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ABSTRACT

In-context learning (ICL) has demonstrated significant performance improvements
in transformer-based large models. This study identifies two key factors influencing
ICL generalisation under complex non-i.i.d. scenario: algorithmic stability and dis-
tributional discrepancy. First, we establish a stability bound for transformer-based
models trained with mini-batch gradient descent, revealing how specific optimiza-
tion configurations interact with the smoothness of the loss landscape to ensure
the stability of non-linear Transformers. Next, we introduce a distribution-level
discrepancy measure that highlights the importance of aligning the ICL prompt
distribution with the training data distribution to achieve effective generalisation.
Building on these insights, we derive a generalisation error bound for ICL with
asymptotic convergence guarantees, which further reveals that token-wise predic-
tion errors accumulate over time and even lead to generalisation collapse if the
prediction length is not properly constrained. Finally, empirical evaluations are
provided to validate our theoretical findings.

1 INTRODUCTION

In recent years, the AI community has witnessed the emergence of influential Large Models (LMs)
such as Generative Pretrained Transformers (GPTs) (Brown et al., 2020; Achiam et al., 2023;
Radford et al., 2018; 2019), LLaMa (Touvron et al., 2023), and Pathways Language Model (PaLM)
(Chowdhery et al., 2023). A particularly attractive characteristic of LMs is their in-context learning
(ICL) capability, which enables effective predictions on downstream tasks using only a short context,
without requiring any parameter fine-tuning (Black et al., 2022).

Recently, the empirical success of ICL has attracted growing interest in theoretically analyzing
its generalisation capability. Li et al. (2023) establish optimization-independent generalisation
bounds for ICL under i.i.d. inputs or trajectories derived from dynamical systems. Other works
incorporate training dynamics and prompt structure into the analysis, examining how architectures
and optimization strategies influence ICL performance (Huang et al., 2024; Li et al., 2024a; Chen
et al., 2024). Notably, Wu et al. (2024) establish a statistical task complexity bound for the attention
model pretraining and indicates pretrained model closely matches the optimally tuned ridge regression
by achieving nearly Bayes optimal risk on unseen tasks. However, these studies rely on simplifying
data assumptions that limit their applicability to real-world settings, such as the pairwise orthogonal
token pattern imposed by (Huang et al., 2024; Li et al., 2024a) and the independent token sampling
assumption in (Chen et al., 2024; Wu et al., 2024).

This paper moves beyond these ideal assumptions and provides a theoretical analysis of the general-
isation ability of nonlinear Transformers for next-token prediction in ICL, leveraging algorithmic
stability (Bousquet & Elisseeff, 2002; Charles & Papailiopoulos, 2017; Liu et al., 2017) and discrep-
ancy measure (Kuznetsov & Mohri, 2015; 2020). Our main theoretical contributions are:

Algorithmic Stability and Discrepancy Measure: Algorithmic stability ensures that small changes
in training data do not cause large inference variations. We theoretically identify conditions under
which Transformers achieve stability under mini-batch gradient descent and quantify discrepancy
across different scenarios. Theorem 1 reveals three key insights: 1) for a sufficiently smooth loss
landscape, algorithmic stability is well-controlled, and allows iteration number to scale polynomially
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Table 1: Theoretical Contributions (✓-has the given information, ✗-hasn’t the given information)

Multi-Head
Multi-Layer

Generalisation
Analysis

Optimization
Dependent

Distribution
Shift

No Special
Input Structure

Orthogonality
Free

Li et al. (2024b) ✓ ✗ ✗ ✓ ✗ ✓
Feng et al. (2023) ✓ ✗ ✗ ✓ ✓ ✓
Chen et al. (2024) ✓ ✓ ✓ ✗ ✓ ✗
Bai et al. (2024) ✓ ✗ ✗ ✓ ✗ ✓

Yang et al. (2024b) ✓ ✓ ✓ ✓ ✗ ✓
Li et al. (2024a) ✗ ✓ ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓

Special input structure refers to prompts structured in a specific format to satisfy theoretical constraints.
Orthogonality-free refers to data that is not constrained by orthogonal patterns in its generation

with the training sample size; 2) in non-smooth scenarios, stability deteriorates rapidly as iterations
number increase, especially with a small learning rate, making it advisable to limit iterations number
to a logarithmic scale relative to the sample size; 3) regardless of whether the landscape is sufficiently
smooth, an appropriately chosen step size can ensure that the convergence rate of algorithmic
stability achieves O(N−1), where N denotes the sample size. The discrepancy measure captures
distribution shift between training and target data. To quantify this discrepancy, Theorems 2–3
establish a stability-dependent asymptotically vanishing bound for the i.i.d. case, and a bound based
on sequential Rademacher complexity for the non-i.i.d. setting.

Generalisation Bounds: Theorem 4 establishes the generalisation error of Transformer-based models
under ICL scheme by leveraging algorithmic stability and the discrepancy measure, revealing: 1) In
the ideal i.i.d. data scenario, the ICL generalisation error achieves a convergence rate ofO(N− 1

2 ) with
appropriately chosen iteration number and batch size, regardless of the loss landscape’s smoothness;
2) In the non-i.i.d. data scenario, effective generalisation requires properly weighting training samples
and suitable ICL prompting, particularly when the loss landscape exhibits insufficient smoothness;
3) The generalization error accumulates across the intermediate tokens generated by the model.
Theorem 5 suggests that, to ensure effective generalisation, the length of next-token predictions
should be constrained to grow at most logarithmically with the sample size.

2 RELATED WORK

A major line of work investigates the approximation capabilities of ICL in solving diverse tasks, while
another focuses on their generalization and dynamic training behavior, aiming to establish theoretical
guarantees for adaptation to unseen tasks under i.i.d. and distribution shift settings. In the research
line of approximation analysis, Akyürek et al. (2023); Bai et al. (2024) demonstrate that Transformers
are expressive to conduct many machine learning algorithms in context, such as ridge regression
and Lasso regression. Moreover, a series of studies prove the existence of Transformer architectures
capable of implementing gradient-based methods and their variants when given appropriate prompts
(Von Oswald et al., 2023; Ahn et al., 2023; Ding et al., 2024). A particularly influential subclass
of ICL prompts, Chain-of-Thought (CoT), has been extensively studied as a structured form of in-
context reasoning. Several works show that CoT-enhanced Transformers are strictly more expressive
than their standard counterparts (Feng et al., 2023; Li et al., 2024c; Merrill & Sabharwal, 2023).
Specifically, Malach (2024) prove that next-token predictors trained on CoT data can efficiently
simulate any Turing-computable function, while Li et al. (2024b) show that Transformers can even
learn multi-layer perceptrons in context.

In another research line, Huang et al. (2024) explore the training dynamics and generalisation of ICL
on single-attention Transformers. Huang et al. (2024) analyze the generalization properties of single-
head attention Transformers, while Chen et al. (2024) study the gradient flow dynamics in multi-head
architectures for multi-task linear regression. Further, Cui et al. (2024) and Yang et al. (2024a) provide
theoretical evidence for the superiority of multi-head attention and standard Transformers over single-
head and recurrent baselines in various reasoning settings. More recently, Gong et al. (2025) examine
the emergence of ICL capabilities in autoregressive next-token prediction models through PAC-Bayes
theory. In addition, Li et al. (2025) provide sample complexity and bounds for training Transformers
to acquire CoT capabilities under a token orthogonality assumption. Recent theoretical studies
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have provided elegant geometric and optimization-based explanations of in-context learning through
structured concept representations. These works substantially deepen the mechanistic understanding
of how semantic geometry and task-vector behavior emerge in transformer models (Bu et al., 2024;
2025). Our work focuses on a complementary aspect of the theory. Rather than assuming a particular
latent concept geometry, we develop a distribution–shift–aware generalization framework based on
algorithmic stability. In particular, we introduce a discrepancy measure that characterizes how prompt
distributions deviate from the training distribution and derive PAC-style bounds that remain agnostic
to the underlying semantic structure.

To clearly highlight our contributions, Table 1 provides a comparative analysis of existing theoretical
works, emphasizing key differences in assumptions and results. Unlike prior works that rely on
restrictive assumptions, such as orthogonal token patterns (Li et al., 2024b; Feng et al., 2023) or i.i.d.
sampling (Chen et al., 2024), our analysis does not require idealized input structures and explicitly
handles non-i.i.d. settings with distribution shift. This makes our generalization bounds applicable to
a wider range of realistic ICL scenarios, including those where training and inference environments
differ significantly.

3 PROBLEM SETUP

Suppose we have a sample of size N , where the i-th sample variable is denoted as (Xi,Ci), with Xi

representing the query variable and Ci = (Ci
1, . . . , C

i
Nc

) representing the length-Nc output sequence.
Importantly, our theoretical results allow for these sample variables to follow distinct distributions.

A typical length-Np ICL prompt consists of an example set Di = {(Xi,Ci)}Ne
i=1, which is contex-

tually associated with the pair (Xi,Ci), followed by a query input Xi. We formally represent the
prompt as Pi = [Di, Xi], where [Di, Xi] denotes the concatenation of the example set Di and the
query input Xi into a single flattened input vector. In practice, we typically predict each intermediate
token Ci

j , j = 1, · · · , Nc, in an autoregressive manner, where the prompt for predicting the j-th token
incorporates the token from the previous j − 1 steps. Accordingly, we denote the integrated prompt
for j-th token prediction as Pi,j =

[
Pi, Ci

1, · · · , Ci
j−1

]
.

In practice, instead of relying on the correct intermediate tokens, the estimated intermediate tokens
are more commonly used to predict the next-token. Under this more general scenario, we define
P̂i,j =

(
P̂i,j−1, T (P̂i,j−1)

)
with P̂i,0 = Pi, where T is a Transformer-based model. However,

this approach inevitably results in error accumulation. Appendix G establish the gap between the
generalisation performance with P̂i,j and Pi,j , highlighting the impact of these accumulated errors.

For convenient reference, Appendix A provides a summary of the notations used in this paper.

3.1 TRANSFORMERS ARCHITECTURE

This section introduces the widely adopted non-linear Transformer architecture, which comprises
self-attention mechanisms and a multi-layer perceptron (MLP) module.

Definition 1. (Multi-head Self-Attention Module) For any given length-Np prompt

P =


− zT1 −
− zT2 −
...

...
...

− zTNp
−

 ∈ RNp×D,

suppose that there are Na attention module A(·) : RNp×D → RNp×D, with parameters Om ∈
RD×D and {(Vm, Qm,Km)} ∈ RD×D for each attention module m = 1, · · · , Na. The attention
score associated with i-th token (A(·))i,: : RNp×D → R1×D is given by

A(P)i,: :=

Na∑
m=1

 Np∑
j=1

softmax
(
zTi QmKmzj

)
zTj Vm

Om,

3
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Algorithm 1 Mini-batch Gradient Descent Optimizer for Transformer
Input: Observations S = {(pi, ci)}Ni=1, Initialization θ0, Max-Iter Q, q = 0, Batch Size |B|.
Output: θ̂ = θQ.
For: q ≤ Q;
q ← q + 1;
Stochastically Sampling B ⊂ {(pi, ci)}Ni=1;
θq = θq−1 − ηq−1

|B|
∑

i∈B ∇θL̂(T );

where the softmax mapping is defined by

softmax(zTi QmKmzj) =
ez

T
i QmKmzj∑Np

j=1 e
zT
i QmKmzj

.

The vector-based form can be derived easily:

A(P) :=

 A(P)1,:
...

A(P)Np,:

 ∈ RNp×D =

Na∑
m=1

softmax
(
PQmKmPT

)
PVmOm.

Definition 2. (MLP Module) For any given matrix Z ∈ RNp×D, a (token-wise) MLP layer with
hidden dimension D is denoted asM(Z) = ReLU(ZW1)W2 ∈ RNp×D, where W1,W2 ∈ RD×D

are parameters matrices.

