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Abstract

Genetic variation provides stable, time-invariant markers of disease risk and can therefore
reveal upstream mechanisms underlying complex traits. Genome-wide association studies
(GWAS) have identified thousands of loci associated with disease, yet most remain difficult
to interpret because the intermediate phenotypes linking genotype to disease are unknown.
Here, we address the question whether disease-associated genetic loci can be directly used
to extract such risk-related features from quantitative phenotypes, including functional
tests and medical imaging. We introduce GEMCONT, a multimodal contrastive learning
framework that aligns genotype and phenotype representations in a shared latent space.
By using known disease-associated variants as supervision, GEMCONT learns phenotypic
embeddings guided by genetic information. To reflect the weak, additive nature of genetic
effects, it employs a linear genetic encoder alongside a deep phenotypic encoder. We validate
GEMCONT in controlled simulations and apply it to two real-world settings: spirometry
curves for asthma and retinal fundus images for glaucoma. In both, GEMCONT improves
disease risk prediction and enhances recovery of genetic associations compared with standard
unsupervised or polygenic risk—based models. Altogether, our results demonstrate that
incorporating stable genetic supervision into multimodal representation learning enables
the extraction of genetically informed risk traits, refining disease phenotypes and improving
the interpretability of association studies.
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1. Introduction

Genome-wide association studies (GWAS) have identified thousands of genetic loci associated
with human diseases and complex traits (Visscher et al., 2017; Manolio et al., 2009). Because
germline variation is fixed and precedes disease onset, genetic associations provide upstream
information about biological mechanisms. Yet for most loci, the functional link between
genotype and phenotype remains unknown (Tam and Patel, 2019). Recent work in imaging
genetics has begun to address this challenge by using high-dimensional biomedical data—such
as medical images or physiological recordings—to derive quantitative phenotypes that better
reflect underlying biology (Wright and Herzberg, 2021; Tracy, 2008; Robinson, 2012). Early
approaches relied on manually defined regions or handcrafted measurements, while more
recent studies leverage machine learning to learn compact phenotypic representations directly
from raw data (Zech et al., 2018). These representations have proven valuable for association
studies: for instance, supervised networks trained on clinical outcomes can uncover novel
genetic loci (Rakowski et al., 2024; Kirchler et al., 2022), and unsupervised embeddings
can reveal heritable structure (Yun et al., 2024b; Xie et al., 2024). However, unsupervised
representation learning tends to capture the dominant axes of variation in the data and
may overlook disease-related effects when these correspond to more subtler or less frequent
patterns (Shilova et al., 2025).

To address these challenges, we introduce GEMCONT, a multimodal contrastive learning
framework for imaging-genetics analysis (Fig. 1). GEMCONT leverages known disease-
associated variants as supervision to jointly embed genetic and phenotypic data within a
shared latent space, extracting structure enriched for disease relevance. This differs from
prior multimodal approaches such as ContIG (Taleb et al., 2022) and MRM (Yang et al.,
2023), which use molecular or genetic modalities for broad, task-agnostic pretraining. In
contrast, GEMCONT focuses on disease-specific representation learning guided by GWAS
knowledge, using genetics not merely as an auxiliary modality but as an explicit supervisory
signal to extract phenotypic traits that are proximal to genetic risk and predictive of early
or future disease states.

The contributions of this work are threefold:

1. Genetics-informed contrastive learning. We adapt multimodal contrastive learn-
ing to disease-focused imaging-genetics analysis through GEMCONT, which (i) selects
disease-associated variants from external GWAS summary statistics to define tar-
geted genetic supervision, and (ii) employs a linear genetic projector for efficient and
interpretable variant contributions (Fig. 1).

2. Benchmarking across genetic architectures. We benchmark GEMCONT using
controlled simulations with known disease-associated latent traits and causal variants,
evaluating performance across sample sizes and genetic architectures to determine
when contrastive alignment improves latent trait recovery.

