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ABSTRACT

Low light image enhancement (LLIE) is a challenging task, with most existing
models often struggling to adapt to diverse dark environments due to insufficient
training datasets. In this paper, we propose a novel unsupervised model called
Range-null Latent Prior-guided Consistency Model (RLPCM), which integrates a
latent consistency model (LCM) into low light enhancement using Retinex-based
range-null space decomposition. RLPCM leverages an off-the-shelf LCM as a
generative prior to improve both the latent consistency and realness of enhanced
images. Meanwhile, fine-tuning a lighting decoder solely on normal-light images
to ensure high fidelity in image space. A key contribution is a simple yet effective
global illumination adjustment applied to the range-space component, along with a
natural language guidance module to learn the null-space component. This allows
for iterative generation to enhance both consistency and realness in just a few steps.
Additionally, we present a new UAV low light dataset (UAV-LL) containing 300
image pairs from various UAV scenarios to support comprehensive evaluation.
Extensive experiments demonstrate the superior adaptability and effectiveness of
our framework across a wide range of low-light environments.

1 INTRODUCTION

Low light image enhancement (LLIE) is a long-standing problem that influences both human visual
perception and related computer vision tasks, such as depth estimation Wang et al. (2021), object
detection Hashmi et al. (2023), and semantic segmentation Pan et al. (2024). Current LLIE approaches
are generally categorized into two types: supervised and unsupervised methods. Supervised methods
Weng et al. (2024); Cai et al. (2023); Jiang et al. (2023) typically rely on paired images to train
end-to-end models, but acquiring pixel-aligned image datasets is particularly challenging, especially
in mobile environments. On the other hand, unsupervised methods Ma et al. (2022); Yang et al.
(2023); Liang et al. (2023) have gained traction by minimizing the need for paired data. Among these,
diffusion-based models Wang et al. (2024); Jiang et al. (2024a) have attracted significant attention
for their powerful generative capabilities. Therefore, in this paper, we focus on diffusion-based
approaches for low light image enhancement.

Most diffusion-based models for the LLIE task have integrated low-light image and illumination as
conditional inputs to preserve image details and enhance illumination quality, as shown in Figure 1(a).
For instance, QuadPrior Wang et al. (2024) introduces an illumination-invariant prior as a conditional
generative model utilizing ControlNet Zhang et al. (2023). Similarly, LightenDiffusion Jiang et al.
(2024a) employs a Retinex-based diffusion model that works with unpaired images, decomposing
them into reflectance and illumination maps. However, these approaches lack an effective latent prior
to guide the conditional diffusion process, often resulting in suboptimal enhancement outcomes and
time-consuming procedures.

Recently, the denoising diffusion null-space model (DDNM) Wang et al. (2023b) incorporated
range-null space decomposition Schwab et al. (2019) into diffusion models to address various image
restoration (IR) tasks, such as image super-resolution, colorization, and deblurring. This method
identifies appropriate null-space components to ensure realistic results, while applying a specific
degradation operator to preserve range-space content for data consistency, thus achieving effective
performance. However, DDNM depends on explicit degradation priors, which are challenging to
obtain for LLIE task, and is often limited by slow inference speed.
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Figure 1: (a) Existing diffusion-based models, such as DiffLL, QuadPrior, and LightenDiff, require
the diffusion network to be trained with specific conditions. (b) The schematic process shows that the
range-space anchor serves as a more effective initial latent prior. By applying our updating rule, the
result in latent space becomes closer to the ground truth (GT). (c) We introduce a range-null latent
prior-guided framework for the LLIE task, featuring a training-free diffusion process.

To address these issues, we propose a novel unsupervised framework called Range-null Latent Prior-
guided (RLP) for the LLIE task, as illustrated in Figure 1(c). To accelerate the diffusion process,
the latent consistency model (LCM) Song et al. (2023) is integrated into low-light enhancement by
leveraging Retinex-based range-null space decomposition to identify relevant null-space content,
referred to as the RLP Consistency Model (RLPCM) in Figure 2. Our approach integrates a physics-
driven model, i.e., Retinex theory Land & McCann (1971), with null-space decomposition to introduce
global illumination degradation that guides the range-space content. RLPCM relies solely on a current
off-the-shelf latent consistency model as the generative prior, fine-tuning a lighting decoder with
normal light images to enhance fidelity in the image space. We introduce a simple yet effective global
illumination prior that fixes the range-space component within the range-null space decomposition.
Additionally, we design a natural language guidance mechanism to facilitate learning in the null-
space, enabling a few-step iterative generation process that effectively and fast balances the latent
consistency and the realness.