Given any prompt P, we have the following inference process of l-layer Transformer

Hl = T l(Hl−1) :=Ml
(
Al(Hl−1)

)
, l = 1, ..., L,

where Hl is the output of l-layer block of Transformer and H0 = P. Consequently, the Transformer
architecture with L layers can be expressed as T (P) = TL ◦ TL−1 ◦ · · · ◦ T 1(P). It is important to
highlight that in typical usage, only the last token from the final layer, denoted as T (P)∗,:, is utilized
as the output corresponding to the queried response.

3.2 TRAINING WITH STOCHASTIC GRADIENT DESCENT

This paper considers a training process where each training example is aligned with the test setup.
This learning scheme ensures that the model learns to mirror the inference process at test time.
Furthermore, the empirical risk formulation employed in this work is also widely used in both
theoretical analyses (Li et al., 2024a; Yang et al., 2024b), empirical studies from practical applications
(Min et al., 2022), and dataset development Longpre et al. (2023).

Given N -size sample set S = {(pi, ci)}Ni=1, the training objective is formulated as:

L̂(T ) =
N∑
i=1

qi
Nc

Nc∑
j=1

ℓ
(
T (pi,j−1)∗,:, c

i
j

)
,

where qi, i = 1, ..., N, represent the weights for the training data, reflecting its relative importance in
the overall optimization process.

Our goal is to predict unknown sequence CN+1, based on the given ICL prompt Pi. The correspond-
ing population version is

L(T ) = 1

Nc

Nc∑
j=1

E
[
ℓ(T (PN+1,j−1)∗,:, C

N+1
j )

]
. (1)

Additionally, the expected risk, which takes error accumulation into account, is expressed as

LEA(T ) = 1

Nc

Nc∑
j=1

E
[
ℓ(T (P̂N+1,j−1)∗,:, C

N+1
j )

]
, (2)

For notational simplicity, we use θ = {Ol
m, V

l
m, Q

l
m,K

l
m,W

l
1,W

l
2}

L,Na

l=1,m=1, to represent all trainable
parameters. Moreover, the training details using mini-batch GD is summarized in Algorithm 1.

4
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Training	with	Mini-batch	GD	Optimizer
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Input

Input
Input	Prompt
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Algorithm
ic	Stability

Dataset

Target	PromptTraining	Data Training	Data Training	Data

Difference

Figure 1: Algorithmic stability quantifies the sensitivity of an algorithm to perturbations in the
training data, where higher stability (i.e., lower sensitivity) typically indicates better generalisation.
Discrepancy measures the divergence between the target distribution and the training data distribution,
assessing how well the training data represents the target data.

4 THEORETICAL ANALYSIS

We assume that TS(·) denotes a Transformer model trained using mini-batch GD on the dataset
S = {(pi, ci)}Ni=1. The main concern is how to bound the generalisation error in terms of the
difference between the population risk and the empirical risk evaluated at TS . We address this question
using tools from algorithmic stability and distributional discrepancy, as illustrated in Figure 1.

4.1 PROOF SKETCH

Our main results follow a structured sequence of steps. Below we summarize the logical chain of the
analysis and involved technical tools.

Step 1: Formalizing stability and discrepancy. We begin by defining two key notions: (i) the
algorithmic stability β, which measures how sensitive the mini-batch SGD-trained Transformer is to
replacing a single training example; and (ii) the discrepancy measure disc(q), which quantifies the
distributional mismatch between the importance-weighted training distribution and the target prompt
distribution. These quantities jointly determine the generalization behavior of in-context prediction.

Step 2: Decomposing generalisation error. We establish the general decomposition (see the proof
of Theorem 4 in Section D):

L(TS) ≤ L̂(TS) + disc(q) + β + (vanishing statistical term), (3)

which shows that the generalization error consists of the training loss term, the distribution-shift term
disc(q), the algorithmic stability β and vanishing statistical term. Hence, to obtain explicit bounds
on L(TS), we must control both β and disc(q).

Step 3: Bounding the stability of Transformers under mini-batch SGD. To control β, we analyze
how perturbing a single training sample influences the multi-head, multi-layer Transformer during
Q mini-batch SGD updates. Using the layer-wise Lipschitz and smoothness constants derived in
Appendix H, we derive a recurrence relating the perturbed and unperturbed updates. Solving this
recurrence yields the stability bounds in Theorem 1.

Step 4: Bounding discrepancy. We next characterize disc(q) under both i.i.d (Theorem 2) and
non-i.i.d scenarios (Theorem 3) by employing concentration inequalities together with the notion of
Sequential Rademacher Complexity (see Definition 7 in Appendix E-F).

5
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Step 5: Combining the bounds. Substituting the stability bound (Step 3) and discrepancy bounds
(Step 4) into the decomposition (Step 2) yields our final generalization results.

Finally, Figure 3 (see Appendix B) outlines the technical tool used for our theoretical analysis.

4.2 MINI-BATCH GD-DEPENDENT ALGORITHMIC STABILITY

This paper utilizes a variant of commonly-used uniform stability in statistical learning theory (Bous-
quet & Elisseeff, 2002). Let Si denote the dataset S with its i-th sample replaced by an independent
sample drawn from the same distribution. The algorithmic stability is defined as below.
Definition 3. A randomized algorithm G that maps N -size dataset S to estimator TS has uniform
stability β if the following inequality holds

1

Nc

Nc∑
j=1

EG

∣∣∣ℓ(TS(Pk,j−1)∗,:, C
k
j )− ℓ(TSi(Pk,j−1)∗,:, C

k
j )
∣∣∣ ≤ β, ∀i, k = 1, ..., N, ∀S, Si.

To establish the upper bound on uniform algorithmic stability, we introduce the following assumptions.
Assumption 1. [Boundedness] The norm of each row of the input prompt Pi and the norm of each
response vector Ci

j , for j = 1, . . . , Nc, i = 1, . . . , N,, are uniformly bounded by constants BP and
BC , respectively. Additionally, for any attention headm = 1, . . . , Na and any layer l = 1, . . . , L, the
parameter norms satisfy the following conditions ∥W l

1∥2 ≤ BW1
, ∥W l

2∥2 ≤ BW2
, ∥Ql

m∥2 ≤
BQ, ∥Kl

m∥2 ≤ BQ, ∥V l
m∥2 ≤ BV , ∥Ol

m∥2 ≤ BO.

This mild boundedness assumption is widely utilized in various theoretical studies (Bai et al., 2024;
Zhang et al., 2023). Indeed, the boundedness assumptions in our theoretical analysis can be further
relaxed to unbounded settings, with the theoretical results still holding. For example, one can
replace the assumption of a hard bound on inputs with a light-tailed distribution assumption (e.g.,
inputs or features have sub-Gaussian tails) Attia & Koren (2024). This means extremely large input
values are exponentially unlikely, effectively limiting the influence of outliers without requiring an
absolute bound. Under this assumption, we thus denote the maximum value of the loss function as
Mℓ = sup ℓ(·). Additionally, to establish the bound on algorithmic stability, we consider its Lipschitz
constant with respect to trainable parameters (Definition 4) and the Lipschitz smoothness constant γ
(Definition 5). Detailed calculations for both are provided in Appendix H.
Definition 4. (Lipschitz constant) For a Lipschitz function f defined over domain X , the Lipschitz
constant Lf is defined as the smallest value such that ∥f(y)− f(x)∥2 ≤ Lf∥y − x∥2, ∀x, y ∈ X .
Definition 5. (Lipschitz smooth constant) A function f defined over domain X is said to be Lipschitz
smooth if there exists a constant γ > 0 such that ∥∇f(x)−∇f(y)∥2 ≤ γ∥x− y∥2 for all x, y ∈ X .

We then give the bound on the algorithmic stability (See Appendix C for the detailed proof).
Theorem 1. Let Assumption 1 be true and the learning rate be ηk = 1

kα , α > 0. The algorithmic
stability satisfies

β ≲


BMℓL

2
α(1+γ)
ℓ Q

γ
1+γ

Nγα , if γ ≤ 1+
√

1−4α(1−α)

2α ,

BMℓL
2

α(1+γ)
ℓ Q

αγ2+1−α
1+γ

Nγα , if γ > 1+
√

1−4α(1−α)

2α ,

(4)

where Mℓ, Lℓ, and γ for Transformer are given in Equations (7)-(9). There constants are related
to Transformer architecture, e.g., depth L and the number of attention head. For example, since
quantities such as Mℓ grow exponentially in L (see Equation (7)), a sufficient condition for stability
is that the depth grows at most logarithmically with N .
Remark 1. The algorithmic stability bound depends on the Lipschitz smoothness constant γ, batch
size B, number of iterations Q, dataset size N , and learning rate decay α. For small γ, stability is
better controlled, while for large γ, stability degrades rapidly with Q, especially when α is small.
A larger dataset N improves stability, but increasing B or the maximum loss Mℓ worsens it. This
aligns with existing studies indicating that small-batch SGD tends to yield superior generalisation
performance compared to large-batch SGD or full-batch GD (Keskar et al., 2017; Masters & Luschi,
2018; LeCun et al., 2012; Wilson & Martinez, 2003). To maintain stability, it is beneficial to use
smaller batch sizes, moderate α, and smooth the loss function to keep γ small.
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The following corollaries examine its asymptotic behavior under two distinct scenarios, characterized
by the smoothness of the loss landscape.
Corollary 1. [Well-conditioned Smoothness] Let the conditions in Theorem 1 be true, and ζ1 and ζ2 be
arbitrary non-negative real numbers that control the growth rates of the batch size and iteration count,
respectively. If the loss landscape is sufficiently smooth, i.e., γ ≤ (2α)−1(1+

√
1− 4α(1− α)), and

the upper bound Mℓ, Lipschitz (smooth) constants Lℓ and γ are bounded. By putting |B| = O(N ζ1)

and Q = O(N ζ2) into Eq. (4), the upper bound on algorithmic stability is β = O(Nζ1+
ζ2γ
1+γ −1).

Some techniques such as regularization can be used to ensure that the loss landscape is smooth.
Corollary 1 captures a fundamental trade-off between optimization and stability. Increasing the
number of iterations Q (and/or the batch size) generally improves optimization and reduces the
empirical risk (which is observable). At the same time, our stability analysis shows that larger Q
amplifies the accumulated perturbations along the optimization path, thereby worsening the stability
coefficient β and enlarging the generalization gap.
Corollary 2. [Insufficient Smoothness] Let the conditions in Theorem 1 be true. If γ > (2α)−1(1 +√
1− 4α(1− α)), by putting |B| = O(Nζ1), Q = O(lnN) into Eq. (4), we get β = Õ(Nζ1−1).

Corollary 2 indicates that when the Lipschitz smoothness constant is overly large, constraining
iteration growth to a logarithmic scale effectively mitigates instability.

4.3 DISCREPANCY MEASURE

Given the potential distribution shift between training and target data, a suitable metric that does not
impose distributional assumptions is essential for quantifying their divergence. This paper extends a
discrepancy metric inspired by Kuznetsov & Mohri (2015) to make it hypothesis-space independent.
Definition 6. (Discrepancy Measure) For the estimator TS , the discrepancy measure is defined as

disc(q) :=
1

Nc

Nc∑
j=1

[
EN+1,j −

N∑
i=1

qiEi,j

]
,

where Ei,j = E
[
ℓ(TS(Pi,j−1)∗,:, C

i
j)|{(pm, cm)}i−1

m=1

]
.

The disc(q) measures the degree of misalignment between the target task distribution and the training
distribution. We then show how this discrepancy can be quantified under different scenarios.