3. Applications to population imaging. We apply GEMCONT to two use cases in
the UK Biobank (Sudlow et al., 2015). First, we recover asthma-related spirometry
embeddings by integrating asthma-associated variants with flow—volume curve data.
Second, we recover a glaucoma-related latent trait from retinal fundus images using
glaucoma-associated variants and imaging data. In both settings, genetics-guided
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Figure 1: Application of GEMCONT to asthma variants and spirometry images.
(a) Genetic variants significantly associated with asthma are extracted from the imputed UK
Biobank data. (b) Corresponding raw spirometry signals are converted into Flow-Volume
Curve images, and an asymmetric dual-encoder is trained to align genotype and image
embeddings in a joint representation space through the CLIP Loss.

contrastive learning improves disease risk prediction and strengthens genetic association
analyses compared to standard self-supervised approaches.

Together, these results establish contrastive learning with genetic supervision as a principled
approach for constructing disease-specific, GWAS-aware phenotypes from high-dimensional
medical imaging data.

2. Methods

The approach implemented in GEMCONT can be formulated as two-step process: (i) learning
a joint representation space where genetic and imaging-derived features are co-embedded,
and (ii) validating the extracted imaging embeddings in statistical association analyses and
disease classification. Below, we describe the co-embedding pipeline and the statistical
validation procedures.

2.1. Contrastive Learning for Genetics-Image Alignment

Contrastive learning for genetics-imaging alignment builds on the CLIP (Radford et al.,
2021) framework, introducing key adaptations to address the unique challenges of genetic
data, which are characterized by sparse and weak additive effects on phenotypes. Formally,
given a dataset of paired genotype and phenotype samples D = {(z4;,2,,)}Y,, each
genotype sample z, € {0, 1, 2}5 represents an allele count vector of S disease-associated
variants, while x,, denotes a high-content phenotype (e.g., medical images). Following the
principle implemented in the CLIP model, GEMCONT learns joint embeddings of genetic
and imaging data by maximizing agreement between modalities from the same individual
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while encouraging separation between individuals. This objective enables the co-embedding
of genetic and phenotypic features into a shared latent space, facilitating the discovery of
biologically meaningful genotype-phenotype relationships.

Multimodal Contrastive Learning Objective. GEMCONT processes genotype and
phenotype data through modality-specific encoders (Fig. 1). The phenotype encoder fy,
maps ¥, to an intermediate embedding e,, which is then projected onto a unit-norm latent
space as zp. The genotype data are processed through a linear genotype projector, mapping
Zg to a unit-norm latent embedding z,. During training, we sample a mini-batch B C D
of paired genotype—phenotype samples and optimize the phenotype encoder, phenotype
projector, and genotype projector to align genetic and phenotypic projections by maximizing
similarity within individuals while minimizing it across individuals. This is achieved using
the multimodal contrastive loss (Radford et al., 2021):

1
L= 5 (»Cg—>p + £g<—p) ) (1)
where ( . m
exp(z; i2pi/T
Lgsp=— Z log —— (2)

JeB ZkeB, ktj eXP(Z;F,ij,k/T) ’

and L4, is defined analogously, swapping ¢g and p. Similar to CLIP, 7 > 0 is a learnable
temperature parameter.

Adaptations for genetic data. To address the sparsity and additive nature of genetic
effects, GEMCONT introduces two key adaptations:

1. Selection of informative variants. We extract relevant genetic features from
genome-wide association study (GWAS) summary statistics, which quantify associa-
tions (e.g., p-values, effect sizes) between millions of variants and a disease of interest.
To ensure independence, we apply standard clumping (Purcell et al., 2007), iteratively
retaining the most significant variant while removing correlated neighbors within a
5 Megabase (Mb) window.

2. Linear projection of genotypes. Genetic effects are predominantly additive with
limited evidence for interactions between variants (Hill et al., 2005), making a linear
projection sufficient for mapping selected variants into the latent space. This reduces
model complexity while preserving key genetic signals.

