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Abstract

While a broad range of techniques have been proposed to tackle distribution shift,1

the simple baseline of training on an undersampled balanced dataset often achieves2

close to state-of-the-art-accuracy across several popular benchmarks. This is rather3

surprising, since undersampling algorithms discard excess majority group data.4

To understand this phenomenon, we ask if learning is fundamentally constrained5

by a lack of minority group samples. We prove that this is indeed the case in6

the setting of nonparametric binary classification. Our results show that in the7

worst case, an algorithm cannot outperform undersampling unless there is a high8

degree of overlap between the train and test distributions (which is unlikely to be9

the case in real-world datasets), or if the algorithm leverages additional structure10

about the distribution shift. In particular, in the case of label shift we show that11

there is always an undersampling algorithm that is minimax optimal. In the case12

of group-covariate shift we show that there is an undersampling algorithm that is13

minimax optimal when the overlap between the group distributions is small. We14

also perform an experimental case study on a label shift dataset and find that in line15

with our theory, the test accuracy of robust neural network classifiers is constrained16

by the number of minority samples.17

1 Introduction18

A key challenge facing the machine learning community is to design models that are robust to19

distribution shift. When there is a mismatch between the train and test distributions, current models20

are often brittle and perform poorly on rare examples [Hovy and Søgaard, 2015, Blodgett et al.,21

2016, Tatman, 2017, Hashimoto et al., 2018, Alcorn et al., 2019]. In this paper, our focus is on22

group-structured distribution shifts. In the training set, we have many samples from a majority group23

and relatively few samples from the minority group, while during test time we are equally likely to24

get a sample from either group.25

To tackle such distribution shifts, a naïve algorithm is one that first undersamples the training data26

by discarding excess majority group samples [Kubat and Matwin, 1997, Wallace et al., 2011] and27

then trains a model on this resulting dataset.The samples that remain in this undersampled dataset28

constitute i.i.d. draws from the test distribution. Therefore, while a classifier trained on this pruned29

dataset cannot suffer biases due to distribution shift, this algorithm is clearly wasteful, as it discards30

training samples. This perceived inefficiency of undersampling has led to the design of several31

algorithms to combat such distribution shift [Chawla et al., 2002, Lipton et al., 2018, Sagawa et al.,32

2020, Cao et al., 2019, Menon et al., 2020, Ye et al., 2020, Kini et al., 2021, Wang et al., 2022].33

In spite of this algorithmic progress, the simple baseline of training models on an undersampled34

dataset remains competitive. In the case of label shift, where one class label is overrepresented in the35
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training data, this has been observed by Cui et al. [2019], Cao et al. [2019], and Yang and Xu [2020].36

While in the case of group-covariate shift, a study by Idrissi et al. [2022] showed that the empirical37

effectiveness of these more complicated algorithms is limited.38

For example, Idrissi et al. [2022] showed that on the group-covariate shift CelebA dataset the worst-39

group accuracy of a ResNet-50 model on the undersampled CelebA dataset which discards 97% of40

the available training data is as good as methods that use all of available data such as importance-41

weighted ERM [Shimodaira, 2000], Group-DRO [Sagawa et al., 2020] and Just-Train-Twice [Liu42

et al., 2021]. In Table 1, we report the performance of the undersampled classifier compared to the43

state-of-the-art-methods in the literature across several label shift and group-covariate shift datasets.44

We find that, although undersampling isn’t always the optimal robustness algorithm, it is typically a45

very competitive baseline and within 1–4% the performance of the best method.

Table 1: Performance of undersampled classifier compared to the best classifier across several popular
label shift and group-covariate shift datasets. When reporting worst-group accuracy we denote it by a
?. When available, we report the 95% confidence interval. We find that the undersampled classifier is
always within 1–4% of the best performing robustness algorithm, except on the MultiNLI dataset.

Shift Type Dataset/Paper
Test/Worst-Group? Accuracy

Best Undersampled

Label
Imb. CIFAR10 (step 10) [Cao et al., 2019] 87.81 84.59

Imb. CIFAR100 (step 10) [Cao et al., 2019] 58.71 55.06

CelebA [Idrissi et al., 2022] 86.9± 1.1? 85.6± 2.3?

Waterbirds [Idrissi et al., 2022] 87.6± 1.6? 89.1± 1.1?
Group-Covariate

MultiNLI [Idrissi et al., 2022] 78.0± 0.7? 68.9± 0.8?

CivilComments [Idrissi et al., 2022] 72.0± 1.9? 71.8± 1.4?

46

Inspired by the strong performance of undersampling in these experiments, we ask:47

Is the performance of a model under distribution shift fundamentally48

constrained by the lack of minority group samples?49

To answer this question we analyze the minimax excess risk. We lower bound the minimax excess risk50

to prove that the performance of any algorithm is lower bounded only as a function of the minority51

samples (nmin). This shows that even if a robust algorithm optimally trades off between the bias and52

the variance, it is fundamentally constrained by the variance on the minority group which decreases53

only with nmin.54

Our Contributions. In our paper, we consider the well-studied setting of nonparametric binary55

classification [Tsybakov, 2010]. By operating in this nonparametric regime we are able to study the56

properties of undersampling in rich data distributions, but are able to circumvent the complications57

that arise due to the optimization and implicit bias of parametric models.58

We provide insights into this question in the label shift scenario, where one of the labels is overrep-59

resented in the training data, Ptrain(y = 1) ≥ Ptrain(y = −1), whereas the test samples are equally60

likely to come from either class. Here the class-conditional distribution P(x | y) is Lipschitz in x.61

We show that in the label shift setting there is a fundamental constraint, and that the minimax excess62

risk of any robust learning method is lower bounded by 1/nmin
1/3. That is, minority group samples63

fundamentally constrain performance under distribution shift. Furthermore, by leveraging previous64

results about nonparametric density estimation [Freedman and Diaconis, 1981] we show a matching65

upper bound on the excess risk of a standard binning estimator trained on an undersampled dataset to66

demonstrate that undersampling is optimal (see Theorem D.1).67

Further, we experimentally show in a label shift dataset (Imbalanced Binary CIFAR10) that the68

accuracy of popular classifiers generally follow the trends predicted by our theory (see Appendix C).69

When the minority samples are increased, the accuracy of these classifiers increases drastically,70

whereas when the number of majority samples are increased the gains in the accuracy are marginal.71
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We also study the covariate shift case. In this setting, there has been extensive work studying the72

effectiveness of transfer [Kpotufe and Martinet, 2018, Hanneke and Kpotufe, 2019] from train to test73

distributions, often focusing on deriving specific conditions under which this transfer is possible. In74

this work, we demonstrate that when the overlap (defined in terms of total variation distance) between75

the group distributions Pa and Pb is small, transfer is difficult, and that the minimax excess risk of any76

robust learning algorithm is lower bounded by 1/nmin
1/3 (see Theorem B.1). While this prior work77

also shows the impossibility of using majority group samples in the extreme case with no overlap, our78

results provide a simple lower bound that shows that the amount of overlap needed to make transfer79

feasible is unrealistic. We also show that this lower bound is tight, by proving an upper bound on the80

excess risk of the binning estimator acting on the undersampled dataset (see Theorem D.2).81

Taken together, our results underline the need to move beyond designing “general-purpose” robustness82

algorithms (like importance-weighting [Cao et al., 2019, Menon et al., 2020, Kini et al., 2021, Wang83

et al., 2022], g-DRO [Sagawa et al., 2020], JTT [Liu et al., 2021], SMOTE [Chawla et al., 2002], etc.)84

that are agnostic to the structure in the distribution shift. Our worst case analysis highlights that to85

successfully beat undersampling, an algorithm must leverage additional structure in the distribution86

shift.87

Organization. We present our minimax lower bounds on the label shift in the main paper. The88

matching upper bounds our proved in the appendix. The upper and lower bounds in the group-89

covariate shift are presented in the appendix. Discussion of related work and simulations studying90

the minority group sample dependence in robust neural networks classifiers are also in the appendix.91

2 Setting92

The setting for our study is nonparametric binary classification with Lipschitz data distributions.93

We are given n training datapoints S := {(x1, y1), . . . , (xn, yn)} ∈ ([0, 1]× {−1, 1})n that are all94

drawn from a train distribution Ptrain. During test time, the data shall be drawn from a different95

distribution Ptest. To present a clean analysis, we study the case where the features x are bounded96

scalars, however, it is easy to extend our results to the high-dimensional setting.97

Given a classifier f : R → {−1, 1}, we shall be interested in the test error (risk) of this classifier98

under the test distribution Ptest:99

R(f ;Ptest) := E(x,y)∼Ptest
[1(f(x) 6= y)] .

We assume that Ptrain consists of a mixture of two groups of unequal size, and Ptest contains equal100

numbers of samples from both groups. Given a majority group distribution Pmaj and a minority101

group distribution Pmin, the learner has access to nmaj majority group samples and nmin minority102

group samples: Smaj ∼ P
nmaj

maj and Smin ∼ Pnmin

min . Here nmaj > n/2 and nmin < n/2 with103

nmaj + nmin = n. The full training dataset is S = Smaj ∪ Smin = {(x1, y1), . . . , (xn, yn)}. We104

assume that the learner has access to the knowledge whether a particular sample (xi, yi) comes from105

the majority or minority group.106

The test samples will be drawn from Ptest = 1
2Pmaj + 1

2Pmin, a uniform mixture over Pmaj and Pmin.107

Thus, the training dataset is an imbalanced draw from the distributions Pmaj and Pmin, whereas the108

test samples are balanced draws. We let ρ := nmaj/nmin > 1 denote the imbalance ratio in the109

training data.110

We focus on two-types of distribution shifts: label shift that we describe below, and group-covariate111

shift that we describe in Appendix G.1.112

Label Shift. In this setting, the imbalance in the training data comes from there being more samples
from one class over another. Without loss of generality, we shall assume that the class y = 1 is the
majority class. Then, we define the majority and the minority class distributions as

Pmaj(x, y) = P1(x)1(y = 1) and Pmin = P−1(x)1(y = −1),

where P1,P−1 are class-conditional distributions over the interval [0, 1]. We assume that class-113

conditional distributions Pi have densities on [0, 1] and that they are 1-Lipschitz: for any x, x′ ∈ [0, 1],114

|Pi(x)− Pi(x
′)| ≤ |x− x′|.