I.i.d. Scenario: In the ideal i.i.d. case, where the training and target distributions match, the
discrepancy admits the following asymptotic property (see Appendix E for proof).
Theorem 2. Let TS be a learning algorithm that is uniformly β-stable. Suppose the training data
and test sample are i.i.d.. Then, with confidence at least 1− δ, ∀δ ∈ (0, 1), the discrepancy satisfies
disc(q) ≤ 2β∥q∥2N

√
log(2/δ), where β is defined in Eq equation 4, and thus disc(q) → 0 as

N →∞ provided that β∥q∥2N → 0.

The condition β∥q∥2N → 0 is easy to satisfy under standard choices of the training weights. For
example, if we take uniform weights qi = 1/N for all samples, then ∥q∥N = N1/2, and thus the
requirement becomes simply β = o(N−1/2). Theorem 1 shows that such a decay rate for β is
achievable under multiple concrete regimes. For instance, Corollary 1 implies that β = o(N−1/2)
holds whenever ζ1 + ζ2γ/(1 + γ) < 1/2, where ζ1 and ζ2 characterize the growth rates of the batch
size and the iteration count Q, and γ is the Lipschitz-smoothness parameter of the loss.

Non-i.i.d Scenario: If the target domain is entirely unrelated to the training domains, achieving
accurate predictions becomes nearly impossible. Therefore, we consider a scenario where at least
some training domains share a meaningful relationship with the target domain. Formally, suppose
that there exists an effective prompt such that the example distribution set is drawn from a distribution
related to the training distributions, ensuring 1

Nc

∑Nc

j=1

[
EN+1,j −

∑
i∈I viEi,j

]
≤ ϵ, ϵ > 0, where

I ⊂ {1, ..., N} is the index set that refers to the related training data, and vi is the corresponding
weight. Techniques such as incorporating more diverse training data and designing more effective
ICL prompts can help reduce ϵ by better aligning the training and test environments. For this non-i.i.d
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scenario, Theorem F provides an sequential Rademacher complexity based upper bound on disc(q)
(See Appendix F for detailed proof).
Theorem 3. Under the above situation and Assumption 1, with confidence at least 1− δ, there holds

disc(q) ≤ ϵ+ sup
T ∈H

 1

Nc

N∑
i=1

Nc∑
j=1

(vi − qi)ℓ(T (pi,j)∗,:, C
i
j)

+ 3Mℓ

√
π logNRN ({ℓ ◦ T })

+ Mℓ∥q− v∥2

√
2 log

1

δ

where the sequential Rademacher complexity RN ({ℓ ◦ T }) over measurable hypothesis space H
(see Definition 7 for more details) satisfies RN ({ℓ ◦ T }) = 4RL∗

T
√
Np +NcBP ∥q − v∥, L∗

T is

the Lipschitz constant given in Eq. (12), and R = max
{
BC , (BW1

BW2
BVBONa)

LBP

}
.

Remark 2. In the non-i.i.d. setting, Theorem 3 reveals how the complexity of the hypothesis space
involved in the second and third terms affects disc(q). For instance, a more complex hypothesis
space, characterized by higher sequential Rademacher complexity, allows the model to fit arbitrary
patterns in the training prompts, increasing its sensitivity to distribution shift and thereby amplifying
the discrepancy. It suggests that regularization techniques, such as weight norm constraints, may
help control this complexity and thus improve alignment between training and testing distributions.
In addition, the weight discrepancy ∥q− v∥ offers a theoretical explanation for the effectiveness of
finetuning, which reweights training samples toward those relevant to the target.

4.4 GENERALISATION ERROR ANALYSIS

Building on the above analysis, this section derives an upper bound on the generalisation errors
L(TS)− L̂(TS). The detailed proof is provided in Appendix D.
Theorem 4. Under Assumption 1, let TS be a β-stable learning algorithm and q = (q1, · · · , qNc

)
be any weight vector used in training objective. For any δ > 0, each of the following bounds holds
with confidence at least 1− δ:

L(TS) ≤ 1

Nc

N∑
i=1

Nc∑
j=1

qiℓ(TS(pi,j)∗,:, c
i
j) + disc(q) + ∥q∥1β + 2∥q∥2Mℓ

√
2 log

4

δ
,

where β is defined in Eq. (4).

The following corollaries provide a more detailed characterization of the asymptotic behavior under
both i.i.d. and non-i.i.d. data settings.
Corollary 3 (Asymptotic Behavior under i.i.d Scenarios). Let the conditions in Theorem 4 and i.i.d.
assumption be true. Let qi = 1

N , |B| = O(Nζ1), and Q = O(Nζ2). a) When the loss function scape
is well-conditioned smoothness, with confidence at least 1− δ, 0 < δ < 1, there holds

L(TS) ≲
1

NcN

N∑
i=1

Nc∑
j=1

ℓ(TS(pi,j)∗,:, c
i
j) +N− 1

2

√
2 log

4

δ

when ζ1 + ζ2γ
1+γ = 1

2 . b) When Lipschitz smoothness constant is large such that γ > (2α)−1(1 +√
1− 4α(1− α)), by setting |B| = O(Nζ1), ζ1 ≤ 1

2 , and Q = O(lnN), there holds

L(TS) ≲
1

NcN

N∑
i=1

Nc∑
j=1

ℓ(TS(pi,j)∗,:, c
i
j) +N− 1

2

√
2 log

4

δ

with at least confidence 1− δ.
Remark 3. In the ideal i.i.d. setting, the corollary above establishes how the generalisation error
bound achieves the fastest convergence rate of O(N− 1

2 ) under different levels of loss landscape
smoothness. Specifically, when the loss function is sufficiently smooth, the hyper-parameters ζ1, ζ2
are tuned such that 2ζ1 + 2ζ2γ

1+γ = 1. However, when the smoothness constant is large, exceeding the

threshold (2α)−1(1 +
√
1− 4α(1− α)), to achieve the convergence rate O(N− 1

2 ), the number of
iterations is recommended to scale logarithmically with the sample size.
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Scenario Parameter Settings Convergence Rate
I.i.d & Smooth |B| = O(Nζ1), Q = O(N ζ2), 2ζ1 + 2ζ2γ

1+γ = 1 O(N− 1
2 )

I.i.d & Non-smooth |B| = O(Nζ1), Q = O(lnN), ζ1 ≤ 1
2 O(N− 1

2 )

Non-i.i.d & Smooth
∥q− v∥+ ∥q∥ = O(N ζ3),
|B| = O(N ζ1), Q = O(N ζ2), ζ1 + ζ2γ

1+γ < 1
O(Nmax{ζ3,ζ1+ ζ2γ

1+γ −1})

Non-i.i.d & Non-smooth ∥q− v∥ = O(Nζ3), ∥q∥ = O(Nζ4),
|B| = O(N ζ1), Q = O(lnN), Np = O(N ζ2)

O(Nmax{2Lζ2+ζ3,ζ4,ζ1−1})

Table 2: Summary of Generalisation Error Bounds under Different Scenarios.

Corollary 4. [Asymptotic Behavior under Non-i.i.d Scenarios] Let the conditions in Theorem 4 and
3 be true. a) If the loss landscape is sufficiently smooth and if ∥q− v∥+ ∥q∥ = O(Nη3), then by
setting |B| = O(N ζ1) and Q = O(N ζ2), for any δ > 0, with confidence at least 1− δ, there holds:

L(TS) ≤ 1

Nc

N∑
i=1

Nc∑
j=1

qiℓ(TS(p
i,j)∗,:, c

i
j) + sup

T ∈H

{
N∑
i=1

(vi − qi)ℓ(T (pi,j)∗,:, c
i
j)

}

+ N
max{ζ1+

ζ2γ
1+γ

−1,ζ3}
√

2 log
4

δ
+ ϵ.

b) If ∥q− v∥ = O(Nη3) and ∥q∥ = O(Nη4), then by setting |B| = O(Nζ1), Q = O(lnN), and
the ICL prompt length as Np = O(N ζ2), for any δ > 0, with probability at least 1− δ, there holds

L(TS) ≤ 1

Nc

N∑
i=1

Nc∑
j=1

qiℓ(TS(p
i,j)∗,:, c

i
j) + sup

T ∈H

{
N∑
i=1

(vi − qi)ℓ(T (pi,j)∗,:, c
i
j)

}

+ Nmax{2Lζ2+ζ3,ζ1−1,ζ4}
√

2 log
4

δ
+ ϵ.

Remark 4. Corollary 4 characterizes ICL generalization under non-i.i.d. settings by establishing two
upper bounds under distinct smoothness conditions. The results show that smoother loss landscapes
and better alignment between training and test prompt distributions (i.e., small ∥q − v∥) yield
improved generalization.
Remark 5. From Corollary 4, to achieve better cross-domain generalization (i.e., minimizing L(TS)),
we shall minimize the following optimization problem:

min
q

{
1

Nc

N∑
i=1

Nc∑
j=1

qiℓ(TS(p
i,j)∗,:, c

i
j) + sup

T ∈H

{
N∑
i=1

(vi − qi)ℓ(T (pi,j)∗,:, c
i
j)

}
+ λ1∥s− q∥22 + λ2∥q∥22

}
,

(5)
where λ1 and λ2 are regularization parameters. The entire optimization procedure can be decom-

posed into two stages. In the first stage, we solve for the optimal sample-weight vector q by optimizing
the latter three terms. This subproblem can be computed via DC programming (Tao & An, 1998) or
gradient-based methods. Once the optimal sample weights have been obtained, we then optimize the
first term accordingly to learn the final model parameters.

In practical scenarios, the model typically uses its own estimated token to predict subsequent tokens.
This approach, by its nature, leads to cumulative errors as inaccuracies in earlier steps propagate
forward. The corresponding theoretical result and proof are provided in Appendix G.

5 NUMERICAL EVALUATION

Our experimental setup follows (Li et al., 2023), where all evaluations are conducted using the
same GPT-2 architecture implemented via the HuggingFace Transformers library (Wolf et al., 2020),
consisting of 12 layers and 8 attention heads. All empirical evaluations are conducted using NVIDIA
H20 GPUs with 80GB of memory.

Evaluation on i.i.d data scenario: In the ideal i.i.d. setting, we focus on validating the asymp-
totic behavior predicted by Corollary 3 and the error accumulation characterized in Theorem 5.
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We consider a d = 10-dimensional linear regression task, where each in-context example is of
the form (p, c). For each sample i, given a parameter vector βi ∈ Rd, we generate a length-L
sequence using the recurrence relation cil = βi

l−1c
i
l−1 + ϵ, for l = 1, . . . , L, where the initial

query ci0 ∼ N (0, 0.1Id), and the noise term ϵ ∼ N (0, 0.1Id). The prompt p is constructed by
concatenating two such examples along with the query input ci0 into a single flattened vector. Each
parameter vector βi ∈ Rd is independently sampled from N (0.1, 0.1Id). We set the sample size
N ∈ {50, 100, 200, 400, 800, 1600}, use uniform training weights qi = 1/N , and set the batch size
to |B| = N1/2 to ensure sufficient training. For evaluation, we independently generate 1000 i.i.d.
test samples. We fix the number of optimization iterations to Q = 200, set the learning rate decay
exponent to α = 1, and systematically vary the sequence length Nc ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}.

(a) Asymptotic behavior (b) Error accumulation

Figure 2: The generalisation error under i.i.d scenario. For extended results under non-i.i.d. distribu-
tions, additional sequence lengths and overfitting risk, please refer to Figures 4 and 5 in Appendix I.

The Generalisation Error Convergence Analysis: We evaluate the generalization error as the number
of training samples N increases. Figure 2(a) demonstrates that the error decreases and asymptotically
vanishes as N → ∞, consistent with the theoretical prediction in Corollary 3 for the i.i.d. setting.
Results are shown for sequence lengths 1 and 2; other lengths follow similar trends but are omitted due
to large differences in error magnitude, which would obscure the overall pattern if plotted together.