In this paper, our key findings and contributions are summarized as follows: 1) To the best of our
knowledge, we are the first to introduce a consistency model into the LLIE task, effectively bridging
Rang-null space decomposition with the Retinex theory into the consistency model. Compared
to existing diffusion methods, our approach exhibits superior flexibility and robust across diverse
scenarios. 2) We propose a range-null latent prior-guided framework for the LLIE task, featuring a
simple yet efficient global illumination prior that physically guarantees the reliability of range-space
content. this prior can be manually adjusted during inference, thus avoiding the irreversible effects
associated with fixed parameters. Additionally, we incorporate language-aware guidance mechanisms
to facilitate the learning of null-space content. 3) We present a novel UAV low-light dataset (UAV-LL),
comprising 300 image pairs captured in various mobile environments. This dataset allows for a
comprehensive evaluation of the generalization capabilities of existing methods under previously
unseen conditions. For the related work, please refer to Appendix A.

2 METHODOLOGY

2.1 PRELIMINARIES

Retinex Theory. Among physics-driven models fundamental to LLIE, Retinex theory Land &
McCann (1971) stands out as a key approach. The vanilla Retinex theory assumes that a low-
light image y can be decomposed into illumination A and reflectance x. Typically, x, being an
invariant physical property, is regarded as the ideal enhanced outcome. This relationship is expressed
mathematically by the Retinex theory as:

y = A⊙ x, (1)

where ⊙ denotes the pixel-wise multiplication. But, accurately decomposing illumination A to
estimate reflectance x remains a ill-posed problem. Traditional methods Guo et al. (2017), are
typically Retinex-based illumination optimization problem. Most current methods Weng et al. (2024);
Cai et al. (2023) aim to train end-to-end models that directly map x to y, bypassing the need for
explicit illumination estimation. However, these methods often rely on hand-crafted priors or task-
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Figure 2: An overview of our RLP Consistency Model (RLPCM), based on the RLP framework in
the Figure 1(c). The low-light image y and range-space content A†y are both transformed into latent
space via a pre-trained encoder, producing ẑ and z, respectively. Here, z serves as a range-space
anchor in the latent space, while the null-space content is refined using training-free conditional
consistency sampling with language-aware attention swapping. Finally, a lighting decoder is fine-
tuned with skip connections to preserve high fidelity, ensuring accurate reconstruction.

specific training, which limits their robustness and flexibility in diverse scenarios. Thus, integrating
Retinex theory with pre-trained, off-the-shelf models presents a potentially promising solution.

Range-null Space Decomposition. offers a promising method to integrating Retinex theory with
pre-trained, off-the-shelf models. Given a non-zero linear operator A ∈ Rmn×mn, its pseudo-
inverse A† ∈ Rmn×mn satisfies the equation AA†A = A. Hence, any sample x ∈ Rmn×1 can be
decomposed into the range and null spaces of A as follows:

x = A†Ax+
(
I−A†A

)
x, (2)

where the first term A†Ax represents the range-space content due to AA†Ax = Ax, and the second
term represents the null-space content as A

(
I−A†A

)
x = 0. Now, we reinterpret Retinex theory

in the context of range-null space for a low-light image y, aiming to derive the reflectance x̂ under
the following constraints:

Consistency: Ax̂ = y, Realness: x̂ ∼ p (x) , (3)
where p (x) denotes the real reflectance distribution of x. The general solution for reflectance x̂ that
satisfies the consistency constraint is given by Ax̂ = y, leading to x̂ = A†y +

(
I−A†A

)
x̃. The

term x̃ influences the realistic details in the null-space. Previous methods have sought to estimate
the null-space content x̃ using GANs Wang et al. (2023a) and diffusion models Wang et al. (2023b);
Gandikota & Chandramouli (2024), but these methods inherit limitations such as the randomness
inherent in diffusion models. In contrast, we observe that the consistency model Song et al. (2023)
is more effective for generating null-space content due to its self-consistency property, while also
providing faster inference speeds compared to existing diffusion models.

Consistency Models. Consistency models Song et al. (2023) are a novel class of generative models
that have shown considerable potential across various vision tasks, including image generation and
editing. Unlike diffusion models Ho et al. (2020); Song et al. (2021), consistency models enable
single-step iterative generation, allowing for direct mapping from any point on the Probability Flow
(PF) ODE trajectory back to its origin. Specifically, given a sequence of time points τi ∈ [κ, T ],
where τκ > τκ+1 > · · · > τT , the solution trajectory {xτi} , τi ∈ [κ, T ] belongs to the PF ODE.
The consistency function is defined as fϕ (xτi , τi) → xτκ , and its self-consistency ensures that
fϕ (xτκ̃ , τκ̃) = fϕ (xτκ̂ , τκ̂) for κ̃, κ̂ ∈ [κ, T ]. Recently, latent consistency models (LCM) Luo et al.
(2023) have further enhanced efficiency by transforming x into latent space z, resulting in improved
computational performance. LCMs can be trained by distilling pre-trained diffusion models. In this
work, we use the following LCM parameterization:

fϕ (z, c, τi) = sκ (τi)x+ sout (τi) ẑ0 (4)