3



We denote the class of pairs of distributions (Pmaj,Pmin) that satisfy these conditions by PLS. We115

note that such Lipschitzness assumptions are common in the literature [see Tsybakov, 2010].116

3 Lower Bounds on the Minimax Excess Risk117

In this section, we shall prove our lower bounds that show that the performance of any algorithm is118

constrained by the number of minority samples nmin. Before we state our lower bounds, we need to119

introduce the notion of excess risk and minimax excess risk.120

Excess Risk and Minimax Excess Risk. We measure the performance of an algorithm A through121

its excess risk defined in the following way. Given an algorithm A that takes as input a dataset S122

and returns a classifier AS , and a pair of distributions (Pmaj,Pmin) with Ptest = 1
2Pmaj + 1

2Pmin, the123

expected excess risk is given by124

Excess Risk[A; (Pmaj,Pmin)] := ES∼Pnmaj
maj ×P

nmin
min

[
R(AS ;Ptest))−R(f?(Ptest);Ptest)

]
, (1)

where f?(Ptest) is the Bayes classifier that minimizes the risk R(·;Ptest). The first term corresponds125

to the expected risk for the algorithm when given nmaj samples from Pmaj and nmin samples from126

Pmin, whereas the second term corresponds to the Bayes error for the problem.127

Excess risk does not let us characterize the inherent difficulty of a problem, since for any particular128

data distribution (Pmaj,Pmin) the best possible algorithm A to minimize the excess risk would be the129

trivial mappingAS = f?(Ptest). Therefore, to prove meaningful lower bounds on the performance of130

algorithms we need to define the notion of minimax excess risk [see Wainwright, 2019, Chapter 15].131

Given a class of pairs of distributions P define132

Minimax Excess Risk(P) := inf
A

sup
(Pmaj,Pmin)∈P

Excess Risk[A; (Pmaj,Pmin)], (2)

where the infimum is over all measurable estimators A. The minimax excess risk is the excess risk of133

the “best” algorithm in the worst case over the class of problems defined by P .134

We demonstrate the hardness of the label shift problem in general by establishing a lower bound on135

the minimax excess risk.136

Theorem 3.1. Let PLS be the class of pairs of distributions (Pmaj,Pmin) that satisfy the label-shift137

assumptions. The minimax excess risk over this class is lower bounded as follows:138

Minimax Excess Risk(PLS) = inf
A

sup
(Pmaj,Pmin)∈PLS

Excess Risk[A; (Pmaj,Pmin)] ≥
1

600

1

nmin
1/3

. (3)

We establish this result in Appendix F. We show that rather surprisingly, the lower bound on the139

minimax excess risk scales only with the number of minority class samples nmin
1/3, and does140

not depend on nmaj. Intuitively, this is because any learner must predict which class-conditional141

distribution (P(x | 1) or P(x | −1)) assigns higher likelihood at that x. To interpret this result,142

consider the extreme scenario where nmaj → ∞ but nmin is finite. In this case, the learner has143

full information about the majority class distribution. However, the learning task continues to be144

challenging since any learner would be uncertain about whether the minority class distribution assigns145

higher or lower likelihood at any given x. This uncertainty underlies the reason why the minimax146

rate of classification is constrained by the number of minority samples nmin.147

We also note that the theorem can be trivially extended to higher dimensions. In this case the148

exponents degrade to 1/3d rather than 1/3 as is to be expected in nonparametric classification.149

Discussion. We showed that undersampling is an optimal robustness intervention in nonparametric150

classification in the absence of significant overlap between group distributions or without additional151

structure beyond Lipschitz continuity. At a high level our results highlight the need to reason about152

the specific structure in the distribution shift and design algorithms that are tailored to take advantage153

of this structure. This would require us to step away from the common practice in robust machine154

learning where the focus is to design “universal” robustness interventions that are agnostic to the155

structure in the shift. Alongside this, our results also dictate the need for datasets and benchmarks156

with the propensity for transfer from train to test time.157
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A Related Work244

On several group-covariate shift benchmarks (CelebA, CivilComments, Waterbirds), Idrissi et al.245

[2022] showed that training ResNet classifiers on an undersampled dataset either outperforms or246

performs as well as other popular reweighting methods like Group-DRO [Sagawa et al., 2020],247

reweighted ERM, and Just-Train-Twice [Liu et al., 2021]. They find Group-DRO performs compara-248

bly to undersampling, while both tend to outperform methods that don’t utilize group information.249

One classic method to tackle distribution shift is importance weighting [Shimodaira, 2000], which250

reweights the loss of the minority group samples to yield an unbiased estimate of the loss. However,251

recent work [Byrd and Lipton, 2019, Xu et al., 2020] has demonstrated the ineffectiveness of such252

methods when applied to overparameterized neural networks. Many followup papers [Cao et al.,253

2019, Ye et al., 2020, Menon et al., 2020, Kini et al., 2021, Wang et al., 2022] have introduced254

methods that modify the loss function in various ways to address this. However, despite this progress255

undersampling remains a competitive alternative to these importance weighted classifiers.256

Our theory draws from the rich literature on non-parametric classification [Tsybakov, 2010]. Apart257

from borrowing this setting of nonparametric classification, we also utilize upper bounds on the258

estimation error of the simple histogram estimator [Freedman and Diaconis, 1981, Devroye and259

Györfi, 1985] to prove our upper bounds in the label shift case. Finally, we note that to prove260

our minimax lower bounds we proceed by using the general recipe of reducing from estimation to261

testing [Wainwright, 2019, Chapter 15]. One difference from this standard framework is that our262

training samples shall be drawn from a different distribution than the test samples used to define the263

risk.264

There is rich literature that studies domain adaptation and transfer learning under label shift [Maity265

et al., 2020] and covariate shift [Ben-David et al., 2006, David et al., 2010, Ben-David et al., 2010,266

Ben-David and Urner, 2012, 2014, Berlind and Urner, 2015, Kpotufe and Martinet, 2018, Hanneke267

and Kpotufe, 2019]. The principal focus of this line of work was to understand the value of unlabeled268

data from the target domain, rather than to characterize the relative value of the number of labeled269

samples from the majority and minority groups. Among these papers, most closely related to our270

work are those in the covariate shift setting [Kpotufe and Martinet, 2018, Hanneke and Kpotufe,271

2019]. Their lower bound results can be reinterpreted to show that under covariate shift in the absence272

of overlap, the minimax excess risk is lower bounded by 1/nmin
1/3. We provide a more detailed273

comparison with their results after presenting our lower bounds in Section B.274

Finally, we note that Arjovsky et al. [2022] recently showed that undersampling can improve the275

worst-class accuracy of linear SVMs in the presence of label shift. In comparison, our results hold276

for arbitrary classifiers with the rich nonparametric data distributions.277

B Group-Covariate Shift Lower Bounds278

First we define group-covariate shifts.279

Group-Covariate Shift. In this setting, we have two groups {a, b}, and corresponding to each of
these groups is a distribution (with densities) over the features Pa(x) and Pb(x). We let a correspond
to the majority group and b correspond to the minority group. Then, we define

Pmaj(x, y) = Pa(x)P(y | x) and Pmin(x, y) = Pb(x)P(y | x).

We assume that for y ∈ {−1, 1}, for all x, x′ ∈ [0, 1]:280 ∣∣P(y | x)− P(y | x′)
∣∣ ≤ |x− x′|,

that is, the distribution of the label given the feature is 1-Lipschitz, and it varies slowly over the281

domain.282

To quantify the shift between the train and test distribution, we define a notion of overlap between the283

group distributions Pa and Pb as follows:284

Overlap(Pa,Pb) := 1− TV(Pa,Pb)

where TV(Pa,Pb) := supE⊆[0,1] |Pa(E) − Pb(E)|, denotes the total variation distance between285

Pa and Pb. Notice that when Pa and Pb have disjoint supports, TV(Pa,Pb) = 1 and therefore286
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Overlap(Pa,Pb) = 0. On the other hand when Pa = Pb, TV(Pa,Pb) = 0 and Overlap(Pa,Pb) = 1.287

When the overlap is 1, the majority and minority distributions are identical and hence we have no288

shift between train and test. Observe that Overlap(Pa,Pb) = Overlap(Pmaj,Pmin) since P(y | x) is289

shared across Pmaj and Pmin.290

Given a level of overlap τ ∈ [0, 1] we denote the class of pairs of distributions (Pmaj,Pmin) with291

overlap at least τ by PGS(τ). It is easy to check that, PGS(τ) ⊆ PGS(0) at any overlap level τ ∈ [0, 1].292

Next, we shall state our lower bound on the minimax excess risk that demonstrates the hardness of the293

group-covariate shift problem. In the theorem below c > 0 shall be an absolute constant independent294

of nmaj, nmin and τ .295

Theorem B.1. Consider the group shift setting described in Section B. Given any overlap τ ∈ [0, 1]296

recall that PGS(τ) is the class of distributions such that Overlap(Pmaj,Pmin) ≥ τ . The minimax297

excess risk in this setting is lower bounded as follows:298

Minimax Excess Risk(PGS(τ)) = inf
A

sup
(Pmaj,Pmin)∈PGS(τ)

Excess Risk[A; (Pmaj,Pmin)]

≥ 1

200(nmin · (2− τ) + nmaj · τ)1/3
≥ 1

200nmin
1/3(ρ · τ + 2)1/3

, (4)

where ρ = nmaj/nmin > 1.299

We prove this theorem in Appendix G.300

We see that in the low overlap setting (τ � 1/ρ), the minimax excess risk is lower bounded by301

1/nmin
1/3, and we are fundamentally constrained by the number of samples in minority group. To302

see why this is the case, consider the extreme example with τ = 0 where Pa has support [0, 0.5]303

and Pb has support [0.5, 1]. The nmaj majority group samples from Pa provide information about304

the correct label predict in the interval [0, 0.5] (the support of Pa). However, since the distribution305

P(y | x) is 1-Lipschitz in the worst case these samples provide very limited information about the306

correct predictions in [0.5, 1] (the support of Pb). Thus, predicting on the support of Pb requires307

samples from the minority group and this results in the nmin dependent rate. In fact, in this extreme308

case (τ = 0) even if nmaj → ∞, the minimax excess risk is still bounded away from zero. This309

intuition also carries over to the case when the overlap is small but non-zero and our lower bound310

shows that minority samples are much more valuable than majority samples at reducing the risk.311

On the other hand, when the overlap is high (τ � 1/ρ) the minimax excess risk is lower bounded312

by 1/(nmin(2− τ) + nmajτ)1/3 and the extra majority samples are quite beneficial. This is roughly313

because the supports of Pa and Pb have large overlap and hence samples from the majority group314

are useful in helping make predictions even in regions where Pb is large. In the extreme case when315

τ = 1, we have that Pa = Pb and therefore recover the classic i.i.d. setting with no distribution shift.316

Here, the lower bound scales with 1/n1/3, as one might expect.317

Identical to the label shift case, the theorem can be extended to hold in higher dimensions with the318

exponents being 1/3d rather than 1/3.319

Previous work on transfer learning with covariate shift has considered other more elaborate notions320

of transferability [Kpotufe and Martinet, 2018, Hanneke and Kpotufe, 2019] than overlap between321

group distributions considered here. In the case of no overlap (τ = 0), previous results [Kpotufe and322

Martinet, 2018, Theorem 1 with α = 1, β = 0 and γ =∞] yield the same lower bound of 1/nmin
1/3.323

Beyond the case of no overlap (τ = 0), our lower bound is key to drawing the simple conclusion that324

even when overlap is small between group distributions, minority samples alone dictate the rate of325

convergence. On the other hand, when the overlap is large our bound tells us that all samples can326

help reduce the risk.327

C Minority Sample Dependence in Practice328

Inspired by our worst-case theoretical predictions in nonparametric classification, we ask: how does329

the accuracy of neural network classifiers trained using robust algorithms evolve as a function of the330

majority and minority samples?331

To explore this question, we conduct a small case study using the imbalanced binary CIFAR10332

dataset [Byrd and Lipton, 2019, Wang et al., 2022] that is constructed using the “cat” and “dog”333

8



Figure 1: Convolutional neural network classifiers trained on the Imbalanced Binary CIFAR10 dataset
with a 5:1 label imbalance. (Top) Models trained using the importance weighted cross entropy loss
with early stopping. (Bottom) Models trained using the importance weighted VS loss [Kini et al.,
2021] with early stopping. We report the average test accuracy calculated on a balanced test set over
5 random seeds. We start off with 2500 cat examples and 500 dog examples in the training dataset.
We find that in accordance with our theory, for both of the classifiers adding only minority class
samples (red) leads to large gain in accuracy (∼ 6%), while adding majority class samples (blue)
leads to little or no gain. In fact, adding majority samples sometimes hurts test accuracy due to the
added bias. When we add majority and minority samples in a 5:1 ratio (green), the gain is largely due
to the addition of minority samples and is only marginally higher (< 2%) than adding only minority
samples. The green curves correspond to the same classifiers in both the left and right panels.