The Error Accumulation Analysis: Figure 2(b) shows that the generalization error increases with
sequence length, following an approximately polynomial trend. In particular, once the sequence
length exceeds a threshold near lnN , the error rises sharply. Moreover, this threshold shifts to larger
values as the sample size increases. These empirical findings support Theorem 5.

In addition to the i.i.d. scenario presented above, we also conduct evaluations under non-i.i.d. settings,
which are detailed in Appendix I. These experiments are designed to assess the robustness of our
theoretical claims, particularly under distribution shift conditions where training and test domains
exhibit structural divergence. The results demonstrate consistent alignment with our theoretical
bounds, especially regarding the influence of distributional discrepancy and prompt reweighting.

6 CONCLUSION

This study derives ICL generalisation error bound with asymptotic convergence analysis by exam-
ining algorithmic stability under mini-batch GD and a distribution-level discrepancy measure. Our
results reveal how optimization settings interact with the smoothness of the loss landscape to ensure
algorithmic stability, and how, when combined with high-quality prompts, they enable effective ICL
generalization. On the theoretical side, future work should develop tighter generalization bounds
using techniques such as gradient stability. On the practical side, our findings inform algorithm
design, including strategies like weighted training samples. These extensions will support both
stronger theoretical validation and the development of more promising models.
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A NOTATIONS

For clarity and ease of reference, Table 3 presents a comprehensive summary of the notations used
throughout this paper. The input and ICL variable spaces for the i-th sample are denoted by X i

and Ci, respectively, while Xi and Ci represent the corresponding input and ICL random variables.
Their specific realizations are given by xi and ci. The dataset consists of N samples, with Np

denoting the length of the prompt P, Ne the number of demonstration examples, and Nc the number
of steps in the ICL inference process. The Transformer model employs Na self-attention heads,
and the batch size in the mini-batch GD optimization scheme is denoted as |B|. The ICL prompt
for the i-th sample, containing Ne examples followed by a query, is represented by Pi, while Pi,j

extends this by incorporating j additional reasoning steps. The estimated version of this prompt is
given by P̂i,j . The parameters associated with the m-th attention module in the l-th layer of the
Transformer are represented as Ol

m, V l
m, Ql

m, and Kl
m, corresponding to the output, value, query,

and key matrices, respectively, while W l
1 and W l

2 denote the parameters of the MLP in the l-th layer.
Finally, the empirical risk is denoted by L̂(θ), while L(θ) represents the expected risk associated
with the ICL prompt P, and LEA(θ) denotes the expected risk when using the estimated ICL prompt
P̂, accounting for potential deviations due to reasoning inaccuracies.

Table 3: Notations

Notations Descriptions
X i, Ci the input and output variable space for i-th sample, respectively
Xi, Ci the input and output random variables for i-th sample, respectively
xi, ci the realizations of X and C for i-th sample, respectively
N the sample size
Np the length-Np prompt P
Ne the size of demonstrations
Nc the length of inference
Na the number of self-attention heads
|B| the batch size in Mini-Batch GD optimization scheme
Pi the i-th ICL prompt variable with Ne examples followed by a query
Pi,j the i-th ICL prompt variable with Ne examples followed by a query and j tokens
P̂i,j the i-th ICL prompt variable with Ne examples followed by a query and j estimated tokens
Ol

m represents the parameter associated with the m-th attention module in the l-th layer
V l
m represents the parameter associated with the m-th attention module in the l-th layer
Ql

m represents the parameter associated with the m-th attention module in the l-th layer
Kl

m represents the parameter associated with the m-th attention module in the l-th layer
W l

1 represents the parameter associated with MLP in the l-th layer
W l

2 represents the parameter associated with MLP in the l-th layer
ℓ(·) the loss function
L̂(θ) the empirical risk
L(θ) the expected risk associated with P

LEA(θ) the expected risk associated with prompt P̂

B PROOF SKETCH

Figure 3 outlines the proof strategy for our generalisation guarantee, which combines algorithmic
stability with a discrepancy measure.

C ALGORITHMIC STABILITY (PROOF OF THEOREM 1)

Building on the insights from the algorithmic stability bound for SGD under bilevel optimization
(Bao et al., 2021), this section derives an upper bound on algorithmic stability of the Transformer
model when trained with the mini-batch GD optimizer.
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Appendix C

Theorems 2 & 3Theorem 1

Algorithmic Stability Bound

Inductive Probability Bounding (B.1-B.4)

Lipschitz and Smoothness Constraints (Section G)

Appendix E&F

Sequential Rademacher Complexity (Definition 7)

Concentration Inequalities (e.g., Azuma’s Hoeffding Inequality)

Discrepancy Measure Bound

Appendix D

Martingale Difference Sequences

Azuma’s Inequality (Lemma 1)

Theorem 4

Generalisation Error Bound

Appendix G

Inductive Bounding

Theorem 5

Error Accumulation Analysis

Figure 3: Proof sketch: the logical dependencies among stability, discrepancy, generalisation, and
error accumulation analyses.

For any sample pairs (Pi,j , Ci
j), we give a general version of expected risk with weights vj , j =

1, ..., Nc, which is defined by

L(T ) =
Nc∑
j=1

vjE
[
ℓ(T (Pi,j−1), Ci

j)
]
. (6)

Let T (q)
S represent the optimization process after q iterations, following Algorithm 1. Define δq =

∥θ(q) − θ′(q)∥F , where θ(q) and θ
′(q) are the respective outputs of T (q)

S and T (q)
S′ , where S and S′

differ by a single data point.

Under Assumption 1, we establish the following bound:

E[|L(T (q)
S )− L(T (q)

S′ )|] = Prob(δq0 = 0)E
[
|L(T (q)

S )− L(T (q)

S′ )|
∣∣δq0 = 0]

]
+

[
Prob(δq0 > 0)E[|L(T (q)

S )− L(T (q)

S′ )|
∣∣δq0 > 0

]
= Prob(δq0 = 0)

Nc∑
j=1

vjE
[
|ℓ(T (q)

S (Pi,j−1), Ci
j)− ℓ(T (q)

S′ (Pi,j−1), Ci
j)|

∣∣δq0 = 0
]

+ Prob(δq0 > 0)

Nc∑
j=1

vjE
[
|ℓ(T (q)

S (Pi,j−1), Ci
j)− ℓ(T (q)

S′ (Pi,j−1), Ci
j)|

∣∣δq0 > 0
]

≤
Nc∑
j=1

vjLj,ℓE [δq|δq0 = 0] + Prob(δq0 > 0)

Nc∑
j=1

vjMj,ℓ,

where Lj,ℓ is the Lipschitz constant of the loss function ℓ with respect to θ associated with (Pi,j , Ci
j),

and Mj,ℓ is the upper bound of the loss function ℓ associated with (Pi,j , Ci
j).

C.1 BOUNDING PROBABILITY TERMS

If the optimization algorithm T (q0)
S does not select the i-th sample within the first q0 iterations, then

δq0 = 0. By induction, we obtain:

Prob(δq0 = 0) =

(
1−

CB−1
N−1

CB
N

)q0

=

(
1− B

N

)q0

≥ 1− Bq0
N

.
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Thus, we also have:

Prob(δq0 > 0) ≤ Bq0
N

.

Correspondingly, we have Prob(δq0 > 0) ≤ Bq0
N . As a result,

E
[
|L(T (q)

S )− L(T (q)
S′ )|

]
≤

N−c∑
i=1

viLi,ℓE [δq|δq0 = 0] +
Bq0
N

N−c∑
i=1

viMi,ℓ.

C.2 RECURSIVE BOUND ON E[δq|δq0 = 0]

Let v(q) =
ηq

|Bq|
∑

i∈Bq
∇θL̂(T ), and let v

′(q) be its counterpart using perturbed data. Denote

γ =
∑Nc

i=1 viγi by the Lipschitz smooth constant. The update rule in Algorithm 1 gives:

E[δq|δq0 = 0] = Prob(1 ∈ Bq)E[δq|δq0 = 0, 1 ∈ Bq] + Prob(1 /∈ Bq)E[δq|δq0 = 0, 1 /∈ Bq]

=
B

N
E[∥θ(q−1) − θ

′(q−1) + ηq−1(v
′(q−1) − v(q−1))∥|δq0 = 0]

+
N −B
N

E
[
∥θ(q−1) − θ

′(q−1) + ηq−1(v
′(q−1) − v(q−1))∥|δq0 = 0

]
≤ Cq−1E [δq−1|δq0 = 0] +Dq−1,

where

Cq−1 =
B + (N −B)(1 + ηq−1γ)

N
, Dq−1 =

2ηq−1LℓB

N
.

By induction, we obtain:

E[δq|δq0 = 0] ≤
q−1∑
j=q0

Dj

q−1∏
k=j+1

Ck.

C.3 BOUNDING
∏
Ck

Since
Cq = 1 + (1−B/N)ηqγ,

using the inequality 1 + x ≤ ex, we obtain

q∏
k=j+1

Ck ≤ exp

(1−B/N)γ

q∑
k=j+1

ηk

 .

Thus,

E[δq|δq0 = 0] ≤
q−1∑
j=q0

Dj exp

(1−B/N)γ

q−1∑
k=j+1

ηk

 .

C.4 FINAL BOUND ON β

Combining the above results, we get

E
[
|L(T (Q)

S )− L(T (Q)

S′ )|
]
≤

Q∑
j=q0+1

Dj exp

N −B

N
γ

Q∑
k=j+1

ηk

 Nc∑
i=1

viLi,ℓ +
Bq0
N

Nc∑
i=1

viMi,ℓ.

Denote by Lℓ =
∑Nc

i=1 viLi,ℓ and Mℓ =
∑Nc

i=1 viMi,ℓ, where Li,ℓ, Mi,ℓ and γi are obtained in
Section H.9. Finally, optimizing q0 leads to the stability bound:

β ≤ min
q0∈{1,...,Q}

Lℓ

Q∑
j=q0+1

Dj exp

γ Q∑
k=j+1

ηk

+
MℓBq0
N

 .
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We denote the original objective function by

H(q0) = Lℓ

Q∑
j=q0+1

2ηjLℓB

N
exp

(
γ

Q∑
k=j+1

ηk

)
+
MℓBq0
N

≤ 2L2
ℓB

N

Q∑
j=q0+1

1

jα
(
Qα

jα
)γ +

MℓBq0
N

, as Q→∞, a ≥ 1

≤ 2L2
ℓBQ

αγ

N

Q∑
j=q0+1

(
1

jα
)γ+1 +

MℓBq0
N

≤ 2L2
ℓBQ

αγ

N

Q1−αγ−α − q1−αγ−α
0

1− αγ − α
+
MℓBq0
N

=
2L2

ℓBQ
1−α

N(1− αγ − α)
− 2L2

ℓBQ
αγq1−αγ−α

0

N(1− αγ − α)
+
MℓBq0
N

=
2L2

ℓB

N(1− αγ − α)

(
Q1−α −Qαγq1−αγ−α

0

)
+
MℓBq0
N

The goal is to minimize H(q0), ensuring that:

β ≤ min
1≤q0<Q

2L2
ℓB

N(1− αγ − α)

(
Q1−α −Qαγq1−αγ−α

0

)
+
MℓBq0
N

.

Setting dH
dq0

= 0, we obtain:

−2(1− αγ − α)L2
ℓBQ

αγ

N(1− αγ − α)
q−αγ−α
0 +

MℓB

N
= 0.

