
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS A THEORETICAL UNDERSTANDING OF IN-
CONTEXT LEARNING: STABILITY AND NON-I.I.D GEN-
ERALISATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning (ICL) has demonstrated significant performance improvements
in transformer-based large models. This study identifies two key factors influencing
ICL generalisation under complex non-i.i.d. scenario: algorithmic stability and dis-
tributional discrepancy. First, we establish a stability bound for transformer-based
models trained with mini-batch gradient descent, revealing how specific optimiza-
tion configurations interact with the smoothness of the loss landscape to ensure
the stability of non-linear Transformers. Next, we introduce a distribution-level
discrepancy measure that highlights the importance of aligning the ICL prompt
distribution with the training data distribution to achieve effective generalisation.
Building on these insights, we derive a generalisation error bound for ICL with
asymptotic convergence guarantees, which further reveals that token-wise predic-
tion errors accumulate over time and even lead to generalisation collapse if the
prediction length is not properly constrained. Finally, empirical evaluations are
provided to validate our theoretical findings.

1 INTRODUCTION

In recent years, the AI community has witnessed the emergence of influential Large Models (LMs)
such as Generative Pretrained Transformers (GPTs) (Brown et al., 2020; Achiam et al., 2023;
Radford et al., 2018; 2019), LLaMa (Touvron et al., 2023), and Pathways Language Model (PaLM)
(Chowdhery et al., 2023). A particularly attractive characteristic of LMs is their in-context learning
(ICL) capability, which enables effective predictions on downstream tasks using only a short context,
without requiring any parameter fine-tuning (Black et al., 2022).

Recently, the empirical success of ICL has attracted growing interest in theoretically analyzing
its generalisation capability. Li et al. (2023) establish optimization-independent generalisation
bounds for ICL under i.i.d. inputs or trajectories derived from dynamical systems. Other works
incorporate training dynamics and prompt structure into the analysis, examining how architectures
and optimization strategies influence ICL performance (Huang et al., 2024; Li et al., 2024a; Chen
et al., 2024). Notably, Wu et al. (2024) establish a statistical task complexity bound for the attention
model pretraining and indicates pretrained model closely matches the optimally tuned ridge regression
by achieving nearly Bayes optimal risk on unseen tasks. However, these studies rely on simplifying
data assumptions that limit their applicability to real-world settings, such as the pairwise orthogonal
token pattern imposed by (Huang et al., 2024; Li et al., 2024a) and the independent token sampling
assumption in (Chen et al., 2024; Wu et al., 2024).

This paper moves beyond these ideal assumptions and provides a theoretical analysis of the general-
isation ability of nonlinear Transformers for next-token prediction in ICL, leveraging algorithmic
stability (Bousquet & Elisseeff, 2002; Charles & Papailiopoulos, 2017; Liu et al., 2017) and discrep-
ancy measure (Kuznetsov & Mohri, 2015; 2020). Our main theoretical contributions are:

Algorithmic Stability and Discrepancy Measure: Algorithmic stability ensures that small changes
in training data do not cause large inference variations. We theoretically identify conditions under
which Transformers achieve stability under mini-batch gradient descent and quantify discrepancy
across different scenarios. Theorem 1 reveals three key insights: 1) for a sufficiently smooth loss
landscape, algorithmic stability is well-controlled, and allows iteration number to scale polynomially

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Theoretical Contributions (✓-has the given information, ✗-hasn’t the given information)

Multi-Head
Multi-Layer

Generalisation
Analysis

Optimization
Dependent

Distribution
Shift

No Special
Input Structure

Orthogonality
Free

Li et al. (2024b) ✓ ✗ ✗ ✓ ✗ ✓
Feng et al. (2023) ✓ ✗ ✗ ✓ ✓ ✓
Chen et al. (2024) ✓ ✓ ✓ ✗ ✓ ✗
Bai et al. (2024) ✓ ✗ ✗ ✓ ✗ ✓

Yang et al. (2024b) ✓ ✓ ✓ ✓ ✗ ✓
Li et al. (2024a) ✗ ✓ ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓

Special input structure refers to prompts structured in a specific format to satisfy theoretical constraints.
Orthogonality-free refers to data that is not constrained by orthogonal patterns in its generation

with the training sample size; 2) in non-smooth scenarios, stability deteriorates rapidly as iterations
number increase, especially with a small learning rate, making it advisable to limit iterations number
to a logarithmic scale relative to the sample size; 3) regardless of whether the landscape is sufficiently
smooth, an appropriately chosen step size can ensure that the convergence rate of algorithmic
stability achieves O(N−1), where N denotes the sample size. The discrepancy measure captures
distribution shift between training and target data. To quantify this discrepancy, Theorems 2–3
establish a stability-dependent asymptotically vanishing bound for the i.i.d. case, and a bound based
on sequential Rademacher complexity for the non-i.i.d. setting.

