



21 23 25 27

Theoretical Speedup

−0.15

−0.10

−0.05

0.00

C
h
a
n
g
e
 i
n
 A

U
C

-R
O

C

ResNet-18 With AutoBot Pruning

21 23 25 27

Theoretical Speedup

−0.10

−0.05

0.00

C
h
a
n
g
e
 i
n
 A

U
C

-R
O

C

ResNet-18 With Taylor Pruning

20 21 22 23 24 25 26 27

Theoretical Speedup

−0.03

−0.02

−0.01

0.00

C
h
a
n
g
e
 i
n
 A

U
C

-R
O

C

VGG-16 With AutoBot Pruning

20 21 22 23 24 25 26 27

Theoretical Speedup

−0.03

−0.02

−0.01

0.00

C
h
a
n
g
e
 i
n
 A

U
C

-R
O

C

VGG-16 With Taylor Pruning

AutoBot (Male)

AutoBot (Non-Male)

AutoBot + PW (Male)

AutoBot + PW (Non-Male)

Taylor (Male)

Taylor (Non-Male)

Taylor + PW (Male)

Taylor + PW (Non-Male)

Random (Male)

Random (Non-Male)

Figure 1: Mean pruning performance with Resnet-18 and VGG-16 models with CelebA dataset.

4.2.1 Pruning the CelebA Models

We trained a Resnet-18 [30] model and a VGG-16 [31] model for the CelebA task. The ROC-AUCs
for the male and non-male subgroups of the Resnet-18 model were 0.9639 and 0.9794 respectively.
The ROC-AUCs for the male and non-male subgroups of the VGG-16 model were 0.9679 and 0.9825
respectively. Both models were pruned using target theoretical speedups of 16, 32, 64, 128 and 256.

The change in ROC-AUC for all tested pruning methods for the Resnet-18 and VGG-16 models
can be found in Figure 1. Some of the VGG-16 models pruned using the AutoBot, AutoBot with
performance weighting and random methods always predicted a single class. These degenerate models
were excluded from the figure. All methods were able to significantly reduce the size of both models,
but most of the results without performance weighting exhibited divergent performance between
the male and non-male subgroups as the theoretical speedup increases. Performance weighting was
highly effective when pruning the Resnet-18 model for both the AutoBot and Taylor pruning methods.
We see an increase in AUC-ROC at all tested theoretical speedups for both the male and non-male
subgroups. The increase for the male subgroup is substantial and the subgroup AUC-ROC scores no
longer diverage as the theoretical speedup increases.

We see similar improvements when performance weighting is applied to the AutoBot method for the
VGG-16 model, however the improvements are only substantial at the lowest theoretical speedups.
We do not see improvements when performance weighting is applied to the Taylor method. This is
likely due to the method not having significantly divergent performance for the VGG-16 model.

4.2.2 Pruning the Fitzpatrick17k Models

We trained a Resnet-34 [30] model and a EfficientNet-V2 Medium [32] model for the Fitzpatrick17k
task. The ROC-AUCs for the medium and dark subgroups of the Resnet-34 model were 0.8190 and
0.7329 respectively. The ROC-AUCs for the medium and dark subgroups of the EfficientNet model
were 0.8516 and 0.7524 respectively.

Despite a bias against dark skin tones existing in the original models, we do not see divergent
AUC-ROC scores as the theoretical speedup increases. The medium skin tone subgroup actually saw
greater changes in AUC-ROC due to pruning. We only see slight benefits for using performance
weighting with the Fitzpatrick17k models. Performance weighting increased slightly improved
performance after pruning for the ResNet-34 model with AutoBot pruning and the EfficientNet model
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Figure 2: Mean pruning performance with Resnet-34 and EfficientNet V2 Med. models with
Fitzpatrick17k dataset.

with AutoBot pruning at lower theoretical speedups. It had negligible or detrimental effects for Taylor
pruning with both models.

These results indicate that performance weighting is not an appropriate solution for all datasets and
models that exhibit bias. The lack of an increasing performance difference between subgroups may
indicate that the pruning process was not introducing additional biases in the Fitzpatrick17k models.
This is in contrast to the CelebA models for which the initial bias was small but grew due to pruning.
Performance weighting may therefore only mitigate biases that are introduced from the pruning
process. It will not rectify biases that exist in the model before pruning.

4.3 Conditions for Bias

From our results in Section 4.2, we can see that utilizing the PW loss is not necessary in all
circumstances. The loss appeared to be more beneficial for models which saw increasing differences
in performance between subgroups as the theoretical speedup increased.

To understand the properties of a dataset that would necessitate the use of the PW loss, we created three
artificial datasets from the CelebA dataset by selected subsets of the training data. The first subset
was formed using 3.41% of the available training data such that it was fully balanced, containing an
equal number of male and non-male samples as well as an equal number of blonde and non-blonde
samples. The second and third subsets were formed by adding additional samples to the first subset,
altering the class or gender balance. The second subset contained an equal number of blonde and
non-blonde samples, but five times as many non-male samples as there were male samples. The third
subset contained an equal number of male and non-male samples, but five times as many non-blonde
samples as there were blonde samples. The entire test set was used to evaluate all subsets.

