
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

METHODS FOR CONVEX (L0, L1)-SMOOTH OPTIMIZA-
TION: CLIPPING, ACCELERATION, AND ADAPTIVITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the non-smoothness of optimization problems in Machine Learning, gen-
eralized smoothness assumptions have been gaining a lot of attention in recent
years. One of the most popular assumptions of this type is (L0, L1)-smoothness
(Zhang et al., 2020b). In this paper, we focus on the class of (strongly) convex
(L0, L1)-smooth functions and derive new convergence guarantees for several ex-
isting methods. In particular, we derive improved convergence rates for Gradient
Descent with (Smoothed) Gradient Clipping and for Gradient Descent with Polyak
Stepsizes. In contrast to the existing results, our rates do not rely on the standard
smoothness assumption and do not suffer from the exponential dependency on the
initial distance to the solution. We also extend these results to the stochastic case
under the over-parameterization assumption, propose a new accelerated method
for convex (L0, L1)-smooth optimization, and derive new convergence rates for
Adaptive Gradient Descent (Malitsky & Mishchenko, 2020).

1 INTRODUCTION

Modern optimization problems arising in Machine Learning (ML) and Deep Learning (DL) are
typically non-smooth, i.e., the gradient of the objective function is not necessarily Lipschitz continu-
ous. In particular, the gradient of the standard ℓ2-regression loss computed for simple networks is
not Lipschitz continuous (Zhang et al., 2020b). Moreover, the methods that are designed to benefit
from the smoothness of the objective often perform poorly in Deep Learning, where problems are
non-smooth. For example, variance-reduced methods (Schmidt et al., 2017; Johnson & Zhang, 2013;
Defazio et al., 2014; Nguyen et al., 2017; 2021; Beznosikov & Takáč, 2021; Shi et al., 2023) are
known to be faster in theory (for finite sums of smooth functions) but are outperformed by slower
theoretically non-variance-reduced methods (Defazio & Bottou, 2019). All of these reasons motivate
researchers to consider different assumptions to replace the standard smoothness assumption.

One such assumption is (L0, L1)-smoothness originally introduced by Zhang et al. (2020b) for
twice differentiable functions. This assumption allows the norm of the Hessian of the objective to
increase linearly with the growth of the norm of the gradient. In particular, (L0, L1)-smoothness can
hold even for functions with polynomially growing gradients – a typical behavior for DL problems.
Moreover, the notion of (L0, L1)-smoothness can also be extended to the class of differentiable but
not necessarily twice differentiable functions (Chen et al., 2023).

Although Zhang et al. (2020b) focus on the non-convex problems as well as more recent works such
as (Zhang et al., 2020a; Zhao et al., 2021; Faw et al., 2023; Wang et al., 2023; Li et al., 2024b; Chen
et al., 2023; Hübler et al., 2024), the class of (L0, L1)-smooth convex1 function is much weaker
explored. In particular, the existing convergence results for the methods such as Gradient Descent with

1Although many existing problems are not convex, it is useful to understand methods behavior under the
convexity assumption as well due to several reasons. First of all, since the class of non-convex functions is too
broad, the existing results for this class are quite pessimistic. In particular, among first-order methods, Gradient
Descent is the best (in theory) first-order method if only smoothness is assumed (Carmon et al., 2021). In
contrast, while accelerated/momentum methods do not have theoretical advantages over Gradient Descent for
non-convex problems and shine in theory only under convexity-like assumptions, they work better in practice
even when the problems are not convex (Sutskever et al., 2013). Last but not least, several recent works show
that some problems appearing in Deep Learning, Optimal Control, and Reinforcement Learning have properties
akin to (strongly) convex functions (Liu et al., 2022) and are even hiddenly convex (Fatkhullin et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Clipping (Pascanu et al., 2013) and Gradient Descent with Polyak Stepsizes (Polyak, 1987) applied to
(L0, L1)-smooth convex problems either rely on additional smoothness assumption (Koloskova et al.,
2023; Takezawa et al., 2024) or require (potentially) small stepsizes to ensure that the method stays
in the compact set where the gradient is bounded and, as a consequence of (L0, L1)-smoothness of
the objective, Lipschitz continuous (Li et al., 2024a). This leads us to the following natural question:

How the convergence bounds for different versions of Gradient Descent depend on L0 and L1

when the objective function is convex, (L0, L1)-smooth but not necessarily L-smooth?

In this paper, we address the above question for Gradient Descent with Smoothed Gradient Clipping,
Polyak Stepsizes, Similar Triangles Method (Gasnikov & Nesterov, 2016), and Adaptive Gradient
Descent (Malitsky & Mishchenko, 2020): for each of the mentioned methods, we either improve
the existing convergence results or derive the first convergence results under (L0, L1)-smoothness.
We also derive new results for the stochastic versions of Gradient Descent with Smoothed Gradient
Clipping and Polyak Stepsizes.

1.1 PROBLEM SETUP

Before we continue the discussion of the related work and our results, we need to formalize the
problem setup. That is, we consider the unconstrained minimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R is a (strongly) convex differentiable function.
Assumption 1 (Convexity). Function f : Rd → R is µ-strongly convex with2 µ ⩾ 0:

f(y) ⩾ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥x− y∥2, ∀x, y ∈ Rd. (2)

As we already mentioned earlier, in addition to convexity, we assume that the objective function is
(L0, L1)-smooth. Following Chen et al. (2023), we consider two types of (L0, L1)-smoothness.
Assumption 2 (Asymmetric (L0, L1)-smoothness). Function f : Rd → R is asymmetrically
(L0, L1)-smooth (f ∈ Lasym(L0, L1)), i.e., for all x, y ∈ Rd we have

∥∇f(x)−∇f(y)∥ ⩽ (L0 + L1∥∇f(y)∥) ∥x− y∥. (3)

Assumption 3 (Symmetric (L0, L1)-smoothness). Function f : Rd → R is symmetrically (L0, L1)-
smooth (f ∈ Lsym(L0, L1)), i.e., for all x, y ∈ Rd we have

∥∇f(x)−∇f(y)∥ ⩽

(
L0 + L1 sup

u∈[x,y]

∥∇f(u)∥

)
∥x− y∥. (4)

Clearly, Assumption 3 is more general than Assumtpion 2. Due to this reason, we will mostly
focus on Assumption 3, and by (L0, L1)-smooth functions, we will mean functions satisfying
Assumption 3 if the opposite is not specified. Nevertheless, it is worth mentioning that asymmetric
(L0, L1)-smoothness (under some extra assumptions) is satisfied for a certain problem formulation
appearing in Distributionally Robust Optimization (Jin et al., 2021). Chen et al. (2023) also show that
exponential function satisfies (4), and, more generally, for twice differentiable functions Assumption 3
is equivalent to

∥∇2f(x)∥2 ⩽ L0 + L1∥∇f(x)∥, ∀x ∈ Rd. (5)
Moreover, below, we provide some examples of functions satisfying Assumption 3 but either not
satisfying standard L-smoothness, i.e., (4) with L1 = 0, or satisfying L-smoothness with larger
constants than L0 and L1 respectively. The detailed proofs are deferred to Appendix B.
Example 1.1 (Power of Norm). Let f(x) = ∥x∥2n, where n is a positive integer. Then, f(x) is
convex and (2n, 2n− 1)-smooth. Moreover, f(x) is not L-smooth for n ⩾ 2 and any L ⩾ 0.
Example 1.2 (Exponent of the Inner Product). Function f(x) = exp(a⊤x) for some a ∈ Rd is
convex, (0, ∥a∥)-smooth, but not L-smooth for a ̸= 0 and any L ⩾ 0.

2In this paper, we consider standard ℓ2-norm for vectors and spectral norm for matrices.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

These two examples illustrate that (L0, L1)-smoothness is quite a mild assumption, and it is strictly
weaker than L-smoothness. However, the next example shows that even when L-smoothness holds, it
makes sense to consider (L0, L1)-smoothness as well.

Example 1.3 (Logistic Function). Consider logistic function with ℓ2-regularization: f(x) =
log
(
1 + exp(−a⊤x)

)
, where a ∈ Rd is some vector. It is known that this function is L-smooth and

convex with L = ∥a∥2. However, one can show that f is also (L0, L1)-smooth with L0 = 0 and
L1 = ∥a∥. For ∥a∥ ≫ 1, both L0 and L1 are much smaller than L.

1.2 RELATED WORKS

We overview closely related works below and defer the additional discussion to Appendix A.

Results in the non-convex case. Zhang et al. (2020b) introduce (L0, L1)-smoothness in
the form (5) and show that Clipped Gradient Descent (Clip-GD) has iteration complexity
O
(
max

{
L0∆/ε2, (1+L2

1)∆/L0

})
with ∆ := f(x) − infx∈Rd f(x) for finding ε-approximate first-

order stationary point of (L0, L1)-smooth function. The asymptotically dominant term in this
complexity O (L0∆/ε2) is independent of L1, and thus, this term can be much smaller than
O (L∆/ε2), where L is a Lipschitz constant of the gradient (if finite). Under the assumption that
M := sup{∥∇f(x)∥ | x ∈ Rd such that f(x) ⩽ f(x0)} < +∞ Zhang et al. (2020b) also show
that GD with stepsize Θ(1/(L0+ML1)) has complexity O ((L0+ML1)∆/ε2), which is natural to expect
since on {x ∈ Rd | f(x) ⩽ f(x0)} the norm of the Hessian is bounded as L0 +ML1 (see (5)),
i.e., function is (L0 +ML1)-smooth. Zhang et al. (2020a) generalize the results from (Zhang et al.,
2020b) to the method with heavy-ball momentum (Polyak, 1964) and clipping of both momentum
and gradient. Similar results are derived for Normalized GD (Zhao et al., 2021; Chen et al., 2023),
SignGD (Crawshaw et al., 2022), AdaGrad-Norm/AdaGrad (Faw et al., 2023; Wang et al., 2023),
Adam (Wang et al., 2022; Li et al., 2024b), and Normalized GD with Momentum (Hübler et al.,
2024). Notably, all papers in this paragraph also address stochastic method versions.

Results in the convex case. To the best of our knowledge, convex (L0, L1)-smooth optimization
is studied in three papers (Koloskova et al., 2023; Takezawa et al., 2024; Li et al., 2024a). In
particular, under convexity, L-smoothness, and (L0, L1)-smoothness, Koloskova et al. (2023) show
that Clip-GD with clipping level c has O

(
max

{
(L0+cL1)R

2
0/ε,
√

R4
0L(L0+cL1)

2
/c2ε
})

complexity
of finding ε-solution, i.e., x such that f(x) − f(x∗) ⩽ ε, where x∗ ∈ argminx∈Rd f(x) and
R0 := ∥x0 − x∗∥. In particular, if c ∼ L0/L1, then the asymptotically dominant term in the
complexity is O

(
L0R

2
0/ε
)
, i.e., it is independent of L1 and L, which can be significantly better

than the complexity of GD of O
(
LR2

0/ε
)

for convex L-smooth functions. In the same setting,

Takezawa et al. (2024) prove O
(
max

{
L0R

2
0/ε,
√

R4
0LL2

1/ε
})

complexity bound for GD with Polyak
Stepsizes (GD-PS). Finally, under convexity and (L0, L1)-smoothness Li et al. (2024a) show that
for sufficiently small stepsizes standard GD and Nesterov’s method (NAG) (Nesterov, 1983) have
complexities O

(
ℓR2

0/ε
)

and O
(√

ℓR2
0/ε
)

respectively, where ℓ := L0+L1G and G is some constant

depending on L0, L1, R0, ∥∇f(x0)∥, and f(x0)− f(x∗). In particular, constant G and stepsizes are
chosen in such a way that it is possible to show via induction that in all points generated by GD/NAG
and where (L0, L1)-smoothness is used the norm of the gradient is bounded by G. However, these
results have a common limitation: constants L (if finite) and ℓ can be much larger than L0 and L1.
Moreover, for Clip-GD and GD-PS, these results lead to a natural question of whether it is possible
to achieve O

(
LR2

0/ε
)

complexity without L-smoothness non-asymptotically.

1.3 OUR CONTRIBUTION

• Tighter rates for Gradient Descent with (Smoothed) Clipping. We prove that Gradient Descent
with (Smoothed) Clipping, which we call (L0, L1)-GD, has O

(
max

{
L0R

2
0/ε, L2

1R
2
0

})
worst-case

complexity of finding ε-solution for convex (L0, L1)-smooth functions. In contrast to the previous
results (Koloskova et al., 2023; Li et al., 2024a), our bound is derived without L-smoothness
assumption and does not depend on any bound for ∥∇f(xk)∥. To achieve this, we prove that
(L0, L1)-GD has non-increasing gradient norm and show that the method’s behavior consists of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

two phases: initial (and finite) phase when ∥∇f(xk)∥ ⩾ L0/L1 (large gradient), and final phase
when ∥∇f(xk)∥ < L0/L1 and the method behaves similarly to GD applied to 2L0-smooth problem.
We also extend the result to the strongly/stochastic convex cases.

• Tighter rates for Gradient Descent with Polyak Stepsizes. For GD-PS, we also derive
O
(
max

{
L0R

2
0/ε, L2

1R
2
0

})
worst-case complexity of finding ε-solution for convex (L0, L1)-smooth

functions. In contrast to the existing result (Takezawa et al., 2024), our bound is derived without
L-smoothness assumption. We also extend the result to the strongly/stochastic convex cases.

• New accelerated method: (L0, L1)-Similar Triangles Method. We propose a version of Similar
Triangles Method (Gasnikov & Nesterov, 2016) for convex (L0, L1)-smooth optimization, and
prove O

(√
L0(1+L1R0 exp(L1R0))R

2
0/ε
)

complexity of finding ε-solution for convex (L0, L1)-
smooth functions. In contrast to the accelerated result from (Li et al., 2024a), our bound is derived
without the usage of stepsizes depending on R0 and f(x0)− f(x∗).

• New convergence results for Adaptive Gradient Descent. We also show new convergence
result for Adaptive Gradient Descent (Malitsky & Mishchenko, 2020) for convex (L0, L1)-smooth
problems: we prove O

(
max

{
L0 exp(L1D)D2

/ε,m2L2
1 exp(L1D)D2

})
complexity of finding ε-

solution, where D is a constant depending on initial suboptimality of the starting point, and m is a
logarithmic factor depending on L1 and D. We also extend the result to the strongly convex case.

• New technical results for (L0, L1)-smooth functions. We derive several useful inequalities for
the class of (convex) (L0, L1)-smooth functions.

2 TECHNICAL LEMMAS

In this section, we provide some useful facts about (L0, L1)-smooth functions. We start with the
following result from (Chen et al., 2023).
Lemma 2.1 (Proposition 1 from (Chen et al., 2023)). Assumption 3 holds if and only if for

∥∇f(x)−∇f(y)∥ ⩽ (L0 + L1∥∇f(y)∥) exp (L1∥x− y∥) ∥x− y∥, ∀x, y ∈ Rd. (6)
Moreover, Assumption 3 implies for all x, y ∈ Rd

f(y) ⩽ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(x)∥
2

exp(L1∥x− y∥)∥x− y∥2. (7)

Inequality (6) removes the supremum from (4), but the price for this is a factor of exp(L1∥x− y∥).
When ∥x− y∥ ⩽ 1/L1, this factor is upper-bounded as e. However, in general, it cannot be removed
since (6) is equivalent to (4). Inequality (7) can be seen as a generalization of standard quadratic
upper-bound for L-smooth functions (Nesterov, 2018) to the class of (L0, L1)-smooth functions.
Note, that (Zhang et al., 2020a) provides a Hessian free assumption which is equivalent to (5), it can
be seen as (6) and (7) with improved constants.

Using the above lemma, we derive several useful inequalities that we actively use throughout our
proofs. Most of these inequalities can be further simplified in the case of Assumption 2.
Lemma 2.2. Let Assumption 3 hold and ν satisfy3 ν = e−ν . Then, the following statements hold.

1. For f∗ := infx∈Rd f(x) and arbitrary x ∈ Rd, we have

ν∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
⩽ f(x)− f∗. (8)

2. If additionally Assumption 1 holds with µ = 0, then for any x, y ∈ Rd such that
L1∥x− y∥ exp (L1∥x− y∥) ⩽ 1, (9)

we have
ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
⩽ f(y)− f(x)− ⟨∇f(x), y − x⟩, (10)

and
ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
+
ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(x)∥)
⩽ ⟨∇f(x)−∇f(y), x− y⟩. (11)

3One can check numerically that 0.56 < ν < 0.57.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This lemma provides us with a set of useful inequalities that can be viewed as generalizations of
analogous inequalities that hold for smooth (convex) functions. We provide the complete proof in
Appendix C. Moreover, when Assumption 2 holds, all inequalities from Lemma 2.2 hold with ν = 1,
and requirement (9) is not needed for (10) and (11) to hold. An analog of (8) for a local version of
(L0, L1)-smoothness can be found in (Koloskova et al., 2023). We also refer to (Li et al., 2024a)
for an analog of inequality (11) for (r, ℓ)-smooth functions. However, in contrast to the bound from
(Koloskova et al., 2023), bound (8) is derived for a global version of (L0, L1)-smoothness and thus
differs in numerical constants, and, in contrast to the proof from (Li et al., 2024a), we do not use
local Lipshitzness of the gradient.