Generalisation Bounds: Theorem 4 establishes the generalisation error of Transformer-based models
under ICL scheme by leveraging algorithmic stability and the discrepancy measure, revealing: 1) In
the ideal i.i.d. data scenario, the ICL generalisation error achieves a convergence rate ofO(N− 1

2) with
appropriately chosen iteration number and batch size, regardless of the loss landscape’s smoothness;
2) In the non-i.i.d. data scenario, effective generalisation requires properly weighting training samples
and suitable ICL prompting, particularly when the loss landscape exhibits insufficient smoothness;
3) The generalization error accumulates across the intermediate tokens generated by the model.
Theorem 5 suggests that, to ensure effective generalisation, the length of next-token predictions
should be constrained to grow at most logarithmically with the sample size.

2 RELATED WORK

A major line of work investigates the approximation capabilities of ICL in solving diverse tasks, while
another focuses on their generalization and dynamic training behavior, aiming to establish theoretical
guarantees for adaptation to unseen tasks under i.i.d. and distribution shift settings. In the research
line of approximation analysis, Akyürek et al. (2023); Bai et al. (2024) demonstrate that Transformers
are expressive to conduct many machine learning algorithms in context, such as ridge regression
and Lasso regression. Moreover, a series of studies prove the existence of Transformer architectures
capable of implementing gradient-based methods and their variants when given appropriate prompts
(Von Oswald et al., 2023; Ahn et al., 2023; Ding et al., 2024). A particularly influential subclass
of ICL prompts, Chain-of-Thought (CoT), has been extensively studied as a structured form of in-
context reasoning. Several works show that CoT-enhanced Transformers are strictly more expressive
than their standard counterparts (Feng et al., 2023; Li et al., 2024c; Merrill & Sabharwal, 2023).
Specifically, Malach (2024) prove that next-token predictors trained on CoT data can efficiently
simulate any Turing-computable function, while Li et al. (2024b) show that Transformers can even
learn multi-layer perceptrons in context.

In another research line, Huang et al. (2024) explore the training dynamics and generalisation of ICL
on single-attention Transformers. Huang et al. (2024) analyze the generalization properties of single-
head attention Transformers, while Chen et al. (2024) study the gradient flow dynamics in multi-head
architectures for multi-task linear regression. Further, Cui et al. (2024) and Yang et al. (2024a) provide
theoretical evidence for the superiority of multi-head attention and standard Transformers over single-
head and recurrent baselines in various reasoning settings. More recently, Gong et al. (2025) examine
the emergence of ICL capabilities in autoregressive next-token prediction models through PAC-Bayes
theory. In addition, Li et al. (2025) provide sample complexity and bounds for training Transformers
to acquire CoT capabilities under a token orthogonality assumption. Recent theoretical studies

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

have provided elegant geometric and optimization-based explanations of in-context learning through
structured concept representations. These works substantially deepen the mechanistic understanding
of how semantic geometry and task-vector behavior emerge in transformer models (Bu et al., 2024;
2025). Our work focuses on a complementary aspect of the theory. Rather than assuming a particular
latent concept geometry, we develop a distribution–shift–aware generalization framework based on
algorithmic stability. In particular, we introduce a discrepancy measure that characterizes how prompt
distributions deviate from the training distribution and derive PAC-style bounds that remain agnostic
to the underlying semantic structure.

To clearly highlight our contributions, Table 1 provides a comparative analysis of existing theoretical
works, emphasizing key differences in assumptions and results. Unlike prior works that rely on
restrictive assumptions, such as orthogonal token patterns (Li et al., 2024b; Feng et al., 2023) or i.i.d.
sampling (Chen et al., 2024), our analysis does not require idealized input structures and explicitly
handles non-i.i.d. settings with distribution shift. This makes our generalization bounds applicable to
a wider range of realistic ICL scenarios, including those where training and inference environments
differ significantly.