classes. The test set consists of all of the 1000 cat and 1000 dog test examples. To form our initial334

train and validation sets, we take 2500 cat examples but only 500 dog examples from the official train335

set, corresponding to a 5:1 label imbalance. We then use 80% of those examples for training and the336

rest for validation. In our experiment, we either (a) add only minority samples; (b) add only majority337

samples; (c) add both majority and minority samples in a 5:1 ratio. We consider competitive robust338

classifiers proposed in the literature that are convolutional neural networks trained either by using339

(i) the importance weighted cross entropy loss, or (ii) the importance weighted VS loss [Kini et al.,340

2021]. We early stop using the importance weighted validation loss in both cases. The additional341

experimental details are presented in Appendix I.342

Our results in Figure 1 are generally consistent with our theoretical predictions. By adding only343

minority class samples the test accuracy of both classifiers increases by a great extent (6%), while by344

adding only majority class samples the test accuracy remains constant or in some cases even decreases345

owing to the added bias of the classifiers. When we add samples to both groups proportionately, the346

increase in the test accuracy appears to largely to be due to the increase in the number of minority347

class samples and on the left panels, we see that the difference between adding only extra minority348

group samples (red) and both minority and majority group samples (green) is small. Thus, we find349

that the accuracy for these neural network classifiers is also constrained by the number of minority350

class samples. Similar conclusions hold for classifiers trained using the tilted loss [Li et al., 2020]351

and group-DRO objective [Sagawa et al., 2020] (see Appendix H).352
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D Upper Bounds on the Excess Risk for the Undersampled Binning353

Estimator354

We will show that an undersampled estimator matches the rates in the previous section showing355

that undersampling is an optimal robustness intervention. We start by defining the undersampling356

procedure and the undersampling binning estimator.357

Undersampling Procedure. Given training data S := {(x1, y1), . . . , (xn, yn)}, generate a new358

undersampled dataset SUS by359

• including all nmin samples from Smin and,360

• including nmin samples from Smaj by sampling uniformly at random without replacement.361

This procedure ensures that in the undersampled dataset SUS, the groups are balanced, and that362

|SUS| = 2nmin.363

The undersampling binning estimator defined next will first run this undersampling procedure to364

obtain SUS and just uses these samples to output a classifier.365

Undersampled Binning Estimator The undersampled binning estimator AUSB takes as input a366

dataset S and a positive integer K corresponding to the number of bins, and returns a classifier367

AS,KUSB : [0, 1]→ {−1, 1}. This estimator is defined as follows:368

1. First, we compute the undersampled dataset SUS.369

2. Given this dataset SUS, let n1,j be the number of points with label +1 that lie in the interval370

Ij = [ j−1
K , jK ]. Also, define n−1,j analogously. Then set371

Aj =

{
1 if n1,j > n−1,j ,

−1 otherwise.

3. Define the classifier AS,KUSB such that if x ∈ Ij then372

AS,KUSB (x) = Aj . (5)

Essentially in each bin Ij , we set the prediction to be the majority label among the samples373

that fall in this bin.374

Whenever the number of bins K is clear from the context we shall denote AS,KUSB by ASUSB. Below we375

establish upper bounds on the excess risk of this simple estimator.376

D.1 Label Shift Upper Bounds377

We now establish an upper bound on the excess risk of AUSB in the label shift setting (see Section 2).378

Below we let c, C > 0 be absolute constants independent of problem parameters like nmaj and nmin.379

Theorem D.1. Consider the label shift setting described in Section 2. For any (Pmaj,Pmin) ∈ PLS380

the expected excess risk of the Undersampling Binning Estimator (Eq. (5)) with number of bins with381

K = cdnmin
1/3e is upper bounded by382

Excess Risk[AUSB; (Pmaj,Pmin)] = ES∼Pnmaj
maj ×P

nmin
min

[
R(ASUSB;Ptest)−R(f?;Ptest)

]
≤ C

nmin
1/3

.

We prove this result in Appendix F. This upper bound combined with the lower bound in Theorem 3.1383

shows that an undersampling approach is minimax optimal up to constants in the presence of label384

shift.385

Our analysis leaves open the possibility of better algorithms when the learner has additional infor-386

mation about the structure of the label shift beyond Lipschitz continuity. We also note that it is387

straightforward to generalize the upper bound to higher dimensions with the exponent being 1/3d388

instead of 1/3.389
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D.2 Group-Covariate Shift Upper Bounds390

Next, we present our upper bounds on the excess risk of the undersampled binning estimator in the391

group-covariate shift setting (see Section B). In the theorem below, C > 0 is an absolute constant392

independent of the problem parameters nmaj, nmin and τ .393

Theorem D.2. Consider the group shift setting described in Section B. For any overlap τ ∈ [0, 1]394

and for any (Pmaj,Pmin) ∈ PGS(τ) the expected excess risk of the Undersampling Binning Estimator395

(Eq. (5)) with number of bins with K = dnmin
1/3e is396

Excess Risk[AUSB; (Pmaj,Pmin)] = ES∼Pnmaj
maj ×P

nmin
min

[
R(ASUSB;Ptest))−R(f?;Ptest)

]
≤ C

nmin
1/3

.

We provide a proof for this theorem in Appendix G. Compared to the lower bound established in397

Theorem B.1 which scales as 1/ ((2− τ)nmin + nmajτ)
1/3, the upper bound for the undersampled398

binning estimator always scales with 1/nmin
1/3 since it operates on the undersampled dataset (SUS).399

Thus, we have shown that in the absence of overlap (τ � 1/ρ = nmin/nmaj) there is an under-400

sampling algorithm that is minimax optimal up to constants. However when there is high overlap401

(τ � 1/ρ) there is a non-trivial gap between the upper and lower bounds:402

Upper Bound

Lower Bound
= c(ρ · τ + 2)1/3.

Again this upper bound can be generalized to higher dimensions.403

E Technical Tools404

In this section we avail ourselves of some technical tools that shall be used in all of the proofs below.405

E.1 Reduction to lower bounds over a finite class406

The lower bound on the minimax excess risk will be established via the usual route of first identifying407

a “hard” finite set of problem instances and then establishing the lower bound over this finite class.408

One difference from the usual setup in proving such lower bounds [see Wainwright, 2019, Chapter 15]409

is that the training samples are drawn from an imbalanced distribution, whereas the test samples are410

drawn from a balanced one.411

Let P be a class of pairs of distributions, where each element (Pmaj,Pmin) ∈ P is a pair of dis-412

tributions over [0, 1] × {−1, 1}. As before, we let Ptest denote the uniform mixture over Pmaj413

and Pmin. We let V denote a finite index set. Corresponding to each element v ∈ V there is a414

Pv = (Pv,maj,Pv,min) ∈ P with Pv,test = (Pv,maj + Pv,min)/2. Finally, also define a pair of random415

variables (V, S) as follows:416

1. V is a uniform random variable over the set V .417

2. (S | V = v) ∼ P
nmaj

v,maj × Pnmin

v,min, is an independent draw of nmaj samples from Pv,maj and418

nmin samples from Pv,min.419

We shall let Q denote the joint distribution of the random variables (V, S), and let QS denote the420

marginal distribution of S.421

With this notation in place, we now present a lemma that lower bounds the minimax excess risk in422

terms of quantities defined over the finite class of “hard” instances Pv .423

Lemma E.1. Let the random variables (V, S) be as defined above. The minimax excess risk is lower424

bounded as follows:425

Minimax Excess Risk(P) = inf
A

sup
(Pmaj,Pmin)∈P

ES∼Pnmaj
maj ×P

nmin
min

[
R(AS ;Ptest)−R(f?(Ptest);Ptest)

]
≥ RV −BV ,

where RV and Bayes-error BV are defined as426

RV := ES∼QS
[inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)],

BV := EV [R(f?(PV,test);PV,test))].
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Proof. By the definition of Minimax Excess Risk,427

Minimax Excess Risk = inf
A

sup
(Pmaj,Pmin)∈P

ES∼Pnmaj
maj ×P

nmin
min

[R(AS ;Ptest)]−R(f?(Ptest);Ptest)

≥ inf
A

sup
v∈V

E
S|v∼P

nmaj
v,maj×P

nmin
v,min

[R(AS ;Pv,test)]−R(f?(Pv,test);Pv,test)

≥ inf
A

EV
[
E
S|V∼P

nmaj
V,maj×P

nmin
V,min

[R(AS ;PV,test)]−R(f?(PV,test);PV,test))
]

= inf
A

EV [E
S|V∼P

nmaj
V,maj×P

nmin
V,min

[R(AS ;PV,test)]]− EV [R(f?(PV,test);PV,test))]︸ ︷︷ ︸
=BV

.

We continue lower bounding the first term as follows428

inf
A

EV [E
S|V∼P

nmaj
V,maj×P

nmin
V,min

[R(AS ;PV,test)]] = inf
A

E(V,S)∼Q[P(x,y)∼PV,test
(AS(x) 6= y)]

= inf
A

ES∼QS
EV∼Q(·|S)[P(x,y)∼PV,test

(AS(x) 6= y)]

(i)

≥ ES∼QS
[inf
h

EV∼Q(·|S)[P(x,y)∼PV,test
(h(x) 6= y)]]

= ES∼QS
[inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)]

= RV ,

where (i) follows since AS is a fixed classifier given the sample set S. This, combined with the429

previous equation block completes the proof.430

E.2 The Hat Function and its Properties431

In this section, we define the hat function and establish some of its properties. This function will be432

useful in defining “hard” problem instances to prove our lower bounds. Given a positive integer K433

the hat function is defined as434

φK(x) =


∣∣x+ 1

4K

∣∣− 1
4K for x ∈

[
− 1

2K , 0
]
,

1
4K −

∣∣x− 1
4K

∣∣ for x ∈
[
0, 1

2K

]
,

0 otherwise.
(6)

When K is clear from context, we omit the subscript.435

−0.2 −0.1 0.0 0.1 0.2

−0.05

0.00

0.05

Hat Function (φ4)

Figure 2: The hat function with K = 4.

We first notice that this function is 1-Lipschitz and odd, so436 ∫ 1
2K

− 1
2K

φK(x) dx = 0.

We also compute some other key quantities for φ.437

12



Lemma E.2. For any positive integer K,438 ∫ 1
2K

− 1
2K

|φK(x)| dx =
1

8K2
.

Proof. We suppress K in the notation. We have that,439 ∫ 1
2K

− 1
2K

|φ(x)| dx =

∫ 0

− 1
2K

∣∣∣∣ 1

4K
−
∣∣∣∣x+

1

4K

∣∣∣∣∣∣∣∣ dx+

∫ 1
2K

0

∣∣∣∣∣∣∣∣x− 1

4K

∣∣∣∣− 1

4K

∣∣∣∣ dx.

The integrand
∣∣ 1

4K −
∣∣x+ 1

4K

∣∣∣∣ over x ∈
[
− 1

2K , 0
]

defines a triangle with base 1
2K and height 1

4K ,440

thus it has area 1
16K2 . Therefore,441 ∫ 0

− 1
2K

∣∣∣∣ 1

4K
−
∣∣∣∣x+

1

4K

∣∣∣∣∣∣∣∣ dx =
1

16K2
.

The same holds for the second term. Thus, by adding them up we get that
∫ 1

2K

− 1
2K

|φ(x)| dx =442

1
8K2 .443

Lemma E.3. For any positive integer K,444 ∫ 1
K

0

log

(
1 + φK(x− 1

2K )

1− φK(x− 1
2K )

)(
1 + φK

(
x− 1

2K

))
dx ≤ 1

3K3

and445 ∫ 1
K

0

log

(
1− φK(x− 1

2K )

1 + φK(x− 1
2K )

)(
1− φK

(
x− 1

2K

))
dx ≤ 1

3K3
.