3 SMOOTHED GRADIENT CLIPPING

The first method that we consider is closely related to Clip-GD and can be seen as a smoothed
version4 of it – see Algorithm 1. Alternatively, this method can be seen as a version of Gradient
Descent designed for (L0, L1)-smooth functions. Therefore, we call this algorithm (L0, L1)-GD.

Algorithm 1 (L0, L1)-Gradient Descent ((L0, L1)-GD)

Input: starting point x0, number of iterations N , stepsize parameter η > 0, L0 > 0, L1 ⩾ 0
1: for k = 0, 1, . . . , N − 1 do
2: xk+1 = xk − η

L0+L1∥∇f(xk)∥∇f(x
k)

3: end for
Output: xN

Similarly to standard GD, (L0, L1)-GD satisfies two useful properties, summarized below.
Lemma 3.1 (Monotonicity of function value). Let Assumption 3 hold. Then, for all k ⩾ 0 the iterates
generated by (L0, L1)-GD with η ⩽ ν, ν = e−ν satisfy

f(xk+1) ⩽ f(xk)− η∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)
⩽ f(xk). (12)

Proof sketch. The inequality follows from (7) applied to y = xk+1 and x = xk, see the complete
proof in Appendix D.

Lemma 3.2 (Monotonicity of gradient norm). Let Assumptions 1 with µ = 0 and 3 hold. Then, for
all k ⩾ 0 the iterates generated by (L0, L1)-GD with η ⩽ ν, ν = e−ν satisfy

∥∇f(xk+1)∥ ⩽ ∥∇f(xk)∥. (13)

Proof sketch. The inequality follows from (11) applied to x = xk+1 and y = xk, see the complete
proof in Appendix D.

We notice that a similar result to Lemma 3.2 is shown in (Li et al., 2024a) for GD with sufficiently
small stepsize. With these lemmas in hand, we derive the convergence result for (L0, L1)-GD.
Theorem 3.1. Let Assumptions 1 with µ = 0 and 3 hold. Then, the iterates generated by (L0, L1)-GD
with 0 < η ⩽ ν

2 , ν = e−ν satisfy the following implication:

∥∇f(xk)∥ ⩾
L0

L1
=⇒ k ⩽

8L2
1∥x0 − x∗∥2

νη
− 1 and ∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − νη

8L2
1

. (14)

Moreover, the output after N >
8L2

1∥x
0−x∗∥2

η − 1 iterations satisfies

f(xN)− f(x∗) ⩽
2L0∥x0 − x∗∥2

η(N + 1− T)
− νL0T

4L2
1(N + 1− T)

⩽
2L0∥x0 − x∗∥2

η(N + 1)
, (15)

4Indeed, when ∥∇f(xk)∥ < L0/L1, the denominator of the stepsize in (L0, L1)-GD lies in [L0, 2L0], and
when ∥∇f(xk)∥ ⩾ L0/L1, this denominator lies in [L1∥∇f(xk)∥, 2L1∥∇f(xk)∥]. Such a behavior is very
similar to the behavior of Clip-GD with clipping level L0/L1 and stepsize η/L0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where T := |T | for the set T := {k ∈ {0, 1, . . . N − 1} | ∥∇f(xk)∥ ⩾ L0

L1
}.

Proof sketch. Similarly to the proofs from (Koloskova et al., 2023; Takezawa et al., 2024), our
proof is based on careful consideration of two possible situations: either ∥∇f(xk)∥ ⩾ L0/L1 or
∥∇f(xk)∥ < L0/L1. When the first situation happens, the squared distance to the solution decreases
by η/8L2

1. Since the squared distance is non-negative and non-increasing, this cannot happen more
than 8L2

1∥x
0−x∗∥2

/νη times, which gives the first part of the result. Next, when ∥∇f(xk)∥ < L0/L1,
the method behaves as GD on convex 2L0-smooth problem and the analysis is also similar. Together
with Lemmas 3.1 and 3.2, this gives the second part of the proof, see Appendix D for the details.

Bound (15) implies that (L0, L1)-GD with η = ν/2 satisfies f(xN) − f(x∗) ⩽ ε after N =
O
(
max

{
L0R

2
0/ε, L2

1R
2
0

})
iterations. In contrast, Koloskova et al. (2023); Takezawa et al. (2024)

derive O
(
max

{
L0R

2
0/ε,
√

R4
0LL2

1/ε
})

complexity bound that depends on the smoothness constant L,

which can be much larger than L0 and L1, e.g., when f(x) = ∥x∥4 constant L depends on the starting
point (since it defines a compact set, where the method stays) as L0 +L1∥∇f(x0)∥ = O(1+ ∥x0∥3)
(see Appendix B), while L0 = 4 and L1 = 3. That is, by moving x0 away from the solution, one can
make our bound arbitrarily better than the previous one, even for this simple example. Moreover,
unlike the result from (Li et al., 2024a) for GD with small enough stepsize, our bound depends neither
on f(x0)− f(x∗) nor on ∥∇f(x0)∥ that can be significantly larger than R0 (according to Lemma 2.1
– exponentially larger). Finally, we highlight that our analysis shows that (L0, L1)-GD exhibits a
two-stage behavior: during the first stage, the gradient is large (this stage can be empty), and the
squared distance to the solution decreases by a constant, and during the second stage, the method
behaves as standard GD. This observation is novel on its own and gives a better understanding of the
method’s behavior. We also provide the result for the strongly convex case in Appendix D.

4 GRADIENT DESCENT WITH POLYAK STEPSIZES

Next, we provide an improved analysis under (L0, L1)-smothness for celebrated Gradient Descent
with Polyak Stepsizes (GD-PS, Algorithm 2).

Algorithm 2 Gradient Descent with Polyak Stepsizes (GD-PS)

Input: starting point x0, number of iterations N , minimal value f(x∗) := minx∈Rd f(x)
1: for k = 0, 1, . . . , N − 1 do
2: xk+1 = xk − f(xk)−f(x∗)

∥∇f(xk)∥2 ∇f(xk)
3: end for

Output: xN

Theorem 4.1. Let Assumptions 1 with µ = 0 and 3 hold. Then, the iterates generated by GD-PS
satisfy the following implication:

∥∇f(xk)∥ ⩾
L0

L1
=⇒ ∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − ν2

16L2
1

. (16)

Moreover, the output after N steps the iterates satisfy
4L0

ν
∥xN+1 − x∗∥2 +

∑
k∈{0,1,...,N}\T

(
f(xk)− f(x∗)

)
⩽

4L0

ν
∥x0 − x∗∥2 − νL0T

4L2
1

, (17)

where T := {k ∈ {0, 1, . . . , N} | ∥∇f(xk)∥ ⩾ L0

L1
}, T := |T |, and if N > T − 1, it holds that

f(x̂N)− f(x∗) ⩽
4L0∥x0 − x∗∥2

ν(N − T + 1)
− νL0T

4L2
1(N − T + 1)

(18)

where x̂N ∈ {x0, x1, . . . , xN} is such that f(x̂N) = minx∈{x0,x1,...,xN} f(x). In particular, for

N >
16L2

1∥x
0−x∗∥2

ν2 − 1 inequality N > T − 1 is guaranteed and

f(x̂N)− f(x∗) ⩽
4L0∥x0 − x∗∥2

ν(N + 1)
. (19)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proof sketch. The proof is similar to the one for (L0, L1)-GD, see the details in Appendix E.

In other words, the above result shows that GD-PS has the same worst-case complexity as (L0, L1)-
GD, and the comparison with the results from (Koloskova et al., 2023; Takezawa et al., 2024; Li
et al., 2024a) that we provied after Theorem 3.1 is valid for GD-PS as well. However, in contrast
to (L0, L1)-GD, GD-PS requires to know f(x∗) only. In some cases, the optimal value is known
in advance, e.g., for over-parameterized problems (Vaswani et al., 2019a) f(x∗) = 0, and in such
situations GD-PS can be called parameter-free. The price for this is the potential non-monotonic
behavior of GD-PS, which we observed in our preliminary computer-aided analysis using PEPit
(Goujaud et al., 2024) even in the case of L-smooth functions. Therefore, unlike Theorem 3.1,
Theorem 4.1 does not provide last-iterate convergence rates in the convex case and also does not
imply that GD-PS has a clear two-stage behavior (although the iterates can be split into two groups
based on the norm of the gradient as well). We also provide the result for the strongly convex case in
Appendix E.

5 ACCELERATION: (L0, L1)-SIMILAR TRIANGLES METHOD

In this section, we present an accelerated version of (L0, L1)-GD called (L0, L1)-Similar Triangles
Method ((L0, L1)-STM, Algorithm 3). This method can be seen as an adaptation of STM (Gasnikov
& Nesterov, 2016) to the case of (L0, L1)-smooth functions. The main modification in comparison
to the standard STM is in Line 6: stepsize for GD-type step is now proportional to 1/Gk+1, where
Gk+1 is some upper bound on L0 +L1∥∇f(xk+1)∥, while in STM Gk+1 should be an upper bound
for the smoothness constant.

Algorithm 3 (L0, L1)-Similar Triangles Method ((L0, L1)-STM)

Input: starting point x0, number of iterations N , stepsize parameter η > 0
1: y0 = z0 = x0

2: Ak = 0
3: for k = 0, 1, . . . , N − 1 do
4: Set αk+1 = η(k+2)

2 and Ak+1 = Ak + αk+1

5: xk+1 = Aky
k+αk+1z

k

Ak+1

6: zk+1 = zk − αk+1

Gk+1
∇f(xk+1), where Gk+1 ⩾ L0 + L1∥∇f(xk+1)∥

7: yk+1 = Aky
k+αk+1z

k+1

Ak+1

8: end for
Output: yN

The next lemma is valid for any choice of Gk+1 ⩾ L0 + L1∥∇f(xk+1)∥.
Lemma 5.1. Let f satisfy Assumptions 1 with µ = 0 and 3. Then, the iterates generated by
(L0, L1)-STM with 0 < η ⩽ ν

2 , ν = e−ν satisfy for all N ⩾ 0

AN

(
f(yN)− f(x∗)

)
+
GN

2
R2

N ⩽
G1

2
R2

0 +

N−1∑
k=1

Gk+1 −Gk

2
R2

k︸ ︷︷ ︸
(20)

−
N−1∑
k=0

α2
k+1

4Gk+1
∥∇f(xk+1)∥2︸ ︷︷ ︸

(21)

,

where Rk := ∥zk − x∗∥ for all k ⩾ 0.

Since AN ⩾ ηN(N+3)
4 (see Lemma F.1) and the term from (21) is non-positive, the above lemma

gives an accelerated convergence rate, if we manage to bound the sum from (20). Unfortunately, in
the case of Gk+1 = L0 + L1∥∇f(xk+1)∥, it is unclear whether this sum is bounded due to the well-
known non-monotonic behavior (in particular, in terms of the gradient norm) of accelerated methods.
Nevertheless, if we enforce Gk+1 to be non-decreasing as a function of k, then from the above lemma
one can show that Rk remains bounded by R0 and all iterates generated by (L0, L1)-STM lie in the
ball centered at x∗ with radius R0. This observation is formalized in the theorem below (see the
complete proof in Appendix F).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 5.1. Let f satisfy Assumptions 1 with µ = 0 and 3. Then, the iterates generated by
(L0, L1)-STM with 0 < η ⩽ ν

2 , ν = e−ν , G1 = L0 + L1∥∇f(x0)∥, and

Gk+1 = max{Gk, L0 + L1∥∇f(xk+1)∥}, k ⩾ 0, (22)

satisfy

f(yN)− f(x∗) ⩽
2L0(1 + L1∥x0 − x∗∥ exp(L1∥x0 − x∗∥))∥x0 − x∗∥2

ηN(N + 3)
. (23)

In the special case ofL0-smooth functions (L1 = 0), the above result recovers the standard accelerated
convergence rate (Gasnikov & Nesterov, 2016). In the general (L0, L1)-smooth case, the rate is
also accelerated and implies an optimal O

(√
L0(1+L1R0 exp(L1R0))R

2
0/ε
)

in ε complexity. In the

case of (L0, L1)-smooth functions, the complexity O
(√

ℓR2
0/ε
)

from (Li et al., 2024a) derived for
Nesterov’s method applied to convex (r, ℓ)-smooth problem coincides with our result in the worst-
case. Indeed, in this special case, ℓ = L0 + 2L1G, where G ∼ ∥∇f(x0)∥ (Li et al., 2024a, Theorem
4.4). However, according to Lemma 2.1, ∥∇f(x0)∥ ∼ L0R0 exp(L1R0) in the worst case, implying
that ℓ ∼ L0(1 + 2L1R0 exp(L1R0)) in the worst case. Nevertheless, the derived complexity is
clearly not optimal if L1 is large, R0 is large, and ε is not too small since

√
L0(1+L1R0 exp(L1R0))R

2
0/ε

can be larger than max
{
L0R

2
0/ε, L2

1R
2
0

}
, i.e., (L0, L1)-GD and GD-PS can be faster in achieving

ε-solutiion for some values of L1, R0, and ε. Deriving a tight lower bound and optimal method for
convex (L0, L1)-smooth optimization remains an open problem.

6 ADAPTIVE GRADIENT DESCENT

In this section, we consider Adaptive Gradient Descent (AdGD, Algorithm 4) proposed by Malitsky
& Mishchenko (2020). In the original paper, the method is analyzed under the assumption that
the gradient of f is locally Lipschitz, i.e., for any compact set C gradient of f is assumed to be
bounded. Clearly, (L0, L1)-smoothness of f implies that ∇f is locally Lipschitz, e.g., this can be
deduced from (6). In particular, Malitsky & Mishchenko (2020) prove O(LD2

/N) convergence rate
for AdGD, where L is smoothness constant on the convex combination of {x∗, x0, x1, . . .}: this
set is bounded since the authors prove that AdGD does not leave ball centered at x∗ with radius
D > 0 such that D2 := ∥x1−x∗∥2+ 1

2∥x
1−x0∥2+2λ1θ1(f(x

0)− f(x∗)). Moreover, they derive
∥xk − xk−1∥2 ⩽ 2D2 for all k ⩾ 1.

Algorithm 4 Adaptive Gradient Descent (Malitsky & Mishchenko, 2020)

1: Input: x0 ∈ Rd, λ0 > 0, θ0 = +∞, γ ⩽ 1
2

2: x1 = x0 − λ0∇f(x0)
3: for k = 1, 2, . . . do
4: λk = min

{√
1 + θk−1λk−1,

γ∥xk−xk−1∥
∥∇f(xk)−∇f(xk−1)∥

}
5: xk+1 = xk − λk∇f(xk)
6: θk = λk

λk−1

7: end for

In the case of (L0, L1)-smoothness, constant L can be estimated explicitly: in view of the mentioned
upper bounds on ∥xk − x∗∥ and ∥xk − xk−1∥, we have

∥∇f(xk)∥
(6)
⩽ L0 exp(L1∥xk − x∗∥)∥xk − x∗∥ ⩽ L0 exp(L1D)D, (24)

which allows us to lower-bound γ∥xk−xk−1∥
∥∇f(xk)−∇f(xk−1)∥ and λk as γ

L0(1+L1D exp (L1D)) exp (
√
2L1D)

for

all k ⩾ 1. Then, following the proof by Malitsky & Mishchenko (2020), we get the following rate
(for the definition of x̂N and the detailed statement of the result we refer to Appendix G):

f(x̂N)− f(x∗) ⩽
L0(1 + L1D exp (L1D)) exp

(√
2L1D

)
D2

N
. (25)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Although this result shows that AdGD has the same rate 1/N of convergence for smooth and (L0, L1)-
smooth functions, constant L0(1 + L1D exp (L1D)) exp

(√
2L1D

)
appearing in the upper bound

can be huge. To address this issue, we derive a refined convergence result for AdGD.
Theorem 6.1. Let Assumptions 1 with µ = 0 and 3 hold. For all N ⩾ 1 we define point x̂N :=
1

SN

(
λN (1 + θN) +

∑N
k=1 wkx

k
)

, where wk := λk(1+ θk)−λk+1θk+1, SN := λ1θ1+
∑N

k=1 λk,

and {xk}k⩾0 are the iterates produced by AdGD with γ = 1/4. Then, for N >
√
2N(m +

1)L1 exp (2L1D)D iterate x̂N satisfies

f(x̂N)− f(x∗) ⩽
2L0 exp(2L1D)D2

N −
√
2N(m+ 1)L1 exp(2L1D)D

, (26)

where D > 0 and D2 := ∥x1 − x∗∥2 + 3
4∥x

1 − x0∥2 + 2λ1θ1(f(x
0) − f(x∗)), m := 1 +

log√2

⌈
(1+L1D exp (2L1D))

2

⌉
. In particular, for N ⩾ 8(m+ 1)2L2

1 exp (4L1D)D2, we have

f(x̂N)− f(x∗) ⩽
4L0 exp (2L1D)D2

N
. (27)

In addition, if Assumption 2 holds, one can formally replace exp(2L1D) in (26) and (27) with 1.