3 PROBLEM SETUP

Suppose we have a sample of size N , where the i-th sample variable is denoted as (Xi,Ci), with Xi

representing the query variable and Ci = (Ci
1, . . . , C

i
Nc

) representing the length-Nc output sequence.
Importantly, our theoretical results allow for these sample variables to follow distinct distributions.

A typical length-Np ICL prompt consists of an example set Di = {(Xi,Ci)}Ne
i=1, which is contex-

tually associated with the pair (Xi,Ci), followed by a query input Xi. We formally represent the
prompt as Pi = [Di, Xi], where [Di, Xi] denotes the concatenation of the example set Di and the
query input Xi into a single flattened input vector. In practice, we typically predict each intermediate
token Ci

j , j = 1, · · · , Nc, in an autoregressive manner, where the prompt for predicting the j-th token
incorporates the token from the previous j − 1 steps. Accordingly, we denote the integrated prompt
for j-th token prediction as Pi,j =

[
Pi, Ci

1, · · · , Ci
j−1

]
.

In practice, instead of relying on the correct intermediate tokens, the estimated intermediate tokens
are more commonly used to predict the next-token. Under this more general scenario, we define
P̂i,j =

(
P̂i,j−1, T (P̂i,j−1)

)
with P̂i,0 = Pi, where T is a Transformer-based model. However,

this approach inevitably results in error accumulation. Appendix G establish the gap between the
generalisation performance with P̂i,j and Pi,j , highlighting the impact of these accumulated errors.

For convenient reference, Appendix A provides a summary of the notations used in this paper.

3.1 TRANSFORMERS ARCHITECTURE

This section introduces the widely adopted non-linear Transformer architecture, which comprises
self-attention mechanisms and a multi-layer perceptron (MLP) module.

Definition 1. (Multi-head Self-Attention Module) For any given length-Np prompt

P =


− zT1 −
− zT2 −
...

...
...

− zTNp
−

 ∈ RNp×D,

suppose that there are Na attention module A(·) : RNp×D → RNp×D, with parameters Om ∈
RD×D and {(Vm, Qm,Km)} ∈ RD×D for each attention module m = 1, · · · , Na. The attention
score associated with i-th token (A(·))i,: : RNp×D → R1×D is given by

A(P)i,: :=

Na∑
m=1

 Np∑
j=1

softmax
(
zTi QmKmzj

)
zTj Vm

Om,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Mini-batch Gradient Descent Optimizer for Transformer
Input: Observations S = {(pi, ci)}Ni=1, Initialization θ0, Max-Iter Q, q = 0, Batch Size |B|.
Output: θ̂ = θQ.
For: q ≤ Q;
q ← q + 1;
Stochastically Sampling B ⊂ {(pi, ci)}Ni=1;
θq = θq−1 − ηq−1

|B|
∑

i∈B ∇θL̂(T);

where the softmax mapping is defined by

softmax(zTi QmKmzj) =
ez

T
i QmKmzj∑Np

j=1 e
zT
i QmKmzj

.

The vector-based form can be derived easily:

A(P) :=

 A(P)1,:
...

A(P)Np,:

 ∈ RNp×D =

Na∑
m=1

softmax
(
PQmKmPT

)
PVmOm.

Definition 2. (MLP Module) For any given matrix Z ∈ RNp×D, a (token-wise) MLP layer with
hidden dimension D is denoted asM(Z) = ReLU(ZW1)W2 ∈ RNp×D, where W1,W2 ∈ RD×D

are parameters matrices.

Given any prompt P, we have the following inference process of l-layer Transformer

Hl = T l(Hl−1) :=Ml
(
Al(Hl−1)

)
, l = 1, ..., L,

where Hl is the output of l-layer block of Transformer and H0 = P. Consequently, the Transformer
architecture with L layers can be expressed as T (P) = TL ◦ TL−1 ◦ · · · ◦ T 1(P). It is important to
highlight that in typical usage, only the last token from the final layer, denoted as T (P)∗,:, is utilized
as the output corresponding to the queried response.

3.2 TRAINING WITH STOCHASTIC GRADIENT DESCENT

This paper considers a training process where each training example is aligned with the test setup.
This learning scheme ensures that the model learns to mirror the inference process at test time.
Furthermore, the empirical risk formulation employed in this work is also widely used in both
theoretical analyses (Li et al., 2024a; Yang et al., 2024b), empirical studies from practical applications
(Min et al., 2022), and dataset development Longpre et al. (2023).