A ResNet-18 model was trained using each subset. The AUC-ROCs for the male subgroup are
0.9562, 0.9479 and 0.9183 for the first, second and third subsets respectively. The AUC-ROCs for the
non-male subgroup are 0.9713, 0.9732 and 0.9580 for the first second and third subsets respectively.
The models were pruned using the AutoBot and Taylor methods using target theoretical speedups of
8, 32 and 128. The performance after pruning for these models can be found in Figure 3.

In the results using the fully balanced subset, we do see a divergence in subgroup performance for
both methods, but the divergence is less than was seen when the full method was used. In the results
with the additional non-male samples, we see an increase in performance for all model/method
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Figure 3: Pruning performance with ResNet-18 models trained on subsets of CelebA dataset with
alternative class and gender balances.

combinations. For the AutoBot results, the increase is greater for non-male samples than it is for
male samples. We once again see a common increase in performance when we look at the subset
with the additional non-blonde samples. We do see additional instability in the Taylor results, but
there are no clear findings with respect to differences in performance between subgroups. A greater
decrease in performance was seen for male samples for all model/method combinations, including
those that were trained on data with a balanced gender split. These results indicate that the dataset
composition does influence the fairness of pruning results, but it does not fully explain it.

4.4 Ablation

To measure the effects of the components of the PW loss independently, we pruned our ResNet-18
CelebA model using the AutoBot method with only the corrected soft-labels and with only the
weighting scheme described in equation 1. We applied the modifications to the only the pruning
process, and to both the pruning and retraining processes.

The ablation results can be found in Figure 4. Both the modifications were more effective when
applied to both the pruning and retraining process, indicating that simply modifying the process by
which parameters are selected to be pruning is insufficient to mitigate the effects of bias. Furthermore,
the effect of using corrected soft-labels was larger than the effects of using our proposed weighting
scheme. While both changes boosted performance for the male subgroup when applied to both
pruning and retraining, the effect of the corrected soft-labels was almost as large the effect of the full
performance weighting method. The full method did demonstrate less bias with a target theoretical
speedup of 16. Furthermore, as the AutoBot method already uses the outputs of the original model in
its loss function, the improvement seen when the corrected soft-labels were only used for pruning can
solely be attributed to the correction of the model outputs.

Unlike our proposed weighting scheme, the use of corrected soft-labels does not involve the selection
of any parameters. In situations in which parameter selection is not possible, the use of corrected
soft-labels may be a simple yet useful method for reducing the effects of algorithmic bias in pruning.

5 Conclusion

In this paper we demonstrate how model pruning can exacerbate biases in models and present the
performance weighted loss function as a novel method for mitigating this effect. The performance
weighted loss function is a simple modification that can be applied to any pruning method that uses
the cross-entropy loss. Our experimental results indicate that while the performance weighted loss
function does not recitify model biases, it can help prevent those biases from becoming exaggerated
by the pruning process. The performance weighted loss function is a useful tool for practioners who
seek to compress existing models without introducing new fairness concerns.
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Figure 4: Pruning performance with ResNet-18 models with CelebA dataset when elements of PW
loss are applied independently to the pruning process (left), and to the pruning process as well as the
post-prune retraining process (right).
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A Model Training and Pruning Parameters

To ensure transparency and enable reproducability, all parameters and procedures used to train, prune
and retrain the models can be found below. All experiments were implemented using PyTorch 1.12.1
and torchvision 0.13.1 [27]. PyTorch Lightning 1.7.1 [33] was also used to train the models.

The ResNet-18 [30] CelebA model was trained for 20 epochs using the AdamW [34] optimizer with
an initial learning rate of 0.0001 and a CosineAnnealingLR learning rate scheduler with Tmax = 20
[35]. A batch size of 256 was used. The model was initialized using the provided ImageNet weights
from torchvision. All parameters in layers except the final fully connected layer were frozen for
the first 5 epochs after which they were unfrozen with a learning rate equal to 0.01 times the global
learning rate. Early stopping was applied such that the parameters that achieved the lowest validation
loss were saved after training.

The VGG-16 [31] CelebA model was trained for 10 epochs using the AdamW [34] optimizer with an
initial learning rate of 0.0005 and a CosineAnnealingLR learning rate scheduler with Tmax = 10
[35]. A batch size of 64 was used. The model was initialized using the provided ImageNet weights
from torchvision. All parameters in layers except the final fully connected layer were optimized with
a learning rate equal to 0.01 times the global learning rate. Early stopping was applied such that the
parameters that achieved the lowest validation loss were saved after training.

The ResNet-34 [30] Fitzpatrick17k model was trained for 30 epochs using the AdamW [34] optimizer
with an initial learning rate of 0.001 and a CosineAnnealingLR learning rate scheduler with Tmax =
30 [35]. A batch size of 64 was used. The model was initialized using the provided ImageNet weights
from torchvision. All parameters in layers except the final fully connected layer were frozen for the
first 5 epochs after which they were unfrozen with a learning rate equal to 0.001 times the global
learning rate.
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The EfficientNet V2 Medium [32] Fitzpatrick17k model was trained for 30 epochs using the AdamW
[34] optimizer with an initial learning rate of 0.001 and a CosineAnnealingLR learning rate scheduler
with Tmax = 30 [35]. A batch size of 32 was used. The model was initialized using the provided
ImageNet weights from the torchvision. All parameters in layers except the final fully connected
layer were frozen for the first 5 epochs after which they were unfrozen with a learning rate equal to
0.01 times the global learning rate.