ẑ0 =

(
zτi − σ (τi) ϵϕ (z, c, τi)

α (τi)

)
, (5)

where sκ (τi) and sout (τi) are differentiable functions specifically defined as sκ (τi) = 0 and
sout (τi) = 1, and ϵϕ (z, c, τi) is the teacher diffusion model, whose forward process can be ef-
fectively expressed as zτi = α (τi) z0 + σ (τi) ϵϕ.
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2.2 OUR APPROACH

Our goal is to establish a credible range-space that produces consistent results while accurately
identifying a suitable null-space to enhance realness. Unlike the super-resolution and deblurring tasks
that can define explicit degradation operators, LLIE is affected by variable illumination conditions,
which complicates the design of a unified degradation operator. Building upon our RLP framework
illustrated in the Figure 1(c), we introduce a Range-Null Latent Prior-guided Consistency Model
(RLPCM), as depicted in Figure 2. RLPCM leverages Retinex theory to propose an adaptive and
flexible illumination degradation factor derived from low-light images, thereby stabilizing the range-
space component. Furthermore, we guide the null-space content through established consistency
models by employing natural language for a more intuitive representation.
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Figure 3: Schematic of range-null
space decomposition in latent space.
The dotted green line represents the
trajectory of LCM. In the latent space,
the range and null-space content are
adjusted along the LCM’s original tra-
jectory, moving the position closer to
the optimal result.

Range-space Content Correction. Given a low-light image
y, we first construct an illumination degradation factor A,
which will be discussed in detail in subsection 2.3, and then
derive the range-space content using A†y. Subsequently, we
employ an off-the-shelf latent consistency model fϕ(·, ·, ·)
Luo et al. (2023) and transform the low-light image y and
range-space content A†y into the latent space as ẑ and z,
respectively, via a pre-trained encoder. In this context, we
consider z as the anchor representing range-space content in
the latent space. Notably, the origin of the ODE trajectory of
the LCM may be situated far from this anchor, and we thus
maintain a fixed distance between the anchor and the output
of the LCM as follows:

ϵ = z− fϕ (ẑ, cnull, τi) , (6)

where τi represents the time point and cnull denotes the null
condition. This distance ϵ is designed to bridge the gap, as il-
lustrated in Figure 3. This bridging mechanism is essential for
maintaining alignment between the generated output and the
expected range-space content. The model’s self-consistency
ensures that ϵ consistently points toward the anchor, thereby enhancing the overall coherence of the
transformation process. Next, the key problem is to identify an appropriate null-space content that
guarantees the realness results.

Language-aware Null-space Content Refinement. Inspired by Classifier-Free Guidance (CFG) Ho
& Salimans (2022) for generating high-quality language-aligned images, we design a language-aware
null-space content refinement module. Specifically, we utilize two contrasting language prompts to
sample the conditional results, and the entire process can be articulated as follows:

∆ϵ = fϕ (ẑ, cn, τi)− fϕ (ẑ, cl, τi) , (7)

where ∆ϵ denotes the null-space content aimed at improving the realness, cl denotes low-light
language prompt, cn denotes normal-light language prompt. Recall the CFG Ho & Salimans (2022)
employed in the LCM Luo et al. (2023), which involves replacing the original noise prediction with a
linear combination of both conditional and unconditional noise derived from the teacher diffusion
model, expressed as: ϵ̃θ(zτi , ω, c, τi) := (1 + ω)ϵθ(zτi , c, zτi)− ωϵθ(zτi , cnull, zτi) and ω is called
the guidance scale. We can rewrite equation 7 as follows:

∆ϵ = (1 + w1) fϕ (ẑ, cn, τi)− (1 + w2) fϕ (ẑ, cl, τi) + (w2 − w1) fϕ (ẑ, cnull, τi) , (8)

By combining equation 6 and equation 8, therefore, we can derive the complete range-null space
decomposition result as follows:

z̄ = ϵ+ fϕ (ẑ, cnull, τi) +
(
I− γA†A

)
∆ϵ −→ z̄ = z+

(
I− γA†A

)
∆ϵ (9)

where we set γ ∈ [0, 1] to prevent
(
I− γA†A

)
≡ 0, thereby enhancing the null-space content.