Proof. Let us suppress K in the notation. We prove the first bound below and the second bound446

follows by an identical argument. We have that447 ∫ 1
K

0

log

(
1 + φ(x− 1

2K )

1− φ(x− 1
2K )

)(
1 + φ

(
x− 1

2K

))
dx

=

∫ 1
2K

− 1
2K

log

(
1 + φ(x)

1− φ(x)

)
(1 + φ(x)) dx

=

∫ 1
2K

0

log

(
1 + φ(x)

1− φ(x)

)
(1 + φ(x)) dx+

∫ 0

− 1
2K

log

(
1 + φ(x)

1− φ(x)

)
(1 + φ(x)) dx

=

∫ 1
2K

0

log

(
1 + φ(x)

1− φ(x)

)
(1 + φ(x)) dx−

∫ 0

1
2K

log

(
1 + φ(−x)

1− φ(−x)

)
(1 + φ(−x)) dx

=

∫ 1
2K

0

log

(
1 + φ(x)

1− φ(x)

)
(1 + φ(x)) dx+

∫ 1
2K

0

log

(
1− φ(x)

1 + φ(x)

)
(1− φ(x)) dx,

where the last equality follows since φ is an odd function. Now, we may collect the integrands to get448

that,449 ∫ 1
K

0

log

(
1 + φ(x− 1

2K )

1− φ(x− 1
2K )

)(
1 + φ

(
x− 1

2K

))
dx

= 2

∫ 1
2K

0

log

(
1 + φ(x)

1− φ(x)

)
φ(x) dx

= 2

∫ 1
2K

0

log

(
1 +

2φ(x)

1− φ(x)

)
φ(x) dx

≤ 2

∫ 1
2K

0

2φ(x)2

1− φ(x)
dx,
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where the last inequality follows since log(1 + x) ≤ x for all x. Now we observe that φ(x) ≤ x ≤ 1
2450

for x ∈ [0, 1
2K ], and in particular, 1

1−φ(x) ≤ 2. Thus,451 ∫ 1
K

0

log

(
1 + φ(x− 1

2K )

1− φ(x− 1
2K )

)(
1 + φ

(
x− 1

2K

))
dx

≤ 8

∫ 1
2K

0

φ(x)2 dx

≤ 8

∫ 1
2K

0

x2 dx

=
1

3K3
.

This proves the first bound. The second bound follows analogously.452

F Proofs in the Label Shift Setting453

Throughout this section we operate in the label shift setting (see Section 2).454

First, in Appendix F.1 through a sequence of lemmas we prove the minimax lower bound Theorem 3.1.455

Next, in Appendix F.2 we prove Theorem D.1 which is an upper bound on the excess risk of the456

undersampled binning estimator (see Eq. (5)) with dnmine1/3 bins by invoking previous results on457

nonparametric density estimation [Freedman and Diaconis, 1981, Devroye and Györfi, 1985].458

F.1 Proof of Theorem 3.1459

In this section, we provide a proof of the minimax lower bound in the label shift setting.460

We will proceed by constructing a class of distributions where the separation between any two461

distributions in the class is small enough such that it is hard to distinguish between them with finite462

minority class samples. In particular, we split the interval [0, 1] into sub-intervals and each class463

distribution on each sub-interval either has slightly more probability mass on the left side of the464

sub-interval, on the right, or completely uniform. Since the minority class sample size is limited, no465

classifier will be able to tell which distribution the minority class is generated from, and hence will466

suffer high excess risk.467

We construct the “hard” set of distributions as follows. Fix K to be an integer that will be specified468

in the sequel as a function of nmin. Let the index set be V = {−1, 0, 1}K × {−1, 0, 1}K . For469

v ∈ V , we will let v1 ∈ {−1, 0, 1}K be the first K coordinates and v−1 ∈ {−1, 0, 1}K be the last K470

coordinates. That is, v = (v1, v−1).471

For every v ∈ P we shall define pair of class-conditional distributions Pv,1 and Pv,−1 as follows: for472

x ∈ Ij = [ j−1
K , jK ],473

Pv,1(x) = 1 + v1,jφ

(
x− j + 1/2

K

)
Pv,−1(x) = 1 + v−1,jφ

(
x− j + 1/2

K

)
,

where φ is defined in Eq. 6. Notice that Pv,1 only depends on v1 while Pv,−1 only depends on v−1.474

We continue to define475

Pv,maj(x, y) = Pv,1(x)1(y = 1)

Pv,min(x, y) = Pv,−1(x)1(y = −1),

and476

Pv,test(x, y) =
Pv,maj(x, y) + Pv,min(x, y)

2
=

Pv,1(x)1(y = 1) + Pv,−1(x)1(y = −1)

2
.

Observe that in the test distribution it is equally likely for the label to be +1 or −1.477
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Recall that as described in Section E.1, V shall be a uniform random variable over V and S | V ∼478

P
nmaj

v,maj × Pnmin

v,min. We shall let Q denote the joint distribution of (V, S) and let QS denote the marginal479

over S.480

With this construction in place, we first show that the minimax excess risk is lower bounded by481

Lemma F.1. For any positive integers K,nmaj, nmin, the minimax excess risk is lower bounded as482

follows:483

Minimax Excess Risk(PLS)

= inf
A

sup
(Pmaj,Pmin)∈PLS

E
S∼P

nmaj
maj ×P

nmin
min

[
R(AS ;Ptest)−R(f?;Ptest)

]
≥ 1

36K
− 1

2
ES∼QS

[
TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]
. (7)

Proof. By invoking Lemma E.1 we get that484

Minimax Excess Risk(PLS)

≥ ES∼QS
[inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)]︸ ︷︷ ︸

=:RV

−EV [R(f?(PV,test);PV,test))]︸ ︷︷ ︸
=:BV

.

We proceed by calculating alternate expressions for RV and BV to get our desired lower bound on485

the minimax excess risk.486

Calculation of RV : Immediately by Le Cam’s lemma [Wainwright, 2019, Eq. 15.13], we get that487

RV = ES∼QS

[
inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)

]
=

1

2
ES∼QS

[
1− TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]
. (8)

Calculation of BV : Again by invoking Le Cam’s lemma [Wainwright, 2019, Eq. 15.13], we get that488

for any class conditional distributions P1,P−1,489

R(f?;Ptest) =
1

2
− 1

2
TV(P1,P−1).

So by taking expectations, we get that490

BV = EV [R(f?(PV,test);PV,test)] = EV
[

1

2
− 1

2
TV(PV,1,PV,−1)

]
. (9)

We now compute EV [TV(PV,1,PV,−1)] as follows:491

EV [TV(PV,1,PV,−1)] =
1

2
EV
[∫ 1

x=0

|PV,1(x)− PV,−1(x)| dx

]

=
1

2
EV

 K∑
j=1

∫ j
K

j−1
K

|V1,j − V−1,j |
∣∣∣∣φ(x− j + 1/2

K

)∣∣∣∣ dx


=

1

2

K∑
j=1

EV

[∫ j
K

j−1
K

|V1,j − V−1,j |
∣∣∣∣φ(x− j + 1/2

K

)∣∣∣∣ dx

]

(i)
=

1

16K2

K∑
j=1

EV [|V1,j − V−1,j |],

where (i) follows by Lemma E.2. Observe that V1,j , V−1,j are independent uniform random variables492

on {−1, 0, 1}, it is therefore straightforward to compute that493

EV [|V1,j − V−1,j |] =
8

9
.
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This yields that494

EV [TV(PV,1,PV,−1)] =
1

18K
.

Plugging this into Eq. (9) allows us to conclude that495

BV = EV [R(f?(PV,test);PV,test)] =
1

2

(
1− 1

18K

)
. (10)

Combining Eqs. (8) and (10) establishes the claimed result.496

497

In light of this previous lemma we now aim to upper bound the expected total variation distance in498

Eq. (7).499

Lemma F.2. Suppose that v is drawn uniformly from the set {−1, 1}K , and that S | v is drawn from500

P
nmaj

v,maj × Pnmin

v,min then,501

ES

[
TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]
≤ 1

18K
− 1

144K
exp

(
−nmin

3K3

)
.

Proof. Let ψ := ES
[
TV

(∑
v∈V Q(v | S)Pv,1,

∑
v∈V Q(v | S)Pv,−1

)]
. Then,502

ψ = ES

[
TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]

=
1

2
ES

[∫ 1

x=0

∣∣∣∣∣∑
v∈V

Q(v | S) (Pv,1(x)− Pv,−1(x))

∣∣∣∣∣ dx

]

=
1

2
ES

 K∑
j=1

∫ j
K

x= j−1
K

∣∣∣∣∣∑
v∈V

Q(v | S) (Pv,1(x)− Pv,−1(x))

∣∣∣∣∣ dx


=

1

2
ES

 K∑
j=1

∫ j
K

x= j−1
K

∣∣∣∣∣∑
v∈V

Q(v | S)(v1,j − v−1,j)φ

(
x− j + 1/2

K

)∣∣∣∣∣ dx

 ,
where the last equality is by the definition of Pv,1 and Pv,−1. Continuing we get that,503

ψ =
1

2

K∑
j=1

[∫ j
K

x= j−1
K

∣∣∣∣φ(x− j + 1/2

K

)∣∣∣∣ dx

]
ES

[∣∣∣∣∣∑
v∈V

Q(v | S)(v1,j − v−1,j)

∣∣∣∣∣
]

(i)
=

1

16K2
ES

 K∑
j=1

∣∣∣∣∣∑
v∈V

Q(v | S)(v1,j − v−1,j)

∣∣∣∣∣


=
1

16K2

K∑
j=1

∫ ∣∣∣∣∣∑
v∈V

Q(v | S)(v1,j − v−1,j)

∣∣∣∣∣ dQS(S)

=
1

16K2

K∑
j=1

∫ ∣∣∣∣∣∑
v∈V

Q(v, S)(v1,j − v−1,j)

∣∣∣∣∣ dS

(ii)
=

1

16K2|V|
K∑
j=1

∫ ∣∣∣∣∣∑
v∈V

Q(S | v)(v1,j − v−1,j)

∣∣∣∣∣ dS,

where (i) follows by the calculation in Lemma E.2 and (ii) follows since v is a uniform random504

variable over the set V .505
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The distributions Pv,1 and Pv,−1 are symmetrically defined over all intervals Ij = [ j−1
K , jK ], and506

hence all of the summands in the RHS above are equal. Thus,507

ψ =
1

16K|V|

∫ ∣∣∣∣∣∑
v∈V

Q(S | v)(v1,1 − v−1,1)

∣∣∣∣∣ dS. (11)

Before we continue further, let us define508

V+ = {v ∈ V | v1,1 > v−1,1}.
For every v ∈ V+, let ṽ ∈ V be such that is the same as v on all coordinates, except ṽ1,1 = −v1,1509

and ṽ−1,1 = −v−1,1. Then continuing from Eq. (11) we find that,510

ψ
(i)
=

1

16K|V|

∫ ∣∣∣∣∣ ∑
v∈V+

(v1,1 − v−1,1)(Q(S | v)− Q(S | ṽ))

∣∣∣∣∣ dS

(ii)

≤ 1

16K|V|

∫ ∑
v∈V+

(v1,1 − v−1,1) |Q(S | v)− Q(S | ṽ)| dS

=
1

16K|V|
∑
v∈V+

(v1,1 − v−1,1)

∫
|Q(S | v)− Q(S | ṽ)| dS

=
1

8K|V|
∑
v∈V+

(v1,1 − v−1,1)TV(Q(S | v),Q(S | ṽ))︸ ︷︷ ︸
=:Ξ

, (12)

where (i) we use the definition of V+ and ṽ, (ii) follows since v1,1 > v−1,1 for v ∈ V+.511

Now we further partition V+ into 3 sets V(1,0),V(0,−1),V(1,−1) as follows512

V(1,0) = {v ∈ V | v1,1 = 1, v−1,1 = 0},
V(0,−1) = {v ∈ V | v1,1 = 0, v−1,1 = −1},
V(1,−1) = {v ∈ V | v1,1 = 1, v−1,1 = −1}.