2.2. Genetic Association Analysis of Learned Embeddings

Multi-trait GWAS for embedding analysis. To assess whether GEMCONT-derived
embeddings capture meaningful genetic signals, we perform a multi-trait genome-wide
association study (GWAS) on a held-out set of samples not used for training. We adapt
the single-variant model from (Lippert et al., 2014; Casale et al., 2015), modeling each
embedding dimension as a quantitative trait influenced by genetic variation. Let E € RN*P
be the embedding matrix, g € {0, 1, 2}NX1 a genotype vector, and F € RV*K a matrix of
covariates. The model is:

E=FA+gb" + ¥, (3)
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where A € RP*K and b € RPX! capture covariate and genetic effects, respectively, and
¥ ~ N(0,C) models residual noise with a learnable covariance matrix C € RP*P. Follow-
ing (Lippert et al., 2014; Casale et al., 2015), C' is estimated under the null model, while a
single scaling factor per variant is optimized under the alternative model to control false
positives efficiently (Korte et al., 2012). We test whether b # 0, obtaining p-values via a
likelihood ratio test with D degrees of freedom. For simulations (Sec. 3.1), we do not adjust
for covariates. In our real-world application (Sec. 3.2), we control for genotyping array,
assessment center, sex, age, age?, sex-by-age, sex-by-age?, height, height?, BMI, and the top
20 genetic principal components to account for confounders. To address feature correlation
and non-Gaussian distributions, embeddings are projected onto their top D principal compo-
nents and rank-normalized before association testing. Independent genome-wide significant
loci (p < 5 x 107%) are identified using PLINK’s clumping procedure (Purcell et al., 2007),
which retains only approximately independent genetic associations by removing variants in
linkage disequilibrium (r? < 0.05) within a 5 Mb window.

Assessing overlap with disease GWAS. To evaluate whether GEMCONT-derived
embeddings capture known disease-associated genetic signals, we compare the genomic loci
identified in our embedding-based GWAS to those from a standard disease GWAS. Specifically,
we measure the fraction of independent genome-wide significant loci (p < 5 x 10~%) identified
in the disease GWAS that are also recovered at genome-wide significance in the embedding
GWAS. This assessment is performed on a held-out test set, distinct from the training data
used for learning embeddings.

External disease GWAS and meta-analysis. To define the disease-specific variant
panels used by GEMCONT, we rely on large external genome-wide association studies
(GWAS) for asthma and glaucoma from the Million Veteran Program (Verma and Huffman,
2023) and FinnGen (Kurki and Karjalainen, 2023). For each disease, we harmonize summary
statistics across cohorts and combine them using a fixed-effect inverse-variance meta-analysis
in METAL (Willer et al., 2010). From the resulting meta-analytic GWAS, we selected
variants with association p < 107° and applied LD clumping in PLINK (5Mb window,
r?2 < 0.05) (Purcell et al., 2007), yielding an approximately independent set of disease-
enriched SNPs. The 1077 threshold is an intermediate cut-off that has been used when
selecting variants from GWAS loci for Mendelian randomization analyses (Davey Smith
and Hemani, 2014; Jin et al., 2024) and lies within the range of p-value thresholds typically
explored in clumping-and-thresholding polygenic risk score methods (Choi et al., 2020). This
choice provides a panel of variants that is strongly enriched for disease-associated signal
while remaining sufficiently large to supervise the phenotype encoder.

3. Experiments and Results

We evaluate GEMCONT’s ability to (i) enhance genetic signal for phenotype- or disease-
associated variants and (ii) recover the underlying latent phenotype in simulations, and via
disease risk prediction as a proxy in real data applications. We conduct three experiments:
a controlled simulation study to assess performance under varying genetic architectures
and two real-world applications to UK Biobank (Sudlow et al., 2015) data. In the first
application we analyze flow-volume curves - used in asthma diagnosis (Jayasooriya and
Stolbrink, 2023) - and integrate genetic variants associated with asthma. In the second we



SENS SHILOVA DALCA SCHNABEL CASALE

apply our framework to retina fundus images, which are used in glaucoma diagnosis (Saha
et al., 2023), and co-embed them with variants associated with glaucoma.