The parameter values used for our AutoBot [18] implementation can be found in Table 1. βAB and
γAB refer to the parameters used by the AutoBot method to control the balance between the different
terms of its loss function.

The parameter values used for our Taylor [14] implementation can be found in Table 2. fprune refers
to the frequency of the pruning. That is, the number of batch iterations between the pruning of filters.
Nfilters refers to the number of convolutional filters that are pruned in each pruning instance.

The parameter values that are used for our PW losses can be found in Table 3. Other parameters were
not changed when the PW loss was introduced.

After pruning, all models were retrained using the AdamW [34] optimizer and CosineAnnealingLR
learning rate scheduler with a Tmax value equal to the number of epochs. The parameter values used
to retrain the models can be found in Table 4.

Table 1: Parameters used for AutoBot pruning method

Dataset Model Learning Rate Batch Size Iters. βAB γAB

CelebA ResNet-18 0.85 64 200 2.7 0.1
CelebA VGG-16 1.81 64 250 3.07 0.18

Fitzpatrick17k ResNet-34 1.5 32 400 0.5 1
Fitzpatrick17k EfficientNet V2 Med. 1.5 16 600 6.76 1.05

Table 2: Parameters used for Taylor pruning method

Dataset Model Learning Rate Batch Size fprune Nfilters

CelebA ResNet-18 0.01 64 5 1
CelebA VGG-16 0.01 64 5 1

Fitzpatrick17k ResNet-34 0.01 32 5 1
Fitzpatrick17k EfficientNet V2 Med. 0.01 16 4 8

Table 3: Parameters used for PW loss

Dataset Model Base Method θ γ

CelebA ResNet-18 AutoBot 0.3 1
CelebA ResNet-18 Taylor 0.8 0.5
CelebA VGG-16 AutoBot 0.75 3
CelebA VGG-16 Taylor 0.9 5

Fitzpatrick17k ResNet-34 AutoBot 0.8 2.5
Fitzpatrick17k ResNet-34 Taylor 0.95 3
Fitzpatrick17k EfficientNet V2 Med. AutoBot 0.8 2
Fitzpatrick17k EfficientNet V2 Med. Taylor 0.95 3

Table 4: Parameters used to retrain models

Dataset Model Learning Rate Batch Size Duration

CelebA ResNet-18 0.0001 256 30 epochs
CelebA VGG-16 0.0005 64 10 epochs

Fitzpatrick17k ResNet-34 0.0001 64 30 epochs
Fitzpatrick17k EfficientNet V2 Med. 0.00001 32 50 epochs

11



B Detailed Results

For brevity, we only included figures displaying our results in the main body of this report. For
transparency, our full results can be found here. Detailed results for all experiments performed in the
main body of the paper can be found in Tables 5 through 10.
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Table 5: Pruning performance mean ± standard deviation with ResNet-18 with CelebA dataset