Additionally, providing an accurate language condition poses a challenge in preserving texture while
improving illumination for Low-Light Image Enhancement (LLIE). Inspired by MasaCtrl Cao et al.
(2023) and Infedit Xu et al. (2024), we employ a swapping self-attention mechanism that facilitates
non-rigid semantic transformations for image style transfer. This approach allows for querying local
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Algorithm 1 Range-Null Latent Prior-guided Consistency Model for LLIE

1: Input: Low light image y, Global illumination intensity ϖ, Low light prompt cl, Normal light
prompt cn, language guidance scale w1 and w2, time-step scheduler τT , off-the-shelf LCM
fϕ(·, ·, ·) and encoder E(·) and fine-tuned lighting decoder D(·)

2: Output: Enhanced image x̂
3: A = ϖI,A† = 1

ϖ I, ▷ Pseudo-inverse
4: ẑ, · = E(y); z, r = E(A†y), ▷ Encoder
5: ϵ = z− fϕ (ẑ, cnull, τi), ▷ Fix range-space content
6: ∆ϵ = (1 + w1) fϕ (ẑ, cn, τi)− (1 + w2) fϕ (ẑ, cl, τi) + (w2 − w1) fϕ (ẑ, cnull, τi),

▷ Refine null-space content
7: z̄ = fϕ (ẑ, cnull, τi) + ϵ+

(
I− γA†A

)
∆ϵ → z̄ = z+

(
I− γA†A

)
∆ϵ, ▷ Predict result

8: for τi = T − 1, T − 2, . . . , κ do ▷ Iterative refinement
9: ẑ → ẑτi

10: ϵ = z̃− fϕ (ẑτi , cnull, τi)
11: ∆ϵ = (1 + w1) fϕ (ẑτi , cn, τi)− (1 + w2) fϕ (ẑτi , cl, τi) + (w2 − w1) fϕ (ẑτi , cnull, τi) ,
12: z̄ = z+

(
I− γA†A

)
(ϵ+∆ϵ)

13: z̃ = z̄
14: end for
15: Return x̄ = D(z̄, r). ▷ Decoder

content and textures from low-light images, ensuring consistency is maintained. Our objective is
to implement language-aware illumination attention that enhances illumination while preserving
the original content of the low-light image. Specifically, we use the original Qn, Kn, and Vn in
self-attention mechanism. Subsequently, we query semantically similar content from Kl and Vl

using the target query Qn. The attention mechanism can be expressed in matrix form as follows:

Attention(Qn,Kl,Vl) = Softmax
(
QnK

T
l√

d

)
Vl. (10)

Lighting Decoder. Once the range-null content in the latent space is refined, we propose a lighting
decoder that converts z̄ to image space as x̄. This entire process can be expressed as follows:

z, r = E(x), (11)
x̄ = D(z̄, r). (12)

where z̄ is refined from z in equation 9, and r is the middle-layer feature. Our lighting decoder
incorporates additional convolutional layers for hidden feature fusion and utilizes skip connections.
To our knowledge, QuadPrior Wang et al. (2024) introduced a bypass decoder that effectively captures
details from randomly degraded images and is sensitive to illumination changes. However, it has
notable limitations: the bypass decoder is trained on the COCO dataset Lin et al. (2014), which
contains underexposed and low-quality images, thereby compromising its decoding capabilities.
Additionally, its performance in recovering complex textures under varying illumination conditions is
constrained, as the random illumination jittering and noise do not integrate a physical model of LLIE.

To address the aforementioned issues, we collect a well-exposed image dataset from benchmark
sources and the internet to ensure high-quality training data. We then fine-tune the lighting decoder to
accept both Retinex-driven degraded images and normal images, allowing it to adapt to illumination
degradation effectively. This approach ensures that the model remains sensitive to variations in
illumination within the latent space while preserving high fidelity through skip connections. The
overall objective for training the decoder model can be formulated as follows:

L = minmax (Lrec (x,D (E(x̃), r)) + Lreg (z; E ,D)) (13)

where x̃ is the Retinex-driven degraded images. Lrec denotes the pixel-wise reconstruction losses,
including MSE and LPIPS, while Lreg regularizes the latent z to be zero centered and small variance.

It is worth noting that our method also supports rapid one-step generation while also enabling multi-
step sampling, allowing for a trade-off between computational efficiency and enhancement quality,
much like traditional consistency models.

5
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Figure 4: The distribution and intensity of average and difference illumination from the statistics of
the low/normal light image pairs.

2.3 CONSTRUCTING ILLUMINATION FACTOR A

Rather than focusing on precise illumination estimation, we reconsider Retinex theory through the
lens of Range-null space decomposition and propose a simple yet effective global illumination
intensity. We introduce the following proposition:

Proposition 1. We assume that the low-light image mainly suffers from the global degeneration
operator ϖ in illumination intensity A, which is a non-zero constant matrix.When we set the constant
of A as ϖ, its pseudo-inverse A† can be easily calculated as

A† =
1

ϖ
I. (14)

Hence, we present a simple yet interpretable range-space content A†y for the LLIE task. It is then
encoded into latent space as z = E(A†y). The proof can be found in the appendix B.