Given N -size sample set S = {(pi, ci)}Ni=1, the training objective is formulated as:

L̂(T) =
N∑
i=1

qi
Nc

Nc∑
j=1

ℓ
(
T (pi,j−1)∗,:, c

i
j

)
,

where qi, i = 1, ..., N, represent the weights for the training data, reflecting its relative importance in
the overall optimization process.

Our goal is to predict unknown sequence CN+1, based on the given ICL prompt Pi. The correspond-
ing population version is

L(T) = 1

Nc

Nc∑
j=1

E
[
ℓ(T (PN+1,j−1)∗,:, C

N+1
j)

]
. (1)

Additionally, the expected risk, which takes error accumulation into account, is expressed as

LEA(T) = 1

Nc

Nc∑
j=1

E
[
ℓ(T (P̂N+1,j−1)∗,:, C

N+1
j)

]
, (2)

For notational simplicity, we use θ = {Ol
m, V

l
m, Q

l
m,K

l
m,W

l
1,W

l
2}

L,Na

l=1,m=1, to represent all trainable
parameters. Moreover, the training details using mini-batch GD is summarized in Algorithm 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Discrepancy	M
easure

G
eneralisation

Error
Dataset	(Perturbation)

Training	with	Mini-batch	GD	Optimizer

Training	with		Mini-batch	GD	Optimizer

Input

Input
Input	Prompt

Output

Output

Algorithm
ic	Stability

Dataset

Target	PromptTraining	Data Training	Data Training	Data

Difference

Figure 1: Algorithmic stability quantifies the sensitivity of an algorithm to perturbations in the
training data, where higher stability (i.e., lower sensitivity) typically indicates better generalisation.
Discrepancy measures the divergence between the target distribution and the training data distribution,
assessing how well the training data represents the target data.

4 THEORETICAL ANALYSIS

We assume that TS(·) denotes a Transformer model trained using mini-batch GD on the dataset
S = {(pi, ci)}Ni=1. The main concern is how to bound the generalisation error in terms of the
difference between the population risk and the empirical risk evaluated at TS . We address this question
using tools from algorithmic stability and distributional discrepancy, as illustrated in Figure 1.

4.1 PROOF SKETCH

Our main results follow a structured sequence of steps. Below we summarize the logical chain of the
analysis and involved technical tools.

Step 1: Formalizing stability and discrepancy. We begin by defining two key notions: (i) the
algorithmic stability β, which measures how sensitive the mini-batch SGD-trained Transformer is to
replacing a single training example; and (ii) the discrepancy measure disc(q), which quantifies the
distributional mismatch between the importance-weighted training distribution and the target prompt
distribution. These quantities jointly determine the generalization behavior of in-context prediction.

Step 2: Decomposing generalisation error. We establish the general decomposition (see the proof
of Theorem 4 in Section D):

L(TS) ≤ L̂(TS) + disc(q) + β + (vanishing statistical term), (3)

which shows that the generalization error consists of the training loss term, the distribution-shift term
disc(q), the algorithmic stability β and vanishing statistical term. Hence, to obtain explicit bounds
on L(TS), we must control both β and disc(q).

Step 3: Bounding the stability of Transformers under mini-batch SGD. To control β, we analyze
how perturbing a single training sample influences the multi-head, multi-layer Transformer during
Q mini-batch SGD updates. Using the layer-wise Lipschitz and smoothness constants derived in
Appendix H, we derive a recurrence relating the perturbed and unperturbed updates. Solving this
recurrence yields the stability bounds in Theorem 1.

Step 4: Bounding discrepancy. We next characterize disc(q) under both i.i.d (Theorem 2) and
non-i.i.d scenarios (Theorem 3) by employing concentration inequalities together with the notion of
Sequential Rademacher Complexity (see Definition 7 in Appendix E-F).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Step 5: Combining the bounds. Substituting the stability bound (Step 3) and discrepancy bounds
(Step 4) into the decomposition (Step 2) yields our final generalization results.

Finally, Figure 3 (see Appendix B) outlines the technical tool used for our theoretical analysis.

4.2 MINI-BATCH GD-DEPENDENT ALGORITHMIC STABILITY

This paper utilizes a variant of commonly-used uniform stability in statistical learning theory (Bous-
quet & Elisseeff, 2002). Let Si denote the dataset S with its i-th sample replaced by an independent
sample drawn from the same distribution. The algorithmic stability is defined as below.
Definition 3. A randomized algorithm G that maps N -size dataset S to estimator TS has uniform
stability β if the following inequality holds

1

Nc

Nc∑
j=1

EG

∣∣∣ℓ(TS(Pk,j−1)∗,:, C
k
j)− ℓ(TSi(Pk,j−1)∗,:, C

k
j)
∣∣∣ ≤ β, ∀i, k = 1, ..., N, ∀S, Si.