ROC-AUC

Pruning Method FLOPS Parameters Accuracy All Male Non-Male

Unpruned 1508.5 M 11177.0 k 0.9824 0.9546 0.9639 0.9795

AutoBot 107.1 M
± 1.4 M

187.5 k
± 16.6 k

0.9494
± 0.0066

0.9378
± 0.002

0.8703
± 0.0307

0.9487
± 0.005

AutoBot 67.4 M
± 0.6 M

811.7 k
± 35.8 k

0.9511
± 0.0068

0.9428
± 0.0038

0.8364
± 0.0346

0.953
± 0.0053

AutoBot 34.8 M
± 1.7 M

545.4 k
± 68.0 k

0.9364
± 0.0012

0.9313
± 0.0033

0.8276
± 0.0532

0.9366
± 0.0041

AutoBot 18.7 M
± 1.3 M

277.0 k
± 16.6 k

0.9298
± 0.015

0.9299
± 0.0054

0.7984
± 0.054

0.9313
± 0.0132

AutoBot 7.7 M
± 0.5 M

72.4 k
± 12.1 k

0.9419
± 0.0048

0.9297
± 0.0038

0.8326
± 0.0427

0.9427
± 0.0055

AutoBot + PW 123.9 M
± 1.5 M

345.7 k
± 29.2 k

0.974
± 0.0013

0.9442
± 0.0029

0.9454
± 0.0042

0.9706
± 0.0021

AutoBot + PW 67.6 M
± 0.6 M

611.2 k
± 148.8 k

0.975
± 0.002

0.9442
± 0.0015

0.9438
± 0.0064

0.9721
± 0.0023

AutoBot + PW 48.7 M
± 5.0 M

734.2 k
± 47.7 k

0.9646
± 0.0039

0.936
± 0.0017

0.9074
± 0.0123

0.962
± 0.0039

AutoBot + PW 21.5 M
± 1.3 M

294.8 k
± 10.6 k

0.9588
± 0.0019

0.9317
± 0.0022

0.899
± 0.0024

0.9566
± 0.002

AutoBot + PW 9.8 M
± 1.7 M

108.0 k
± 16.6 k

0.9579
± 0.0019

0.9282
± 0.0028

0.897
± 0.0079

0.956
± 0.0031

Taylor 116.8 M
± 5.0 M

70.8 k
± 2.2 k

0.9571
± 0.0128

0.9445
± 0.001

0.8877
± 0.05

0.9556
± 0.01

Taylor 55.0 M
± 2.4 M

25.8 k
± 0.4 k

0.9785
± 0.0023

0.9508
± 0.0037

0.9429
± 0.0114

0.9766
± 0.0018

Taylor 21.7 M
± 1.9 M

9.8 k
± 0.7 k

0.9593
± 0.0168

0.9517
± 0.0012

0.8648
± 0.074

0.9617
± 0.0124

Taylor 9.6 M
± 0.8 M

4.4 k
± 0.4 k

0.9564
± 0.0197

0.9476
± 0.001

0.8626
± 0.0684

0.9581
± 0.0156

Taylor 4.6 M
± 0.9 M

1.9 k
± 0.7 k

0.9388
± 0.0425

0.9103
± 0.0378

0.8259
± 0.1451

0.9411
± 0.0346

Taylor + PW 116.7 M
± 0.7 M

62.8 k
± 1.9 k

0.9741
± 0.0031

0.9488
± 0.0023

0.9323
± 0.0087

0.9716
± 0.0032

Taylor + PW 48.5 M
± 0.6 M

21.9 k
± 0.6 k

0.9805
± 0.0007

0.9528
± 0.0026

0.948
± 0.0046

0.9787
± 0.0006

Taylor + PW 23.1 M
± 2.2 M

9.6 k
± 0.9 k

0.9788
± 0.0009

0.9535
± 0.0024

0.9409
± 0.0072

0.9772
± 0.0011

Taylor + PW 11.1 M
± 0.3 M

3.9 k
± 0.7 k

0.9711
± 0.0036

0.9403
± 0.0044

0.9356
± 0.0127

0.966
± 0.0074

Taylor + PW 5.1 M
± 1.8 M

1.8 k
± 0.2 k

0.9601
± 0.006

0.9229
± 0.0146

0.9051
± 0.0176

0.9579
± 0.0059

Random 138.2 M
± 2.8 M

1022.8 k
± 41.3 k

0.9542
± 0.0038

0.9478
± 0.0014

0.8404
± 0.0236

0.9574
± 0.0031

Random 66.4 M
± 5.6 M

496.6 k
± 30.6 k

0.9497
± 0.0058

0.9448
± 0.0004

0.8393
± 0.0281

0.9522
± 0.0066

Random 32.4 M
± 0.7 M

176.3 k
± 19.7 k

0.9428
± 0.0013

0.9406
± 0.0018

0.838
± 0.007

0.944
± 0.0015

Random 16.4 M
± 1.7 M

120.9 k
± 5.6 k

0.94
± 0.0059

0.9342
± 0.0026

0.8406
± 0.0125

0.9409
± 0.0046

Random 7.0 M
± 0.7 M

24.1 k
± 10.9 k

0.9641
± 0.0113

0.942
± 0.004

0.901
± 0.0448

0.9633
± 0.0092
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Table 6: Pruning performance mean ± standard deviation with VGG-16 with CelebA dataset

ROC-AUC

Pruning Method FLOPS Parameters Accuracy All Male Non-Male

Unpruned 11782.0 M 134264.6 k 0.9852 0.9586 0.9679 0.9826

AutoBot 751.9 M
± 2.0 M

22104.4 k
± 343.0 k

0.9813
± 0.0002

0.9559
± 0.0006

0.9516
± 0.0016

0.979
± 0.0002

AutoBot∗ 390.5 M
± 2.6 M

21966.0 k
± 144.5 k

0.9817
± 0.0

0.9557
± 0.0002

0.9547
± 0.0017

0.9793
± 0.0004

AutoBot∗ 204.7 M
± 0.6 M

21889.2 k
± 140.7 k

0.9807
± 0.0013

0.9548
± 0.0012

0.9518
± 0.0055

0.9783
± 0.0011

AutoBot + PW∗ 751.2 M
± 1.2 M

21609.1 k
± 283.8 k

0.9832
± 0.0001

0.9568
± 0.001

0.9629
± 0.0016

0.9805
± 0.0001

AutoBot + PW∗∗ 412.5 M 21652.6 k 0.9827 0.958 0.9572 0.98
AutoBot + PW∗∗ 102.0 M 21086.5 k 0.9775 0.9503 0.9436 0.9747
Taylor 746.1 M