To validate the universality of global illumination reduction, we gather approximately 7,000 low
and normal light image pairs from existing benchmark datasets, including LOLv1 Wei et al. (2018),
LOLv2 Yang et al. (2021), LSRW Hai et al. (2023), and our UAV-LL dataset. We conducted a study
on the illumination degradation between these paired images. Specifically, we first estimated the
average global illumination intensity. Following the methodology of Guo et al. (2017), we computed
pixel-wise illumination by selecting the maximum value across the three color channels as the global
illumination and then calculated the difference between this value and the average illumination.

As illustrated in Figure 4(a), the global illumination intensity in low-light images is low and uniformly
distributed between 0.1 and 0.4. Additionally, Figure 4(b) shows that the average difference intensity
predominantly ranges from 0 to 15, indicating that the pixel-wise illumination is close to the average
illumination. By observing toy examples of the illumination and difference maps in Figure 4(c), we
have a reason to believe that most low-light images exhibit characteristics of global degradation.

3 EXPERIMENTS

3.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets. We evaluate our method on two paired benchmark datasets: LOL+ and LSRW Hai et al.
(2023). Following Wang et al. (2024), we adopt LOL+ consists of 115 low and normal light image
pairs from LOLv1 Wei et al. (2018) and LOLv2 Yang et al. (2021), while LSRW contains 50 pairs. To
further assess generalization capabilities, we introduce a new UAV-LL dataset, referred to Appendix
C, comprising 300 image pairs captured in diverse mobile environments For fine-tuning the lighting
decoder, we gathered 7,000 normal images from benchmark datasets and the internet.

Compared Methods. We compare our method with five SOTA supervised methods, including
URetinex-Net Wu et al. (2022), R2RNet Hai et al. (2023), Retinexformer Cai et al. (2023), GSAD
Hou et al. (2023) and DiffLL Jiang et al. (2023), all of which achieve state-of-the-art results on
benchmark datasets. Furthermore, we compare our method with nine unsupervised low-light image
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Table 1: Quantitative comparisons on LOL+, LSRW and UAV-LL dataset. The best unsupervised
result is in red color, while the second best result is in blue color under the unsupervised setting.

LOL+ LSRW UAV-LLMethod
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Training Set

URetinex-Net(CVPR22) 20.93 0.854 0.104 18.27 0.518 0.295 13.35 0.482 0.276 LOL
R2RNet (JVCIR23) 20.20 0.816 0.664 16.24 0.502 0.251 11.61 0.49 0.295 LSRW

Retinexformer(ICCV23) 23.98 0.843 0.117 15.98 0.467 0.242 12.10 0.624 0.207 LOL
GSAD(NeurIPS23) 28.32 0.886 0.093 17.41 0.507 0.294 14.75 0.521 0.281 LOL

SL

DiffLL(Siggraph Asia23) 28.54 0.870 0.102 13.48 0.396 0.264 11.69 0.595 0.247 LOL
EnlightenGAN(TIP21) 18.57 0.700 0.302 17.10 0.462 0.322 17.96 0.538 0.252 own data

ZeroDCE(CVPR20) 17.64 0.572 0.316 15.86 0.443 0.315 17.91 0.502 0.293 own data
SCI(CVPR22) 16.97 0.532 0.312 15.24 0.419 0.321 14.78 0.576 0.240 LOL+

PairLIE(CVPR23) 19.70 0.774 0.235 17.60 0.501 0.323 15.21 0.512 0.248 LOL+
NeRCo(ICCV23) 19.67 0.720 0.266 17.84 0.535 0.371 16.24 0.530 0.459 LSRW

CLIP-LIT(ICCV23) 14.82 0.524 0.371 13.48 0.396 0.264 17.22 0.558 0.282 own data
Zero-IG(CVPR24) 22.17 0.771 0.276 16.61 0.470 0.282 12.66 0.362 0.377 LOL

QuadPrior(CVPR24) 20.31 0.808 0.202 17.17 0.558 0.199 19.51 0.674 0.272 COCO
LightenDiff(ECCV24) 20.45 0.803 0.192 18.55 0.539 0.311 16.88 0.547 0.249 LOL

USL

Our RLPCM 24.07 0.837 0.105 19.11 0.570 0.190 21.17 0.613 0.266 Normal

PairLIE

QuadPrior

NeRCoSCIInput RetinexFormer

OursZero-IG LightenDiffusion GT

Ours GTLightenDiffusionQuadPriorZeroDCE

GSADURetinexNet EnlightenGANDiffLLInput

GSADURetinexNet DiffLLR2RNetInput

QuadPrior OursZero-IG LightenDiffusion GT

Figure 5: Qualitative comparison with previous methods on LOL+, LSRW and UAV-LL datasets.
Our RLPCM effectively improve the realness and preserves the details compared to other methods.

enhancement approaches, including EnlightenGAN Jiang et al. (2021), ZeroDCE Guo et al. (2020),
SCI Ma et al. (2022), PairLIE Fu et al. (2023), NeRCo Yang et al. (2023), CLIP-LIT Liang et al.
(2023), QuadPrior Wang et al. (2024), and LightenDiffusion Jiang et al. (2024a). Additionally, we
evaluate the cross-dataset generalization of these pre-trained models by applying to UAV-LL datasets.