Compared methods. In the simulation and spirometry experiments, we compare GEM-
CONT against two established self-supervised embedding methods: a variational autoencoder
(VAE), which learns latent representations by optimizing a reconstruction objective under a
latent prior (Kingma and Welling, 2014), and SimCLR (Chen et al., 2020), a contrastive
learning approach that maximizes agreement between augmented views of the same input. In
the two real-data applications, we additionally include baselines tailored to disease prediction.
First, we use a simple multimodal model in which the genetic branch is reduced to a single
polygenic risk score (PRS) for the target disease, computed as the sum of GEMCONT’s
input variants weighted by their GWAS effect sizes and fed as a univariate input to the
genetic projector. Second, to assess whether genetics-driven phenotype embeddings provide
added value over conventional clinical markers, we benchmark all spirometry models against
the FEV; /FVC ratio and all fundus models against the cup-to-disc ratio, both widely used
functional (Lambert et al., 2015) and imaging-derived (Gordon and et al., 2002; Foster et al.,
2002) biomarkers in their respective diagnostic domains. Finally, in the fundus experiment
we leverage a strong retinal foundation model (a DINOv2-pretrained ViT backbone) and
consider three configurations on top of it: a frozen RetFound (Zhou and Wang, 2025) baseline,
GEMCONT, and a supervised upper-bound model (Sec. 3.3).

3.1. Benchmarking in Simulated Data

Setup. To evaluate GEMCONT in a controlled setting, we design a simulation framework
where a latent genetic trait influences imaging features, mimicking real-world genotype-
phenotype relationships. We use EMNIST (Cohen et al., 2017), a dataset of 814,255 grayscale
handwritten characters across 62 classes, and define the latent phenotype as the rotation
angle of each character. We systematically vary key factors: training set size (Nirain), genetic
variance explained (hg), and phenotype transformation strength (amax). A fixed 100K test
set is used across all experiments, with five random splits for training, where Niain is varied
(default: 100K). After training, we extract image embeddings and evaluate:

1. Phenotype recovery: Predicting z from embeddings using ridge regression, measured
by R? on the test set.

2. Genetic recovery: Identifying genome-wide significant variants (p < 5 x 1078) via
multi-trait GWAS (Sec. 2.2).

Simulation strategy. We first subsample N images stratified across character labels. Next,
we simulate a genotype matrix G € {0,1,2}V*% for S variants, where each entry represents
allele counts drawn from a binomial distribution: G;; ~ Binomial(2, f;) with minor allele
frequency f;. The latent phenotype z is generated as a weighted combination of genetic
effects and environmental noise, controlling the proportion of variance explained by genetics
(hy):

z = \/hy - std(GB) + /1 — hy - std(zy), (4)

where 3 ~ N (0, Is) represents variant effect sizes and z,, ~ N (0, Iv) models environmental
noise. We then define rotation angles as o = amax - tanh(c - z), where ¢ is chosen to prevent
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Figure 2: Evaluation of phenotype and genetic signal recovery. Performance of
GEMCONT, SimCLR, VAE, and a supervised model is assessed under varying training set
sizes (a), genetic variance explained (b), and maximum rotation (c). The first row shows
the R? score for predicting the latent phenotype z from the learned embeddings, while the
second row presents the fraction of causal variants identified at genome-wide significance
(p < 5 x 1078). Each bar represents the mean + standard deviation across five random
splits. Stars denote standard values held constant while other parameters were varied.

saturation of tanh across samples. Each image is rotated by its corresponding «, creating a
dataset of genetic-image pairs directly linked through rotation.

Results. Figure 2 summarizes the results. GEMCONT outperforms SimCLR and VAE
across all settings. Performance saturates beyond 100K training samples, though GEMCONT
maintains a significant advantage (Fig. 2a). Genetic variance (hy) has minimal impact on
phenotype recovery but strongly affects variant detection, with GEMCONT consistently
identifying more causal variants (Fig. 2b). Finally, lower rotation angles (amax) degrade
baseline performance more than GEMCONT, which remains robust across conditions
(Fig. 2c). As expected, a supervised model serves as an upper bound for both phenotype
and variant recovery.