± 3.2 M
19832.1 k
± 514.9 k

0.9833
± 0.0006

0.9581
± 0.0006

0.9592
± 0.0035

0.9809
± 0.0003

Taylor 379.5 M
± 3.8 M

19171.8 k
± 421.7 k

0.9829
± 0.0002

0.9582
± 0.0009

0.9559
± 0.0016

0.9808
± 0.0004

Taylor 197.9 M
± 3.2 M

18949.7 k
± 230.9 k

0.9821
± 0.0008

0.9559
± 0.0015

0.9568
± 0.0032

0.9795
± 0.0009

Taylor 107.8 M
± 2.5 M

18805.9 k
± 1.2 k

0.9804
± 0.0011

0.9542
± 0.0008

0.9546
± 0.0041

0.9776
± 0.001

Taylor 63.3 M
± 1.1 M

18735.3 k
± 115.1 k

0.9788
± 0.0002

0.9524
± 0.0004

0.951
± 0.0026

0.9758
± 0.0007

Taylor + PW 741.4 M
± 3.3 M

19416.6 k
± 467.6 k

0.9831
± 0.0002

0.958
± 0.001

0.9575
± 0.0024

0.9809
± 0.0003

Taylor + PW 379.1 M
± 3.3 M

19099.7 k
± 515.6 k

0.9827
± 0.0009

0.9563
± 0.0012

0.9582
± 0.002

0.9803
± 0.0012

Taylor + PW 194.6 M
± 3.0 M

18746.9 k
± 817.5 k

0.9815
± 0.0009

0.9549
± 0.0018

0.9564
± 0.0024

0.9788
± 0.001

Taylor + PW 107.8 M
± 0.4 M

18403.9 k
± 878.4 k

0.9797
± 0.0014

0.9534
± 0.0019

0.9505
± 0.0036

0.9769
± 0.0014

Taylor + PW 61.7 M
± 1.4 M

18132.0 k
± 418.7 k

0.9782
± 0.0006

0.9507
± 0.0009

0.9515
± 0.0042

0.975
± 0.0005

Random∗ 770.0 M
± 1.0 M

43645.0 k
± 773.7 k

0.9814
± 0.0004

0.9564
± 0.0011

0.9492
± 0.0002

0.9795
± 0.0004

Random 398.7 M
± 0.6 M

36418.8 k
± 611.7 k

0.9819
± 0.0003

0.9552
± 0.0007

0.9542
± 0.0027

0.9795
± 0.0004

Random∗∗ 213.7 M 32481.6 k 0.9799 0.9537 0.9471 0.9777
Random∗ 117.4 M

± 0.1 M
26650.8 k
± 146.0 k

0.9765
± 0.0002

0.9508
± 0.0007

0.9308
± 0.0012

0.9747
± 0.0

Random∗ 67.9 M
± 0.1 M

22757.6 k
± 422.0 k

0.9753
± 0.0001

0.9486
± 0.0008

0.9333
± 0.0039

0.973
± 0.0004

∗ indicates one of the three trials failed ∗∗ indicates two of the three trials failed
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Table 7: Pruning performance mean ± standard deviation with ResNet-34 with Fitzpatrick17k dataset