Note that Q(S | v) = P
nmaj

v,maj × Pnmin

v,min, and therefore513

Ξ =
∑
v∈V+

(v1,1 − v−1,1)TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
(i)
=

∑
v∈V(1,0)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
+

∑
v∈V(0,−1)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
+ 2

∑
v∈V(1,−1)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
, (13)

where (i) follows since v1, v−1 ∈ {−1, 0, 1}K and by the definition of the sets V(1,0),V(0,1) and514

V(1,−1).515

Now by the Bretagnolle–Huber inequality [see Canonne, 2022, Corollary 4],516

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
= TV

(
P
nmaj

ṽ,maj × Pnmin

ṽ,min,P
nmaj

v,maj × Pnmin

v,min

)
≤ 1− 1

2
exp

(
−KL

(
P
nmaj

ṽ,maj × Pnmin

ṽ,min‖P
nmaj

v,maj × Pnmin

v,min

))
,

where we flip the arguments in the first step for simplicity later.517

Next, by the chain rule for KL-divergence, we have that518

KL(P
nmaj

ṽ,maj × Pnmin

ṽ,min‖P
nmaj

v,maj × Pnmin

v,min) = nmajKL(Pṽ,maj‖Pv,maj) + nminKL(Pṽ,min‖Pv,min).
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Using these, let us upper bound the first term in Eq. (13) corresponding to v ∈ V(0,−1). For519

v ∈ V(0,−1), notice that KL(Pṽ,maj‖Pv,maj) = 0 since v1,j = ṽ1,j for all j ∈ {1, . . . ,K}. For the520

second term, KL(Pṽ,min‖Pv,min), only v1,1 and ṽ1,1 differ, so521

KL(Pṽ,min‖Pv,min) =

∫ 1

0

Pv,−1(x) log

(
Pv,−1(x)

Pṽ,−1(x)

)
dx

=

∫ 1
K

0

log

(
1 + φK(x− 1

2K )

1− φK(x− 1
2K )

)(
1 + φK

(
x− 1

2K

))
dx

≤ 1

3K3
,

where the last inequality is a result of the calculation in Lemma E.3.522

Therefore, we get523 ∑
v∈V(0,−1)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
≤ 9K−1

(
1− 1

2
exp

(
−nmin

3K3

))
.

For the terms in Eq. (13) corresponding to V(0,−1),V(1,−1), we simply take the trivial bound to get524 ∑
v∈V(0,−1)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
≤ 9K−1,

∑
v∈V(1,−1)

TV
(
P
nmaj

v,maj × Pnmin

v,min,P
nmaj

ṽ,maj × Pnmin

ṽ,min

)
≤ 9K−1.

Plugging these bounds into Eq. (13) we get that,525

Ξ ≤ 4 · 9K−1 − 9K−1

2
exp

(
−nmin

3K3

)
.

Now using this bound on Ξ in Eq. (12) and observing that |V| = 9K , we get that,526

ψ = ES

[
TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]

≤ 1

8 · 9KK

(
4 · 9K−1 − 9K−1

2
exp

(
−nmin

3K3

))
=

1

18K
− 1

144K
exp

(
−nmin

3K3

)
,

completing the proof.527

Finally, we combine Lemma F.1 and Lemma F.2 to establish the minimax lower bound in this label528

shift setting. We recall the statement of the theorem here.529

Theorem 3.1. Let PLS be the class of pairs of distributions (Pmaj,Pmin) that satisfy the label-shift530

assumptions. The minimax excess risk over this class is lower bounded as follows:531

Minimax Excess Risk(PLS) = inf
A

sup
(Pmaj,Pmin)∈PLS

Excess Risk[A; (Pmaj,Pmin)] ≥
1

600

1

nmin
1/3

. (3)

Proof. By Lemma F.1 we know that,532

Minimax Excess Risk(PLS) ≥ 1

36K
− 1

2
ES∼QS

[
TV

(∑
v∈V

Q(v | S)Pv,1,
∑
v∈V

Q(v | S)Pv,−1

)]
.

Next by the calculation in Lemma F.2 we have that533

Minimax Excess Risk(PLS) ≥ 1

36K
− 1

2

(
1

18K
− 1

144K
exp

(
−nmin

3K3

))
=

1

288K
exp

(
−nmin

3K3

)
.
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Setting K = dnmin
1/3e yields the following534

Minimax Excess Risk(PLS) ≥ 1

288dnmin
1/3e exp

(
− nmin

3dnmin
1/3e3

)

≥
exp

(
− nmin

3dnmin
1/3e3

)
288

nmin
1/3

dnmin
1/3e

1

nmin
1/3

(i)

≥ 0.7 exp
(
− 1

3

)
288

1

nmin
1/3

≥ 1

600

1

nmin
1/3

,

where (i) follows since nmin
1/3/dnmin

1/3e ≥ 0.7 for nmin ≥ 1.535

F.2 Proof of Theorem D.1536

In this section, we derive an upper bound on the excess risk of the undersampled binning estimator537

AUSB (Eq. (5)) in the label shift setting. Recall that given a dataset S this estimator first calculates538

the undersampled dataset SUS, where the number of points from the minority group (nmin) is equal to539

the number of points from the majority group (nmin), and the size of the dataset is 2nmin. Throughout540

this section, (Pmaj,Pmin) shall be an arbitrary element of PLS.541

To bound the excess risk of the undersampling algorithm, we will relate it to density estimation.542

Recall that n1,j denotes the number of points in SUS with label +1 that lie in Ij , and n−1,j is defined543

analogously.544

Given a positive integer K, for x ∈ Ij = [ j−1
K , jK ], by the definition of the undersampled binning545

estimator (Eq. (5))546

ASUSB(x) =

{
1 if n1,j > n−1,j ,

−1 otherwise.

Recall that since we have undersampled,
∑
j n1,j =

∑
j n−1,j = nmin. Therefore, define the simple547

histogram estimators for P1(x) = P(x | y = 1) and P−1(x) = P(x | y = −1) as follows: for548

x ∈ Ij ,549

P̂S1 (x) :=
n1,j

Knmin
and P̂S−1(x) :=

n−1,j

Knmin
.

With this histogram estimator in place, we may define an estimator for η(x) := Ptest(y = 1|x) as550

follows,551

η̂S(x) :=
P̂S1 (x)

P̂S1 (x) + P̂S−1(x)
.

Observe that, for x ∈ Ij552

η̂S(x) > 1/2 ⇐⇒ n1,j > n−1,j ⇐⇒ ASUSB(x) = 1.

Defining an estimator η̂S for the Ptest(y = 1 | x) in this way will allow us to relate the excess risk of553

AUSB to the estimation error in P̂S1 and P̂S−1.554

Before proving the theorem we restate it here.555

Theorem D.1. Consider the label shift setting described in Section 2. For any (Pmaj,Pmin) ∈ PLS556

the expected excess risk of the Undersampling Binning Estimator (Eq. (5)) with number of bins with557

K = cdnmin
1/3e is upper bounded by558

Excess Risk[AUSB; (Pmaj,Pmin)] = ES∼Pnmaj
maj ×P

nmin
min

[
R(ASUSB;Ptest)−R(f?;Ptest)

]
≤ C

nmin
1/3

.
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Proof. By the definition of the excess risk559

Excess Risk[AUSB; (Pmaj,Pmin)] := ES∼Pnmaj
maj ×P

nmin
min

[
R(ASUSB;Ptest))−R(f?;Ptest)

]
.

By invoking [Wasserman, 2019, Theorem 1] we may upper bound the excess risk given a draw of S560

by561

R(ASUSB;Ptest))−R(f?;Ptest) ≤ 2

∫ ∣∣η̂S(x)− η(x)
∣∣Ptest(x) dx.

Continuing using the definition of η̂S above and because η = P1/(P1 + P−1) we have that,562

R(ASUSB;Ptest))−R(f?;Ptest)

= 2

∫ 1

0

∣∣∣∣∣ P̂S1 (x)

P̂S1 (x) + P̂S−1(x)
− P1(x)

P1(x) + P−1(x)

∣∣∣∣∣
(
P1(x) + P−1(x)

2

)
dx

=

∫ 1

0

∣∣∣∣∣
(
P1(x) + P−1(x)

P̂S1 (x) + P̂S−1(x)

)
P̂S1 (x)− P1(x)

∣∣∣∣∣ dx

(i)

≤
∫ 1

0

∣∣∣P̂S1 (x)− P1(x)
∣∣∣ dx+

∫ 1

0

∣∣∣∣∣P1(x) + P−1(x)

P̂S1 (x) + P̂S−1(x)
− 1

∣∣∣∣∣ P̂S1 (x) dx

=

∫ 1

0

∣∣∣P̂S1 (x)− P1(x)
∣∣∣ dx+

∫ 1

0

∣∣∣P̂S1 (x) + P̂S−1(x)− P1(x)− P−1(x)
∣∣∣ P̂S1 (x)

P̂S1 (x) + P̂S−1(x)
dx

≤ 2

∫ 1

0

∣∣∣P̂S1 (x)− P1(x)
∣∣∣ dx+

∫ 1

0

∣∣∣P̂S−1(x)− P−1(x)
∣∣∣ dx

(ii)

≤ 2

√∫ 1

0

(
P̂S1 (x)− P1(x)

)2

dx+

√∫ 1

0

(
P̂S−1(x)− P−1(x)

)2

dx,

where (i) follows by the triangle inequality, (ii) is by the Cauchy–Schwarz inequality.563

Taking expectation over the samples S and by invoking Jensen’s inequality we find that,564

Excess Risk(AS ; (Pmaj,Pmin))

= ES
[
R(ASUSB;Ptest))−R(f?;Ptest)

]
≤ 2

√
ES
[∫ (

P̂S1 (x)− P1(x)
)2

dx

]
+

√
ES
[∫ (

P̂S−1(x)− P−1(x)
)2

dx

]
.

We note that P̂Sj only depends on nmin i.i.d. draws from class j. Thus by [Freedman and Diaconis,565

1981, Theorem 1.7], if K = cdnmine1/3 then566

ES
[∫ (

P̂Sj (x)− Pj(x)
)2

dx

]
≤ C

nmin
2/3

.

Plugging this into the previous inequality yields the desired result.567

G Proof in the Group-Covariate Shift Setting568

Throughout this section we operate in the group-covariate shift setting (see Section B).569

We will proceed similarly to Section F. We shall construct a family of class-conditional distributions570

such that it will be necessary for adequate samples in each sub-interval of [0, 1] to be able to learn the571

maximally likely label in that sub-interval. On the other hand, we will construct the group-covariate572

distributions to be separated from one another. As a consequence, sub-intervals with high probability573

mass under the minority group distribution will have low probability mass under the majority group574

distribution. Hence, these sub-intervals will not have enough training sample points for any classifier575

to be able to learn the maximally likely label and as a result shall suffer high excess risk.576

First in Appendix G.1, we prove Theorem B.1, the minimax lower bound through a sequence of577

lemmas. Second in Appendix G.2, we prove Theorem D.2 that upper bound on the excess risk of the578

undersampled binning estimator with dnmine1/3 bins.579
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G.1 Proof of Theorem B.1580

In this section, we provide a proof of the minimax lower bound in the group shift setting.581

We construct the “hard” set of distributions as follows. Let the index set be V = {−1, 1}K . For every582

v ∈ V define a distribution as follows: for x ∈ Ij = [ j−1
K , jK ],583

Pv(y = 1 | x) :=
1

2

[
1 + vjφ

(
x− j + 1/2

K

)]
,

where φ is defined in Eq. 6. Given a τ ∈ [0, 1] we also construct the group distributions as follows:584

Pa(x) =

{
2− τ if x ∈ [0, 0.5)

τ if x ∈ [0.5, 1],

and let585

Pb(x) = 2− Pa(x).