The above result states that for sufficiently large N AdGD converges at least ∼ 1 + L1D exp (L1D)
faster than the upper bound from (25). This is a noticeable factor: for example, if L1 = 1, D = 10, it
is of the order 2 · 105. Moreover, in contrast to (25), Theorem 6.1 does not follow from the one given
by Malitsky & Mishchenko (2020). To achieve it, we use γ = 1/4, get a new potential function

Φk := ∥xk − x∗∥2 + 1

4
∥xk − xk−1∥2 + 2λkθk(f(x

k−1)− f(x∗)) +
1

2

k−1∑
i=0

∥xi+1 − xi∥2, (28)

and show that Φk+1 ⩽ Φk ∀k ⩾ 1. In contrast, the potential function from (Malitsky & Mishchenko,
2020) does not have term 1

2

∑k−1
i=0 ∥xi+1 −xi∥2, which is the key for obtaining a better guarantee un-

der (L0, L1)-smoothness. Nevertheless, it remains unclear whether exp (L1D) can be removed from
bound (27): of the main obstacles for showing this is potential non-monotonicity of {∥∇f(xk)∥}k⩾0.
We notice that the lower bound from (Hübler et al., 2024) for the class of parameter-agnostic Gener-
alized Normalized Momentum Methods also has an exponential dependence on L1. We also provide
the analysis of AdGD under Assumption 2 for strongly convex problems in Appendix G.3.

7 STOCHASTIC EXTENSIONS

In this section, we consider the finite-sum minimization problem, i.e., we assume that f(x) :=
1
n

∑n
i=1 fi(x). Problems of this type are typical for ML applications (Shalev-Shwartz & Ben-David,

2014), where fi(x) represents the loss function evaluated for i-th example in the dataset and x are
parameters of the model. Since the size of the dataset n is usually large, stochastic first-order methods
such as Stochastic Gradient Descent (Robbins & Monro, 1951) are the methods of choice for this
class of problems. However, to proceed, we need to impose some assumptions on functions {fi}ni=1.
Assumption 4. For all i = 1, . . . , n function fi is convex and symmetrically (L0, L1)-smooth, i.e.,
inequalities (2) with µ = 0 and (4) for function fi as well. Moreover, we assume that there exists
x∗ ∈ Rd such that x∗ ∈ argminx∈Rd fi(x) for all i = 1, . . . , n, i.e., functions {fi}ni=1 have a
common minimizer.

The first part of the assumption (convexity and (L0, L1)-smoothness of all {fi}ni=1) is a natural
generalization of convexity and (L0, L1)-smoothness of f to the finite-sum case. Next, the existence
of common minimizer x∗ for all {fi}ni=1 is a typical assumption for over-parameterized models
(Belkin et al., 2019; Liang & Rakhlin, 2020; Zhang et al., 2021; Bartlett et al., 1998) and used in
several recent works on the analysis of stochastic methods (Vaswani et al., 2019a;b; Loizou et al.,
2021; Gower et al., 2021). Although Assumption 4 does not cover all possibly interesting stochastic
scenarios, it does allow the variance of the stochastic gradients to depend on x and grow with the
growth of ∥x− x∗∥, which is typical for DL, unlike the standard bounded variance assumption.

For such problems, we consider a direct extension of (L0, L1)-GD called (L0, L1)-Stochastic Gradi-
ent Descent ((L0, L1)-SGD, Algorithm 5 in Appendix H.1).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Iteration

10 20
10 17
10 14
10 11
10 8
10 5
10 2
101

f(x
)

f(x
*)

x0 x * = 1

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

0 200 400 600 800 1000
Iteration

10 20

10 16

10 12

10 8

10 4

100

104

f(x
)

f(x
*)

x0 x * = 10
(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

0 200 400 600 800 1000
Iteration

10 20
10 16
10 12
10 8
10 4
100
104
108

f(x
)

f(x
*)

x0 x * = 100

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

Figure 1: The last iterate discrepancy of algorithms on the one-variable polynomial function f(x) =
x4. For the details and additional results, we refer to Appendix I.

Theorem 7.1. Let Assumption 4 hold. Then, the iterates generated by (L0, L1)-SGD with 0 < η ⩽ ν
2 ,

ν = e−ν after N iterations satisfy

min
k=0,...,N

E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽

2L0∥x0 − x∗∥2

η(N + 1)
. (29)

As in the deterministic case, the upper bound is proportional toL0 and 1/(N+1) and does not depend on
a smoothness constant on some ball around the solution. However, one can notice that the convergence
criterion in the above result is quite non-standard: typically, the results are given in terms of
E
[
f(xk)− f(x∗)

]
. This happens because although functions {fi}ni=1 have a common minimizer, we

cannot guarantee that for some k0 and any k ⩾ k0 we have ∥∇fi(xk)∥ ⩽ L0/L1 with probability 1 for
all i ∈ {1, . . . , n}, i.e., the method does not have to converge uniformly for all samples. This implies
that with some small probability f(xk)−f(x∗) can be larger than νL0/(4nL2

1) for any k = 0, 1, . . . , N

and any N ⩾ 0. However, in view of (29), this probability has to be smaller than 8nL2
1∥x

0−x∗∥2

ην(N+1) , i.e.,

with probability at least 1− 8nL2
1∥x

0−x∗∥2

ην(N+1) for k(N) such that E
[
min

{
νL0

4nL2
1
, f(xk(N))− f(x∗)

}]
=

mink=0,...,N E
[
min

{
νL0

4nL2
1
, f(xk)− f(x∗)

}]
we have f(xk(N))− f(x∗) ⩽ νL0

4nL2
1

, which is small
for large enough n.

Next, we consider SGD-PS proposed by Loizou et al. (2021) (Algorithm 6 in Appendix H.2). In
contrast to the deterministic case, SGD-PS requires to know {fi(x∗)}ni=1 in advance. Nevertheless,
these values equal 0 for some existing over-parameterized models, and thus, the method can be
applied in such cases. Under the same assumptions, we also derive a similar result for SGD-PS.
Theorem 7.2. Let Assumption 4 hold. Then, the iterates of SGD-PS after N iterations satisfy

min
k=0,...,N

E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽

4L0∥x0 − x∗∥2

ν(N + 1)
. (30)

The result is very similar to the one we derive for (L0, L1)-SGD. Therefore, the discussion provided
after Theorem 7.1 (with η = ν/2) is valid for the above result as well.

8 CONCLUSION AND FUTURE WORK

In this paper, we derive improved convergence rates for (L0, L1)-GD and GD-PS, derive convergence
guarantees for the new accelerated method called (L0, L1)-STM, and also derive a new result for
AdGD in the case of (strongly) convex (L0, L1)-smooth optimization. Our results for (L0, L1)-GD
and GD-PS depend neither on ∥∇f(x0)∥ nor on f(x0)− f(x∗) nor on exponential functions of R0.
We also prove new results for the stochastic extensions of (L0, L1)-GD and GD-PS in the case of
finite sums of functions having a common minimizer.

Nevertheless, several important questions remain open. One of these questions is the lower bounds
for the class of (strongly) convex (L0, L1)-smooth functions and optimal methods for this class. Next,
it is unclear whether the bound (27) derived for AdGD is tight. Finally, it would be interesting to
develop stochastic extensions of (L0, L1)-GD and GD-PS with strong theoretical guarantees beyond
the case of finite sums with shared minimizer.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Farshed Abdukhakimov, Chulu Xiang, Dmitry Kamzolov, and Martin Takáč. Stochastic gradient
descent with preconditioned polyak step-size. Computational Mathematics and Mathematical
Physics, 64(4):621–634, 2024.

Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E Schapire. Boosting the margin: A new
explanation for the effectiveness of voting methods. The annals of statistics, 26(5):1651–1686,
1998.

Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond lipschitz gradient
continuity: first-order methods revisited and applications. Mathematics of Operations Research,
42(2):330–348, 2017.

Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation contradict
statistical optimality? In The 22nd International Conference on Artificial Intelligence and Statistics,
pp. 1611–1619. PMLR, 2019.

Leonard Berrada, Andrew Zisserman, and M. Pawan Kumar. Training neural networks for and by
interpolation. In International Conference on Machine Learning, 2020.

Aleksandr Beznosikov and Martin Takáč. Random-reshuffled sarah does not need a full gradient
computations. In Optimization for Machine Learning Workshop @ NeurIPS 2021, 2021.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points ii: first-order methods. Mathematical Programming, 185(1):315–355, 2021.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd: A
geometric perspective. Advances in Neural Information Processing Systems, 33:13773–13782,
2020.

Ziyi Chen, Yi Zhou, Yingbin Liang, and Zhaosong Lu. Generalized-smooth nonconvex optimization is
as efficient as smooth nonconvex optimization. In International Conference on Machine Learning,
pp. 5396–5427. PMLR, 2023.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signsgd. Advances in neural information processing
systems, 35:9955–9968, 2022.

Ashok Cutkosky and Harsh Mehta. High-probability bounds for non-convex stochastic optimization
with heavy tails. Advances in Neural Information Processing Systems, 34:4883–4895, 2021.

Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimization for deep
learning. Advances in Neural Information Processing Systems, 32, 2019.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in neural information
processing systems, 27, 2014.

Ilyas Fatkhullin, Niao He, and Yifan Hu. Stochastic optimization under hidden convexity. arXiv
preprint arXiv:2401.00108, 2023.

Matthew Faw, Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Beyond uniform smooth-
ness: A stopped analysis of adaptive sgd. In The Thirty Sixth Annual Conference on Learning
Theory, pp. 89–160. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leonardo Galli, Holger Rauhut, and Mark Schmidt. Don't be so monotone: Relaxing stochastic line
search in over-parameterized models. In Advances in Neural Information Processing Systems,
2023.

Alexander Gasnikov and Yurii Nesterov. Universal fast gradient method for stochastic composit
optimization problems. arXiv preprint arXiv:1604.05275, 2016.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Eduard Gorbunov, Marina Danilova, and Alexander Gasnikov. Stochastic optimization with heavy-
tailed noise via accelerated gradient clipping. Advances in Neural Information Processing Systems,
33:15042–15053, 2020.

Eduard Gorbunov, Marina Danilova, Innokentiy Shibaev, Pavel Dvurechensky, and Alexander
Gasnikov. Near-optimal high probability complexity bounds for non-smooth stochastic op-
timization with heavy-tailed noise. arXiv preprint arXiv:2106.05958, 2021. URL https:
//arxiv.org/pdf/2106.05958.pdf.

Baptiste Goujaud, Céline Moucer, François Glineur, Julien M Hendrickx, Adrien B Taylor, and
Aymeric Dieuleveut. PEPit: computer-assisted worst-case analyses of first-order optimization
methods in python. Mathematical Programming Computation, pp. 1–31, 2024.

Robert Gower, Othmane Sebbouh, and Nicolas Loizou. SGD for structured nonconvex functions:
Learning rates, minibatching and interpolation. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1315–1323. PMLR, 2021.

Robert M Gower, Mathieu Blondel, Nidham Gazagnadou, and Fabian Pedregosa. Cutting some slack
for sgd with adaptive polyak stepsizes. arXiv preprint arXiv:2202.12328, 2022.

Elad Hazan and Sham M. Kakade. Revisiting the Polyak step size. In arXiv, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Samuel Horváth, Konstantin Mishchenko, and Peter Richtárik. Adaptive learning rates for faster
stochastic gradient methods. arXiv preprint arXiv:2208.05287, 2022.

Florian Hübler, Junchi Yang, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed
smoothness. In International Conference on Artificial Intelligence and Statistics, pp. 4861–4869.
PMLR, 2024.

Jikai Jin, Bohang Zhang, Haiyang Wang, and Liwei Wang. Non-convex distributionally robust
optimization: Non-asymptotic analysis. Advances in Neural Information Processing Systems, 34:
2771–2782, 2021.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust
optimization. In International Conference on Machine Learning, pp. 5311–5319. PMLR, 2021.

Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping:
Stochastic bias and tight convergence guarantees. In International Conference on Machine
Learning, 2023.

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
optimization under generalized smoothness. Advances in Neural Information Processing Systems,
36, 2024a.

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assumptions.
Advances in Neural Information Processing Systems, 36, 2024b.

12

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/pdf/2106.05958.pdf
https://arxiv.org/pdf/2106.05958.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shuang Li, William J Swartworth, Martin Takáč, Deanna Needell, and Robert M Gower. Sp2: A
second order stochastic polyak method. ICLR 2023, 2022.

Tengyuan Liang and Alexander Rakhlin. Just interpolate. The Annals of Statistics, 48(3):1329–1347,
2020.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:
85–116, 2022.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pp. 1306–1314. PMLR, 2021.

Vien V Mai and Mikael Johansson. Stability and convergence of stochastic gradient clipping: Beyond
lipschitz continuity and smoothness. In International Conference on Machine Learning, pp.
7325–7335. PMLR, 2021.

Grigory Malinovsky, Peter Richtárik, Samuel Horváth, and Eduard Gorbunov. Byzantine robustness
and partial participation can be achieved simultaneously: Just clip gradient differences. arXiv
preprint arXiv:2311.14127, 2023.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. In Interna-
tional Conference on Machine Learning, pp. 6702–6712. PMLR, 2020.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. In International Conference on Learning Representations, 2018.

Arkadi Semenovich Nemirovski and David Borisovich Yudin. Problem Complexity and Method
Efficiency in Optimization. A Wiley-Interscience publication. Wiley, 1983.

Arkaddii S Nemirovskii and Yu E Nesterov. Optimal methods of smooth convex minimization. USSR
Computational Mathematics and Mathematical Physics, 25(2):21–30, 1985.

Yurii Nesterov. Lectures on Convex Optimization. Springer, 2018.

Yurii Evgenievich Nesterov. A method for solving the convex programming problem with convergence
rate O(1/k2). In Dokl. akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Lam Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for machine
learning problems using stochastic recursive gradient. In In 34th International Conference on
Machine Learning, ICML 2017, 2017.

Lam M Nguyen, Katya Scheinberg, and Martin Takáč. Inexact sarah algorithm for stochastic
optimization. Optimization Methods and Software, 36(1):237–258, 2021.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning, 2013.

Vivak Patel and Albert S Berahas. Gradient descent in the absence of global lipschitz continuity of
the gradients. arXiv preprint arXiv:2210.02418, 2022.

Vivak Patel, Shushu Zhang, and Bowen Tian. Global convergence and stability of stochastic gradient
descent. Advances in Neural Information Processing Systems, 35:36014–36025, 2022.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964.

B.T. Polyak. Introduction to Optimization. Optimization Software, 1987.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Abdurakhmon Sadiev, Marina Danilova, Eduard Gorbunov, Samuel Horváth, Gauthier Gidel, Pavel
Dvurechensky, Alexander Gasnikov, and Peter Richtárik. High-probability bounds for stochastic
optimization and variational inequalities: the case of unbounded variance. In International
Conference on Machine Learning, 2023.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162:83–112, 2017.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Zheng Shi, Abdurakhmon Sadiev, Nicolas Loizou, Peter Richtárik, and Martin Takáč. Ai-sarah:
Adaptive and implicit stochastic recursive gradient methods. 2023.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp. 1139–1147.
PMLR, 2013.

Yuki Takezawa, Han Bao, Ryoma Sato, Kenta Niwa, and Makoto Yamada. Polyak meets parameter-
free clipped gradient descent. arXiv preprint arXiv:2405.15010, 2024.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron. In The 22nd international conference on
artificial intelligence and statistics, pp. 1195–1204. PMLR, 2019a.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. Advances in
neural information processing systems, 32, 2019b.

Bohan Wang, Yushun Zhang, Huishuai Zhang, Qi Meng, Zhi-Ming Ma, Tie-Yan Liu, and Wei Chen.
Provable adaptivity in adam. arXiv preprint arXiv:2208.09900, 2022.

Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for non-convex
objectives: Simple proofs and relaxed assumptions. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 161–190. PMLR, 2023.

Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved analysis of clipping algorithms for
non-convex optimization. In Advances in Neural Information Processing Systems, 2020a.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning
Representations, 2020b.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In Advances in
Neural Information Processing Systems, 2020c.