ROC-AUC

Pruning Method FLOPS Parameters Accuracy All Medium Dark

Unpruned 3682.0 M 21286.2 k 0.8023 0.7896 0.819 0.7375

AutoBot 2549.2 M
± 53.6 M

9425.2 k
± 178.6 k

0.7852
± 0.0114

0.7852
± 0.0138

0.8007
± 0.0134

0.7244
± 0.007

AutoBot 1285.0 M
± 20.4 M

4263.8 k
± 358.1 k

0.7375
± 0.0043

0.7535
± 0.0016

0.7514
± 0.0038

0.6832
± 0.0086

AutoBot 654.5 M
± 36.1 M

1163.9 k
± 282.1 k

0.6565
± 0.0129

0.6792
± 0.0144

0.6661
± 0.009

0.6172
± 0.0272

AutoBot 375.1 M
± 26.5 M

978.9 k
± 78.5 k

0.653
± 0.0165

0.6816
± 0.0157

0.6638
± 0.019

0.6154
± 0.0061

AutoBot 138.3 M
± 6.5 M

24.0 k
± 5.7 k

0.6127
± 0.0171

0.7421
± 0.0111

0.6189
± 0.018

0.5917
± 0.0159

AutoBot + PW 2547.4 M
± 48.2 M

8955.0 k
± 201.7 k

0.7935
± 0.0042

0.783
± 0.0049

0.8107
± 0.0051

0.7271
± 0.0007

AutoBot + PW 1283.0 M
± 90.3 M

4078.3 k
± 112.2 k

0.7333
± 0.0103

0.7554
± 0.009

0.7468
± 0.0104

0.6831
± 0.0216

AutoBot + PW 677.3 M
± 39.6 M

1670.9 k
± 308.8 k

0.6736
± 0.0132

0.7096
± 0.0131

0.6854
± 0.0157

0.6306
± 0.0084

AutoBot + PW 382.3 M
± 12.8 M

1283.4 k
± 126.6 k

0.6679
± 0.0068

0.7099
± 0.013

0.677
± 0.0065

0.6333
± 0.0206

AutoBot + PW 180.4 M
± 12.5 M

68.5 k
± 27.4 k

0.6103
± 0.0127

0.7261
± 0.0266

0.6183
± 0.0135

0.5774
± 0.0067

Taylor 2219.5 M
± 12.1 M

6614.4 k
± 90.9 k

0.7897
± 0.0137

0.7831
± 0.0144

0.8056
± 0.012

0.729
± 0.0242

Taylor 1273.0 M
± 14.3 M

2271.0 k
± 60.2 k

0.7712
± 0.0116

0.7744
± 0.0078

0.7856
± 0.0134

0.718
± 0.0126

Taylor 732.5 M
± 7.1 M

879.8 k
± 22.5 k

0.73
± 0.0184

0.7492
± 0.0073

0.743
± 0.0176

0.6836
± 0.0232

Taylor 381.8 M
± 6.9 M

333.0 k
± 21.8 k

0.6877
± 0.0166

0.7061
± 0.0117

0.7015
± 0.018

0.6414
± 0.015

Taylor 178.8 M
± 7.8 M

127.9 k
± 16.8 k

0.6565
± 0.0073

0.6961
± 0.0194

0.6659
± 0.0094

0.6241
± 0.0099

Taylor + PW 2214.8 M
± 8.6 M

6752.7 k
± 60.7 k

0.8003
± 0.003

0.791
± 0.0078

0.8166
± 0.0026

0.7359
± 0.0054

Taylor + PW 1296.7 M
± 26.5 M

2406.0 k
± 121.6 k

0.7534
± 0.0018

0.7506
± 0.0109

0.7715
± 0.0036

0.6883
± 0.0145

Taylor + PW 724.9 M
± 3.5 M

886.0 k
± 7.0 k

0.6944
± 0.0129

0.7088
± 0.0108

0.7085
± 0.0112

0.6469
± 0.0197

Taylor + PW 378.1 M
± 9.8 M

340.0 k
± 18.2 k

0.6509
± 0.0169

0.682
± 0.0205

0.6635
± 0.0147

0.6073
± 0.0288

Taylor + PW 180.4 M
± 3.3 M

142.1 k
± 6.8 k

0.6363
± 0.0093

0.6981
± 0.02

0.6471
± 0.0109

0.5957
± 0.0073

Random 2296.8 M
± 33.0 M

13762.6 k
± 114.3 k

0.79
± 0.0033

0.7904
± 0.01

0.8071
± 0.005

0.7239
± 0.0086

Random 1291.3 M
± 35.8 M

7771.6 k
± 333.6 k

0.7191
± 0.0042

0.7572
± 0.0068

0.7332
± 0.0045

0.6694
± 0.0026

Random 664.0 M
± 36.7 M

4011.0 k
± 254.9 k

0.6884
± 0.0125

0.7255
± 0.0213

0.6989
± 0.0141

0.6513
± 0.0209

Random 350.3 M
± 10.1 M

2122.7 k
± 113.5 k

0.6419
± 0.0068

0.7147
± 0.0151

0.6505
± 0.0075

0.6113
± 0.0027

Random 173.6 M
± 2.8 M

925.2 k
± 86.2 k

0.6236
± 0.0184

0.6652
± 0.0156

0.6344
± 0.0182

0.583
± 0.0202
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Table 8: Pruning performance mean ± standard deviation with EfficientNet V2 Med. with Fitz-
patrick17k dataset