3.2. Application to Spirometry and Asthma

Experimental setup. We generate flow—volume curves following (Yun et al., 2024a) and
compute the FEV; /FVC ratio, a key biomarker for asthma diagnosis (Lambert et al., 2015).
Similar to recent work that applies CNNs directly to images of spirometry flow—volume curves
for quality control (Martins et al., 2025; Wang and Li, 2022), we rasterize each trajectory
into a standardized 256 x 256 grayscale image at 200 dpi and use these images as input to the
encoder. Genetic variants associated with asthma are selected from external GWAS summary
statistics using clumping (Sec. 2.2), yielding 551 approximately independent variants. To
ensure that spirometry curves reflect baseline lung function, we exclude participants who
reported using a chest inhaler or smoking a cigarette within the last hour before testing, in
line with clinical spirometry preparation guidelines (Paraskeva et al., 2011). After matching
imaging and genetic data and restricting to individuals of European ancestry, we retain
227,332 participants. To obtain stable estimates and quantify variability, we perform five
random 50/50 train/validation splits and evaluate (i) disease recovery and (ii) genetic signal
enrichment in the embeddings. Disease recovery is assessed using L2-regularized logistic
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Figure 3: Asthma prediction and genetic signal enrichment. Comparison of GEM-
CONT, PRS baseline, SimCLR, VAE, and a supervised model trained on the latent phenotype.
(a) Fraction of independent genome-wide significant asthma-associated variants recovered
in method-specific GWAS after multiple testing correction. (b) ROC AUC for asthma
classification at baseline and within 5 years post-assessment. (c) Distributions of the first
principal component (PC1) of GEMCONT image embeddings and of FEV; /FVC, stratified
by asthma status. Violin plots show normalized values for controls (blue) and cases (red),
with black bars indicating median and inter-quartile range. Results are mean + standard
deviation across 5 random 50/50 splits.

regression to predict asthma based on (i) pre-spirometry diagnosis and (ii) diagnosis within
five years post-assessment, reporting ROC AUC. Genetic signal enrichment is quantified by
performing multi-trait GWAS on the embeddings and computing the fraction of independent
asthma-associated variants that remain significant after Bonferroni correction (Sec. 2.2).
Figure 3 summarizes the results.

Results. GEMCONT achieves the highest recall of asthma-associated loci, though all
models recover only a small fraction (Fig. 3a), consistent with expectations given our smaller
sample size relative to the effective sample size of the GWAS meta-analysis. For asthma
prediction, GEMCONT significantly (p < 0.05) outperforms the compared models at baseline
and approaches the supervised model’s upper bound for future diagnoses (Fig. 3b). Finally,
Fig. 3c displays violin plots of the first principal component of the image embeddings
(PC1) and the FEV; /FVC ratio, stratified by asthma status; both measures show modest
distributional shifts between cases and controls, indicating that PC1 captures asthma-related
variation that is comparable in magnitude to the classical biomarker but derived directly
from the flow—volume curves.

3.3. Application to Fundus Images and Glaucoma

Experimental setup. We analyzed color fundus images from the first imaging visit of
UK Biobank participants (Sudlow et al., 2015) and filtered images using the MCF-Net
model (Fu and Wang, 2019), excluding images with a rejection probability above 80%.
We further excluded fundus images from participants who reported prior surgery or laser
treatment for glaucoma, as this affects biomarkers for glaucoma risk and can impact fundus
morphology (Lesk and Spaeth, 1999; Raghu and Pandav, 2012; Pillunat and Kretz, 2023).
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Genetic variants associated with glaucoma were selected from external GWAS summary
statistics using clumping (Sec. 2.2), yielding 1,535 approximately independent variants.
After merging with genetic data for individuals of European ancestry, we retained 36,349
participants with at least one usable fundus image. For individuals with two images, we
randomly sampled left or right eye with equal probability during training whenever the
individual was drawn into a batch. During validation, if both eyes were available, we extracted
image embeddings for each eye and used their mean as the final embedding. We build on a
Vision Transformer (ViT) base encoder pretrained using DINOv2 on retinal images (Zhou
and Wang, 2025), which we keep frozen and use as an online feature extractor during
training (Kolesnikov and Beyer, 2020; Vo and Wang, 2025). Standard image augmentations
are applied before feeding inputs through the frozen encoder (Sec. 3.4). On top of this
backbone, we consider three image-based configurations. First, RetFound uses the frozen ViT
features with simple mean pooling over patch tokens; no additional representation learning
is performed, and the resulting embeddings are used directly in downstream GWAS and
logistic regression. Second, GEMCONT adds an attention-pooling layer (Ilse and Tomczak,
2018) and a lightweight two-layer MLP to map pooled features to image embeddings, which
are then aligned with genetic embeddings using the multimodal contrastive objective. Third,
a supervised model shares the same architecture as GEMCONT but is optimized directly
for glaucoma classification, providing an approximate upper bound. Given the availability of
this strong fundus-specific backbone, we focus on these configurations rather than training
additional generic self-supervised image models such as SimCLR or VAE on fundus images.
As in the spirometry experiment (Sec. 3.2), we perform five random 50/50 train/validation
splits and evaluate (i) disease recovery and (ii) genetic signal enrichment in the embeddings.
Disease recovery is assessed using L2-regularized logistic regression to predict glaucoma based
on (i) diagnosis at image acquisition and (ii) diagnosis within five years post-assessment,
reporting ROC AUC. Genetic signal enrichment is quantified via multi-trait GWAS on
the embeddings, measuring the fraction of independent glaucoma-associated variants that
remain significant after Bonferroni correction (Sec. 2.2). Figure 4 summarizes the results.
Results. GEMCONT recovers the largest fraction of independent glaucoma-associated
variants, outperforming the PRS and RetFound baselines as well as the supervised upper
bound in terms of alignment between embeddings and disease loci (Fig. 4a). For disease pre-
diction, GEMCONT is competitive with the supervised model and consistently outperforms
both the PRS baseline and the cup-to-disc ratio for glaucoma at image acquisition and for
incident glaucoma within five years (Fig. 4b). Finally, both the first principal component of
the GEMCONT embeddings and the cup-to-disc ratio show case—control shifts, with PC1
exhibiting slightly stronger separation, indicating that the learned representation captures
glaucoma-related variation that is at least comparable to this established imaging biomarker
(Fig. 4c).