For an optimal selection of q∗, using ηk = 1
kα , we approximate:

q∗ =

(
2L2

ℓQ
αγ

Mℓ

) 1
α(1+γ)

Finally, by setting wi =
1
Nc

, the upper bound on stability is

β ≤ H(q∗) =
2L2

ℓB

N(1− αγ − α)

(
Q1−α −Q

αγ2+1−α
1+γ L

2−2α(1+γ)
α(1+γ)

ℓ M
α(1+γ)−1
α(1+γ)

ℓ

)
+ M

1− 1
α(1+γ)

ℓ BL
2

α(1+γ)

ℓ Q
γ

1+γN−1

≲ α−1γ−1N−1BM
α(1+γ)−1
α(1+γ)

ℓ L
2

α(1+γ)

ℓ Q
max{γ,αγ2+1−α}

1+γ

We finally derive the desirable result

β ≲


BM

α(1+γ)−1
α(1+γ)

ℓ L
2

α(1+γ)
ℓ Q

γ
1+γ

Nγα , if γ ≤ 1+
√

1−4α(1−α)

2α , α > 0,

BM

α(1+γ)−1
α(1+γ)

ℓ L
2

α(1+γ)
ℓ Q

αγ2+1−α
1+γ

Nγα , if γ > 1+
√

1−4α(1−α)

2α , α > 0.

D GENERALISATION ERROR BOUND (PROOF OF THEOREM 4)

This proof closely follows the approach of Theorem 8 in (Kuznetsov & Mohri, 2015), with the key
distinction that we extend the analysis to a weighted average version. For the sake of completeness,
we present it here, beginning with an essential concentration inequality.
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Lemma 1. (Azuma’s Inequality) Suppose {Y0, · · · , Yn} is a martingale difference sequence with
respect to the filtration F0 ⊂ F1 ⊂ · · · ⊂ FN . If

at ≤ E[Yt+1|Ft] ≤ bt+1, ∀0 ≤ t ≤ N,

then the following probability bound holds:

Prob

(
N∑
i=1

|Yi| ≥ ϵ

)
≤ 2 exp

(
− 2ϵ2∑N

i=1(bi − ai)2

)
.

For notational simplicity, we denote, for the i-th sample, the random variables as Zi = (Pi,Ci),
Zi
j = (Pi,j−1, Ci

j), and the sequence as Zi:m
j = (Zi

j , . . . , Z
m
j ). We define Ŝ(i) as the sequence set

(Z1, . . . , Zi, Z̃i+1, . . . , Z̃N ),

where Z̃i is independently drawn from the same distribution of Zi. Now, consider the following
quantities:

Ai
j = E

Zi+1:N
j ,Z̄i+1

j

[
ℓ(TS , Z̄

i+1
j )|Z1:i

]
− EZ̄i+1

[
ℓ(TŜ(i), Z̄

i+1
j )|Z1:i

]
,

and
Bi

j = EZi
j+1

[
ℓ(TŜ(i+1), Z

i+1
j )|Z1:i

]
− ℓ(TS , Zi+1

j ),

where Z̄i+1
j ∼ ρ(·|Z1:i

j ) is independent of Zi+1:N
j and Z̃i+1:N

j . By construction, we observe that:

EZi+1:N
j ,Z̃i+1:N

j ,Z̄i+1
j

[Ai
j ] = 0,

and
EZi+1

j ,Z̃i+2:N
j

[Bi
j ] = 0.

These equations indicate that both sequences Ai
j , j = 1, . . . , Nc and Bi

j , j = 1, . . . , Nc form
martingale difference sequences. By applying Azuma’s Inequality (Lemma 1), for any δ > 0, with
probability at least 1− δ/2, we obtain:

N−1∑
i=0

qiA
i
j ≤ ∥q∥2Mj,ℓ

√
2 log

4

δ
,

and
N−1∑
i=1

qiB
i
j ≤ ∥q∥2Mj,ℓ

√
2 log

4

δ
,

where Mj,ℓ is the upper bound of the loss function associated with input Pi.

Summing both inequalities, we obtain:

N−1∑
i=1

qi(A
i
j +Bi

j) ≤ 2∥q∥2Mj,ℓ

√
2 log

4

δ
.

Next, we define the weighted sequences:

Āi =

Nc∑
j=1

cjA
i
j , B̄i =

Nc∑
j=1

cjB
i
j ,

where
∑Nc

j=1 cj = 1. Since these sequences also form martingale difference sequences, we apply the
definition of uniform stability, which states that:∣∣∣ Nc∑

j=1

cjEj

∣∣∣ ≤ β,
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where
Ej := EZi+1

j

[
ℓ(TŜ(i+1), Z

i+1
j )|Z1:i

]
− EZi+1

j

[
ℓ(TŜ(i), Z

i+1
j )|Z1:i

]
.

Thus, with probability at least 1− δ, we obtain:

N∑
i=1

qi(Ā
i + B̄i) ≤ 2∥q∥2Mℓ

√
2 log

4

δ
,

where Mℓ =
∑Nc

i=1 wiMi,ℓ. By the definition of algorithmic stability, it follows that:

N∑
i=1

qi(Ā
i + B̄i) ≤ 2∥q∥2Mℓ

√
2 log

4

δ
.

and
N∑
i=1

qi

Nc∑
j=1

cjEZi+1:N
j ,Z̄i

j
[ℓ(TS , Z̄i

j)|Z1:i
j ] ≤

N∑
i=1

qi

Nc∑
j=1

cjℓ(TS , Zi
j) + ∥q∥1β + 2∥q∥2Mℓ

√
2 log

2

δ
.

Finally, using the definition of discrepancy, we arrive at the final bound:

L(TS) ≤
N∑
i=1

qi

Nc∑
j=1

cjℓ(TS , Zi
j) + disc(q) + ∥q∥1β + 2∥q∥2Mℓ

√
2 log

2

δ
.

By taking wi =
1
Nc

and combining the upper bound on β (4), we obtain the desirable result.

E THE UPPER BOUND ON DISCREPANCY MEASURE UNDER I.I.D SCENARIO

Lemma 2 (Asymptotic Vanishing of Discrepancy). Let TS be a learning algorithm that is uniformly
β-stable. Suppose the training data and test sample are i.i.d., and ∥q∥1 = 1. Then, the discrepancy
term satisfies |disc(q)| ≤ 2β∥q∥2N

√
log(2/δ), and thus disc(q) → 0 as N → ∞ provided that

βN → 0.

Proof. Fix token index j ∈ {1, . . . , Nc} and define

Dj := E[ℓ(TS , Z̄N+1
j ) | Z1:N ]−

N∑
i=1

qi E[ℓ(TS , Z̄i
j) | Z1:i−1].

We analyze each summand

∆i := E[ℓ(TS , Z̄N+1
j ) | Z1:N ]− E[ℓ(TS , Z̄i

j) | Z1:i−1].

Introduce an intermediate model h(i) := TS(i) trained on S(i) = S \ {Zi}. Decompose ∆i as:

∆i = E[ℓ(TS , Z̄N+1
j ) | Z1:N ]− E[ℓ(TS , Z̄i

j) | Z1:N ]︸ ︷︷ ︸
(A)

+E[ℓ(TS , Z̄i
j) | Z1:N ]− E[ℓ(TS , Z̄i

j) | Z1:i−1]︸ ︷︷ ︸
(B)

.

Since Z̄i
j ∼ Z̄

N+1
j are i.i.d. and independent of TS once Z1:N is fixed, we have:

E[ℓ(TS , Z̄N+1
j ) | Z1:N ] = E[ℓ(TS , Z̄i

j) | Z1:N ].

Hence, (A) = 0.

To control the second term, define a filtration Ft := σ(Z1, . . . , Zt) and define Doob martingale:

Xt := E[ℓ(TS , Z̄i
j) | Z1, . . . , Zt], t = 0, . . . , N.

Since TS is β-uniformly stable, replacing one sample Zt changes the expected loss by at most β. So:

|Xt −Xt−1| ≤ β.
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Then, Azuma-Hoeffding implies that with probability at least 1− δ:∣∣E[ℓ(TS , Zi,j) | Z1:N ]− E[ℓ(TS , Zi,j) | Z1:i−1]
∣∣ ≤ β√2(N − i+ 1) log(2/δ).

Using ∥q∥2 ≤ 1 and Jensen’s inequality:

|Dj | ≤
N∑
i=1

qi|∆i| ≤ ∥q∥2 ·

√√√√ N∑
i=1

β22(N − i+ 1) log(2/δ) ≤ 2β∥q∥N
√
log(2/δ).

Finally, averaging over j:

|disc(q)| ≤ 1

Nc

Nc∑
j=1

|Dj | ≤ 2β∥q∥2N
√

log(2/δ).

We complete the proof.

F THE UPPER BOUND ON DISCREPANCY MEASURE UNDER NON-I.I.D
SCENARIO

We firstly introduce the definition of Sequential Rademacher utilized in (Rakhlin et al., 2015;
Kuznetsov & Mohri, 2015; 2020).

Definition 7. [Sequential Rademacher Complexity] Let σ = (σ1, . . . , σT ) be a sequence of
Rademacher random variables (each σt independently taking values ±1 with equal probability), and
let q = (q1, . . . , qT ) ∈ RT be a given weight vector. For a function class G defined on sequential
data z1, z2, . . . , zT , the sequential Rademacher complexity is

Rseq
N (G) := sup

z
Eσ

[
sup
g∈G

N∑
t=1

σt qt g
(
zt(σ)

)]
,

where the supremum is over all complete (depth-N ) binary trees or adversarial sequences
zt(σ1, . . . , σt−1).

In simpler terms,Rseq
T (G) measures how well G can fit random signs {σt} in an online or sequential

manner.

F.1 FUNCTION CLASS: TRANSFORMER HYPOTHESIS SPACE

We fix a Transformer architecture (with Na heads per layer, hidden dimension D, and L layers), and
let θ collect all parameters {Qm,Km, Vm, Om,W1,W2, . . . } across L layers. Denote the overall
parameter space by Θ, and suppose we have a norm constraint ∥θ∥ ≤ Λ, bounding all weight matrices
in operator norm (or some suitable layerwise norm). Let FTrans be the function class:

FTrans :=
{
fθ : P 7→ T (P)

∣∣∣ θ ∈ Θ, ∥θ∥ ≤ Λ
}
.

For sequential inputs P(σ1, . . . , σt), this means the Transformer is invoked on each partial prompt
P1:t.

F.2 REWRITING THE LOSS AS A COMPOSITE FUNCTION.

Let us set
g(P) = T (P)n,: ∈ RD,

and define a function
ϕ
(
x,y

)
:= ∥x− y∥22,

where x,y ∈ RD. Then

ℓ(T ) = ϕ
(
g(P), Y

)
= ∥T (P)n,: −Y∥22.
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Hence the loss class G = {ℓ(T )} is precisely ϕ ◦G where

G :=
{
g(P) = T (P)n,: : T ∈ HTrans

}
.

We check how ϕ(x,y) = ∥x− y∥2 depends on x. Let R = max{BC ,max{∥HL
n,:∥}} be a constant.

Suppose ∥x∥ ≤ R and ∥y∥ ≤ R for all feasible (x,y). We can show that ϕ(x,y) is Lϕ-Lipschitz in
x with

Lϕ ≤ 4R,

because ∣∣∥x− y∥2 − ∥x′ − y∥2
∣∣ ≤ 4R ∥x− x′∥.

Thus, if the model outputs x = P and targets Y remain within a ball of radius RL∗
T , then ϕ(·,y) is

4RL∗
T -Lipschitz in the first coordinate.