Shen-Yi Zhao, Yin-Peng Xie, and Wu-Jun Li. On the convergence and improvement of stochastic
normalized gradient descent. Science China Information Sciences, 64:1–13, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

1.1 Problem Setup . 2

1.2 Related Works . 3

1.3 Our Contribution . 3

2 Technical Lemmas 4

3 Smoothed Gradient Clipping 5

4 Gradient Descent with Polyak Stepsizes 6

5 Acceleration: (L0, L1)-Similar Triangles Method 7

6 Adaptive Gradient Descent 8

7 Stochastic Extensions 9

8 Conclusion and Future Work 10

A Extra Related Work 16

B Examples of (L0, L1)-Smooth Functions 17

C Proof of Lemma 2.2 19

D Missing Proofs for (L0, L1)-GD 21

E Missing Proofs for Gradient Descent with Polyak Stepsizes 25

F Missing Proofs for (L0, L1)-Similar Triangles Method 27

G Missing Proofs for Adaptive Gradient Descent 30

G.1 Derivation of (25) . 30

G.2 Proof of Theorem 6.1 . 31

G.3 Convergence in the Strongly Convex Case . 34

H Stochastic Extensions: Missing Proofs and Details 37

H.1 (L0, L1)-Stochastic Gradient Descent . 37

H.2 Stochastic Gradient Descent with Polyak Stepsizes 39

I Numerical Experiments 41

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A EXTRA RELATED WORK

Gradient clipping. As follows from the above discussion, gradient clipping is a useful tool for
handling possible non-smoothness of the objective, which is also confirmed in practice (Goodfellow
et al., 2016). However, it is worth mentioning that clipping has also other applications. In particular,
gradient clipping is used to handle heavy-tailed noise (Zhang et al., 2020c; Gorbunov et al., 2020;
Cutkosky & Mehta, 2021), to achieve differentiable privacy (Abadi et al., 2016; Chen et al., 2020),
and also to tolerate Byzantine attacks (Karimireddy et al., 2021; Malinovsky et al., 2023).

Polyak Stepsizes. GD with Polyak Stepsizes (GD-PS) is a celebrated approach for making GD
parameter-free (under the assumption that f(x∗) is known) (Polyak, 1987). In particular, Hazan
& Kakade (2019) show that GD-PS achieves the same rate as GD with optimally chosen constant
stepsize (up to a constant factor) for convex Lipschitz functions, convex smooth functions, and
strongly convex smooth functions. Moreover, some recent works (Loizou et al., 2021; Galli et al.,
2023; Berrada et al., 2020; Horváth et al., 2022; Gower et al., 2022; Abdukhakimov et al., 2024; Li
et al., 2022) also consider different stochastic extensions of GD-PS.

Other Notions of Generalized Smoothness. (L0, L1)-smoothness belongs to the class of as-
sumptions on so-called generalized smoothness. Classical assumptions of this type include Hölder
continuity of the gradient (Nemirovski & Yudin, 1983; Nemirovskii & Nesterov, 1985), relative
smoothness (Bauschke et al., 2017), and local smoothness, i.e., Lipschitzness of the gradient on
any compact (Malitsky & Mishchenko, 2020; Patel & Berahas, 2022; Patel et al., 2022; Gorbunov
et al., 2021; Sadiev et al., 2023). Although these assumptions are quite broad (e.g., for local smooth-
ness, it is sufficient to assume just continuity of the gradient), they do not relate the growth of
non-smoothness/local Lipschitz constant of the gradient with the growth of the gradient or distance to
the solution. From this perspective, assumptions such as polynomial growth of the gradient norm (Mai
& Johansson, 2021), α-symmetric (L0, L1)-smoothness (Chen et al., 2023) which also introduces the
key technical tools, and (r, ℓ)-smoothness (Li et al., 2024a) are closer to Assumption 3 than local
Lipschitz/Hölder continuity of the gradient and relative smoothness.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B EXAMPLES OF (L0, L1)-SMOOTH FUNCTIONS

Example B.1 (Power of Norm). Let f(x) = ∥x∥2n, where n is a positive integer. Then, f(x) is
convex and (2n, 2n− 1)-smooth. Moreover, f(x) is not L-smooth for n ⩾ 2.

Proof. Convexity of f follows from convexity and monotonicity of φ(t) = t2n for t ⩾ 0 and
convexity of h(x) = ∥x∥, since f(x) = φ(h(x)). To show (L0, L1)-smoothness, we compute
gradient and Hessian of f(x):

∇f(x) = 2n∥x∥2(n−1)x,

∇2f(x) =

{
2I, if n = 1

4n(n− 1)∥x∥2(n−2)xx⊤ + 2n∥x∥2(n−1)I, if n > 1.

Therefore,

∥∇f(x)∥ = 2n∥x∥2n−1,

∥∇2f(x)∥2 =

{
2, if n = 1

2n(2n− 1)∥x∥2(n−1), if n > 1

= 2n(2n− 1)∥x∥2n−2,

which implies

∥∇2f(x)∥2 − (2n− 1)∥∇f(x)∥ = 2n(2n− 1)∥x∥2n−2(1− ∥x∥).

If ∥x∥ ⩾ 1, then we have ∥∇2f(x)∥2 ⩽ (2n− 1)∥∇f(x)∥. If ∥x∥ ⩽ 1, then

∥∇2f(x)∥2 − (2n− 1)∥∇f(x)∥ ⩽ 2n(2n− 1) max
t∈[0,1]

ψ(t),

where ψ(t) := t2n−2(1 − t). For n = 1 we have maxt∈[0,1] ψ(t) = 1 and ∥∇2f(x)∥2 − (2n −

1)∥∇f(x)∥ ⩽ 2. For n > 1 we have maxt∈[0,1] ψ(t) =
(

2n−2
2n−1

)2n−2
1

2n−1 ⩽ 1
2n−1 , which gives

∥∇2f(x)∥2 − (2n− 1)∥∇f(x)∥ ⩽ 2n. Putting two cases together, we get

∥∇2f(x)∥2 ⩽ 2n+ (2n− 1)∥∇f(x)∥

that is equivalent to (2n, 2n− 1)-smoothness (Chen et al., 2023, Theorem 1). Non-smoothness of f
for n > 1 follows from the unboundedness of ∥∇2f(x)∥2 in this case.

Example B.2 (Exponent of the Inner Product). Function f(x) = exp(a⊤x) for some a ∈ Rd is
convex, (0, ∥a∥)-smooth, but not L-smooth for any L ⩾ 0.

Proof. Let us compute the gradient and Hessian of f :

∇f(x) = a exp(a⊤x), ∇2f(x) = aa⊤ exp(a⊤x).

Clearly ∇2f(x) ≽ 0, meaning that f(x) is convex. Moreover,

∥∇2f(x)∥2 = ∥a∥2 exp(a⊤x) = ∥a∥ · ∥∇f(x)∥

that is equivalent to (0, ∥a∥)-smoothness (Chen et al., 2023, Theorem 1). When a ̸= 0 function f has
unbounded Hessian, i.e., f is not L-smooth for any L ⩾ 0 in this case.

Example B.3 (Logistic Function). Consider logistic function: f(x) = log
(
1 + exp(−a⊤x)

)
, where

a ∈ Rd is some vector. Function f is (L0, L1)-smooth with L0 = 0 and L1 = ∥a∥.

Proof. The gradient and the Hessian of f(x) equal

∇f(x) = − a

1 + exp(a⊤x)
, ∇2f(x) =

aa⊤(
exp

(
− 1

2a
⊤x
)
+ exp

(
1
2a

⊤x
))2 .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Moreover,

∥∇f(x)∥ =
∥a∥

1 + exp(a⊤x)
, ∥∇2f(x)∥2 =

∥a∥2(
exp

(
− 1

2a
⊤x
)
+ exp

(
1
2a

⊤x
))2 .

This leads to

∥∇2f(x)∥
∥∇f(x)∥

=
1 + exp(a⊤x)(

exp
(
− 1

2a
⊤x
)
+ exp

(
1
2a

⊤x
))2 ∥a∥

=
1 + exp(a⊤x)

exp (−a⊤x) (1 + exp (a⊤x))
2 ∥a∥

=
1

1 + exp(−a⊤x)
∥a∥ ⩽ ∥a∥,

implying that ∥∇2f(x)∥ ⩽ ∥a∥ · ∥∇f(x)∥ for all x ∈ Rd. This condition is equivalent to (0, ∥a∥)-
smoothness (Chen et al., 2023, Theorem 1).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C PROOF OF LEMMA 2.2

Lemma C.1 (Lemma 2.2). Let Assumption 3 hold and ν satisfy5 ν = e−ν . Then, the following
statements hold.

1. For f∗ := infx∈Rd f(x), arbitrary x ∈ Rd, and ν such that ν exp(ν) = 1, we have

ν∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
⩽ f(x)− f∗. (31)

2. If additionally Assumption 1 with µ = 0 holds, then for any x, y ∈ Rd such that

L1∥x− y∥ exp (L1∥x− y∥) ⩽ 1, (32)

we have
ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
⩽ f(y)− f(x)− ⟨∇f(x), y − x⟩, (33)

and

ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
+
ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(x)∥)
⩽ ⟨∇f(x)−∇f(y), x− y⟩. (34)

Proof. To prove (31), we apply (7) with y = x− ν
L0+L1∥∇f(x)∥∇f(x) for given x ∈ Rd and ν such

that ν exp(ν) = 1:

f∗ ⩽ f(y)
(7)
⩽ f(x) + ⟨∇f(x), y − x⟩+ L0 + L1∥∇f(x)∥

2
exp(L1∥x− y∥)∥x− y∥2

= f(x)− ν∥∇f(x)∥2

L0 + L1∥∇f(x)∥

+
L0 + L1∥∇f(x)∥

2
· exp

(
L1ν∥∇f(x)∥

L0 + L1∥∇f(x)∥

)
· ν2∥∇f(x)∥2

(L0 + L1∥∇f(x)∥)2

⩽ f(x)− ν∥∇f(x)∥2

L0 + L1∥∇f(x)∥
+

ν∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
· ν exp(ν)

ν=e−ν

⩽ f(x)− ν∥∇f(x)∥2

2(L0 + L1∥∇f(x)∥)
.

Rearranging the terms, we get (31).

Next, we will prove (33) and (34) under Assumptions 1 and 3. The proof follows similar steps to the
one that holds for standard L-smoothness (i.e., cocoercivity of the gradient) (Nesterov, 2018):

∥∇f(x)−∇f(y)∥2 ⩽ L⟨∇f(x)−∇f(y), x− y⟩.

That is, for given x we consider function φx(y) := f(y)−⟨∇f(x), y⟩. This function is differentiable
and ∇φx(y) = ∇f(y)−∇f(x). Moreover, for any u, y ∈ Rd we have

∥∇φx(u)−∇φx(y)∥ = ∥∇f(u)−∇f(y)∥
(6)
⩽ (L0 + L1∥∇f(u)∥) ∥u−y∥ exp(L1∥u− y∥), (35)

Next, for given x and for any y, u ∈ Rd we define function ψx,y,u(t) : R → R as ψx,y,u(t) :=
φx(u + t(y − u)). Then, by definition of ψx,y,u, we have φx(u) = ψx,y,u(0), φx(y) = ψx,y,u(1),

5One can check numerically that 0.56 < ν < 0.57.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

and ψ′
x,y,u(t) = ⟨∇φx(u+ t(y − u)), y − u⟩. Therefore, using Newton-Leibniz formula, we derive

φx(y)− φx(u) = ψx,y,u(1)− ψx,y,u(0) =

1∫
0

ψ′
x,y,u(t)dt

=

∫ 1

0

⟨∇φx(u+ t(y − u)), y − u⟩dt

= ⟨∇φx(u), y − u⟩+
∫ 1

0

⟨∇φx(u+ t(y − u))−∇φx(u), y − u⟩dt

⩽ ⟨∇φx(u), y − u⟩+
∫ 1

0

∥∇φx(u+ t(y − u))−∇φx(u)∥ · ∥u− y∥dt

(35)
⩽ ⟨∇φx(u), y − u⟩+

∫ 1

0

(L0 + L1∥∇f(u)∥) exp(tL1∥u− y∥)∥u− y∥2tdt

⩽ ⟨∇φx(u), y − u⟩+ L0 + L1∥∇f(u)∥
2

exp(L1∥u− y∥)∥u− y∥2

that implies ∀u, y ∈ Rd

φx(y) ⩽ φx(u) + ⟨∇φx(u), y − u⟩+ L0 + L1∥∇f(u)∥
2

exp(L1∥u− y∥)∥u− y∥2. (36)

To proceed, we will need the following inequality:

ν exp

(
ν

L1∥∇φx(u)∥
L0 + L1∥∇f(u)∥

)
= ν exp

(
ν
L1∥∇f(u)−∇f(x)∥
L0 + L1∥∇f(u)∥

)
(6)
⩽ ν exp

(
ν
L1∥x− u∥ exp(L1∥x− u∥)(L0 + L1∥∇f(u)∥)

L0 + L1∥∇f(u)∥

)
= ν exp(νL1∥x− u∥ exp(L1∥x− u∥))

(32)
⩽ ν exp(ν)

ν=e−ν

= 1. (37)

Using the above bound and (36) with y = u− ν
L0+L1∥∇f(u)∥∇φx(u), we derive

φx

(
u− ν

L0 + L1∥∇f(u)∥
∇φx(u)

)
(36)
⩽ φx(u)− ν

∥∇φx(u)∥2

L0 + L1∥∇f(u)∥
+

ν2∥∇φx(u)∥2

2(L0 + L1∥∇f(u)∥)
exp

(
ν

L1∥∇φx(u)∥
L0 + L1∥∇f(u)∥

)
(37)
⩽ φx(u)− ν

∥∇φx(u)∥2

L0 + L1∥∇f(u)∥
+

ν∥∇φx(u)∥2

2(L0 + L1∥∇f(u)∥)

⩽ φx(u)− ν
∥∇φx(u)∥2

2(L0 + L1∥∇f(u)∥)
,

Taking into account that x is an optimum for φx(u) (∇φx(x) = 0) and the definition of φx(u), we
get the following inequality from the above one:

f(x)− ⟨∇f(x), x⟩ ⩽ f(u)− ⟨∇f(x), u⟩ − ν∥∇f(x)−∇f(u)∥2

2(L0 + L1∥∇f(u)∥)
, ∀x, u ∈ Rd,

which is equivalent to

ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
⩽ f(y)− f(x)− ⟨∇f(x), y − x⟩, ∀x, y ∈ Rd.

Therefore, we established (33). Moreover, by swapping x and y in the above inequality, we also get

ν∥∇f(x)−∇f(y)∥2

2(L0 + L1∥∇f(y)∥)
⩽ f(x)− f(y)− ⟨∇f(y), x− y⟩, ∀x, y ∈ Rd.

To get (34), it remains to sum the above two inequalities.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D MISSING PROOFS FOR (L0, L1)-GD

Lemma D.1 (Lemma 3.1: monotonicity of function value). Let Assumption 3 hold. Then, for all
k ⩾ 0 the iterates generated by (L0, L1)-GD with η ⩽ ν, ν = e−ν satisfy

f(xk+1) ⩽ f(xk)− η∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)
⩽ f(xk). (38)

Proof. Applying (7) with y = xk+1 and x = xk and using

exp(L1∥xk+1 − xk∥) = exp

(
η

L1∥∇f(xk)∥
L0 + L1∥∇f(xk)∥

)
⩽ exp(η) (39)

we get

f(xk+1) ⩽ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L0 + L1∥∇f(xk)∥
2

∥xk+1 − xk∥2 exp(η)

= f(xk)− η∥∇f(xk)∥2

L0 + L1∥∇f(xk)∥
+
η2 exp(η)∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)

= f(xk)− η

(
1− η exp(η)

2

)
∥∇f(xk)∥2

L0 + L1∥∇f(xk)∥
η⩽ν

⩽ f(xk)− η

(
1− ν exp(ν)

2

)
∥∇f(xk)∥2

L0 + L1∥∇f(xk)∥
ν=e−ν

= f(xk)− η∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)
⩽ f(xk),

which finishes the proof.

Lemma D.2 (Lemma 3.2: monotonicity of gradient norm). Let Assumptions 1 with µ = 0 and 3
hold. Then, for all k ⩾ 0 the iterates generated by (L0, L1)-GD with η ⩽ ν, ν = e−ν satisfy

∥∇f(xk+1)∥ ⩽ ∥∇f(xk)∥. (40)

Proof. For convenience, we introduce the following notation: ωk := L0 + L1∥∇f(xk)∥ for all
k ⩾ 0. Since

L1∥xk+1 − xk∥ exp
(
L1∥xk+1 − xk∥

)
=

ηL1∥∇f(xk)∥
L0 + L1∥∇f(xk)∥

exp

(
ηL1∥∇f(xk)∥

L0 + L1∥∇f(xk)∥

)
⩽ η exp(η)

η⩽ν

⩽ ν exp(ν)
ν=e−ν

= 1,

the assumptions for the second part of Lemma 2.2 are satisfied for x = xk+1 and y = xk, and
inequality (11) implies(

ν

2ωk
+

ν

2ωk+1

)
∥∇f(xk+1)−∇f(xk)∥2 ⩽ ⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩

= − η

ωk
⟨∇f(xk+1)−∇f(xk),∇f(xk)⟩,

where in the second line we use xk+1 = xk − η
ωk

∇f(xk). Multiplying both sides by 2ωk/ν and
rearranging the terms, we get(

1 +
ωk

ωk+1

)(
∥∇f(xk+1)∥2 + ∥∇f(xk)∥2 − 2⟨∇f(xk+1),∇f(xk)⟩

)
⩽ −2η

ν
· ⟨∇f(xk+1),∇f(xk)⟩+ 2η

ν
· ∥∇f(xk)∥2,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

which is equivalent to(
1 +

ωk

ωk+1

)
∥∇f(xk+1)∥2 ⩽

(
1 +

ωk

ωk+1

)
∥∇f(xk)∥2

+2

(
1 +

ωk

ωk+1
− η

ν

)
⟨∇f(xk+1),∇f(xk)⟩

−2

(
1 +

ωk

ωk+1
− η

ν

)
∥∇f(xk)∥2

=

(
1 +

ωk

ωk+1

)
∥∇f(xk)∥2

+2

(
1 +

ωk

ωk+1
− η

ν

)
⟨∇f(xk+1)−∇f(xk),∇f(xk)⟩

=

(
1 +

ωk

ωk+1

)
∥∇f(xk)∥2 (41)

−2ωk

η

(
1 +

ωk

ωk+1
− η

ν

)
⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩.