Implementation Details. We implement RLPCM in PyTorch Paszke et al. (2019) on a server with
the 4090GPUs. In our framework, LCM is tuning-free, only needs to fine-tune the lighting decoder.
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Input GDP DDNM

AutoIR Ours GT

w/o Range-space w/o Null-space Range-null space 

Vanilla Decoder Bypass Decoder Lighting Decoder

Input GDP DDNM

AutoIR Ours GT

Figure 6: Qualitative comparison with diffusion-based image restoration Methods on LOLv1 datasets.
Our method yields the most reasonable and satisfactory results across all methods +.

Table 3: The ablation study on LOL+ and LSRW datasets. The best result is in red color.

Method LOL LSRW
PSNR SSIM LPIPS PSNR SSIM LPIPS

Range-null Space Refinment w/o Range-space content 22.90 0.805 0.128 18.92 0.557 0.239
w/o Null-space content 15.01 0.555 0.169 14.06 0.394 0.270

Decoder vanilla decoder 22.04 0.729 0.131 18.20 0.529 0.229
bypass decoder 23.01 0.787 0.148 19.08 0.545 0.267

Ours 24.07 0.837 0.105 19.11 0.570 0.204

We set the batch size to 8 and train for 140k steps, with an initial learning rate of 1e-4 using the
ADAM optimizer. For evaluation, we report peak signal-to-noise ratio (PSNR), structural similarity
(SSIM) and LPIPS Zhang et al. (2018) is selected as the evaluation metrics.

3.2 MAIN RESULTS

Quantitative Comparison. As shown in Table 1, we evaluated the performance of our RLPCM
with five SOTA supervised methods and nine unsupervised methods. Our RLPCM surpasses all
unsupervised methods on LOL dataset in terms of PSNR SSIM and LPIPS, and achieves comparable
performance with the supervised methods, while our approach achieves robust performance across
all datasets, further emphasizing its generalizability and effectiveness.

To further validate the performance of existing methods, we use the released models trained using
their own data for evaluation on our proposed UAV-LL dataset. Despite the current diffusion models,
GSAD and DiffLL, achieve the SOTA results in LOL datasets, ones exhibit the limited performance
to new scenarios. In contrast, the unsupervised diffusion methods ,i.e., our model, QuadPrior and
LightenDiffusion, outperform than all pre-trained supervised methods, and our approach has the
better result than others.

Qualitative Comparison. Figure 5 summarises the vision results of our method with other SOTA
methods among LOL+, LSRW and UAV-LL datasets. It is observed that existing methods suffer
from overexposure or underexposure illumination and noise, while our method provide a proper
illumination and effectively suppress the noise. Notably, the ground-truth image of UAV-LL dataset
has a trade-off between illumination and noise, since our UAV-LL is captured on the real low light
scenarios. The limitation and more results and are provided in Appendixes D and E, respectively.

3.3 COMPARING WITH DIFFUSION-BASED IMAGE RESTORATION METHODS

Table 2: Quantitative comparison with diffusion-based
image restoration methods on LOLv1 datasets. The best
result is in red color.

Method PSNR SSIM LPIPS Time (S)
GDP (CVPR 23) 13.93 0.630 0.680 60.00+

DDNM (ICLR 23) 13.15 0.492 0.498 5.47
AutoIR (ECCV 24) 19.95 0.811 0.107 28.98

Ours 24.12 0.826 0.103 0.84

To further verify the effectiveness of our
framework, we compare our approach
with several state-of-the-art (SOTA)
diffusion-based image restoration meth-
ods, including GDP Ben Fei (2023),
DDNM Wang et al. (2023b), and Au-
toDIR Jiang et al. (2024b). Following
the evaluation method used in GDP, we
assess the results on the LOLv1 dataset
Wei et al. (2018). As shown in Table
2, our method achieves the best perfor-
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Input GDP DDNM

AutoIR Ours GT

w/o Range-space w/o Null-space Range-null space 

Input GDP DDNM

AutoIR Ours GT

‘daytime’ ‘well lit’ ‘Dusk’Input

Step 1 Step 5 Step10Input

Vanilla Decoder Bypass Decoder Lighting Decoder

Figure 7: Visual results of the ablation study on the Range-null space and Decoder, our proposed full
model exhibits improved detail handling in the local images.