ROC-AUC

Pruning Method FLOPS Parameters Accuracy All Medium Dark

Unpruned 5464.7 M 52862.2 k 0.831 0.8218 0.8516 0.7524

AutoBot 4892.1 M
± 4.0 M

41883.3 k
± 939.3 k

0.8202
± 0.0062

0.8168
± 0.0086

0.8405
± 0.0082

0.7424
± 0.0053

AutoBot 4125.9 M
± 254.6 M

41931.5 k
± 3481.1 k

0.7196
± 0.0794

0.755
± 0.038

0.7345
± 0.0822

0.6632
± 0.0709

AutoBot 3385.7 M
± 91.6 M

42110.8 k
± 523.8 k

0.7253
± 0.0292

0.7577
± 0.0175

0.7383
± 0.0323

0.6779
± 0.0164

AutoBot 1771.0 M
± 94.8 M

20118.8 k
± 1568.1 k

0.65
± 0.021

0.7041
± 0.0192

0.6617
± 0.0254

0.604
± 0.0196

AutoBot 985.7 M
± 33.3 M

13211.3 k
± 278.8 k

0.6357
± 0.0259

0.7123
± 0.0101

0.6446
± 0.0284

0.6033
± 0.012

AutoBot + PW 4946.1 M
± 65.8 M

41855.0 k
± 896.3 k

0.8251
± 0.0024

0.8164
± 0.0019

0.8441
± 0.0028

0.7513
± 0.001

AutoBot + PW 4314.5 M
± 214.6 M

40312.4 k
± 4882.1 k

0.7969
± 0.0353

0.7972
± 0.018

0.8116
± 0.0406

0.7402
± 0.0157

AutoBot + PW 3393.3 M
± 94.2 M

42535.4 k
± 937.1 k

0.7235
± 0.0409

0.7577
± 0.0296

0.7359
± 0.0406

0.6772
± 0.0403

AutoBot + PW 1961.2 M
± 74.7 M

21341.5 k
± 1960.4 k

0.6474
± 0.0177

0.7007
± 0.0081

0.6579
± 0.0204

0.6079
± 0.0115

AutoBot + PW 913.7 M
± 161.7 M

11856.2 k
± 2435.1 k

0.6411
± 0.0094

0.7315
± 0.0124

0.6544
± 0.0115

0.5939
± 0.0059

Taylor 4826.1 M
± 1.5 M

33486.3 k
± 46.3 k

0.8366
± 0.0029

0.8277
± 0.0015

0.8567
± 0.0039

0.7586
± 0.0004

Taylor 3907.0 M
± 0.8 M

17731.0 k
± 33.4 k

0.8274
± 0.0018

0.8168
± 0.0026

0.8442
± 0.0011

0.7617
± 0.0029

Taylor 3057.6 M
± 2.0 M

8477.2 k
± 61.2 k

0.8071
± 0.0048

0.7909
± 0.0049

0.8267
± 0.0073

0.7324
± 0.0061

Taylor 1515.9 M
± 13.0 M

1448.1 k
± 13.3 k

0.705
± 0.0495

0.696
± 0.0498

0.7143
± 0.051

0.6745
± 0.0404

Taylor 899.2 M
± 21.1 M

668.7 k
± 19.1 k

0.6369
± 0.0155

0.7275
± 0.0028

0.6466
± 0.0188

0.6002
± 0.0069

Taylor + PW 4836.8 M
± 1.5 M

33734.0 k
± 55.8 k

0.8346
± 0.0068

0.8275
± 0.0041

0.855
± 0.0062

0.757
± 0.0083

Taylor + PW 3911.8 M
± 2.1 M

17826.1 k
± 21.9 k

0.8247
± 0.0019

0.809
± 0.0079

0.8437
± 0.0028

0.7523
± 0.0024

Taylor + PW 3051.9 M
± 4.4 M

8429.1 k
± 60.3 k

0.8021
± 0.0054

0.7592
± 0.0149

0.8207
± 0.0061

0.7305
± 0.0082

Taylor + PW 1529.8 M
± 8.6 M

1460.9 k
± 14.9 k

0.7216
± 0.0071

0.747
± 0.0136

0.7356
± 0.0047

0.6676
± 0.0137

Taylor + PW 890.6 M
± 12.8 M

672.0 k
± 8.8 k

0.6113
± 0.0084

0.7539
± 0.0016

0.621
± 0.0069

0.5738
± 0.0184

Random 4078.8 M
± 157.9 M

39661.8 k
± 539.2 k

0.7794
± 0.0424

0.7838
± 0.0238

0.7952
± 0.0441

0.7207
± 0.0351

Random 3305.1 M
± 6.9 M

31406.7 k
± 869.5 k

0.7427
± 0.0202

0.7647
± 0.012

0.7573
± 0.0202

0.6881
± 0.0206

Random 2819.2 M
± 28.5 M

26370.3 k
± 515.0 k

0.7185
± 0.0053

0.7451
± 0.0142

0.7321
± 0.007

0.6692
± 0.0041

Random 1369.1 M
± 33.3 M

13060.2 k
± 157.0 k

0.6602
± 0.0192

0.7172
± 0.0098

0.6685
± 0.0208

0.6286
± 0.0123

Random 681.8 M
± 6.3 M

6646.2 k
± 44.0 k

0.6241
± 0.0153

0.7162
± 0.0501

0.6362
± 0.0142

0.5767
± 0.0153
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Table 9: Pruning performance mean ± standard deviation with ResNet-18 with subsets of CelebA

ROC-AUC

Subset Pruning Method FLOPS Parameters Male Non-Male

Fully Balanced Unpruned 1508.5 M 11177.0 k 0.9562 0.9713
Fully Balanced AutoBot 285.5 M

± 1.7 M
497.9 k
± 86.7 k

0.8922
± 0.031

0.9396
± 0.0048

Fully Balanced AutoBot 66.9 M
± 1.5 M

864.8 k
± 30.9 k

0.8148
± 0.0275

0.8863
± 0.0212

Fully Balanced AutoBot 17.2 M
± 3.0 M

196.0 k
± 35.5 k

0.8188
± 0.0137

0.8764
± 0.0337

Fully Balanced Taylor 247.2 M
± 6.6 M

192.7 k
± 15.5 k

0.9451
± 0.0026

0.9601
± 0.0009

Fully Balanced Taylor 55.7 M
± 1.8 M

31.4 k
± 2.7 k

0.9265
± 0.0097

0.9576
± 0.004

Fully Balanced Taylor 12.4 M
± 0.4 M

5.7 k
± 0.4 k

0.8973
± 0.0201

0.9469
± 0.008

Unequal Male/Non-
Male Split

Unpruned 1508.5 M 11177.0 k 0.9479 0.9732

Unequal Male/Non-
Male Split

AutoBot 243.4 M
± 1.6 M

1868.5 k
± 80.0 k

0.9098
± 0.0102

0.952
± 0.0019

Unequal Male/Non-
Male Split

AutoBot 66.5 M
± 3.0 M

923.6 k
± 16.3 k

0.838
± 0.0226

0.9308
± 0.007

Unequal Male/Non-
Male Split

AutoBot 16.0 M
± 1.2 M

174.6 k
± 14.6 k

0.8433
± 0.0209

0.9255
± 0.0057

Unequal Male/Non-
Male Split

Taylor 252.9 M
± 4.4 M

205.8 k
± 20.1 k

0.9246
± 0.0086

0.9611
± 0.0065

Unequal Male/Non-
Male Split

Taylor 56.8 M
± 1.8 M

30.8 k
± 0.3 k

0.9453
± 0.0083

0.971
± 0.0021

Unequal Male/Non-
Male Split

Taylor 11.5 M
± 1.8 M

5.9 k
± 0.1 k

0.9178
± 0.0099

0.9675
± 0.0045

Unequal Label Split Unpruned 1508.5 M 11177.0 k 0.9183 0.958
Unequal Label Split AutoBot 281.8 M