We notice that 2ωk

η > 0 and 1 + ωk

ωk+1
− η

ν ⩾ ωk

ωk+1
⩾ 0 since 0 < η

ν ⩽ 1. Moreover, due to the
convexity of f we also have ⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩ ⩾ 0. Therefore, we have

−2ωk

η

(
1 +

ωk

ωk+1
− η

ν

)
⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩ ⩽ 0.

Together with (41), the above inequality implies(
1 +

ωk

ωk+1

)
∥∇f(xk+1)∥2 ⩽

(
1 +

ωk

ωk+1

)
∥∇f(xk)∥2, ∀k ⩾ 0,

which is equivalent to (40).

Theorem D.1 (Theorem 3.1). Let Assumptions 1 with µ = 0 and 3 hold. Then, the iterates generated
by (L0, L1)-GD with 0 < η ⩽ ν

2 , ν = e−ν satisfy the following implication:

∥∇f(xk)∥ ⩾
L0

L1
=⇒ k ⩽

8L2
1∥x0 − x∗∥2

νη
− 1 and ∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − νη

8L2
1

. (42)

Moreover, the output after N >
8L2

1∥x
0−x∗∥2

νη − 1 iterations satisfies

f(xN)− f(x∗) ⩽
2L0∥x0 − x∗∥2

η(N + 1− T)
− νL0T

4L2
1(N + 1− T)

⩽
2L0∥x0 − x∗∥2

η(N + 1)
, (43)

where T := |T | for the set T := {k ∈ {0, 1, . . . N − 1} | ∥∇f(xk)∥ ⩾ L0

L1
}. In addition, if µ > 0

and N >
8L2

1∥x
0−x∗∥2

η − 1, then

∥xN − x∗∥2 ⩽

(
1− µη

4L0

)N−T (
∥x0 − x∗∥2 − νηT

8L2
1

)
⩽

(
1− µη

4L0

)N−T

∥x0 − x∗∥2. (44)

Remark D.1. In the strongly convex case, our convergence bound implies that (L0, L1)-
GD with η = ν/2 satisfies ∥xN − x∗∥2 ⩽ ε after N = O

(
max

{
L0 log(R2

0/ε)/µ, L2
1R

2
0

})
iterations, while the complexity of Clip-GD derived by Koloskova et al. (2023) is
O
(
max

{
L0 log(R2

0/ε)/µ, L0R0 min
{√

L/µ, LR0

}})
, which again can be arbitrarily worse than

our bound due to the dependence on L.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof of Theorem D.1. We start by expanding the squared distance to the solution:

∥xk+1 − x∗∥2 =

∥∥∥∥xk − x∗ − η

L0 + L1∥∇f(xk)∥
∇f(xk)

∥∥∥∥2
= ∥xk − x∗∥2 − 2η

L0 + L1∥∇f(xk)∥
⟨xk − x∗,∇f(xk)⟩

+
η2∥∇f(xk)∥2

(L0 + L1∥∇f(xk)∥)2
(2)
⩽ ∥xk − x∗∥2 − 2η

L0 + L1∥∇f(xk)∥
(
f(xk)− f(x∗)

)
+

η2∥∇f(xk)∥2

(L0 + L1∥∇f(xk)∥)2
(8)
⩽ ∥xk − x∗∥2 − 2η

(
1− η

ν

) f(xk)− f(x∗)

L0 + L1∥∇f(xk)∥
η⩽ ν

2

⩽ ∥xk − x∗∥2 − η
f(xk)− f(x∗)

L0 + L1∥∇f(xk)∥
. (45)

To continue the derivation, we consider two possible cases: ∥∇f(xk)∥ ⩾ L0

L1
or ∥∇f(xk)∥ < L0

L1
.

Case 1: ∥∇f(xk)∥ ⩾ L0

L1
. In this case, we have

L0 + L1∥∇f(xk)∥ ⩽ 2L1∥∇f(xk)∥, (46)

ν∥∇f(xk)∥
4L1

(46)
⩽

ν∥∇f(xk)∥2

2(L0 + L1∥∇f(xk)∥)
(8)
⩽ f(xk)− f(x∗). (47)

Plugging the above inequalities in (45), we continue the derivation as follows:

∥xk+1 − x∗∥2
(45),(46)
⩽ ∥xk − x∗∥2 − η

f(xk)− f(x∗)

2L1∥∇f(xk)∥
(47)
⩽ ∥xk − x∗∥2 − νη

8L2
1

. (48)

We notice that if ∥∇f(xk)∥ ⩾ L0

L1
, then, in view of Lemma 3.2, we also have ∥∇f(xt)∥ ⩾ L0

L1
for all

t = 0, 1, . . . , k. Therefore, (48) implies

∥xk+1 − x∗∥2 ⩽ ∥x0 − x∗∥2 − νη

8L2
1

(k + 1). (49)

Since ∥xk+1 − x∗∥2 ⩾ 0, k should be bounded as k ⩽ 8L2
1∥x

0−x∗∥2

νη − 1, which gives (14). We
denote T := |T | for the set T := {k ∈ {0, 1, . . . N − 1} | ∥∇f(xk)∥ ⩾ L0

L1
}. Therefore, in view of

(49) and non-negativity of the squared distance, T is bounded as T ⩽ 8L2∥x0−x∗∥2

νη .

Case 2: ∥∇f(xk)∥ < L0

L1
. In this case, we have

L0 + L1∥∇f(xk)∥ ⩽ 2L0, (50)

implying that

∥xk+1 − x∗∥2
(45),(50)
⩽ ∥xk − x∗∥2 − η

2L0

(
f(xk)− f(x∗)

)
. (51)

Moreover, since the norm of the gradient is non-increasing along the trajectory of (L0, L1)-GD
(Lemma 3.2), ∥∇f(xk)∥ < L0

L1
implies that k > T . Therefore, we can sum up inequalities (51) for

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

k = T, T + 1, . . . , N , rearrange the terms, and get

1

N + 1− T

N∑
k=T

(
f(xk)− f(x∗)

)
⩽

2L0

η(N + 1− T)

N∑
k=T

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
=

2L0

(
∥xT − x∗∥2 − ∥xN+1 − x∗∥2

)
η(N + 1− T)

⩽
2L0∥xT − x∗∥2

η(N − T)
.

Finally, we take into account that for k = 0, 1, . . . , T − 1, we have ∥∇f(xk)∥ ⩾ L0

L1
:

1

N + 1− T

N∑
k=T

(
f(xk)− f(x∗)

) (49)
⩽

2L0∥x0 − x∗∥2

η(N + 1− T)
− νL0T

4L2
1(N + 1− T)

. (52)

It remains to notice that Lemma 3.1 implies f(xN) − f(x∗) ⩽ 1
N−T

∑N
k=T+1

(
f(xk)− f(x∗)

)
.

Together with the above inequality, it implies the first part (15). To derive the second part of (15), it
remains to notice that for N >

8L2
1∥x

0−x∗∥2

νη − 1 the right-hand side of (52) as a function of T attains
its maximum at T = 0. Indeed, the derivative of function

φ(T) :=
2L0∥x0 − x∗∥2

η(N + 1− T)
− νL0T

4L2
1(N + 1− T)

=
2L0∥x0 − x∗∥2

η(N + 1− T)
+
νL0

4L2
1

− νL0(N + 1)

4L2
1(N − T + 1)

equals

φ′(T) =
2L0∥x0 − x∗∥2

η(N − T + 1)2
− νL0(N + 1)

4L2
1(N − T + 1)2

.

Since N >
8L2

1∥x
0−x∗∥2

νη − 1, we have φ′(T) < 0, i.e., φ(T) is a decreasing function of T , meaning
that

2L0∥x0 − x∗∥2

η(N + 1− T)
− νL0T

4L2
1(N + 1− T)

⩽
2L0∥x0 − x∗∥2

η(N + 1)
,

which gives (43).

To prove (44), we notice that for µ > 0 we have f(xk)− f(x∗) ⩾ µ
2 ∥x

k − x∗∥2 implying

∥xk+1 − x∗∥2
(51)
⩽

(
1− µη

4L0

)
∥xk − x∗∥2, (53)

when ∥∇f(xk)∥ < L0

L1
. Therefore, for N > T we have

∥xN − x∗∥2
(53)
⩽

(
1− µη

4L0

)N−T

∥xT − x∗∥2

(49)
⩽

(
1− µη

4L0

)N−T (
∥x0 − x∗∥2 − νηT

8L2
1

)
⩽

(
1− µη

4L0

)N−T

∥x0 − x∗∥2,

which gives (44) and concludes the proof.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E MISSING PROOFS FOR GRADIENT DESCENT WITH POLYAK STEPSIZES

Theorem E.1 (Theorem 4.1). Let Assumptions 1 with µ = 0 and 3 hold. Then, the iterates generated
by GD-PS satisfy the following implication:

∥∇f(xk)∥ ⩾
L0

L1
=⇒ ∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − ν2

16L2
1

. (54)

Moreover, the output after N steps the iterates satisfy

4L0

ν
∥xN+1 − x∗∥2 +

∑
k∈{0,1,...,N}\T

(
f(xk)− f(x∗)

)
⩽

4L0

ν
∥x0 − x∗∥2 − νL0T

4L2
1

, (55)

where T := {k ∈ {0, 1, . . . , N} | ∥∇f(xk)∥ ⩾ L0

L1
}, T := |T |, and if N > T − 1, it holds that

f(x̂N)− f(x∗) ⩽
4L0∥x0 − x∗∥2

ν(N − T + 1)
− νL0T

4L2
1(N − T + 1)

(56)

where x̂N ∈ {x0, x1, . . . , xN} is such that f(x̂N) = minx∈{x0,x1,...,xN} f(x). In particular, for

N >
16L2

1∥x
0−x∗∥2

ν2 − 1 inequality N > T − 1 is guaranteed and

f(x̂N)− f(x∗) ⩽
4L0∥x0 − x∗∥2

ν(N + 1)
. (57)

In addition, if µ > 0 and N >
16L2

1∥x
0−x∗∥2

ν2 − 1, then

∥xN − x∗∥2 ⩽

(
1− µν

8L0

)N−T (
∥x0 − x∗∥2 − ν2T

16L2
1

)
⩽

(
1− µν

8L0

)N−T

∥x0 − x∗∥2. (58)

Proof. As for (L0, L1)-GD, we start by expanding the squared distance to the solution:

∥xk+1 − x∗∥2 =

∥∥∥∥xk − x∗ − f(xk)− f(x∗)

∥∇f(xk)∥2
∇f(xk)

∥∥∥∥2
= ∥xk − x∗∥2 −

2
(
f(xk)− f(x∗)

)
∥∇f(xk)∥2

⟨xk − x∗,∇f(xk)⟩+
(
f(xk)− f(x∗)

)2
∥∇f(xk)∥2

(2)
⩽ ∥xk − x∗∥2 −

(
f(xk)− f(x∗)

)2
∥∇f(xk)∥2

(8)
⩽ ∥xk − x∗∥2 − ν

2
· f(xk)− f(x∗)

L0 + L1∥∇f(xk)∥
. (59)

To continue the derivation, we consider two possible cases: ∥∇f(xk)∥ ⩾ L0

L1
or ∥∇f(xk)∥ < L0

L1
.

Case 1: ∥∇f(xk)∥ ⩾ L0

L1
. In this case, inequalities (46) and (47) hold and the derivation from (59)

can be continued as follows:

∥xk+1 − x∗∥2
(59),(46)
⩽ ∥xk − x∗∥2 − ν

2
· f(x

k)− f(x∗)

2L1∥∇f(xk)∥
(47)
⩽ ∥xk − x∗∥2 − ν2

16L2
1

, (60)

which gives (54).

Case 2: ∥∇f(xk)∥ < L0

L1
. In this case, inequality (50) holds and we have

∥xk+1 − x∗∥2
(59),(50)
⩽ ∥xk − x∗∥2 − ν

2
· f(x

k)− f(x∗)

2L0
. (61)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Next, we introduce the set of indices T := {k ∈ {0, 1, . . . , N} | ∥∇f(xk)∥ ⩾ L0

L1
} of size T := |T |.

In view of the above derivations, if k ∈ T , inequality (60) holds, and if k ∈ {0, 1, . . . , N} \ T ,
inequality (61) is satisfied. Therefore, unrolling the pair of inequalities (60) and (61), we get

∥xN+1 − x∗∥2 ⩽ ∥x0 − x∗∥2 − ν2T

16L2
1

− ν

4L0

∑
k∈{0,1,...,N}\T

(
f(xk)− f(x∗)

)
,

which is equivalent to (55). Therefore, if N > T − 1, set {0, 1, . . . , N} \ T is non-empty and the
above inequality implies

f(x̂N)− f(x∗) ⩽
1

N − T + 1

∑
k∈{0,1,...,N}\T

(
f(xk)− f(x∗)

)
⩽

4L0∥x0 − x∗∥2

ν(N − T + 1)
− νL0T

4L2
1(N − T + 1)

,

where x̂N ∈ {x0, x1, . . . , xN} is such that f(x̂N) = minx∈{x0,x1,...,xN} f(x). Moreover,

since the left-hand side of (55) is non-negative, we have T ⩽ 16L2
1∥x

0−x∗∥2

ν2 . Therefore, for

N >
16L2

1∥x
0−x∗∥2

ν2 − 1 inequality N > T − 1 is guaranteed as well as (56). Finally, to derive (57),
we consider the right-hand side of (56) as a function of T :

φ(T) :=
4L0∥x0 − x∗∥2

ν(N − T + 1)
− νL0T

4L2
1(N − T + 1)

=
4L0∥x0 − x∗∥2

ν(N − T + 1)
+
νL0

4L2
1

− νL0(N + 1)

4L2
1(N − T + 1)

.

The derivative of this function equals

φ′(T) =
4L0∥x0 − x∗∥2

ν(N − T + 1)2
− νL0(N + 1)

4L2
1(N − T + 1)2

.

SinceN >
16L2

1∥x
0−x∗∥2

ν2 −1, we have φ′(T) < 0, i.e., φ(T) is a decreasing function of T . Therefore,
since T ⩾ 0, we have that

φ(T) ⩽ φ(0) ⇐⇒ 4L0∥x0 − x∗∥2

ν(N − T + 1)
− νL0T

4L2
1(N − T + 1)

⩽
4L0∥x0 − x∗∥2

ν(N + 1)
.

Combining the above inequality with (56), we obtain (57).

To prove (58), we notice that for µ > 0 we have f(xk)− f(x∗) ⩾ µ
2 ∥x

k − x∗∥2 implying

∥xk+1 − x∗∥2
(61)
⩽

(
1− µν

8L0

)
∥xk − x∗∥2, (62)

when ∥∇f(xk)∥ < L0

L1
. Unrolling the pair of inequalities (60) and (62), we get for N > T

∥xN − x∗∥2 ⩽

(
1− µν

8L0

)N−T

∥x0 − x∗∥2 − ν2

16L2
1

∑
k∈T

(
1− µν

8L0

)tk

,

where tk is the cardinality of {k + 1, . . . , N} \ T . Since |T | = T we have that tk ⩽ N − T for all
k ∈ T . Therefore, we can continue the derivation as follows:

∥xN − x∗∥2 ⩽

(
1− µν

8L0

)N−T (
∥x0 − x∗∥2 − ν2T

16L2
1

)
⩽

(
1− µν

8L0

)N−T

∥x0 − x∗∥2,

which gives (58) and concludes the proof.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F MISSING PROOFS FOR (L0, L1)-SIMILAR TRIANGLES METHOD

Lemma F.1 (Lemma E.1 from (Gorbunov et al., 2020)). Let sequences {αk}k⩾0 and {Ak}k⩾0 be
defined as follows:

α0 = A0 = 0, αk+1 =
η(k + 2)

2
, Ak+1 = Ak + αk+1, ∀k ⩾ 0.

Then, for all k ⩾ 0

Ak+1 ⩾
η(k + 1)(k + 4)

4
, (63)

Ak+1 ⩾
α2
k+1

η
. (64)

Lemma F.2 (Lemma 5.1). Let f satisfy Assumptions 1 with µ = 0 and 3. Then, the iterates generated
by (L0, L1)-STM with 0 < η ⩽ ν

2 , ν = e−ν satisfy for all N ⩾ 0

AN

(
f(yN)− f(x∗)

)
+
GN

2
R2

N ⩽
G1

2
R2

0 +

N−1∑
k=1

Gk+1 −Gk

2
R2

k (65)

−
N−1∑
k=0

α2
k+1

4Gk+1
∥∇f(xk+1)∥2, (66)

where Rk := ∥zk − x∗∥ for all k ⩾ 0.