F.3 SEQUENTIAL RADEMACHER COMPLEXITY OF TRANSFORMERS

Inside the expectation Eσ[·], the random variables {σt} are independent Rademacher signs. Let us
write:

Eσ

[
sup
f∈F

∣∣∣ N∑
t=1

σt qt f(zt)
∣∣∣] ≤ 4RL∗

T Eσ

[∥∥∥ N∑
t=1

σt qt zt

∥∥∥].
Thus, it remains to bound Eσ

[
∥
∑N

t=1 σt qt zt∥
]
. A typical assumption in bounding Rademacher-

based complexities is that each zt has a finite norm ∥zt∥ ≤
√
nBP . Then according to the fact that if

s < t then
Eσ[σtσsqtqsztzs] = Eσ[σt]Eσ[σsqtqsztzs] = 0,

we have the following:

E
[∥∥ N∑

t=1

σt qt zt
∥∥] ≤

√√√√E
[∥∥ N∑

t=1

σt qt zt
∥∥2] =

√√√√ N∑
t=1

q2t ∥zt∥2 ≤
√
nBP ∥q∥2.

Putting all these pieces together:

RN

(
{ℓ(T )}

)
≤ 4RL∗

T
√
nBP ∥q∥2.

This shows that under norm constraints and bounded inputs/targets, the sequential Rademacher
complexity of the squared-ℓ2 loss class is finite and depends primarily on the Lipschitz constant of
the loss w.r.t. the model’s output, as well as on the base complexity of the Transformer itself.

Remark. While the above bound may appear loose (e.g. exponential in the number of layers L),
it nonetheless demonstrates qualitatively that the capacity of squared-ℓ2 losses is controlled by
parameter norms, data magnitude R, sequence length T , and any submultiplicative structure in the
Transformer layers.

For given hypothesis spaceH and define by ˆdisc(q) := supT ∈H
1
Nc

∑Nc

j=1

[
EN+1,j−

∑N
i=1 qiEi,j

]
,

where Ei,j = E
[
ℓ(T (Pi,j−1)∗,:, C

i
j)|{(pm, cm)}i−1

m=1

]
.

By further combining the fact disc(q) ≤ ˆdisc(q) with the following lemma (Kuznetsov & Mohri,
2020), we obtain the final result.

Lemma 3. For any δ > 0, with probability at least 1− δ, for all f ∈ F and all α > 0, we have

N∑
t=1

E
[
qtf(Zt) | Zt−1

1

]
≤

N∑
t=1

qt f(Zt) + ∥q∥2 + 6Mℓ

√
π log T RT (F) + Mℓ ∥q∥2

√
2 log

1

δ
.

Combining this lemma with above results, we complete the proof.
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G ERROR ACCUMULATION ANALYSIS (PROOF OF THEOREM 5)

In practical scenarios, the model typically uses its own estimated token to predict subsequent tokens.
This approach leads to cumulative errors as inaccuracies in steps propagate forward. DenoteLi(T ) :=
L(T (Pi,j−1), Ci

j) the population risk at i-th step prediction such that L(T ) = 1
Nc

∑Nc

i=1 Li(T ). We
have the following relation between LEA(T ) and L(T ).
Theorem 5. (Error Accumulation Analysis) Let L(T ) and LEA(T ) be defined in Eqs (1) - (2).
Assume the conditions in Theorem 4 hold. For any 0 < δ < 1, we have

LEA(TS) ≤
1

Nc
LNc

+
L∗
T
Nc

Nc−1∑
j=1

[ 1

L∗
T

+ δj=1

Nc−1∏
i=2

(1 +
L∗
T
i
) +

Nc−1∑
i=j+1

Nc−1∏
k=i+1

(1 +
L∗
T
k

)
]
Lj ,

where δ(·) is the Kronecker delta.

It is evident that L∗
T (defined in Eq. (12)) increases with the number of layers L, and polynomially

with the prompt length, as well as linearly with the model size parameters Na and D. Based on this
observation, we focus on analyzing the impact of inference length on the generalization error bound.
Corollary 5. [Generalisation under i.i.d Scenario] Let |B| = O(N ζ1), ζ1 ≤ 1

2 , Q = O(lnN) and
Nc = O((lnN)ζ2). With at least confidence 1− δ, there holds

LEA(TS) ≲
N∑
i=1

Nc∑
j=1

qiηjℓ(TS(pi)∗,:, c
i
j) + ψ

√
2 log

4

δ
,

where ψ = (log n)ζ2(logn)ζ22L

N−1/2, and the weights ηj , j = 1, . . . , Nc equal to

L∗
T
Nc

[ 1

L∗
T

+ δj=1

Nc−1∏
i=2

(1 +
L∗
T
i
) +

Nc−1∑
i=j+1

Nc−1∏
k=i+1

(1 +
L∗
T
k

)
]
.

This result suggests, in scenarios where error accumulation occurs, the length of the inference
process should be constrained to a logarithmic scale relative to the sample size to ensure effective
generalisation. Notably, this finding aligns with (Merrill & Sabharwal, 2023), which states that
transformers with a logarithmic number of intermediate tokens may exhibit enhanced computational
power. Similar results can be easily extended to the non-i.i.d. setting.

Proof. According to the definitions of L(θ) and LEA(θ), we have the follows

LEA(θ)− L(θ) =
1

Nc

Nc∑
i=1

LEA
i (θ)− 1

Nc

Nc∑
i=1

Li(θ)

=
1

Nc

Nc∑
j=1

E[ℓ(T (P̂N+1,j−1)∗,:, C
N+1
j )]− E[ℓ(T (PN+1,j−1)∗,:, C

N+1
j )]

=
1

Nc

Nc∑
j=1

E[∥T (PN+1,j−1)∗,: − T (P̂N+1,j−1)∗,:∥22].

According to the Lipschitz property of Transformer, we have

1

Nc

Nc∑
j=1

E[∥T (PN+1,j−1)− T (P̂N+1,j−1)∥22] ≤
L∗
T
Nc

Nc∑
j=1

E[∥PN+1,j−1 − P̂N+1,j−1∥22]

=
L∗
T
Nc

Nc∑
i=1

i∑
j=1

E[∥T (P̂N+1,j−1)− CN+1
j ∥22]

=
L∗
T
Nc

Nc−1∑
i=1

i∑
j=1

LEA
j (θ),
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For notational simplicity, we denote AEA
i =

∑i
j=1 LEA

j (θ) and Ai =
∑i

j=1 Lj(θ). Then we have

AEA
m ≤ Am +

L∗
T
m

m−1∑
i=1

AEA
i .

We denote by Sn =
∑n

i=1A
EA
i . Since

Sn = Sn−1 +AEA
n ≤ (1 +

L∗
T
n

)Sn−1 +An

≤
n∏

i=2

(1 +
L∗
T
i
)A1 +

n∑
i=2

n∏
k=i+1

(1 +
L∗
T
k

)Ai

≤
n∑

j=1

[
δj=1

n∏
i=2

(1 +
L∗
T
i
) +

n∑
i=j+1

n∏
k=i+1

(1 +
L∗
T
k

)
]
Lj .

Thus, we have

LEA(θ) ≤ L(θ) + L∗
T
Nc

Nc−1∑
i=1

AEA
i (θ)

≤ 1

Nc

Nc∑
i=1

Li +
L∗
T
Nc

Nc−1∑
j=1

[
δj=1

Nc−1∏
i=2

(1 +
L∗
T
i
) +

Nc−1∑
i=j+1

Nc−1∏
k=i+1

(1 +
L∗
T
k

)
]
Lj

≤ 1

Nc
LNc

+
L∗
T
Nc

Nc−1∑
j=1

[ 1

L∗
T

+ δj=1

Nc−1∏
i=2

(1 +
L∗
T
i
) +

Nc−1∑
i=j+1

Nc−1∏
k=i+1

(1 +
L∗
T
k

)
]
Lj .

This completes the proof.

We then simplify these weights. Using the logarithmic approximation, there holds

Nc−1∏
i=2

(
1 +

L∗
T
i

)
≈ exp

(
L∗
T

Nc−1∑
i=2

1

i

)
≤ NL∗

T
c .

Similarly,

Nc−1∏
k=i+1

(
1 +

L∗
T
k

)
≤
(
Nc

i+ 1

)L∗
T

.

Approximating the summation, we have

Nc−1∑
i=j+1

(
Nc

i+ 1

)L∗
T

≈
∫ Nc

j

(
Nc

x

)L∗
T

dx.

Evaluating the integral yields

NLT
c

LT

[
(N

−L∗
T +1

c − j−L∗
T +1)

]
=
N

L∗
T

c − jL∗
T

L∗
T

.

Thus, the dominant term in the simplified bound is:

O
(
L∗
TN

L∗
T −1

c − jL
∗
T −1

)
.

By combining above results with the generalisation bound established above, we obtain Corollary
5.
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H GRADIENT, HESSIAN MATRIX AND LIPSCHITZ (SMOOTH) CONSTANT

This section gives the gradient and hessian of Transformer models. Note that, n,Np ≤ n ≤ Np +Nc

in this section refers to the length of input prompt.

H.1 GRADIENT W.R.T. Hl
n,: AND ITS NORM UPPER BOUND

It is easy to obtain the gradient of loss w.r.t. final output HL
n,:, i.e.,

∂L
∂HL

∗,:
= 2(HL

∗,: − y).

To establish the upped bound on ∥ ∂L
∂HL

∗,:
∥2, we need to bound the upper bound on the output ∥HL

∗,:∥2.
The definition of Transformer models yields

HL
∗,: =ML(AL(HL−1))∗,: = ReLU(ALHL−1

∗,: WL
1 )WL

2

and
∥ML(AL(HL−1))i,:∥2 ≤ BW1

BW2
sup ∥ALHL−1

i,: ∥2,
We have

∥AL(HL−1))n,:∥2 = ∥
Na∑
m=1

softmax
(
(HL−1)i,:Q

L
mK

L
m(HL−1)T

)
HL−1V L

mO
L
m∥2

≤ BVBONa

n∑
j=1

sj∥HL−1
j,: ∥2

≤ BVBONa sup
j=1,...,n

∥HL−1
j,: ∥2.

Combined with above result, we obtain
sup ∥HL

i,:∥2 ≤ BW1BW2BVBONa sup
i=1,...,n

∥HL−1
i,: ∥2 ≤ (BW1BW2BVBONa)

L sup
i=1,...,n

∥H0
i,:∥2.

Under Assumption 1, we have

sup ∥2(HL
n,: − y)∥2 ≤

√
2(BW1

BW2
BVBONa)

LBP +
√
2BC =: CL

Similarly, the maximum of loss function can be bounded by
Mℓ = 2(BW1

BW2
BVBONa)

2LBP + 2B2
C .

H.2 GRADIENT W.R.T. W l
2 AND ITS NORM UPPER BOUND

For any l = 1, ..., L, the gradient w.r.t. W l
2, we get

∂L
∂W l

2

=
∂L
∂HL

n,:

[ ∂HL
n,:

∂HL−1
· · · ∂H

l+1

∂Hl

] ∂Hl

∂W l
2

.

According to the definition ofM and A, we have
∂Hl

∂W l
2

= ReLU(Al(Hl−1)W l
1).

Recalling the Lipschitz property of Transformer, we have

∥
∂HL

n,:

∂HL−1
· · · ∂H

l+1

∂Hl
∥F ≤ n−1L

L−l
L

T := Cl:L

We then can bound the gradient w.r.t W l
2 by

∥ ∂L
∂W l

2

∥F ≤ CLCl:LBW1∥Al(Hl−1)∥F ,

where
∥Al(Hl−1)∥F ≤

√
n sup

i=1,...,n
∥Al(Hl−1)i,:∥F

≤
√
nBVBONa sup

i=1,...,n
∥Hl−1

i,: ∥F ≤
√
nBl

VB
l
ON

l
a(BW1BW2)

l−1BP := CW2 .
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H.3 GRADIENT W.R.T. W l
1 AND ITS NORM UPPER BOUND

We next to give the upper bound on the norm of the gradient w.r.t. W l
1. Similarly, for any l = 1, ..., L,

we have
∂L
∂W l

1

=
∂L
∂HL

n,:

[ ∂HL
n,:

∂HL−1
· · · ∂H

l+1

∂Hl

] ∂Hl

∂W l
1

.

and
∂Hl

∂W l
1

=
[
Rl ⊙ ∂Al(Hl−1)W l

1

∂W l
1

]
W l

2 = [Rl ⊙Al(Hl−1)]W l
2,

where Rl
ij = 1 if (Al(Hl−1)W l

1)ij > 0, otherwise Rij = 0. The upper bound is

∥ ∂L
∂W l

1

∥F ≤ CLCl:LBW2∥Rl ⊙Al(Hl−1)∥F ≤ CLCl:LBW2∥Al(Hl−1)∥F .