Input GDP DDNM

AutoIR Ours GT

w/o Range-space w/o Null-space Range-null space 

Input GDP DDNM

AutoIR Ours GT

‘daytime’ ‘well lit’ ‘Dusk’Input

Step 1 Step 5 Step10Input

Vanilla Decoder Bypass Decoder Lighting Decoder

w/o Swapping Ours

w/o Swapping Ours

Figure 8: Visual results of the ablation study on natural language guidance, iteration steps, and the
self-attention swapping mechanism.

mance on the LOLv1 dataset, while our inference speed is significantly higher than that of other
models. This improvement is attributed to the introduction of a consistency model, which reduces the
number of iterations. Furthermore, our latent prior-guided framework does not reduce the inference
efficiency. Besides, Due to the limitation of DDNM, i.e, explicit degradation priors, we introduce
our proposed global degeneration operator into DDNM, which also yields an acceptable results. In
Figure 6, our method yields the most reasonable and satisfactory results across all methods.

3.4 ABLATION STUDY

We present ablation studies to demonstrate the effectiveness of the each part in our proposed RNLP.
For range-null space, we remove the range-space content and null-space content, respectively. For
refining the null-space content in latent space, we remove the self-attention swapping mechanism,
while discuss the effect of different language prompts and its guidance scale. For the fidelity, we
compare the lighting decoder with vanilla decoder, consistency decoder and bypass decoder.

The quantitative restuls of the ablated study on LOL+ and LSRW are presented in Table 3. Overall,
the range-null space refinement provide a key contribute to achieve the best performance of the
full model. Without either the range-space or null-space content, there would be a rapid decline in
performance. In comparison, the impact of the decoder on the results is relatively smaller. As shown
in Figure 7 a suboptimal decoder may lead to color distortion or content degradation. Furthermore, we
compare the influence of natural language guidance, iteration steps, and the self-attention swapping
mechanism in Figure 8. Specifically, natural language guidance can appropriately alter the tone of
an image without impacting its content. However, in the absence of the self-attention swapping
mechanism, irrelevant content may be introduced, highlighting the necessity of this mechanism.
Lastly, the results indicate that our method requires only a few steps (or even just one) to achieve
relatively satisfactory results.

4 CONCLUSION

In this paper, we presented a range-null latent prior-guided consistency model, a novel approach
that introduces an off-the-shelf consistency model into low-light image enhancement using Retinex-
based range-null space decomposition. Additionally, we contributed a new UAV LLIE dataset
for comprehensive evaluation. Extensive experiments on both benchmark and UAV-LL datasets
demonstrate that our model achieves robust performance. In future work, we aim to explore model
distillation and extend the latent prior-guided framework to low-light video enhancement tasks.
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A RELATED WORK

Low Light Image Enhancement.

low-light image enhancement Lore et al. (2017) is a critical task, influencing both human visual
perception and the related computer vision applications such as depth estimation Wang et al. (2021),
object detection Hashmi et al. (2023), semantic segmentation Pan et al. (2024).

To our knowledge, LLNetLore et al. (2017) is a pioneer, taking the lead in introducing deep neural
networks into the field of low-light image enhancement, achieving remarkable results through
supervised learning. Subsequently, LightenNetCai et al. (2018) used a convolutional neural network
(CNN) to attempt contrast enhancement for a single image. MBLLENLv et al. (2018) further
innovates and introduces a multi-branch fusion strategy within the CNN architecture to capture
and fuse richer image features. In addition, a series of SOTA methods such as SNR-Net Xu et al.
(2022), Retinexformer Cai et al. (2023), DiffLL Jiang et al. (2023), and MambaLLIE Weng et al.
(2024), have attracted considerable attention due to their impressive performance on various low-light
enhancement benchmark datasets (e.g., MIT Bychkovsky et al. (2011), LOL Wei et al. (2018), LSRW
Hai et al. (2023)). However, despite leveraging advanced network designs incorporating Retinex
theory Land & McCann (1971) , Transformers Vaswani et al. (2017), state-space models Gu & Dao
(2024), and diffusion models Ho et al. (2020), these supervised methods exhibit limited generalization
to unseen scenarios. This is likely due to the comparatively small training datasets, which fail to
capture diverse illumination conditions and device degradations. Hence, reducing the reliance on
paired image collections for low-light enhancement remains a significant challenge, particularly in
mobile environments.

To address this, recent unsupervised approaches have focused on leveraging unpaired datasets or
even single low/normal light images datasets for training, thereby reducing the dependency on paired
images. Prior state-of-the-art methods, ZeroDCEGuo et al. (2020), RUASLiu et al. (2020) and their
subsequent studies such as Ma et al. (2022), Fu et al. (2023), Wang et al. (2024), etc., use physical
lighting priors as guidance to achieve image enhancement without external supervision. Currently,
diffusion-based unsupervised models Wang et al. (2024); Jiang et al. (2024a) have attracted significant
attention for their powerful generative capabilities. QuadPrior Wang et al. (2024) introduces an
illumination-invariant prior as a conditional generative model using the ControlNet-shape framework,
where the entire architecture is trained on COCO dataset Lin et al. (2014). LightenDiffusion employs
a diffusion-based model, utilizing unpaired images by decomposing them into reflectance and
illumination maps, which serve as latent space inputs for low-light enhancement.