Proof. The proof follows the one of Lemma F.4 from (Gorbunov et al., 2020). From the update rule,
we have zk+1 = zk − αk+1

Gk+1
∇f(xk+1) and

αk+1⟨∇f(xk+1), zk − x∗⟩ = αk+1⟨∇f(xk+1), zk − zk+1⟩+ αk+1⟨∇f(xk+1), zk+1 − x∗⟩
= αk+1⟨∇f(xk+1), zk − zk+1⟩+Gk+1⟨zk+1 − zk, x∗ − zk+1⟩

= αk+1⟨∇f(xk+1), zk − zk+1⟩ − Gk+1

2
∥zk − zk+1∥2

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2.

The update rules for yk+1 and xk+1 imply

Ak+1(y
k+1 − xk+1) = αk+1(z

k+1 − zk). (67)

Moreover, to proceed, we will need the following upper-bound:

exp
(
L1∥xk+1 − yk+1∥

) (67)
= exp

(
L1αk+1∥zk+1 − zk∥

Ak+1

)
= exp

(
α2
k+1L1∥∇f(xk+1)∥

Ak+1(L0 + L1∥∇f(xk+1)∥)

)
⩽ exp

(
α2
k+1

Ak+1

)
(64)
⩽ exp(η)

η⩽ν

⩽ exp(ν)
ν=e−ν

= ν. (68)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Using these formulas, we continue the derivation as follows:

αk+1⟨∇f(xk+1), zk − x∗⟩ = Ak+1⟨∇f(xk+1), xk+1 − yk+1⟩ − Gk+1

2
∥zk − zk+1∥2

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2

(7)
⩽ Ak+1

(
f(xk+1)− f(yk+1)

)
+
Ak+1Gk+1 exp

(
L1∥xk+1 − yk+1∥

)
2

∥xk+1 − yk+1∥2

−Gk+1

2
∥zk − zk+1∥2 + Gk+1

2
∥zk − x∗∥2

−Gk+1

2
∥zk+1 − x∗∥2

(67),(68)
⩽ Ak+1

(
f(xk+1)− f(yk+1)

)
+
Gk+1

2
·
να2

k+1

Ak+1
∥zk − zk+1∥2

−Gk+1

2
∥zk − zk+1∥2 + Gk+1

2
∥zk − x∗∥2

−Gk+1

2
∥zk+1 − x∗∥2

= Ak+1

(
f(xk+1)− f(yk+1)

)
+
Gk+1

2

(
να2

k+1

Ak+1
− 1

)
∥zk − zk+1∥2

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2

(64),η⩽ ν
2

⩽ Ak+1

(
f(xk+1)− f(yk+1)

)
− Gk+1

4
∥zk − zk+1∥2

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2. (69)

Next, using the definition of xk+1 and Ak+1 = Ak + αk+1, we get

αk+1(x
k+1 − zk) = Ak(y

k − xk+1). (70)

Combining the established inequalities, we obtain

αk+1⟨∇f(xk+1), xk+1 − x∗⟩ = αk+1⟨∇f(xk+1), xk+1 − zk⟩
+αk+1⟨∇f(xk+1), zk − x∗⟩

(69),(70)
⩽ Ak⟨∇f(xk+1), yk − xk+1⟩

+Ak+1

(
f(xk+1)− f(yk+1)

)
− Gk+1

4
∥zk − zk+1∥2

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2

(2)
⩽ Ak

(
f(yk)− f(xk+1)

)
+Ak+1

(
f(xk+1)− f(yk+1)

)
−Gk+1

4
∥zk − zk+1∥2 + Gk+1

2
∥zk − x∗∥2

−Gk+1

2
∥zk+1 − x∗∥2,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

which can be rewritten as

Ak+1f(y
k+1)−Akf(y

k) ⩽ αk+1

(
f(xk+1) + ⟨∇f(xk+1), x∗ − xk+1⟩

)
+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2 −

α2
k+1

4Gk+1
∥∇f(xk+1)∥2

(2)
⩽ αk+1f(x

∗)

+
Gk+1

2
∥zk − x∗∥2 − Gk+1

2
∥zk+1 − x∗∥2 −

α2
k+1

4Gk+1
∥∇f(xk+1)∥2.

Summing up the above inequality for k = 0, 1, . . . , N − 1 and using A0 = α0 = 0,
∑N−1

k=0 αk+1 =
AN , and new notation Rk := ∥zk − x∗∥, we derive

AN

(
f(yN)− f(x∗)

)
+
GN

2
R2

N ⩽
G1

2
R2

0 +

N−1∑
k=1

Gk+1 −Gk

2
R2

k −
N−1∑
k=0

α2
k+1

4Gk+1
∥∇f(xk+1)∥2,

which finishes the proof.

Theorem F.1 (Theorem 5.1). Let f satisfy Assumptions 1 with µ = 0 and 3. Then, the iterates
generated by (L0, L1)-STM with 0 < η ⩽ ν

2 , ν = e−ν , G1 = L0 + L1∥∇f(x0)∥, and

Gk+1 = max{Gk, L0 + L1∥∇f(xk+1)∥}, k ⩾ 0, (71)

satisfy

f(yN)− f(x∗) ⩽
2L0(1 + L1∥x0 − x∗∥ exp(L1∥x0 − x∗∥))∥x0 − x∗∥2

ηN(N + 3)
. (72)

Proof. Let us prove by induction that Rk ⩽ R0 for all k ⩾ 0. For k = 0, the statement is trivial.
Next, we assume that the statement holds for k = N and derive that it also holds for k = N + 1.
Indeed, from Lemma 5.1 we have

GN+1

2
R2

N+1 ⩽ AN+1

(
f(yN+1)− f(x∗)

)
+
GN+1

2
R2

N+1

(21)
⩽

G1

2
R2

0 +

N∑
k=1

Gk+1 −Gk

2
R2

k

⩽
G1

2
R2

0 +

N∑
k=1

Gk+1 −Gk

2
R2

0 =
GN+1

2
R2

0, (73)

implying that RN+1 ⩽ R0. That is, we proved that Rk ⩽ R0 for all k ⩾ 0, i.e., the sequence
{zk}k⩾0 stays in BR0

(x∗) := {x ∈ Rd | ∥x− x∗∥ ⩽ R0}. Since x0 = y0 = z0, xk+1 is a convex
combination of yk and zk, yk+1 is a convex combination of yk and zk+1, we also have that sequences
{xk}k⩾0 and {yk}k⩾0 stay in BR0(x

∗), which can be formally shown using an induction argument.
Therefore, we can upper-bound Gk for all k ⩾ 0 as follows

Gk = L0 + L1 max
t=0,...,k

∥∇f(xt)∥
(6)
⩽ L0 + L1L0 max

t=0,...,k
exp(L1∥xt − x∗∥)∥xt − x∗∥

⩽ L0 (1 + L1R0 exp(L1R0)) . (74)

Moreover, from (73) we also have

f(yN)− f(x∗) ⩽
GNR

2
0

2AN

(74),(63)
⩽

2L0(1 + L1R0 exp(L1R0))R
2
0

ηN(N + 3)
,

which finishes the proof.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

G MISSING PROOFS FOR ADAPTIVE GRADIENT DESCENT

G.1 DERIVATION OF (25)

The key lemma about the convergence of AdGD holds for any convex function regardless of the
smoothness properties.
Lemma G.1 (Lemma 1 from Malitsky & Mishchenko (2020)). Let Assumption 1 with µ = 0 hold,
and x∗ be any minimizer of f . Then, the iterates generated by Algorithm 4 with γ = 1

2 satisfy

∥xk+1 − x∗∥2 + 1

2
∥xk+1 − xk∥2 + 2λk(1 + θk)(f(x

k)− f(x∗))

⩽ ∥xk − x∗∥2 + 1

2
∥xk − xk−1∥2 + 2λkθk(f(x

k−1)− f(x∗)). (75)

In particular, the above lemma implies boundedness of ∥xk − x∗∥ and ∥xk − xk−1∥, which allows us
to get the upper bound on the gradient norm (24) and a lower bound for λk as stated in the paragraph
before (25). For completeness, we provide a detailed statement of the result and its proof below.
Theorem G.1. Let Assumptions 1 with µ = 0 and 3 hold. For all N ⩾ 1 we define point x̂N :=
1

SN

(
λN (1 + θN) +

∑N
k=1 wkx

k
)

, where wk := λk(1+ θk)−λk+1θk+1, SN := λ1θ1+
∑N

k=1 λk,

and {xk}k⩾0 are the iterates produced by AdGD with γ = 1/2. Then, x̂N satisfies

f(x̂N)− f(x∗) ⩽
L0(1 + L1D exp (L1D)) exp

(√
2L1D

)
D2

N
, (76)

where D > 0 and D2 := ∥x1 − x∗∥2 + 1
2∥x

1 − x0∥2 + 2λ1θ1(f(x
0)− f(x∗)).

Proof. The proof follows almost the same lines as the proof from (Malitsky & Mishchenko, 2020).
Telescoping inequality (75), we get

∥xk+1 − x∗∥2 + 1

2
∥xk+1 − xk∥2 + 2λk(1 + θk)(f(x

k)− f(x∗))

+2

k−1∑
i=1

[λi(1 + θi)− λi+1θi+1] (f(x
i)− f(x∗))

⩽ ∥x1 − x∗∥2 + 1

2
∥x1 − x0∥2 + 2λ1θ1(f(x

0)− f(x∗)). (77)

Since λi(1 + θi)− λi+1θi+1 ⩾ 0 by definition of λi, we conclude that the term in the second line of
the above inequality is non-negative. Therefore, for any k ⩾ 1 we have

∥xk − x∗∥2 ⩽ D2, (78)

∥xk − xk−1∥2 ⩽ 2D2. (79)

Using Jensen’s inequality in (77), we derive

Sk(f(x̂
k)− f(x∗)) ⩽

D2

2
,

where

x̂k =
λk(1 + θk)x

k +
∑k−1

i=1 wix
i

Sk
, (80)

wk = λi(1 + θi)− λi+1θi+1, (81)

Sk = λ1θ1 +

k∑
i=1

λi. (82)

Thus, we have

f(x̂k)− f∗ ⩽
D2

2Sk
. (83)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Next, we notice that for any k ⩾ 1

∥xk − xk−1∥
∥∇f(xk)−∇f(xk−1)∥

(6)
⩾

1

(L0 + L1∥∇f(xk)∥) exp(L1∥xk − xk−1∥)
(24)
⩾

1

L0(1 + L1D exp(L1D)) exp(
√
2L1D)

.

Since θ0 = +∞, we have λ1 = ∥x1−x0∥
2∥∇f(x1)−∇f(x0)∥ . Moreover, for k > 1 we have either λk ⩾ λk−1

or λk = ∥xk−xk−1∥
2∥∇f(xk)−∇f(xk−1)∥ . Therefore, by induction we can prove that

λk ⩾
1

2L0(1 + L1D exp(L1D)) exp(
√
2L1D)

(84)

that implies

Sk = λ1θ1 +

k∑
i=1

λi ⩾
k

2L0(1 + L1D exp(L1D)) exp(
√
2L1D)

.

Therefore, we have

f(x̂k)− f(x∗) ⩽
D2

2Sk
⩽
L0(1 + L1D exp (L1D)) exp

(√
2L1D

)
D2

k
,

which is equivalent to (76) when k = N .

G.2 PROOF OF THEOREM 6.1

To show an improved result, we consider Algorithm 4 with γ = 1
4 and refine Lemma G.1 as follows.

Lemma G.2. Let Assumption 1 with µ = 0 hold, and x∗ be any minimizer of f . Then, the iterates
generated by Algorithm 4 with γ = 1

4 satisfy for all k ⩾ 1

∥xk+1 − x∗∥2 + 1

4
∥xk+1 − xk∥2 + 2λk(1 + θk)(f(x

k)− f(x∗)) +
1

2

k∑
i=0

∥xi+1 − xi∥2

⩽ ∥xk − x∗∥2 + 1

4
∥xk − xk−1∥2 + 2λkθk(f(x

k−1)− f(x∗)) +
1

2

k−1∑
i=0

∥xi+1 − xi∥2. (85)

Proof. The proof is almost identical to the one from (Malitsky & Mishchenko, 2020) and starts as
the standard proof for GD:

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 + 2⟨xk+1 − xk, xk − x∗⟩+ ∥xk+1 − xk∥2

= ∥xk − x∗∥2 + 2λk⟨∇f(xk), x∗ − xk⟩+ ∥xk+1 − xk∥2.
(2)
⩽ ∥xk − x∗∥2 + 2λk(f(x

∗)− f(xk)) + ∥xk+1 − xk∥2.

Introducing Σk+1 = 1
2

∑k
i=0 ∥xi+1 − xi∥2, we rewrite the above inequality as

∥xk+1 − x∗∥2 +Σk+1 ≤ ∥xk − x∗∥2 − 2λk(f(x
k)− f(x∗)) + ∥xk+1 − xk∥2

+Σk +
1

2
∥xk+1 − xk∥2. (86)

Next, we transform ∥xk+1 − xk∥2 similarly to the original proof:

∥xk+1 − xk∥2 = 2∥xk+1 − xk∥2 − ∥xk+1 − xk∥2

= −2λk⟨∇f(xk), xk+1 − xk⟩ − ∥xk+1 − xk∥2

= 2λk⟨∇f(xk)−∇f(xk−1), xk − xk+1⟩
+2λk⟨∇f(xk−1), xk − xk+1⟩ − ∥xk+1 − xk∥2. (87)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Next, we apply Cauchy-Schwarz inequality, the definition of λk with γ = 1
4 , and Young’s inequality

to estimate the first inner-product in the right-hand side:

2λk⟨∇f(xk)−∇f(xk−1), xk − xk+1⟩ ⩽ 2λk∥∇f(xk)−∇f(xk−1)∥∥xk − xk+1∥

⩽
1

2
∥xk − xk−1∥∥xk − xk+1∥

⩽
1

4
∥xk − xk−1∥2 + 1

4
∥xk+1 − xk∥2. (88)

Then, using the convexity of f , we handle the second inner product from the right-hand side of (87):

2λk⟨∇f(xk−1), xk − xk+1⟩ = 2λk
λk−1

⟨xk−1 − xk, xk − xk+1⟩

= 2λkθk⟨xk−1 − xk,∇f(xk)⟩
⩽ 2λkθk(f(x

k−1)− f(xk)). (89)

Plugging (88) and (89) in (87), we get

∥xk+1 − xk∥2 ⩽
1

4
∥xk − xk−1∥2 − 3

4
∥xk+1 − xk∥2 + 2λkθk(f(x

k−1)− f(xk)).

Finally, using the above upper bound for ∥xk+1 − xk∥2 in (86), we obtain

∥xk+1 − x∗∥2 +Σk+1 ≤ ∥xk − x∗∥2 − 2λk(f(x
k)− f(x∗))

+
1

4
∥xk − xk−1∥2 − 3

4
∥xk+1 − xk∥2 + 2λkθk(f(x

k−1)− f(xk))

+Σk +
1

2
∥xk+1 − xk∥2

= ∥xk − x∗∥2 + 1

4
∥xk − xk−1∥2 + 2λkθk(f(x

k−1)− f(x∗)) + Σk

−1

4
∥xk+1 − xk∥2 − 2λk(1 + θk)(f(x

k)− f(x∗)).

Rearranging the terms, we derive (85).

The above lemma implies not only the boundedness of the iterates but also the boundedness of∑k−1
i=0 ∥xi+1 − xi∥2 for k ⩾ 1.

Corollary 1. Let Assumption 1 with µ = 0 hold, and x∗ be any minimizer of f . Then, the iterates
generated by Algorithm 4 with γ = 1

4 satisfy for all k ⩾ 1

∥xk+1 − x∗∥2 ⩽ D2, (90)

∥xk+1 − xk∥2 ⩽ 4D2, (91)

k−1∑
i=0

∥xi+1 − xi∥2 ⩽ 2D2, (92)

where D > 0 and D2 := ∥x1 − x∗∥2 + 3
4∥x

1 − x0∥2 + 2λ1θ1(f(x
0)− f(x∗)).

Using the above results, we derive the following theorem.

Theorem G.2 (Theorem 6.1). Let Assumptions 1 with µ = 0 and 3 hold. For all N ⩾ 1 we
define point x̂N := 1

SN

(
λN (1 + θN) +

∑N
k=1 wkx

k
)

, where wk := λk(1 + θk) − λk+1θk+1,

SN := λ1θ1 +
∑N

k=1 λk, and {xk}k⩾0 are the iterates produced by AdGD with γ = 1/4. Then, for
N >

√
2N(m+ 1)L1 exp (2L1D)D iterate x̂N satisfies

f(x̂N)− f(x∗) ⩽
2L0 exp(2L1D)D2

N −
√
2N(m+ 1)L1 exp(2L1D)D

, (93)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

where D > 0 and D2 := ∥x1 − x∗∥2 + 3
4∥x

1 − x0∥2 + 2λ1θ1(f(x
0) − f(x∗)), m := 1 +

log√2

⌈
(1+L1D exp (2L1D))

2

⌉
. In particular, for N ⩾ 8(m+ 1)2L2

1 exp (4L1D)D2, we have

f(x̂N)− f(x∗) ⩽
4L0 exp (2L1D)D2

N
. (94)

In addition, if Assumption 2 holds, one can formally replace exp(2L1D) in (93) and (94) with 1.