We can verify that586

Overlap(Pa,Pb) = 1− TV(Pa,Pb) = 1− 1

2

∫ 1

x=0

|Pa(x)− Pb(x)| dx = τ.

We continue to define587

Pv,maj(x, y) = Pv(y | x)Pa(x)

Pv,min(x, y) = Pv(y | x)Pb(x),

and588

Pv,test(x, y) = Pv(y | x)

(
Pa(x) + Pb(x)

2

)
.

Observe that (Pa(x) + Pb(x))/2 = 1, the uniform distribution over [0, 1].589

Recall that as described in Section E.1, V shall be a uniform random variable over V and S | V ∼590

P
nmaj

v,maj × Pnmin

v,min. We shall let Q denote the joint distribution of (V, S) and let QS denote the marginal591

over S.592

With this construction in place, we present the following lemma that lower bounds the minimax593

excess risk by a sum of exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1)) over the intervals. Intuitively,594

KL(Q(S | vj = 1)‖Q(S | vj = −1) is a measure of how difficult it is to identify whether vj = 1 or595

vj = −1 from the samples.596

Lemma G.1. For any positive integers K,nmaj, nmin and τ ∈ [0, 1], the minimax excess risk is lower597

bounded as follows:598

Minimax Excess Risk(PGS(τ)) = inf
A

sup
(Pmaj,Pmin)∈PGS(τ)

E
S∼P

nmaj
maj ×P

nmin
min

[
R(AS ;Ptest)−R(f?;Ptest)

]
≥ 1

32K2

K∑
j=1

exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1))).

Proof. By invoking Lemma E.1, we know that the minimax excess risk is lower bounded by599

Minimax Excess Risk(PGS(τ))

≥ ES∼QS
[inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)]︸ ︷︷ ︸

=RV

−EV [R(f?(PV,test);PV,test)]︸ ︷︷ ︸
=BV

,

where V is a uniform random variable over the set V , S | V = v is a draw from P
nmaj

v,maj × Pnmin

v,min, and600

Q denotes the joint distribution over (V, S).601

We shall lower bound this minimax risk in parts. First, we shall establish a lower bound on RV , and602

then an upper bound on the Bayes risk BV .603
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Lower bound on RV . Unpacking RV using its definition we get that,604

RV = ES∼QS
[inf
h

P(x,y)∼
∑

v∈V Q(v|S)Pv,test
(h(x) 6= y)]

= ES∼QS

[
inf
h

∫ 1

0

Ptest(x)Py∼∑v∈V Q(v|S)Pv(·|x)[h(x) 6= y] dx

]
(i)
= ES∼QS

[∫ 1

0

Ptest(x) min

{∑
v∈V

Q(v | S)Pv(1 | x),
∑
v∈V

Q(v | S)Pv(−1 | x)

}
dx

]
(ii)
=

1

2
− ES∼QS

[∫ 1

0

Ptest(x)

∣∣∣∣∣12 −∑
v∈V

Q(v | S)Pv(1 | x)

∣∣∣∣∣ dx

]
(iii)
=

1

2
−
∫ 1

0

Ptest(x)ES∼QS

[∣∣∣∣∣12 −∑
v∈V

Q(v | S)Pv(1 | x)

∣∣∣∣∣
]

dx, (14)

where (i) follows by taking h to be the pointwise minimizer over x, (ii) follows since Pv(−1 | x) =605

1− Pv(1 | x) and min{s, 1− s} = (1− |1− 2s|)/2 for all s ∈ [0, 1], and (iii) follows by Fubini’s606

theorem which allows us to switch the order of the integrals.607

If x ∈ Ij = [ j−1
K , jK ] for some j ∈ {1, . . . ,K} we let jx denote the value of this index j. With this608

notation in place let us continue to upper bound integrand in the second term in the RHS above as609

follows:610

ES∼QS

[∣∣∣∣∣12 −∑
v∈V

Q(v | S)Pv(1 | x)

∣∣∣∣∣
]

(i)
= ES∼QS

[∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ |Q(vjx = 1 | S)− Q(vjx = −1 | S)|
]

=

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ES∼QS
[|Q(vjx = 1 | S)− Q(vjx = −1 | S)|]

(ii)
=

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ES∼QS

[∣∣∣∣Q(S | vjx = 1)QV (vjx = 1)

QS(S)
− Q(S | vjx = −1)QV (vjx = −1)

QS(S)

∣∣∣∣]
(iii)
=

1

2

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣TV(Q(S | vjx = 1),Q(S | vjx = −1)), (15)

where (i) follows since Pv(1 | x) = (1+vjxφ(x− (jx+1/2)/K))/2 and by marginalizing Q(v | S)611

over the indices j 6= jx, (ii) follows by using Bayes’ rule and (iii) follows since the total-variation612

distance is half the `1 distance. Now by the Bretagnolle–Huber inequality [see Canonne, 2022,613

Corollary 4] we get that,614

TV(Q(S | vjx = 1),Q(S | vjx = −1))

≤ 1− exp(−KL(Q(S | vjx = 1)‖Q(S | vjx = −1)))

2
. (16)

Combining Eqs. (14)-(16) we get that615

RV

≥ 1

2
− 1

2

∫ 1

0

Ptest(x)

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ dx

+
1

4

∫ 1

0

Ptest(x)

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ exp(−KL(Q(S | vjx = 1)‖Q(S | vjx = −1))) dx. (17)
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Upper bound on BV : The Bayes error is616

BV = EV [R(f?(PV );PV )]

= EV
[
inf
f

E(x,y)∼Pv,test
1(f(x) 6= y)

]

= EV

inf
f

∫ 1

x=0

∑
y∈{−1,1}

Ptest(x)PV,test(y | x)1(f(x) = −y)


= EV

[∫ 1

x=0

Ptest(x) min
y∈{−1,1}

PV,test(y | x)

]
(i)
= EV

[
1

2

(
1−

∫ 1

x=0

Ptest(x)|PV,test(1 | x)− PV,test(−1 | x)| dx
)]

(ii)
= EV

[
1

2

(
1−

∫ 1

x=0

Ptest(x)

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ dx

)]
=

1

2
− 1

2

∫ 1

x=0

Ptest(x)

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ dx, (18)

where (i) follows since Pv(1 | x) = 1− Pv(−1 | x) and min{s, 1− s} = (1− |1− 2s|)/2 for all617

s ∈ [0, 1], and (ii) follows by our construction of Pv above along with the fact that Pv(1 | x) =618

1− Pv(−1 | x).619

Putting things together: Combining Eqs. (17) and (18) allows us to conclude that620

Minimax Excess Risk(PGS(τ))

≥ 1

4

∫ 1

0

Ptest(x)

∣∣∣∣φ(x− jx + 1/2

K

)∣∣∣∣ exp(−KL(Q(S | vjx = 1)‖Q(S | vjx = −1))) dx

=
1

4

K∑
j=1

∫ j
K

j−1
K

Ptest(x)

∣∣∣∣φ(x− j + 1/2

K

)∣∣∣∣ exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1))) dx

=
1

4

K∑
j=1

exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1)))

[∫ j
K

j−1
K

Ptest(x)

∣∣∣∣φ(x− j + 1/2

K

)∣∣∣∣ dx

]

(i)
=

1

32K2

K∑
j=1

exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1))),

where (i) follows by using Lemma E.2 along with the fact that Ptest(x) = 1 in our construction to621

show that the integral in the square brackets is equal to 1/8K2. This proves the result.622

The next lemma upper bounds the KL divergence between Q(S | vj = 1) and Q(S | vj = −1) for623

each j ∈ {1, . . . ,K}. It shows that the KL divergence between these two posteriors is larger when624

the expected number of samples in that bin is larger.625

Lemma G.2. Suppose that v is drawn uniformly from the set {−1, 1}K , and that S | v is drawn626

from P
nmaj

v,maj × Pnmin

v,min. Then for any j ∈ {1, . . . ,K/2} and any τ ∈ [0, 1],627

KL(Q(S | vj = 1)‖Q(S | vj = −1)) ≤ nmaj(2− τ) + nminτ

3K3
,

and for any j ∈ {K/2 + 1, . . . ,K}628

KL(Q(S | vj = 1)‖Q(S | vj = −1)) ≤ nmajτ + nmin(2− τ)

3K3
.

Proof. Let us consider the case when j = 1. The bound for all other j ∈ {2, . . . ,K} shall follow629

analogously.630
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Given samples S, let S = (S1, S̄1) be a partition where S1 are the samples that fall in the interval I1,631

and S̄1 be the other samples. Similarly, given a vector v ∈ {−1, 1}, let v = (v1, v̄1), where v1 is the632

first component and v̄1 denotes the other components (2, . . . ,K) of v.633

First, we will show that634

Q(S | v1) = Q(S1 | v1)Q(S̄1).

To see this, observe that635

Q(S | v1) = Q((S1, S̄1) | v1) = Q(S1 | v1)Q(S̄1 | v1, S1).

Further, if v is chosen uniformly over the hypercube {−1, 1}K , then636

Q(S̄1 | v1, S1) =
∑
v̄1

Q(S̄1, v̄1 | v1, S1)

=
∑
v̄1

Q(S̄1 | v1, v̄1, S1)Q(v̄1 | v1, S1)

(i)
=
∑
v̄1

Q(S̄1 | v1, v̄1, S1)Q(v̄1)

(ii)
=
∑
v̄1

Q(S̄1 | v1, v̄1)Q(v̄1)

(iii)
=
∑
v̄1

Q(S̄1 | v̄1)Q(v̄1)

= Q(S̄1),

where (i) follows since by Bayes’ rule637

Q(v̄1 | v1, S1) =
Q(v̄1 | v1)Q(S1 | v1, v̄1)

Q(S1 | v1)

=
Q(v̄1)Q(S1 | v1, v̄1)

Q(S1 | v1)
(since v̄1 is independent of v1)

=
Q(v̄1)Q(S1 | v1)

Q(S1 | v1)
= Q(v̄1) (the samples in S1 depend only on v1).

Inequality (ii) follows since the samples are drawn independently given v = (v1, v̄1). Finally, (iii)638

follows since S̄1 (the samples that lie outside the interval I1) only depend on v̄1 since the marginal639

distribution of x is independent of v and the distribution of y | x depends only on the value of v640

corresponding to the interval in which x lies.641

Thus since, Q(S | v1) = Q(S1 | v1)Q(S̄1) we have that642

KL(Q(S | v1 = 1)‖Q(S | v1 = −1)) = KL(Q(S1 | v1 = 1)‖Q(S1 | v1 = −1)). (19)

To bound this KL divergence, let us condition of the number of samples in S1 from group a, (the643

majority group) n1,a and the number of samples from group b (the minority group), n1,b. Now since644

n1,a and n1,b are independent of v1 (which only affects the labels) we have that,645

Q(S1 | v1) =
∑

n1,a,n1,b

Q(n1,a, n1,b | v1)Q(S1 | v1, n1,a, n1,b)

=
∑

n1,a,n1,b

Q(n1,a, n1,b)Q(S1 | v1, n1,a, n1,b)

= En1,a,n1,b
[Q(S1 | v1, n1,a, n1,b)] .