3.4. Implementation Details

All models were implemented in PyTorch (Paszke et al., 2019) and trained for 150 epochs
with a batch size of 1024 using AdamW (Loshchilov and Hutter, 2017) (base learning rate
3 x 1074, weight decay 1 x 10™%) and a cosine-annealing schedule with a 10-epoch warm-up.
For the supervised baselines we additionally applied early stopping on the validation loss
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Figure 4: Glaucoma prediction and genetic signal enrichment. Comparison of
GEMCONT, a PRS-only baseline, RetFound embeddings, a supervised upper-bound model
(dashed line), and the cup-to-disc ratio clinical biomarker. (a) Fraction of independent
genome-wide significant glaucoma-associated variants recovered after multiple testing correc-
tion. (b) ROC AUC for glaucoma classification at baseline and within 5 years post-assessment.
(c) Distributions of the first principal component (PC1) of GEMCONT image embeddings
and of cup-to-disc ratio, stratified by glaucoma status. Violin plots show normalized values
for controls (blue) and cases (red), with black bars indicating median and inter-quartile
range. Results are mean + standard deviation across 5 random 50/50 splits.

with a patience of 50 epochs. For the genetic branch, weights connected to each input
variant were initialized to the corresponding effect size from the external meta-analytic
GWAS, and genetic inputs were augmented using SCARF (Bahri and Jiang, 2021) with
corruption probability p = 0.1. Image augmentations were adapted to each experiment:
random erasing for the EMNIST simulation to preserve the rotation signal, random resized
crops with Gaussian blur for spirometry, and random resized crops, color jitter, and Gaussian
blur for fundus images.

4. Conclusion and Future Work

We introduced GEMCONT, a genetics-based multimodal contrastive learning framework
that aligns genotype and imaging embeddings to emphasize disease-relevant variation.
In simulations, GEMCONT improved phenotype and variant recovery compared to self-
supervised baselines, and in the asthma application it outperformed unsupervised methods
in both disease prediction and genetic signal enrichment. Future work includes extending
GEMCONT to richer imaging phenotypes such as MRI for neurodegenerative disorders and
integrating it with genetic causal inference frameworks such as PRiMeR (Sens et al., 2024) to
test whether genetically guided embeddings capture putative causal intermediates of disease.
A key challenge remains the limited availability of large, harmonized imaging—genetics
datasets; as such resources expand, genetics-informed contrastive learning may further refine
genotype—phenotype mapping and support more mechanistic and predictive models for
precision medicine.
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