Proof. Since we will use (L0, L1)-smoothness only between two consecutive iterates xk, xk−1, for
the sake of brevity, we unify the notation for Assumptions 2 and 3 as∥∥∇f(xk)−∇f(xk−1)

∥∥ ⩽ ∥xk − xk−1∥
(
M0 +M1

∥∥∇f(xk)∥∥) , (95)
where M0 := L0, M1 := L1 if Assumption 2 holds (follows from the definition), and M0 :=
L0 exp (2L1D), M1 := L1 exp (2L1D) if Assumption 3 holds (follows from (6) and (91)).

Since6 θ0 = +∞, we have λ1 = ∥x1−x0∥
4∥∇f(x1)−∇f(x0)∥ . Next, for k > 1 we have either λk =√

1 + θk−1λk−1 or λk = ∥xk−xk−1∥
4∥∇f(xk)−∇f(xk−1)∥ . For convenience of the analysis of these two

options, we let K be the set of indices k > 1 such that λk =
√

1 + θk−1λk−1 and λk−1 =
∥xk−1−xk−2∥

4∥∇f(xk−1)−∇f(xk−2)∥ .

Option 1: λk =
√
1 + θk−1λk−1. Then, by definition of K, there exists index t such that t ∈ K,

λl =
√
1 + θl−1λl−1 for all l ∈ {t, t + 1, . . . , t + τ − 1}, k ∈ {t, t + 1, . . . , t + τ − 1}, and

λt+τ = ∥xt+τ−xt+τ−1∥
4∥∇f(xt+τ)−∇f(xt+τ−1)∥ , i.e., k belongs to some sub-sequence of indices such that Option

1 holds. Following exactly the same steps as in the derivation of (84), we conclude that λk ⩾
1

2M0(1+DM1)
=: λmin for any k ⩾ 1. Since θl ⩾ 1 for all l ∈ {t, t+ 1, . . . , t+ τ − 1}, we get that

λl ⩾
√
2λl−1 ⩾ 2

l−t
2 λt ⩾ 2

l−t
2 λt−1 for l ∈ {t + 1, . . . , t + τ − 1}, meaning that for l − t larger

than 1 + log√2

⌈
1

4M0λmin

⌉
⩽ 1 + log√2

⌈
(1+DM1)

2

⌉
=: m we have λl ⩾ 1

4M0
. Putting all together,

we conclude that

λl ⩾

{
λt−1, for l ∈ {t, t+ 1, . . . , t+m},
1

4M0
, for l ∈ {t+m+ 1, t+m+ 2, . . . , t+ τ − 1}. (96)

Option 2: λk = ∥xk−xk−1∥
4∥∇f(xk)−∇f(xk−1)∥ . Then, using (95), we get

λk =
∥xk − xk−1∥

4∥∇f(xk)−∇f(xk−1)∥
⩾

1

M0 +M1∥∇f(xk)∥
=

λk
4(λkM0 +M1∥xk+1 − xk∥)

,

implying that

λk ⩾
1

4M0
− M1

4M0
∥xk+1 − xk∥. (97)

To continue the proof, we split the set of indices {1, 2, . . . , N} into three disjoint
sets T1, T2, T3 defined as follows: T2 :=

{
k ∈ {1, 2, . . . , N} | λk = ∥xk−xk−1∥

4∥∇f(xk)−∇f(xk−1)∥

}
,

T1 :=
{
k ∈ {1, 2, . . . , N} | λk =

√
1 + θk−1λk−1 and ∃t ∈ K such that t ⩽ k ⩽ t+m

}
, T3 :=

{1, 2, . . . , N} \ (T1 ∪ T2). Then, taking into account the lower bounds (96) and (97), we have
∀k ∈ {1, 2, . . . , N}

λk ⩾


λt−1, if k ∈ T1, where t ∈ K and 0 ⩽ k − t ⩽ m,
1

4M0
− M1

4M0
∥xk+1 − xk∥, if k ∈ T2,

1
4M0

, if k ∈ T3,

t−1∈T2,(97)
⩾


1

4M0
− M1

4M0
∥xt − xt−1∥, if k ∈ T1, where t ∈ K and 0 ⩽ k − t ⩽ m,

1
4M0

− M1

4M0
∥xk+1 − xk∥, if k ∈ T2,

1
4M0

, if k ∈ T3.

6In practice θ0 it is sufficient to take θ0 ⩾ ∥x1−x0∥2

16λ2
0∥∇f(x1)−∇f(x0)∥2 − 1.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Therefore, we can lower bound the sum of stepsizes as follows:
N∑

k=1

λk ⩾
N

4M0
− M1

4M0

∑
k∈T2

∥xk+1 − xk∥ − mM1

4M0

∑
t∈T2:t+1∈K

∥xt+1 − xt∥

⩾
N

4M0
− (m+ 1)M1

4M0

∑
k∈T2

∥xk+1 − xk∥

⩾
N

4M0
− (m+ 1)M1

4M0

N∑
k=0

∥xk+1 − xk∥

⩾
N

4M0
− (m+ 1)M1

4M0

√√√√N

N∑
k=0

∥xk+1 − xk∥2

(92)
⩾

N

4M0
−

√
2N(m+ 1)M1D

4M0
. (98)

Since SN ⩾
∑N

k=1 λk (see the definition in (82)) we have from (83) and the above lower bound on∑N
k=1 λk that

f(x̂N)− f(x∗) ⩽
D2

2SN

(98)
⩽

2M0D
2

N −
√
2N(m+ 1)M1D

,

which gives

f(x̂N)− f(x∗) ⩽
2L0 exp(2L1D)D2

N −
√
2N(m+ 1)L1 exp(2L1D)D

, (99)

when Assumption 3 holds, and

f(x̂N)− f(x∗) ⩽
2L0D

2

N −
√
2N(m+ 1)L1D

,

when Assumption 2 is satisfied. In particular, we derived (93) under Assumption 3 holds, and when
N ⩾ 8(m + 1)2L2

1 exp(4L1D)D2, we have N −
√
2N(m + 1)L1 exp(2L1D)D ⩾ N

2 , which in
combination with (99) implies (94).

G.3 CONVERGENCE IN THE STRONGLY CONVEX CASE

To show an improved result in the strongly convex case (µ > 0 in Assumptions 1), we consider
Algorithm 4 with more a more conservative stepsize selection rule:

λk = min

{√
1 +

3θk−1

4
λk−1,

∥xk − xk−1∥
4∥∇f(xk)−∇f(xk−1)∥

}
. (100)

For these stepsizes, Lemma G.2 holds as well. However, in contrast to the convex case, we will use
Assumption 2 instead of Assumption 3. The key reason for this is that we need to use (10) for x = xk

and y = x∗ that not necessarily satisfy (9). In contrast, inequality (10) holds for any x, y ∈ Rd under
the Assumption 2 and convexity.
Theorem G.3. Let Assumptions 1 with µ > 0 and 2 hold. For all N ⩾ 1 we define the Lyapunov
function

Ψk =

(
1− λkµ

4

)∥∥xk − x∗
∥∥2 + 1

4

(
1 + (1− α∗)

8µ

L0

)∥∥xk − xk−1
∥∥2

+2λkθk(f(x
k−1)− f∗),

where {xk}k⩾0 are the iterates produced by AdGD with λk defined in (100), and α∗ = 73−
√
3281

16 ≈
0.98. Then, for N >

√
2N(m+ 1)L1D Lyapunov function ΨN+1 satisfies

ΨN+1 ≤
(
1− α∗µ

8L0
+
α∗µ(m+ 1)L1D

4
√
2NL0

)N

Ψ1, (101)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

where D > 0 and D2 := ∥x1 − x∗∥2 + 3
4∥x

1 − x0∥2 + 2λ1θ1(f(x
0) − f(x∗)), and m :=

1 + log√ 7
4

⌈
1+L1D

2

⌉
. In particular, for N ⩾ 8(m+ 1)2L2

1D
2, we have

ΨN+1 ≤
(
1− α∗µ

16L0

)N

Ψ1. (102)

Proof. The proof follows the one from (Malitsky & Mishchenko, 2020). First of all, we note that the

stricter inequality λk ⩽
√
1 + 3θk−1

4 λk−1 is not used in the derivation of Lemma G.2. Therefore,
Lemma G.2 holds as well as Corollary 1. Next, we make certain steps in the analysis tighter to use
the fact that µ > 0. Strong convexity implies

λk⟨∇f(xk), x∗ − xk⟩ ⩽ λk(f(x
∗)− f(xk))− λk

µ
2 ∥x

∗ − xk∥2, (103)

and
∥∥∇f(xk)−∇f(xk−1)

∥∥ ⩾ µ
∥∥xk − xk−1

∥∥. The latter implies that λk ⩽ 1
4µ for k ⩾ 1. Since

Lemma 2.2 holds under Assumption 2 with ν = 1 and without condition (9), and bound λk ≤ 1
4µ

holds, we have

λk⟨∇f(xk), x∗ − xk⟩
(10)
⩽ λk(f(x

∗)− f(xk))− λk
2(L0 + L1∥∇f(x∗)∥)

∥∇f(xk)∥2

= λk(f∗ − f(xk))− 1

2L0λk
∥xk+1 − xk∥2

λk≤ 1
4µ

≤ λk(f∗ − f(xk))− 2µ

L0
∥xk+1 − xk∥2. (104)

Convex combination of (103) and (104) with α ∈ (0, 1), which will be specified latter, gives

λk⟨∇f(xk), x∗ − xk⟩ ⩽ λk(f∗ − f(xk))− α
λkµ

2
∥xk − x∗∥2 − (1− α)

2µ

L0
∥xk+1 − xk∥2.

Using the above inequality instead of convexity and keeping the rest of the proof of Lemma G.2 as is
with omitted Σi terms, we get an analog of (75):∥∥xk+1 − x∗

∥∥2 + 1

4

(
1 + (1− α)

8µ

L0

)∥∥xk+1 − xk
∥∥2 + 1 + θk

1 + 3θk/4
· 2λk+1θk+1(f(x

k)− f∗)

⩽
∥∥xk+1 − x∗

∥∥2 + 1

4

(
1 + (1− α)

8µ

L0

)∥∥xk+1 − xk
∥∥2 + 2λk(1 + θk)(f(x

k)− f∗)

⩽

(
1− α

λkµ

2

)∥∥xk − x∗
∥∥2 + 1

4

∥∥xk − xk−1
∥∥2 + 2λkθk(f(x

k−1)− f∗),

where the first inequality follows from 1+θk
1+3θk/4

λk+1θk+1 ⩽ λk(1 + θk) provided by the new

condition on λk. Thus, we have contraction in every term: 1 − αλkµ
2 in the first, 1

1+(1−α) 8µ
L0

=

1−
(1−α) 8µ

L0

1+(1−α) 8µ
L0

in the second and 1+3θk/4
1+θk

= 1− θk
4(1+θk)

in the last one. We bound the third term

as θk
4(1+θk)

= 1
4 · λk

(λk+λk−1)
⩾ µλk

2 using λk ⩽ 1
4µ for both terms in the denominator. Taking

α = α∗ := 73−
√
3281

16 ≈ 0.98, which is the root of α∗ = 64(1−α∗)
1+8(1−α∗) , we bound the second term

as
(1−α) 8µ

L0(
1+(1−α) 8µ

L0

) ⩾ µ
4L0

· 32(1−α)
1+8(1−α)

α=α∗

= α∗ µ
8L0

. Therefore, for Ψk =
(
1− λkµ

4

)∥∥xk − x∗
∥∥2 +

1
4

(
1 + (1− α∗) 8µL0

)∥∥xk − xk−1
∥∥2 + 2λkθk(f(x

k−1)− f∗) we have

Ψk+1 ≤
(
1− α∗µ

2
min

{
λk,

1

4L0

})
Ψk. (105)

The final step of the proof is unrolling the recursion for Lyapunov function Ψk. Following the proof
of Theorem G.2, we have that

min

{
λk,

1

4L0

}
⩾


1

4L0
− L1

4L0
∥xt − xt−1∥, if k ∈ T1, where t ∈ K and 0 ⩽ k − t ⩽ m,

1
4L0

− L1

4L0
∥xk+1 − xk∥, if k ∈ T2,

1
4L0

, if k ∈ T3.
(106)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

with m := 1 + log√ 7
4

⌈
(1+DL1)

2

⌉
, which differs from m defined in the convex case due to the new

condition on λk. Therefore, by repeating all the steps from the proof of (98), we obtain

N∑
k=1

min

{
λk,

1

4L0

}
⩾

N

4L0
−

√
2N(m+ 1)L1D

4L0
. (107)

Next, we bound the product that arises during recursion unrolling by using the relation between the
geometric mean and the arithmetic mean:

N∏
k=1

(
1− α∗µ

2
min

{
λk,

1

4L0

})
⩽

(
1− α∗µ

2

1

N

N∑
k=1

min

{
λk,

1

4L0

})N

(107)
⩽

(
1− α∗µ

8L0
+
α∗µ(m+ 1)L1D

4
√
2NL0

)N

. (108)

Finally, we combine (105) and (108) and get

ΨN+1

(105)
≤

N∏
k=1

(
1− α∗µ

2
min

{
λk,

1

4L0

})
Ψ1

(108)
≤

(
1− α∗µ

8L0
+
α∗µ(m+ 1)L1D

4
√
2NL0

)N

Ψ1.

Moreover, when N ⩾ 8(m+ 1)2L2
1D

2, we have α∗µ(m+1)L1D

4
√
2NL0

⩽ α∗µ
16L0

, which in combination with
the above inequality implies (102).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

H STOCHASTIC EXTENSIONS: MISSING PROOFS AND DETAILS

H.1 (L0, L1)-STOCHASTIC GRADIENT DESCENT

Algorithm 5 (L0, L1)-Stochastic Gradient Descent ((L0, L1)-SGD)

Input: starting point x0, number of iterations N , stepsize parameter η > 0, L0 > 0, L1 ⩾ 0
1: for k = 0, 1, . . . , N − 1 do
2: Sample ξk ∼ {1, . . . , n} uniformly at random
3: xk+1 = xk − η

L0+L1∥∇f
ξk

(xk)∥∇fξk(x
k)

4: end for
Output: xN

Theorem H.1 (Theorem 7.1). Let Assumption 4 hold. Then, the iterates generated by (L0, L1)-SGD
with 0 < η ⩽ ν

2 , ν = e−ν after N iterations satisfy

min
k=0,...,N

E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽

2L0∥x0 − x∗∥2

η(N + 1)
. (109)

Proof. Similarly to the deterministic case, we start by expanding the squared distance x∗, which is a
common minimizer for all {fi}ni=1:

∥xk+1 − x∗∥2 =

∥∥∥∥xk − x∗ − η

L0 + L1∥∇fξk(xk)∥
∇fξk(xk)

∥∥∥∥2
= ∥xk − x∗∥2 − 2η

L0 + L1∥∇fξk(xk)∥
⟨xk − x∗,∇fξk(xk)⟩

+
η2∥∇fξk(xk)∥2

(L0 + L1∥∇fξk(xk)∥)2
(2)
⩽ ∥xk − x∗∥2 − 2η

L0 + L1∥∇fξk(xk)∥
(
fξk(x

k)− fξk(x
∗)
)

+
η2∥∇fξk(xk)∥2

(L0 + L1∥∇fξk(xk)∥)2

(8)
⩽ ∥xk − x∗∥2 − 2η

(
1− η

ν

) fξk(x
k)− fξk(x

∗)

L0 + L1∥∇fξk(xk)∥
η⩽ ν

2

⩽ ∥xk − x∗∥2 − η
fξk(x

k)− fξk(x
∗)

L0 + L1∥∇fξk(xk)∥
. (110)

As before, we consider two possible cases: ∥∇fξk(xk)∥ ⩾ L0

L1
or ∥∇fξk(xk)∥ < L0

L1
.

Case 1: ∥∇fξk(xk)∥ ⩾ L0

L1
. In this case, we have

L0 + L1∥∇fξk(xk)∥ ⩽ 2L1∥∇fξk(xk)∥, (111)

ν∥∇fξk(xk)∥
4L1

(111)
⩽

ν∥∇fξk(xk)∥2

2(L0 + L1∥∇fξk(xk)∥)
(8)
⩽ fξk(x

k)− fξk(x
∗). (112)

Plugging the above inequalities in (110), we continue the derivation as follows:

∥xk+1 − x∗∥2
(110),(111)

⩽ ∥xk − x∗∥2 − η
fξk(x

k)− fξk(x
∗)

2L1∥∇fξk(xk)∥
(112)
⩽ ∥xk − x∗∥2 − νη

8L2
1

. (113)

Case 2: ∥∇fξk(xk)∥ < L0

L1
. In this case, we have

L0 + L1∥∇fξk(xk)∥ ⩽ 2L0, (114)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

implying that

∥xk+1 − x∗∥2
(45),(114)

⩽ ∥xk − x∗∥2 − η

2L0

(
fξk(x

k)− fξk(x
∗)
)
. (115)

To combine (113) and (115), we introduce event E(xk) :=
{
∥∇fξk(xk)∥ ⩾ L0

L1
| xk

}
for given xk

and indicator of event E(xk) as 1E(xk), i.e., for given xk, we have 1E(xk) = 1 if ∥∇fξk(xk)∥ ⩾ L0

L1
,

and 1E(xk) = 0 if ∥∇fξk(xk)∥ < L0

L1
. Then, inequalities (113) and (115) can be unified as follows:

∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − 1E(xk) ·
νη

8L2
1

− (1− 1E(xk)) ·
η

2L0

(
fξk(x

k)− fξk(x
∗)
)
.