Therefore, by the joint convexity of the KL-divergence and by Jensen’s inequality we have that,646

KL(Q(S1 | v1 = 1)‖Q(S1 | v1 = −1))

≤ En1,a,n1,b
[KL(Q(S1 | v1 = 1, n1,a, n1,b)‖Q(S1 | v1 = −1, n1,a, n1,b))] . (20)
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Now conditioned on v1, n1,a and n1,b, samples in S1 are composed of 2 groups of samples (S1,a, S1,b).647

The samples in each group (S1,a, S1,b) are drawn independently from the distributions Pa(x | x ∈648

I1)Pv(y | x) and Pb(x | x ∈ I1)Pv(y | x) respectively. Therefore,649

KL(Q(S1 | v1 = 1, n1,a, n1,b)‖Q(S1 | v1 = −1, n1,a, n1,b))

(i)
= n1,aKL(Pa(x | x ∈ I1)Pv1=1(y | x)‖Pa(x | x ∈ I1)Pv1=−1(y | x))

+ n1,bKL(Pb(x | x ∈ I1)Pv1=1(y | x)‖Pb(x | x ∈ I1)Pv1=−1(y | x))

(ii)
= (n1,a + n1,b)Ex∼Unif(I1) [KL(Pv1=1(y | x)‖Pv1=−1(y | x))]

(iii)
=

n1,a + n1,b

2
Ex∼Unif(I1)

 ∑
y∈{−1,1}

(
1 + yφ

(
x− 1

2K

))
log

((
1 + yφ

(
x− 1

2K

))(
1 + yφ

(
x− 1

2K

)))


=
n1,a + n1,b

2

∑
y∈{−1,1}

Ex∼Unif(I1)

[(
1 + yφ

(
x− 1

2K

))
log

((
1 + yφ

(
x− 1

2K

))(
1 + yφ

(
x− 1

2K

)))]

=
n1,a + n1,b

2K

∑
y∈{−1,1}

∫ 1
K

x=0

[(
1 + yφ

(
x− 1

2K

))
log

((
1 + yφ

(
x− 1

2K

))(
1 + yφ

(
x− 1

2K

)))] dx

(iv)

≤ n1,a + n1,b

3K2
, (21)

where in (i) we let Pv1 denote the conditional distribution of y for x ∈ I1 given v1, (ii) follows since650

both Pa and Pb are constant in the interval, (iii) follows by our construction of Pv above, and finally651

(iv) follows by invoking Lemma E.3 that ensures that the integral is bounded by 1/3K2.652

Using this bound in Eq. (20), along with Eq. (19) we get that653

KL(Q(S | v1 = 1)‖Q(S | v1 = −1)) ≤ E [n1,a + n2,b]

3K2
.

Now there are nmaj samples from group a in S and nmin samples from group b. Therefore,654

E [n1,a] = nmajPa(x ∈ I1) =
nmaj(2− τ)

K
,

E [n1,b] = nminPb(x ∈ I1) =
nminτ

K
.

Plugging this bound into Eq. (21) completes the proof by the first interval. An identical argument655

holds for j ∈ {2, . . . ,K/2}. For j ∈ {K/2 + 1, . . . ,K} the only change is that656

E [nj,a] = nmajPa(x ∈ Ij) =
nmajτ

K
,

E [nj,b] = nminPb(x ∈ Ij) =
nmin(2− τ)

K
.

657

Next, we combine the previous two lemmas to establish our stated lower bound. We first restate it658

here.659

Theorem B.1. Consider the group shift setting described in Section B. Given any overlap τ ∈ [0, 1]660

recall that PGS(τ) is the class of distributions such that Overlap(Pmaj,Pmin) ≥ τ . The minimax661

excess risk in this setting is lower bounded as follows:662

Minimax Excess Risk(PGS(τ)) = inf
A

sup
(Pmaj,Pmin)∈PGS(τ)

Excess Risk[A; (Pmaj,Pmin)]

≥ 1

200(nmin · (2− τ) + nmaj · τ)1/3
≥ 1

200nmin
1/3(ρ · τ + 2)1/3

, (4)

where ρ = nmaj/nmin > 1.663
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Proof. First, by Lemma G.1 we know that664

Minimax Excess Risk(PGS(τ)) ≥ 1

32K2

K∑
j=1

exp(−KL(Q(S | vj = 1)‖Q(S | vj = −1))).

Next, by invoking the bound on the KL divergences in the equation above by Lemma G.2 we get that665

Minimax Excess Risk(PGS(τ))

≥ 1

64K

[
exp

(
−nmaj(2− τ) + nminτ

3K3

)
+ exp

(
−nmin(2− τ) + nmajτ

3K3

)]
≥ 1

64K

[
exp

(
−nmin(2− τ) + nmajτ

3K3

)]
Setting K = d(nmin(2− τ) + nmajτ)1/3e and recalling that τ ≤ 1 we get that666

Minimax Excess Risk(PGS(τ))

≥ 1

64d(nmin(2− τ) + nmajτ)1/3e

[
exp

(
− nmin(2− τ) + nmajτ

3d(nmin(2− τ) + nmajτ)1/3e3
)]

(i)

≥ exp(−1/3)

64

(nmin(2− τ) + nmajτ)1/3

d(nmin(2− τ) + nmajτ)1/3e
1

(nmin(2− τ) + nmajτ)1/3

(ii)

≥ 0.7 exp(−1/3)

64

1

(nmin(2− τ) + nmajτ)1/3

≥ 1

200

1

(nmin(2− τ) + nmajτ)1/3
,

where (i) follows since nmin(2 − τ) + nmajτ/d(nmin(2 − τ) + nmajτ)1/3e3 ≤ 1, and (ii) follows667

since 0 ≤ τ ≤ 1 and nmin ≥ 1 and hence (nmin(2−τ)+nmajτ)1/3

d(nmin(2−τ)+nmajτ)1/3e ≥ 0.7.668

G.2 Proof of Theorem D.2669

In this section, we derive an upper bound on the excess risk of the undersampled binning estimator670

AUSB (Eq. (5)). Recall that given a dataset S this estimator first calculates the undersampled dataset671

SUS, where the number of points from the minority group (nmin) is equal to the number of points from672

the majority group (nmin), and the size of the dataset is 2nmin. Throughout this section, (Pmaj,Pmin)673

shall be an arbitrary element of PGS(τ) for any τ ∈ [0, 1]. In this section, whenever we shall often674

denote Excess Risk(A; (Pmaj,Pmin)) by simply Excess Risk(A).675

Before we proceed, we introduce some additional notation. For any j ∈ {1, . . . ,K} and Ij =676

[ j−1
K , jK ] let677

qj,1 := Ptest(y = 1 | x ∈ Ij) =

∫
x∈Ij

P(y = 1 | x)Ptest(x | x ∈ Ij) dx, (22a)

qj,1 := Ptest(y = 1 | x ∈ Ij) =

∫
x∈Ij

P(y = 1 | x)Ptest(x | x ∈ Ij) dx. (22b)

For the undersampled binning estimator AUSB (defined above in Eq. (5)), define the excess risk in an678

interval Ij as follows:679

Rj(ASUSB) := p
(
y = −ASj | x ∈ Ij

)
−min {Ptest(y = 1 | x ∈ Ij),Ptest(y = −1 | x ∈ Ij)}

= qj,−ASj −min{qj,1, qj,−1}.

The proof of the upper bound shall proceed in steps. First, in Lemma G.3 we will show that the680

excess risk is equal to sum the excess risk over the intervals up to a factor of 2/K on account of the681

distribution being 1-Lipschitz. Next, in Lemma G.4 we upper bound the risk over each interval. We682

put these two together and to upper bound the risk.683
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Lemma G.3. The expected excess risk of undersampled binning estimator AUSB can be decomposed684

as follows685

Excess Risk(AUSB) ≤
K−1∑
j=0

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
· Ptest(Ij) +

2

K
,

where Ptest(Ij) :=
∫
x∈Ij Ptest(x) dx.686

Proof. Recall that by definition, the expected excess risk is687

ES∼Pnmaj
maj ×P

nmin
min

[
R(AS ;Ptest)−R(f?;Ptest)

]
.

Let us first decompose the Bayes risk R(f?),688

R(f?) = inf
f

E(x,y)∼Ptest
[1(f(x) 6= y)]

= inf
f

∫ 1

x=0

∑
y∈{−1,1}

1(f(x) 6= y)Ptest(y | x)Ptest(x) dx

=

∫ 1

x=0

inf
f(x)∈{−1,1}

∑
y∈{−1,1}

1(f(x) 6= y)Ptest(y | x)Ptest(x) dx

=

∫ 1

x=0

inf
f(x)∈{−1,1}

Ptest(y = −f(x) | x)Ptest(x) dx

=

∫ 1

x=0

min {Ptest(y = 1 | x),Ptest(y = −1 | x)}Ptest(x) dx. (23)

The risk of the undersampled binning algorithm AUSB is given by689

R(ASUSB) =

∫ 1

x=0

∑
y∈{−1,1}

1(ASUSB(x) 6= y)Ptest(y | x)Ptest(x) dx

=

∫ 1

x=0

Ptest(y = −ASUSB(x) | x)Ptest(x) dx.

Next, recall that the undersampled binning estimator is constant over the intervals Ij for j ∈690

{1, . . . ,K} where it takes the value ASj (to ease notation let us simply denote it by Aj below), and691

therefore692

R(ASUSB) =

K−1∑
j=0

∫
x∈Ij

Ptest(y = −Aj |x)Ptest(x) dx.

This combined with Eq. (23) tells us that693

R(ASUSB)−R(f?)

=

K−1∑
j=0

∫
x∈Ij

(
Ptest(y = −Aj |x)−min {Ptest(y = 1 | x),Ptest(y = −1 | x)}

)
Ptest(x) dx. (24)

Recall the definition of qj,1 and qj,−1 from Eqs. (22a)-(22b) above. For any x ∈ Ij = [ j−1
K , jK ],694

|Ptest(y | x)−qj,y| ≤ 1/K, since the distribution Ptest(y | x) is 1-Lipschitz and qj,y is its conditional695

mean. Therefore,696

R(ASUSB)−R(f?)

≤
K−1∑
j=0

∫
x∈Ij

(
qj,−Aj

−min {qj,1, qj,−1}
)
Ptest(x) dx+

2

K

K−1∑
j=0

∫
x∈Ij

Ptest(x) dx

=

K−1∑
j=0

∫
x∈Ij

Rj(ASUSB)Ptest(x) dx+
2

K
.