H.4 GRADIENT W.R.T. Ql
m AND ITS NORM UPPER BOUND

For any l = 1, ..., L, the gradient w.r.t. Ql
m is

∂L
∂Ql

m

=
∂L
∂HL

n,:

[ ∂HL
n,:

∂HL−1
· · · ∂H

l+1

∂Hl

] ∂Hl

∂Ql
m

and

∂Hl

∂Ql
m

=
∂Hl

∂Al(Hl−1)

∂Al(Hl−1)

∂Ql
m

=

 diag(Rl
1)W

l
1W

l
2

...
diag(Rl

n)W
l
1W

l
2

 ∂Al(Hl−1)

∂Ql
m

,

where
∂Al(Hl−1)

∂Ql
m

= softmax′ · (Hl−1)⊤Hl−1Kl
mHl−1V l

mO
l
m

and
softmax′ = softmax(Z)(I− softmax(Z)T ).

Note that Z = Hl−1Ql
mK

l
m(Hl−1)T and

∥softmax′∥F ≤
√
n

2
.

Then the corresponding upper bound is

∥ ∂L
∂Ql

m

∥F ≤ CLCl:L

√
nBW1

BW2
∥∂A

l(Hl−1)

∂Ql
m

∥F

≤ CLCl:LnBW1
BW2

BKBVBO∥Hl−1∥3/22

≤ CLCl:Ln
2B

3l−1
2

W1
B

3l−1
2

W2
BKB

3l−1
2

V B
3l−1

2

O N
3(l−1)

2
a B

3
2

P .

H.5 GRADIENT W.R.T. Kl
m AND ITS NORM UPPER BOUND

Similarly, the corresponding upper bound of the norm of the gradient w.r.t. Kl
m is∥∥∥∥ ∂Hl

∂Kl
m

∥∥∥∥
F

≤ CLCl:L

√
nBW1

BW2

∥∥∥∥∂Al(Hl−1)

∂Kl
m

∥∥∥∥
F

≤ CLCl:Ln
2B

3l−1
2

W1
B

3l−1
2

W2
BQB

3l−1
2

V B
3l−1

2

O N
3(l−1)

2
a B

3
2

P .
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H.6 GRADIENT W.R.T. V l
m AND ITS NORM UPPER BOUND

For any l = 1, ..., L, the gradient w.r.t. V l
m is

∂L
∂V l

m

=
∂L
∂HL

n,:

[ ∂HL
n,:

∂HL−1
· · · ∂H

l+1

∂Hl

] ∂Hl

∂V l
m

.

and

∂Hl

∂V l
m

=
∂Hl

∂Al(Hl−1)

∂Al(Hl−1)

∂V l
m

=

 diag(Rl
1)W

l
1W

l
2

...
diag(Rl

n)W
l
1W

l
2

 ∂Al(Hl−1)

∂V l
m

,

where
∂Al(Hl−1)

∂V l
m

= softmax
(
Hl−1Ql

m(Hl−1Kl
m)⊤

)⊤
Hl−1Ol

m.

Then we can bound ∥ ∂Hl

∂V l
m
∥F by

∥ ∂L
∂V l

m

∥F ≤ CLCl:L

√
nBW1

BW2
∥∂A

l(Hl−1)

∂V l
m

∥F

≤ CLCl:LnBW1
BW2

BO∥Hl−1∥F
≤ CLCl:Ln

3
2BW1

BW2
BO∥Hl−1

n,: ∥F
≤ CLCl:Ln

3
2Bl

W1
Bl

W2
Bl

OB
l−1
V N l−1

a BP .

H.7 GRADIENT W.R.T. Ol
m AND ITS NORM UPPER BOUND

Similarly, there also holds

∂L
∂Ol

m

=
∂L
∂HL

n,:

[ ∂HL
n,:

∂HL−1
· · · ∂H

l+1

∂Hl

] ∂Hl

∂Ol
m

and

∂Hl

∂Ol
m

=
∂Hl

∂Al(Hl−1)

∂Al(Hl−1)

∂Ol
m

=

 diag(Rl
1)W

l
1W

l
2

...
diag(Rl

n)W
l
1W

l
2

 ∂Al(Hl−1)

∂Ol
m

,

where
∂Al(Hl−1)

∂Ol
m

= softmax
(
Hl−1Ql

m(Hl−1Kl
m)⊤

)⊤
Hl−1V l

m.

Then we can bound ∥ ∂Hl

∂Ol
m
∥F by

∥ ∂L
∂Ol

m

∥F ≤ CLCl:L

√
nBW1BW2∥

∂Al(Hl−1)

∂Ol
m

∥F

≤ CLCl:LnBW1
BW2

BV ∥Hl−1∥F
≤ CLCl:Ln

3
2BW1BW2BV ∥Hl−1

n,: ∥F
≤ CLCl:Ln

3
2Bl

W1
Bl

W2
Bl

VB
l−1
O N l−1

a BP .

H.8 HESSIAN MATRIX

We firstly calculate the Hessian of Transformer T l w.r.t Hl−1 and its upper bound.

For l-th layer, the Hessian matrix is

HT l = ∇2
Hl−1ReLU(Al(Hl−1)W l

1)W
l
2 = diag(ReLU′(Al(Hl−1)W l

1))∇2
Hl−1Al(Hl−1)W l

1W
l
2.
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where

∇2
Hl−1Al =

Na∑
m=1

(
∇2

Zm
softmax(Zm) · (∇Hl−1Zm)2 · V l

mO
l
m +∇Zm

softmax(Zm) · ∇2
Hl−1Zm · V l

mO
l
m

)
and

Zm = Hl−1Ql
mK

l
m(Hl−1)T .

The norm of each component in Lipschitz smooth constant for T l w.r.t Hl−1 is

∥diag(ReLU′(Al(Hl−1)W l
1))∥ ≤

√
nD,

∇2
Hl−1Al(Hl−1) ≤ CsoftmaxNaBVBOBQBK∥Hl−1∥F (BQBK∥Hl−1∥F + 2),

where a conservative bound Csoftmax = D2/8. Then we have

∥HT l∥F ≤
√
nD

3
2NaBVBOBQBKBW1BW2∥Hl−1∥F (∥Hl−1∥F + 2).

For W l
1 and W l

2, their Lipschitz smooth constants are 0. For Ql
m, we have the Hessian matrix

HQl
m

= ∇2
Ql

m
ReLU(Al(Hl−1)W l

1)W
l
2 = diag(ReLU′(Al(Hl−1)W l

1))∇2
Ql

m
Al(Hl−1)W l

1W
l
2.

where

∇2
Ql

m
Al =

Na∑
m=1

(
∇2

Zm
softmax(Zm) · (∇Ql

m
Zm)2 · V l

mO
l
m +∇Zmsoftmax(Zm) · ∇2

Ql
m
Zm · V l

mO
l
m

)
and

∥∇2
Ql

m
Al∥F ≤ NaD

2BVBOB
2
K∥Hl−1∥2.

For Kl
m, we similarly have

∥∇2
Kl

m
Al∥F ≤ NaD

2BVBOB
2
Q∥Hl−1∥2.

For V l
m and Ol

m, the Lipschitz smooth constants are 0.

H.9 LIPSCHITZ CONSTANT Lℓ, LIPSCHITZ SMOOTH CONSTANT γ AND MAXIMUM OF LOSS
FUNCTION Mℓ

According to the results in Appendix H, the upper bound on Lℓ, Mℓ and γ are

Mℓ = 2(BW1BW2BVBONa)
2LBP + 2B2

C , (7)

Lℓ =

(Ne+1)Nc∑
n=NeNc+1

vn

L∑
l=1

(Cl
W1

+ Cl
W2

+Na(C
l
Q + Cl

K + Cl
V + Cl

O)) (8)

where
Cl

W1
= CLCl:LBW2

√
nBl

VB
l
ON

l
a(BW1BW2)

l−1BP

Cl
W2

= CLCl:LBW1

√
nBl

VB
l
ON

l
a(BW1BW2)

l−1BP

Cl
Q = CLCl:Ln

2B
3l−1

2

W1
B

3l−1
2

W2
BKB

3l−1
2

V B
3l−1

2

O N
3(l−1)

2
a B

3
2

P .

Cl
K = CLCl:Ln

2B
3l−1

2

W1
B

3l−1
2

W2
BQB

3l−1
2

V B
3l−1

2

O N
3(l−1)

2
a B

3
2

P

Cl
V = CLCl:Ln

3
2Bl

W1
Bl

W2
Bl

OB
l−1
V N l−1

a BP .
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Cl
O = CLCl:Ln

3
2Bl

W1
Bl

W2
Bl

VB
l−1
O N l−1

a BP .

The Lipschitz smooth constant is

γ =

(Ne+1)Nc∑
n=NeNc+1

vn

L∑
l=1

Na(γ
l
Q + γlK) (9)

where

γlQ =
(√

nD
3
2NaBVBOBQBKBW1

BW2
∥Hl−1∥F (∥Hl−1∥F+2)

)L−l

NaD
2BVBOB

2
K∥Hl−1∥2

and

γlK =
(√

nD
3
2NaBVBOBQBKBW1

BW2
∥Hl−1∥F (∥Hl−1∥F+2)

)L−l

NaD
2BVBOB

2
Q∥Hl−1∥2,

where
∥Hl−1∥F ≤ n

1
2 (BW1BW2BVBONa)

l−1BP .

Putting the above results into the upper bound of stability will obtain the desirable results.

H.10 LIPSCHITZ CONSTANT W.R.T INPUT LT

In a Transformer, the ReLU activation function is piecewise linear and thus non-differentiable at
certain points. In particular, the concept of a Jacobian, defined in terms of the network’s outputs
relative to its inputs, indicates how those outputs vary with small changes in the inputs. The Jacobian
at a point x is computed via the chain rule during backpropagation. However, it is only well-defined if
all ReLU nodes are differentiable at that point, meaning their inputs must be strictly positive or strictly
negative. Consequently, if an input equals zero, one must assume the existence of a sub-gradient
within [0, 1].

According to the chain rule, the Jacobian at a point p (namely H0), if defined, can be compactly
represented as:

Jp[T ] = Jp[T
L ◦ TL−1 ◦ · · · ◦ T 1] = JHL−1 [TL] · · · JH0 [T 1].

To obtain JHl−1 [T l], l = 1, ..., L, we need to calculate JAl(Hl−1)[Ml] and JHl−1 [Al], respectively.
Since bothMl and Al map from RNp×D to RNp×D, their Jacobian matrices have the same form

J l
11 J l

12 · · · J l
1Np

J l
21 J l

22 · · · J l
2Np

...
...

. . .
...

J l
Np1

J l
Np2

· · · J l
NpNp

 ∈ RNpD×NpD (10)

We firstly give the Jacobian matrix for JAl [Ml]. We denote by Al = Al(Hl−1) ∈ RNp×D. Recall
the definition of mapping

Ml(Al) = ReLU(AlW l
1)W

l
2 =


MT

1 (Al)
MT

2 (Al)
...