± 3.4 M
723.8 k
± 38.7 k

0.8722
± 0.0117

0.9418
± 0.0065

Unequal Label Split AutoBot 70.4 M
± 4.9 M

915.0 k
± 95.9 k

0.8255
± 0.052

0.9151
± 0.0123

Unequal Label Split AutoBot 17.1 M
± 1.1 M

208.4 k
± 44.6 k

0.8109
± 0.0147

0.8994
± 0.0102

Unequal Label Split Taylor 235.8 M
± 3.1 M

187.5 k
± 6.2 k

0.8551
± 0.0242

0.9015
± 0.0189

Unequal Label Split Taylor 53.7 M
± 4.9 M

22.5 k
± 0.7 k

0.9075
± 0.057

0.9576
± 0.0262

Unequal Label Split Taylor 9.8 M
± 1.0 M

4.1 k
± 0.5 k

0.8143
± 0.0758

0.9193
± 0.037
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Table 10: Pruning performance mean ± standard deviation with ResNet-18 with CelebA when
elements of PW loss are applied independently

ROC-AUC

Area of Mod-
ification

Pruning Method FLOPS Parameters Male Non-Male

Pruning Only AutoBot + Weights 111.9 M
± 3.5 M

188.2 k
± 59.2 k

0.8547
± 0.0354

0.9521
± 0.0041

Pruning Only AutoBot + Weights 47.6 M
± 6.2 M

278.5 k
± 62.1 k

0.846
± 0.025

0.9481
± 0.0089

Pruning Only AutoBot + Weights 49.3 M
± 3.3 M

729.4 k
± 41.3 k

0.8381
± 0.0071

0.9312
± 0.0022

Pruning Only AutoBot + Weights 23.0 M
± 12.4 M

350.8 k
± 219.1 k

0.811
± 0.0327

0.9256
± 0.0183

Pruning Only AutoBot + Weights 30.2 M
± 1.9 M

474.6 k
± 30.9 k

0.7873
± 0.0246

0.9343
± 0.0019

Pruning Only AutoBot + Corr.
Soft-Labels

108.1 M
± 1.0 M

215.0 k
± 50.5 k

0.9056
± 0.0438

0.9625
± 0.0089

Pruning Only AutoBot + Corr.
Soft-Labels

67.7 M
± 2.8 M

916.2 k
± 25.4 k

0.8812
± 0.0587

0.9566
± 0.0115

Pruning Only AutoBot + Corr.
Soft-Labels

34.9 M
± 2.4 M

476.0 k
± 33.7 k

0.8655
± 0.0471

0.9517
± 0.0115

Pruning Only AutoBot + Corr.
Soft-Labels

17.2 M
± 1.4 M

199.0 k
± 11.0 k

0.8506
± 0.0513

0.9454
± 0.0163

Pruning Only AutoBot + Corr.
Soft-Labels

8.9 M
± 1.1 M

84.7 k
± 8.5 k

0.8746
± 0.0202

0.9475
± 0.011

Pruning and
Retraining

AutoBot + Weights 112.2 M
± 2.7 M

194.8 k
± 47.8 k

0.9035
± 0.058

0.9649
± 0.0142

Pruning and
Retraining

AutoBot + Weights 46.7 M
± 4.9 M

255.4 k
± 50.8 k

0.8992
± 0.0605

0.9626
± 0.0168

Pruning and
Retraining

AutoBot + Weights 47.7 M
± 2.9 M

730.3 k
± 29.5 k

0.8738
± 0.04

0.9483
± 0.019

Pruning and
Retraining

AutoBot + Weights 31.5 M
± 12.2 M

486.7 k
± 205.6 k

0.8663
± 0.064

0.9462
± 0.0254

Pruning and
Retraining

AutoBot + Weights 25.0 M
± 9.5 M

387.2 k
± 167.9 k

0.8556
± 0.0765

0.9492
± 0.0164

Pruning and
Retraining

AutoBot + Corr.
Soft-Labels

108.0 M
± 1.3 M

222.1 k
± 57.6 k

0.9441
± 0.0025

0.9705
± 0.0007

Pruning and
Retraining

AutoBot + Corr.
Soft-Labels

68.3 M
± 4.0 M

928.8 k
± 16.8 k

0.9213
± 0.0022

0.9647
± 0.0007

Pruning and
Retraining

AutoBot + Corr.
Soft-Labels

35.2 M
± 2.9 M

474.5 k
± 19.8 k

0.9069
± 0.0079

0.9617
± 0.0031

Pruning and
Retraining

AutoBot + Corr.
Soft-Labels

17.5 M
± 0.2 M

199.9 k
± 10.5 k

0.8937
± 0.0114

0.9588
± 0.0026

Pruning and
Retraining

AutoBot + Corr.
Soft-Labels

9.0 M
± 1.6 M

85.3 k
± 11.7 k

0.888
± 0.016

0.9568
± 0.0063

18


	Introduction
	Related Work
	Method
	Motivation
	The Performance Weighted Loss Function

	Experiments
	Experimental Set-up
	Metrics

	Evaluating Fairness and Performance
	Pruning the CelebA Models
	Pruning the Fitzpatrick17k Models

	Conditions for Bias
	Ablation

	Conclusion
	Model Training and Pruning Parameters
	Detailed Results