Taking expectation over the training samples S (where nmin samples are drawn independently from697

Pmin and nmaj samples are drawn independently from Pmaj) concludes the proof.698
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Next we provide an upper bound on the expected excess risk is an interval Rj(ASUSB).699

Lemma G.4. For any j ∈ {1, . . . ,K} with Ij = [ j−1
K , jK ],700

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
≤ c√

nminPtest(Ij)
+

c

K
,

where c is an absolute constant, and Ptest(Ij) :=
∫
x∈Ij Ptest(x) dx.701

Proof. Consider an arbitrary bucket j ∈ {1, . . . ,K}.702

Let us introduce some notation that shall be useful in the remainder of the proof. Analogous to qj,1703

and qj,−1 defined above (see Eqs. (22a)-(22b)), define qaj,1 and qbj,1 as follows:704

qaj,1 := Pa(y = 1 | x ∈ Ij) =

∫
x∈Ij

P(y = 1 | x)Pa(x | x ∈ Ij) dx, (25a)

qbj,1 := Pb(y = 1 | x ∈ Ij) =

∫
x∈Ij

P(y = 1 | x)Pb(x | x ∈ Ij) dx. (25b)

Essentially, qaj,1 is the probability that a sample is from group a and has label 1, conditioned on the705

event that the sample falls in the interval Ij . Since706

Ptest(x | x ∈ Ij) =
1

2
[Pa(x | x ∈ Ij) + Pb(x | x ∈ Ij)] ,

therefore707

|qj,1 − qaj,1| =
∣∣∣∣∣
∫
x∈Ij

P(y = 1 | x)Ptest(x | x ∈ Ij) dx−
∫
x∈Ij

P(y = 1 | x)Pa(x | x ∈ Ij) dx

∣∣∣∣∣
≤ 1

K
. (26)

This follows since P(y | x) is 1-Lipschitz and therefore can fluctuate by at most 1/K in the interval708

Ij . Of course the same bound also holds for |qj,1 − qbj,1|.709

With this notation in place let us present a bound on the expected value of Rj(ASUSB). By definition710

Rj(ASUSB) = qj,−ASj −min{qj,1, qj,−1}.

First, note that qj,1 := Ptest(y = 1 | x ∈ Ij) = 1 − qj,−1. Suppose that qj,1 < 1/2 and therefore711

qj,−1 > 1/2 (the same bound shall hold in the other case). In this case, risk is incurred only when712

ASj = 1. That is,713

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
= |qj,−1 − qj,1|PS [ASj = 1]

= |1− 2qj,1|PS [ASj = 1]. (27)

Now by the definition of the undersampled binning estimator (see Eq. (5)), ASj = 1 only when there714

are more samples in the interval Ij with label 1 than −1. However, we can bound the probability of715

this happening since qj,1 is smaller than qj,−1.716

Let nj be the number of samples in the undersampled sample set SUS in the interval Ij . Let n1,j be717

the number of these samples with label 1, and n−1,j = nj − n1,j be the number of samples with718

label −1. Further, let na,j be the number of samples in from group a such that they fall in the interval719

Ij , and define mb,j analogously.720

The probability of incurring risk is given by721

P[Aj = 1] =

2nmin∑
s=1

P[Aj = 1 | nj = s]P[nj = s], (28)

where the sum is up to 2nmin since the size of the undersample dataset |SUS| is equal to 2nmin.722
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Conditioned on the event that nj = s the probability of incurring risk is723

P [Aj = 1 | nj = s] = P [m1,j > n−1,j | nj = s] = P [n1,j > nj/2 | nj = s]

= P [n1,j > s/2 | nj = s] . (29)

Now, note that nj = na,j + nb,j . Thus continuing, we have that724

P [n1,j > s/2 | nj = s] =
∑
s′≤s

P [n1,j > s/2 | nj = s, nb,j = s′]P[nb,j = s′]

=
∑
s′≤s

P [n1,j > s/2 | na,j = s− s′, nb,j = s′]P[nb,j = s′].

In light of this previous equation, we want to control the probability that the number of samples with725

label 1 in the interval Ij conditioned on the event that the number of samples from group a in this726

interval is s− s′ and the number of samples from group b in this interval is s′. Recall that qaj,1 and727

qbj,1 the probabilities of the label of the sample being 1 conditioned the event that sample is in the728

interval Ij when it is group a and b respectively. So we define the random variables:729

za[s− s′] ∼ Bin(s− s′, qaj,1), zb[s
′] ∼ Bin(s′, qbj,1), z[s] ∼ Bin(s,max

{
qaj,1, q

b
j,1

}
).

Then,730

P [n1,j > s/2 | nj = s]

=
∑
s′≤s

P [n1,j > s/2 | nj,a = s− s′, nj,b = s′]P[nj,b = s′]

=
∑
s′≤s

P [za[s− s′] + zb[s
′]) > s/2 | na,j = s− s′, nb,j = s′]P[nb,j = s′]

≤
∑
s′≤s

P [z[s] > s/2 | na,j = s− s′, nb,j = s′]P[nb,j = s′]

=
∑
s′≤s

P [z[s] > s/2]P[nb,j = s′]

= P [z[s] > s/2]

(i)

≤ exp
(
−s

2
(1− 2 max

{
qaj,1, q

b
j,1

}
)2
)
, (30)

where (i) follows by invoking Hoeffding’s inequality[Wainwright, 2019, Proposition 2.5]. Combining731

this with Eqs. (28) and (29) we get that732

P[Aj = 1] ≤
2nmin∑
s=1

exp
(
−s

2
(1− 2 max

{
qaj,1, q

b
j,1

}
)2
)
P[nj = s].

Now nj , which is the number of samples that lands in the interval Ij is equal to na,j +nb,j . Now each733

of na,j and nb,j (the number of samples in this interval from each of the groups) are random variables734

with distributions Bin(nmin,Pa(Ij)) and Bin(nmin,Pb(Ij)), where Pa(Ij) =
∫
x∈Ij Pa(x) dx and735

Pb(Ij) =
∫
x∈Ij Pa(x) dx. Therefore, nj is distributed as a sum of two binomial distribution and is736

therefore Poisson binomially distributed [Wikipedia contributors, 2022]. Using the formula for the737

moment generating function (MGF) of a Poisson binomially distributed random variable we infer738

that,739

P[Aj = 1] ≤
(

1− Pa(Ij) + Pa(Ij) exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

))nmin

×(
1− Pb(Ij) + Pb(Ij) exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

))nmin

.
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Plugging this into Eq. (28) we get that,740

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
≤ |1− 2qj,1|

[
1− Pa(Ij) + Pa(Ij) exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

)]nmin

×[
1− Pb(Ij) + Pb(Ij) exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

)]nmin

= |1− 2qj,1|
[

1− Pa(Ij)

(
1− exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

))]nmin

×[
1− Pb(Ij)

(
1− exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

))]nmin

.

Since |1− 2 max
{
qaj,1, q

b
j,1

}
| ≤ 1,741

1− exp

(
−

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

)
≥

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

4
,

and therefore742

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
≤ |1− 2qj,1|

[
1− Pa(Ij)

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

]nmin

×[
1− Pb(Ij)

(1− 2 max
{
qaj,1, q

b
j,1

}
)2

2

]nmin

(i)

≤ |1− 2qj,1|
[
1− Pa(Ij)

(1− 2qj,1 − 2γ)2

2

]nmin

×[
1− Pb(Ij)

(1− 2qj,1 − 2γ)2

2

]nmin

(ii)

≤ |1− 2qj,1| exp

(
−nmin(Pa(Ij) + Pb(Ij))

(1− 2qj,1 − 2γ)2

2

)
,

where (i) follows since |max{qaj,1, qbj,1}−qj,1| ≤ 1/K by Eq. (26) and γ is such that |γ| ≤ 1/K, and743

(ii) follows since (1 + z)b ≤ exp(bz). Now the RHS above is maximized when (1− 2qj,1 − 2γ)2 =744
c

nmin(Pa(Ij)+Pb(Ij)) , for some constant c. Plugging this into the equation above we get that745

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
≤ c′√

nmin(Pa(Ij) + Pb(Ij))
+ c′|γ|

≤ c′√
nmin(Pa(Ij) + Pb(Ij))

+
c′

K
.

Finally, noting that Ptest(Ij) = (Pa(Ij) + Pb(Ij))/2 completes the proof.746

By combining the previous two lemmas we can now prove our upper bound on the risk of the747

undersampled binning estimator. We begin by restating it.748

Theorem D.2. Consider the group shift setting described in Section B. For any overlap τ ∈ [0, 1]749

and for any (Pmaj,Pmin) ∈ PGS(τ) the expected excess risk of the Undersampling Binning Estimator750

(Eq. (5)) with number of bins with K = dnmin
1/3e is751

Excess Risk[AUSB; (Pmaj,Pmin)] = ES∼Pnmaj
maj ×P

nmin
min

[
R(ASUSB;Ptest))−R(f?;Ptest)

]
≤ C

nmin
1/3

.
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Proof. First by Lemma G.3 we know that752

Excess Risk[AUSB] ≤
K−1∑
j=0

ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
· Ptest(Ij) +

2

K
.

Next by using the bound on ES∼Pnmaj
maj ×P

nmin
min

[
Rj(ASUSB)

]
established in Lemma G.4 we get that,753

Excess Risk(AUSB) ≤ c
K−1∑
j=0

1√
nminPtest(Ij)

Ptest(Ij) +
c

K

=
c√
nmin

K−1∑
j=0

√
Ptest(Ij) +

c

K

(i)

≤ c√
nmin

√
K

K−1∑
j=0

Ptest(Ij) +
c

K

= c

√
K

nmin
+

c

K
.

where (i) follows since for any vector z ∈ RK , ‖z‖1 ≤
√
K‖z‖2. Maximizing over K yields the754

choice K = dnmin
1/3e, completing the proof.755

756

H Additional Simulations757

Figure 3: Convolutional neural network classifiers trained on the Imbalanced Binary CIFAR10 dataset
with a 5:1 label imbalance. (Top) Models trained using the tilted loss [Li et al., 2020] with early
stopping. (Bottom) Models trained using group-DRO [Sagawa et al., 2020] with early stopping. We
report the average test accuracy calculated on a balanced test set over 5 random seeds. We start off
with 2500 cat examples and 500 dog examples in the training dataset. We find similar trends to those
obtained in Figure 1 even with these losses that are designed to optimize for the worst group accuracy.
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I Experimental Details for Figures 1 and 3758

We construct our label shift dataset from the original CIFAR10 dataset. We create a binary classi-759

fication task using the “cat” and “dog” classes. We use the official test examples as the balanced760

test set with 1000 cats and 1000 dogs. To form the initial train and validation sets, we use 2500 cat761

examples (half of the training set) and 500 dog examples, corresponding to a 5:1 label imbalance. We762

use 80% of those examples for training and the rest for validation. We are left with 2500 additional763

cat examples and 4500 dog examples from the original train set which we add into our training set to764

generate Figure 1.765

We use the same convolutional neural network architecture as [Byrd and Lipton, 2019, Wang et al.,766

2022] with random initializations for this dataset. We train this model using SGD for 800 epochs767

with batchsize 64, a constant learning rate 0.001 and momentum 0.9. The importance weights768

used upweight the minority class samples in the training loss and validation loss is calculated to be769
#Cat Train Examples
#Dog Train Examples . We note that all of the experiments were performed on an internal cluster on 8770

GPUs.771

VS Loss: Given a dataset {xi, yi}ni=1, the VS loss [Kini et al., 2021] is defined as follows772

LVS(f) :=

n∑
i=1

log

(
1 + exp

(
−
(
ngi
nmax

)γ
yif(xi)−

τngi
n

))
,

where gi denotes the group label, ngi corresponds to the number of samples from the group, nmax773

is the number of samples in the largest group and n is the total number of samples. We set τ = 3774

and γ = 0.3, the best hyperparameters identified by Wang et al. [2022] on this dataset for this neural775

network architecture.776

Tilted Loss: The tilted loss [Li et al., 2020] is defined as777

LTilted(f) :=
1

t
log

[
n∑
i=1

exp (t`(yif(xi)))

]
,

where we take ` to be the logistic loss. In our experiments we set t = 2.778

Group-DRO: We run group-DRO [Sagawa et al., 2020, Algorithm 1] with the logistic loss. We set779

adversarial step-size ηq = 0.05 which was the best hyperparameter identified by Wang et al. [2022].780
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