MT
N (Al)

 ∈ RNp×D,

where Mi(A
l) = ReLU(Al

iW
l
1)W

l
2. By taking partial derivatives, for any i, j ∈ [Np], we have

J l
ij =

∂Mi(A
l)

∂Al
j

=
∂ReLU(Al

iW1)W2

∂Al
j

= δijW
T
2 W

T
1 Gli,

where Gl encodes the activation pattern of a layer l caused by the input x, and δij is the Kronecker
delta. The matrix Gli is a diagonal matrix, having 1s as elements if the corresponding neuron is active,
otherwise 0s for inactive neurons. The Jacobian is the same for all the points strictly inside a linear
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region with the same activation pattern. Since ReLU networks are piece-wise linear in nature, the
Lipschitz constant is exactly equal to the p-norm of the Jacobian at one such linear region in the input
domain. Thus, the jacobian matrix forM is a diagonal block matrix, having WT

2 W
T
1 Gli as elements

if i = j, otherwise 0D×D for i ̸= j. We then have

sup
Al

∥JAl [Ml]∥2 ≤ N1/2
p DBW1BW2 .

In fact, there have been some studies analyzed JHl−1 [Al], l = 1, ..., L and the Lipschitz constant of
attention . Since transformer T is a map from RNp×D to RNp×D, the element of Jacobian is J l

ij =
∂(Al(Hl−1))i

∂Hl−1
j

. The Jacobian of the softmax is also well-known. Suppose that v = softmax(u) ∈

RNp×1. Then we have
∂v

∂u
= diag(v)− vvT

Recall the definition of mapping

Al(Hl−1) :=

Na∑
m=1

softmax
(
Hl−1Ql

mK
l
m(Hl−1)T

)
Hl−1V l

mO
l
m =


AT

1 (H
l−1)

AT
2 (H

l−1)
...

AT
N (Hl−1)

 ∈ RNp×D,

where

Ai(H
l−1) =

Na∑
m=1

[

Np∑
j=1

Mij(O
l
m)T (V l

m)T (Hl−1
j )T ]

and
Mi: = softmax(Hl−1

i Ql
mK

l
m(Hl−1)T ).

For any l = 1, ..., L, by taking partial derivatives we obtain that

J l
ij =

Na∑
m=1

[

Np∑
t=1

Mij(O
l
m)T (V l

m)T ] +

Na∑
m=1

[

Np∑
t=1

Hl−1
j V l

mOl
m]

∂Mij

∂Hl−1
t

=

Na∑
m=1

Np∑
t=1

[
Mit(O

l
m)T (V l

m)T +Hl−1
t V l

mOl
mMi(EtiH

l−1Ql
mKl

m +Hl−1(Kl
m)T (Ql

m)T δij)
]
,

where Mi := diag(Mi:) −MT
i:Mi: with sup ∥Mi∥ ≤ 1

2 , and Eij ∈ RNp×Np is a binary matrix
with zeros everywhere except the (i, j)-th entry.

Under assumption 1, for any l = 1, ..., L, we then have

sup ∥J l
ij∥ ≤ CLipNaBOBVBKBQ∥Hl−1∥2,

and

sup ∥JHl−1 [Al]∥ ≤ Np sup ∥J l
ij∥ ≤ CLipNpNaBOBVBKBQ∥Hl−1∥2,

where CLip is a positive constant.

Then the Lipschitz constant of L layer Transformer is

LT = CLipN
2
pDBKBQBP

L∏
l=1

N l
aB

l
W1
Bl

W2
Bl

OB
l
V . (11)

Specifically, if the output Transformer model is assumed to take the last token at L-layer, its Lipschitz
constant is

L∗
T = N

− 1
2

p LT . (12)

This completes the proof.
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I NUMERICAL EVALUATIONS

Evaluation on non-i.i.d data scenario: In the non-i.i.d scenario, besides the asymptotic behavior
and error accumulation, we additionally validate the impact of distributional alignment (quantified by
∥q− v∥) in Corollary 4. We consider a complex scenario where the training and test tasks are drawn
from related but non-identical distributions. Specifically, for each sample i, given a parameter vector
βi, we similarly generate a length-L sequence via the recurrence relation cil = βi

l−1c
i
l−1 + ϵ for

l = 1, . . . , L, where ci0 ∼ N (0, Id) is the query and ϵ ∼ N (0, 0.1 · Id). Different from i.i.d scenario,
in this scenario, the training parameter β is drawn from a mixture of two Gaussian distributions
ptrain(x) = p1 · N (1, 0.1 · Id) + p2 · N (0.2, 0.1 · Id), where p1 and p2 are the weights such that
p1 + p2 = 1. The test data is drawn from a different distribution: ptest(x) = N (0.1, 0.1 · Id). We
consider the prompting format that incorporates a single in-context example. For training samples,
the in-context example is drawn from the same distribution as the query task, i.e., both query and
support samples share the same βi. For test samples, the in-context example is instead drawn
from N (0.2, 0.1 · Id), regardless of the test query’s distribution. This design aims to reduce the
distributional divergence between the support and query examples in the test setting.

Under this setting, we assign group-wise importance weights based on the product of pairwise
overlaps between the training and test component distributions:

G(k) ∝ Overlap(N (µk, σk),N (0.1, 0.1 · Id)) · Overlap(N (µk, σk),N (0.2, 0.1 · Id)), k = 1, 2

where k = 1, 2 means the two class distributions of prompts in training process, and the total overlap
between two distributions p(x) and q(x) is defined as Overlap(p, q) =

∫∞
−∞ min{p(x), q(x)} dx.

(a) Distributional Alignment
Analysis

(b) Error accumulation (c) Error accumulation

Figure 4: The generalisation error under non-i.i.d scenario.

This value lies in the interval [0, 1], where 1 indicates complete distributional alignment and 0 denotes
no overlap. We then can approximate the optimal weights v ∈ RN as:

v = (
Ḡ(1)

p1N
, · · · , Ḡ

(1)

p1N︸ ︷︷ ︸
p1N

,
Ḡ(2)

p2N
, · · · , Ḡ

(2)

p2N︸ ︷︷ ︸
p2N

) ∈ RN ,

where Ḡ(k) is re-nomalized constant such that
∑

k Ḡ
(k) = 1, p1 and p2 are the proportions of the

two training components, and N is the total number of training samples. These weights are then
uniformly assigned to all training prompts according to their source component. For training weights,
we set w = {0, 0.2, 0.4, 0.6, 0.8, 1} and let the training weights be

q = (
w

p1N
, · · · , w

p1N︸ ︷︷ ︸
p1N

,
(1− w)
p2N

· · · , (1− w)
p2N︸ ︷︷ ︸

p2N

).

The impact of distributional alignment on non-i.i.d generalisation: We evaluate the role of distribution
mismatch by explicitly controlling the norm ∥q− v∥, which quantifies the divergence between the
empirical training distribution q and the ideal importance-weighted distribution v. Figure 4(a) shows
that the ℓ2 distance between q and v steadily increases, and the non-i.i.d. generalisation ability
correspondingly deteriorates, manifesting as a larger generalisation error. This observation validates
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Corollary 4, which asserts that tighter alignment between the training and test prompt distributions
yields better generalisation under distribution shift. Moreover, it underscores the importance of
high-quality prompts for non-i.i.d. settings, since they reduce the gap between training and test
distributions and thus improve generalisation.

The Generalisation Error Convergence Analysis: We evaluate the generalization error as the number
of training samples N increases. Figure 4(b) demonstrates that the error decreases and asymptotically
vanishes as N →∞, consistent with the theoretical prediction in Corollary 4 for the non-i.i.d. setting.

The Error Accumulation Analysis: Figure 4(c) shows that the generalization error increases with
sequence length, following an approximately logarithmic trend. In particular, once the sequence
length exceeds a threshold near lnN , the error rises sharply. Moreover, this threshold shifts to larger
values as the sample size increases. These empirical findings support Theorem 5 under non-i.i.d.

(a) The Length of Sequence is 6 (b) The Length of Sequence is 7 (c) The Length of Sequence is 8

Figure 5: Generalisation error progression over optimization steps in the non-i.i.d. setting.

Overfitting Risk: Figure 5 depicts how the generalisation error evolves with the number of optimization
steps. As the sequence length increases, the task becomes more complex and the loss landscape
grows more non-smooth, resulting in a heightened risk of overfitting. These observations align with
the conclusions of Theorem 4.

Empirical evaluation on realistic data:We conduct an additional NLP experiment on a sentiment-
classification task. The training set consists of labeled movie reviews, and the test-time prompts
contain several review–label demonstration pairs. We collected approximately 600 movie reviews
from Douban, segmented them into sentences, and fine-tuned a base GPT-2 model. Another 100
reviews were prepared for in-domain testing. Using the same procedure, we also constructed a
literary-text test set from online literature platforms to create a distinct out-of-domain distribution.

After fine-tuning on movie reviews, we examined how the discrepancy measure disc(q) relates to
generalization behavior. To this end, we formed target-prompt mixtures spanning both movie-review
and literary domains, with mixture ratios ranging from 0:7 to 7:0. The results are reported in Table 4.
Mixtures containing a higher proportion of literary prompts correspond to larger disc(q), as literary
texts differ more substantially from movie reviews (empirically, their bidirectional KL divergences are
around 12). These higher-discrepancy mixtures exhibit moderately increased predictive loss, whereas
mixtures more aligned with the training distribution (smaller disc(q)) show lower loss and stronger
in-context performance. Overall, the observed trend is consistent with the qualitative dependence
predicted by our theoretical analysis.

Prompt Config Loss Top-1 Acc. Prompt Config Loss Top-1 Acc.
7:0 0.9319 90.78% 3:4 0.9416 90.64%
6:1 0.9363 90.71% 2:5 0.9434 90.61%
5:2 0.9374 90.66% 1:6 0.9474 90.57%
4:3 0.9398 90.64% 0:7 0.9477 90.60%

Table 4: Prompt configuration vs. performance on sentiment classification.

The Validation of Assumption on Lipschitz Constant: Although the theoretical and empirical constants
need not coincide numerically, observing that the empirical estimates follow the same scaling laws
across model sizes and datasets confirms the asymptotic tightness of our Lipschitz and smoothness
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Number of Layers # Lipschitz (Layers) Attention Heads Lipschitz (Heads) Embedding Dim Lipschitz (Embedding)
12 19.38 4 19.38 1218 19.38
24 43.46 8 29.20 2506 48.52
36 59.52 32 38.71 5712 108.31
48 70.22 – – 11044 908.74
60 820.52 – – – –
72 938.16 – – – –
84 1168.58 – – – –
96 1961.24 – – – –

Table 5: Lipschitz-related quantities across Transformer configurations.

bounds. To validate it, we approximate the constant by sampling multiple inputs, computing gradient
and Hessian norms, and taking the maximum observed value. This approach effectively captures
the dominant scaling behavior and serves as a reliable empirical proxy. As shown in Eqs. 7–9, the
Lipschitz (smoothness) upper bound depends on factors such as QKV matrix size, model depth,
and other architectural parameters. We varied these factors to examine their influence, with the
results summarized in Table 5. The empirical results reveal clear scaling patterns of the Lipschitz
constant with respect to key architectural parameters such as model depth, embedding dimensions
and attention head. The consistent asymptotic behavior provides empirical evidence supporting the
effectiveness of our theoretical Lipschitz (smoothness) bound.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs (e.g., ChatGPT) only as a general-purpose writing assistant. Its roles were limited
to polishing language (grammar and clarity), and concise rephrasing or shortening of paragraphs
without adding technical content. The LLMs did not generate research ideas, problem formulations,
proofs, theorems, algorithms, experiments, results, figures, or evaluations. All technical content
(definitions, lemmas/theorems, proofs, algorithms), experimental designs, and conclusions are solely
by the authors and were fully verified by us. The authors take full responsibility for all text in this
paper. The LLM is not an author.
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