Let us denote the expectation conditioned on xk as Ek[·] := E[· | xk]. Taking Ek[·] from the both
sides of the above inequality, we derive

Ek

[
∥xk+1 − x∗∥2

]
⩽ ∥xk − x∗∥2 − pk · νη

8L2
1

−Ek

[
(1− 1E(xk)) ·

η

2L0

(
fξk(x

k)− fξk(x
∗)
)]
,

where pk := P
{
∥∇fξk(xk)∥ ⩾ L0

L1
| xk

}
= P{E(xk)} = Ek[1E(xk)]. Note that pk is a random

variable itself. Nevertheless, if pk > 0, it means that for at least one ξk ∈ {1, . . . , n} we have
∥∇fξk(xk)∥ ⩾ L0

L1
for given xk. Therefore, either pk ⩾ 1

n or pk = 0. Moreover, when pk = 0, we
have 1− 1E(xk) := 1 for given xk. Putting all together, we continue as follows:

Ek

[
∥xk+1 − x∗∥2

]
⩽ ∥xk − x∗∥2 − 1{pk>0} · pk · νη

8L2
1

−1{pk=0} · Ek

[
(1− 1E(xk)) ·

η

2L0

(
fξk(x

k)− fξk(x
∗)
)]
,

= ∥xk − x∗∥2 − 1{pk>0} · pk · νη
8L2

1

− 1{pk=0} ·
η

2L0

(
f(xk)− f(x∗)

)
⩽ ∥xk − x∗∥2 − 1{pk>0} ·

νη

8nL2
1

− 1{pk=0} ·
η

2L0

(
f(xk)− f(x∗)

)
⩽ ∥xk − x∗∥2 −min

{
νη

8nL2
1

,
η

2L0

(
f(xk)− f(x∗)

)}
.

Taking full expectation from the above inequality and telescoping the result, we get

N∑
k=0

E
[
min

{
νη

8nL2
1

,
η

2L0

(
f(xk)− f(x∗)

)}]
⩽

N+1∑
k=0

(E[∥xk+1 − x∗∥2]− E[∥xk − x∗∥2])

⩽ ∥x0 − x∗∥2.

Since η(N+1)
2L0

min
k=0,...,N

E
[
min

{
νL0

4nL2
1
, f(xk)− f(x∗)

}]
is not greater than

N∑
k=0

E
[
min

{
νη

8nL2
1
, η
2L0

(
f(xk)− f(x∗)

)}]
, we also have

η(N + 1)

2L0
min

k=0,...,N
E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽ ∥x0 − x∗∥2.

Dividing both sides by η(N+1)
2L0

, we obtain (109).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

H.2 STOCHASTIC GRADIENT DESCENT WITH POLYAK STEPSIZES

Algorithm 6 Stochastic Gradient Descent with Polyak Stepsizes (SGD-PS)

Input: starting point x0, number of iterations N , minimal values fi(x∗) := minx∈Rd fi(x) for all
i ∈ {1, . . . , n}

1: for k = 0, 1, . . . , N − 1 do
2: Sample ξk ∼ {1, . . . , n} uniformly at random

3: xk+1 = xk − f
ξk

(xk)−f
ξk

(x∗)

∥∇f
ξk

(xk)∥2 ∇fξk(xk)
4: end for

Output: xN

Theorem H.2 (Theorem 7.2). Let Assumption 4 hold. Then, the iterates generated by SGD-PS after
N iterations satisfy

min
k=0,...,N

E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽

4L0∥x0 − x∗∥2

ν(N + 1)
. (116)

Proof. Similarly to the deterministic case, we start by expanding the squared distance x∗, which is a
common minimizer for all {fi}ni=1:

∥xk+1 − x∗∥2 =

∥∥∥∥xk − x∗ −
fξk(x

k)− fξk(x
∗)

∥∇fξk(xk)∥2
∇fξk(xk)

∥∥∥∥2
= ∥xk − x∗∥2 −

2
(
fξk(x

k)− fξk(x
∗)
)

∥∇fξk(xk)∥2
⟨xk − x∗,∇fξk(xk)⟩

+

(
fξk(x

k)− fξk(x
∗)
)2

∥∇fξk(xk)∥2

(2)
⩽ ∥xk − x∗∥2 −

(
fξk(x

k)− fξk(x
∗)
)2

∥∇fξk(xk)∥2

(8)
⩽ ∥xk − x∗∥2 − ν

2
·
fξk(x

k)− fξk(x
∗)

L0 + L1∥∇fξk(xk)∥
. (117)

As before, we consider two possible cases: ∥∇fξk(xk)∥ ⩾ L0

L1
or ∥∇fξk(xk)∥ < L0

L1
.

Case 1: ∥∇fξk(xk)∥ ⩾ L0

L1
. In this case, inequalities (111) and (112) hold and the derivation from

(117) can be continued as follows:

∥xk+1 − x∗∥2
(117),(111)

⩽ ∥xk − x∗∥2 − ν

2
·
fξk(x

k)− fξk(x
∗)

2L1∥∇fξk(xk)∥
(112)
⩽ ∥xk − x∗∥2 − ν2

16L2
1

, (118)

which gives (54).

Case 2: ∥∇fξk(xk)∥ < L0

L1
. In this case, inequality (114) holds and we have

∥xk+1 − x∗∥2
(117),(114)

⩽ ∥xk − x∗∥2 − ν

2
·
fξk(x

k)− fξk(x
∗)

2L0
. (119)

To combine (118) and (119), we introduce event E(xk) :=
{
∥∇fξk(xk)∥ ⩾ L0

L1
| xk

}
for given xk

and indicator of event E(xk) as 1E(xk), i.e., for given xk, we have 1E(xk) = 1 if ∥∇fξk(xk)∥ ⩾ L0

L1
,

and 1E(xk) = 0 if ∥∇fξk(xk)∥ < L0

L1
. Then, inequalities (118) and (119) can be unified as follows:

∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 − 1E(xk) ·
ν2

16L2
1

− (1− 1E(xk)) ·
ν

4L0

(
fξk(x

k)− fξk(x
∗)
)
.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Let us denote the expectation conditioned on xk as Ek[·] := E[· | xk]. Taking Ek[·] from the both
sides of the above inequality, we derive

Ek

[
∥xk+1 − x∗∥2

]
⩽ ∥xk − x∗∥2 − pk · ν2

16L2
1

−Ek

[
(1− 1E(xk)) ·

ν

4L0

(
fξk(x

k)− fξk(x
∗)
)]
,

where pk := P
{
∥∇fξk(xk)∥ ⩾ L0

L1
| xk

}
= P{E(xk)} = Ek[1E(xk)]. Note that pk is a random

variable itself. Nevertheless, if pk > 0, it means that for at least one ξk ∈ {1, . . . , n} we have
∥∇fξk(xk)∥ ⩾ L0

L1
for given xk. Therefore, either pk ⩾ 1

n or pk = 0. Moreover, when pk = 0, we
have 1− 1E(xk) := 1 for given xk. Putting all together, we continue as follows:

Ek

[
∥xk+1 − x∗∥2

]
⩽ ∥xk − x∗∥2 − 1{pk>0} · pk · ν2

16L2
1

−1{pk=0} · Ek

[
(1− 1E(xk)) ·

ν

4L0

(
fξk(x

k)− fξk(x
∗)
)]
,

= ∥xk − x∗∥2 − 1{pk>0} · pk · ν2

16L2
1

− 1{pk=0} ·
ν

4L0

(
f(xk)− f(x∗)

)
⩽ ∥xk − x∗∥2 − 1{pk>0} ·

ν2

16nL2
1

− 1{pk=0} ·
ν

4L0

(
f(xk)− f(x∗)

)
⩽ ∥xk − x∗∥2 −min

{
ν2

16nL2
1

,
ν

4L0

(
f(xk)− f(x∗)

)}
.

Taking full expectation from the above inequality and telescoping the result, we get

N∑
k=0

E
[
min

{
ν2

16nL2
1

,
ν

4L0

(
f(xk)− f(x∗)

)}]
⩽

N+1∑
k=0

(E[∥xk+1 − x∗∥2]− E[∥xk − x∗∥2])

⩽ ∥x0 − x∗∥2.

Since ν(N+1)
4L0

min
k=0,...,N

E
[
min

{
νL0

4nL2
1
, f(xk)− f(x∗)

}]
is not greater than

N∑
k=0

E
[
min

{
ν2

16nL2
1
, ν
4L0

(
f(xk)− f(x∗)

)}]
, we also have

ν(N + 1)

4L0
min

k=0,...,N
E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}]
⩽ ∥x0 − x∗∥2.

Dividing both sides by ν(N+1)
4L0

, we obtain (116).

Remark H.1. Note that the LHS of equation (29) can be lower bounded as follows:

ν(N + 1)

4L0
min

k=0,...,N
E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}
1
f(xk)−f(x∗)⩾ νL0

4nL2
1

+min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}
1
f(xk)−f(x∗)⩽ νL0

4nL2
1

]
⩾ min

k=0,...,N
E
[
min

{
νL0

4nL2
1

, f(xk)− f(x∗)

}
1
f(xk)−f(x∗)⩾ νL0

4nL2
1

]
= min

k=0,··· ,N

ηL0

4nL2
1

P

(
f(xk)− f(x∗) ⩾

νL0

4nL2

)
Therefore, from equation equation (29) we have that mink=0,··· ,N P

(
f(xk)− f(x∗) ⩾ νL0

4nL2

)
⩽

8nL2
1∥x

k−x∗∥2

ην(L+1) .

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

I NUMERICAL EXPERIMENTS

Synthetic experiment. The existing numerical studies already illustrate the benefits of many
methods considered in this paper in solving (L0, L1)-smooth problems. In particular, the results
of numerical experiments with Clip-GD, which is closely related to (L0, L1)-GD, GD-PS, and
AdGD on training LSTM (Merity et al., 2018) and/or ResNet (He et al., 2016) models are provided
in (Zhang et al., 2020b; Loizou et al., 2021; Malitsky & Mishchenko, 2020). Therefore, in our
numerical experiments, we focus on a simple 1-dimensional problem that is convex, (L0, L1)-
smooth, and provides additional insights to the ones presented in the literature. In particular, we
consider function f(x) = x4, which is convex, (4, 3)-smooth, but not L-smooth as illustrated in
Example 1.1. We run (i) GD with stepsize 1/L, L = 12|x0|2 (which corresponds to the worst-case
smoothness constant on the interval |x| ⩽ |x0|), (ii) (L0, L1)-GD with L0 = 4, L1 = 3, η = ν/2,
(iii) (L0, L1)-STM with Gk+1 = L0 + L1∥∇f(xk+1)∥ (not supported by our theory) and (iv) with
Gk+1 = max{Gk, L0 + L1∥∇f(xk+1)∥} (called (L0, L1)-STM-max on the plots), (v) GD-PS,
and (vi) AdGD for starting points x0 ∈ {1, 10, 100}. The results are reported in Figure 1. In all
tests, GD-PS and AdGD show the best results among other methods (which is expected since these
methods are the only parameter-free methods). Next, standard GD is the slowest among other methods
and slow-downs once we move the starting point further from the optimum, which is also expected
since L increases and we have to use smaller stepsizes for GD. Finally, let us discuss the behavior
of (L0, L1)-GD, (L0, L1)-STM-max, and (L0, L1)-STM. Clearly, it depends on the distance from
the starting point to the solution. In particular, when x0 = 1 we have ∥∇f(x0)∥ = 4, meaning that
L = 16. In this case, GD and (L0, L1)-GD behave similarly to each other, and (L0, L1)-STM-max
significantly outperforms both of them, which is well-aligned with the derived bounds. However, for
x0 = 10 and x0 = 100 we have ∥∇f(x0)∥ = 4 ·103 and ∥∇f(x0)∥ = 4 ·106 leading to a significant
slow down in the convergence of GD and (L0, L1)-STM-max. In particular, (L0, L1)-GD achieves a
similar optimization error to (L0, L1)-STM-max for x0 = 10 and much better optimization error for
x0 = 100. This is also aligned with our theoretical results: when R0 is large and number of iterations
is not too large, bound (15) derived for (L0, L1)-GD can be better than bound (23) derived for
(L0, L1)-STM-max. Moreover, for x0 = 100, Figure 1 illustrates well the two-stages convergence
behavior of (L0, L1)-GD described in Theorem 3.1. Finally, although our theory does not provide
any guarantees for (L0, L1)-STM with Gk+1 = L0 + L1∥∇f(xk+1)∥, this method converges faster
than (L0, L1)-GD for the considered problem but exhibits highly non-monotone behavior.

Logistic regression. We also study the behavior of the algorithms on the Logistic Regression
problem of the form

f(x) =
1

n

n∑
i=1

fi(x), where fi(x) = log
(
1 + exp(−yia⊤i x)

)
, ai ∈ Rd, yi ∈ {−1, 1}.

As Example 1.3 shows, each individual function fi is (L0, L1)-smooth. Moreover, function f is
also L-smooth. This implies that f(x) is (L0, L1)-smooth, but the derivation of the exact constants
L0 and L1 for f is problematic and highly depends on the relation between {ai}ni=1. Nevertheless,
one can still compare the methods considered above on this problem and numerically estimate the
dependency of the Hessian norm on the norm of the gradient. In particular, we observe linear-like
gradient norm dependency on the hessian norm in the toy scenario, where all vectors ai are close
to each other, i.e., we generated ai ∈ R50 as ai = (1, 2, . . . , 50)⊤ + ξ⊤i , where ξi ∼ N (0, I) are
i.i.d. standard Gaussian vectors, and all yi = 1 except of one yj = −1 for randomly selected j from
{1, . . . , 50} (Figure 1).

We also run the considered methods for real datasets from LIBSVM (Chang & Lin, 2011) – a9a
and mushrooms – for different starting points. The results are presented in Figure 3. Despite the
fact that for these datasets, f does not have a clear linear dependence of the norm of the Hessian
w.r.t. the norm of the gradient, the methods that are better suited for (L0, L1)-smooth problems (like
(L0, L1)-GD, GD-PS, and AdGD) converge significantly faster than other methods. Moreover, we
also emphasize that accelerated variants – (L0, L1)-STM and (L0, L1)-STM-max – work not better
than standard GD in this case.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

30 40 50 60 70 80 90 100

Gradient Norm

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

He
ss

ia
n

No
rm

LogReg Smoothness

40

50

60

70

80

90

Figure 2: Smoothness dependency on the gradient norm, toy scenario logistic regression.

0 200 400 600 800 1000
Iteration

10 15

10 12

10 9

10 6

10 3

100

f(x
)

f(x
*)

LogReg, a9a
 x0 x * = 16

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

0 200 400 600 800 1000
Iteration

10 15
10 12
10 9
10 6
10 3
100
103
106

f(x
)

f(x
*)

LogReg, a9a
 x0 x * = 11000

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

0 50 100 150 200 250 300 350 400
Iteration

10 15
10 13
10 11
10 9
10 7
10 5
10 3
10 1
101

f(x
)

f(x
*)

LogReg, mushroom
 x0 x * = 5

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

0 200 400 600 800 1000
Iteration

10 15
10 12
10 9
10 6
10 3
100
103
106

f(x
)

f(x
*)

LogReg, mushroom
 x0 x * = 28000

(L0, L1)-STM
(L0, L1)-STM-max
GD
(L0, L1)-GD
AdGD
GD-PS

Figure 3: The last iterate discrepancy of algorithms on the logistic regression problem.

42

	Introduction
	Problem Setup
	Related Works
	Our Contribution

	Technical Lemmas
	Smoothed Gradient Clipping
	Gradient Descent with Polyak Stepsizes
	Acceleration: (L0,L1)-Similar Triangles Method
	Adaptive Gradient Descent
	Stochastic Extensions
	BrickRed Conclusion and Future Work
	Extra Related Work
	Examples of (L0,L1)-Smooth Functions
	Proof of Lemma 2.2
	Missing Proofs for (L0,L1)-GD
	Missing Proofs for Gradient Descent with Polyak Stepsizes
	Missing Proofs for (L0,L1)-Similar Triangles Method
	Missing Proofs for Adaptive Gradient Descent
	Derivation of (25)
	Proof of Theorem 6.1
	Convergence in the Strongly Convex Case

	Stochastic Extensions: Missing Proofs and Details
	(L0,L1)-Stochastic Gradient Descent
	Stochastic Gradient Descent with Polyak Stepsizes

	Numerical Experiments