Diffusion Model. In recent years, diffusion models have been widely used in image generation
tasks. At the same time, significant progress has been achieved in low-level vision tasks. RePaint
Lugmayr et al. (2022) utilize pre-trained DDPM as a generative prior to generate high-quality, diverse
inpainted images without the need for mask-specific training. For low-level vision task, SR3 Saharia
et al. (2021) adopted a conditional image generation method based on a noise diffusion probability
model to achieve image super-resolution through iterative refinement, LPDM Panagiotou & Bosman
(2023) introduced the Low-light Post-processing Diffusion Model (LPDM) to model the conditional
distribution between low-light images and normal exposure images. DiffPIR Zhu et al. (2023)
combined the traditional interpolation image restoration method with a diffusion sampling framework,
aiming to exploit the diffusion model as a prior for a generative denoiser. DiffLL Jiang et al. (2023)
proposed a wavelet conditional diffusion model (WCDM) that combines the advantages of wavelet
transform and the generation capability of diffusion model to achieve high-quality image enhancement.
Diff-Retinex Yi et al. (2023) rethink the low-light image enhancement task by combining a physically
interpretable model and a generative diffusion model. LatentFD Mei et al. (2023) utilized a latent
feature-guided diffusion model to achieve efficient shadow removal. JoReS-Diff Wu et al. (2023)
improved the generation ability of the diffusion model by introducing Retinex theory as an additional
preprocessing condition. GASD Hou et al. (2023) proposed a global structure-aware diffusion
process for low-light image enhancement through global structure awareness and uncertainty-guided
regularization. PA-Diff Zhao et al. (2024) proposed a new UIE framework that aims to utilize physical
knowledge to guide the diffusion process. MDMS Shang et al. (2024) enables the model to adaptively
learn the noise distribution and thus improve the quality of the generated image by introducing a
space-frequency domain fusion module and combining a multi-domain learning paradigm and a
multi-scale sampling strategy. CFWD Xue et al. (2024) proposed a wavelet diffusion model based on

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CLIP and Fourier transform guidance, which uses multi-modal visual language information in the
frequency domain space generated by multiple wavelet transforms to guide the enhancement process.

B SOLVING PSEUDO-INVERSE A†

Consider an image x of size m× n. We can vectorize the image x into a column vector x⃗ ∈ Rmn×1.
Let A ∈ Rmn×mn be a degradation operator with a 1× 1 global degradation operator ϖ. This matrix
can be written as:

A =


ϖ 0 · · · 0
0 ϖ · · · 0
...

...
. . .

...
0 0 · · · ϖ


mn×mn

(15)

Thus, the degradation operator A can be represented as A = ϖ · Imn.

The pseudo-inverse A+ of a matrix A is defined as the matrix that satisfies the following conditions:

AA†A = A (16)

Substituting back,

ϖ · ImnA
†ϖ · Imn = A. (17)

Thus, the generalized inverse A† is

A† =
1

ϖ2
A =

1

ϖ
Imn (18)

C DETAILS OF UAV-LL DATASET

The UAV-LL dataset used in our experiments primarily consists of drone-view urban scenes, captured
with a 4/3 CMOS Hasselblad camera in real-world settings during dusk and nighttime conditions.
The UAV-LL dataset contains 300 pairs of drone-view data, including a large variety of scenes with
various real noises, and different darkness levels.

To obtain authentic low-light images, we meticulously adjusted exposure, ISO, and other parameters
to capture ground truth (GT) images in genuine low-light environments. This process often entails a
trade-off between visibility and image noise. Some samples from our UAV-LL dataset are displayed
in Figure 9.

D LIMITATIONS

Our approach remain many limitations that deserve further study:

1) Our proposed global illumination operator, while simple and efficient, may struggle in high-contrast
scenes. One potential solution is to utilize null-space decomposition for content refinement.

2) Despite employing LCM, our method still faces challenges in directly handling high-resolution
images, primarily due to the constraints of the pre-trained model and limited computational resources.

As shown in Figure 10, Zero-IG and ours full model are unable to obtain proper illumination, resulting
in the overexposure results. In contrast, our method without Range-space content yields a better
enhanced result.

E MORE VISUAL RESULTS
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Figure 9: Samples of the UAV-LL dataset.
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Figure 10: Visual comparison of the unsupervised methods on high-contrast scenes.
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Figure 11: Visual comparison of the SOTA unsupervised methods on LOL+ datasets.
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Figure 12: Visual comparison of the SOTA unsupervised methods on LSRW and UVA-LL datasets.
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