To establish the upper bound on uniform algorithmic stability, we introduce the following assumptions.
Assumption 1. [Boundedness] The norm of each row of the input prompt Pi and the norm of each
response vector Ci

j , for j = 1, . . . , Nc, i = 1, . . . , N,, are uniformly bounded by constants BP and
BC , respectively. Additionally, for any attention headm = 1, . . . , Na and any layer l = 1, . . . , L, the
parameter norms satisfy the following conditions ∥W l

1∥2 ≤ BW1
, ∥W l

2∥2 ≤ BW2
, ∥Ql

m∥2 ≤
BQ, ∥Kl

m∥2 ≤ BQ, ∥V l
m∥2 ≤ BV , ∥Ol

m∥2 ≤ BO.

This mild boundedness assumption is widely utilized in various theoretical studies (Bai et al., 2024;
Zhang et al., 2023). Indeed, the boundedness assumptions in our theoretical analysis can be further
relaxed to unbounded settings, with the theoretical results still holding. For example, one can
replace the assumption of a hard bound on inputs with a light-tailed distribution assumption (e.g.,
inputs or features have sub-Gaussian tails) Attia & Koren (2024). This means extremely large input
values are exponentially unlikely, effectively limiting the influence of outliers without requiring an
absolute bound. Under this assumption, we thus denote the maximum value of the loss function as
Mℓ = sup ℓ(·). Additionally, to establish the bound on algorithmic stability, we consider its Lipschitz
constant with respect to trainable parameters (Definition 4) and the Lipschitz smoothness constant γ
(Definition 5). Detailed calculations for both are provided in Appendix H.
Definition 4. (Lipschitz constant) For a Lipschitz function f defined over domain X , the Lipschitz
constant Lf is defined as the smallest value such that ∥f(y)− f(x)∥2 ≤ Lf∥y − x∥2, ∀x, y ∈ X .
Definition 5. (Lipschitz smooth constant) A function f defined over domain X is said to be Lipschitz
smooth if there exists a constant γ > 0 such that ∥∇f(x)−∇f(y)∥2 ≤ γ∥x− y∥2 for all x, y ∈ X .

We then give the bound on the algorithmic stability (See Appendix C for the detailed proof).
Theorem 1. Let Assumption 1 be true and the learning rate be ηk = 1

kα , α > 0. The algorithmic
stability satisfies

β ≲


BMℓL

2
α(1+γ)
ℓ Q

γ
1+γ

Nγα , if γ ≤ 1+
√

1−4α(1−α)

2α ,

BMℓL
2

α(1+γ)
ℓ Q

αγ2+1−α
1+γ

Nγα , if γ > 1+
√

1−4α(1−α)

2α ,

(4)

where Mℓ, Lℓ, and γ for Transformer are given in Equations (7)-(9). There constants are related
to Transformer architecture, e.g., depth L and the number of attention head. For example, since
quantities such as Mℓ grow exponentially in L (see Equation (7)), a sufficient condition for stability
is that the depth grows at most logarithmically with N .
Remark 1. The algorithmic stability bound depends on the Lipschitz smoothness constant γ, batch
size B, number of iterations Q, dataset size N , and learning rate decay α. For small γ, stability is
better controlled, while for large γ, stability degrades rapidly with Q, especially when α is small.
A larger dataset N improves stability, but increasing B or the maximum loss Mℓ worsens it. This
aligns with existing studies indicating that small-batch SGD tends to yield superior generalisation
performance compared to large-batch SGD or full-batch GD (Keskar et al., 2017; Masters & Luschi,
2018; LeCun et al., 2012; Wilson & Martinez, 2003). To maintain stability, it is beneficial to use
smaller batch sizes, moderate α, and smooth the loss function to keep γ small.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The following corollaries examine its asymptotic behavior under two distinct scenarios, characterized
by the smoothness of the loss landscape.
Corollary 1. [Well-conditioned Smoothness] Let the conditions in Theorem 1 be true, and ζ1 and ζ2 be
arbitrary non-negative real numbers that control the growth rates of the batch size and iteration count,
respectively. If the loss landscape is sufficiently smooth, i.e., γ ≤ (2α)−1(1+

√
1− 4α(1− α)), and

the upper bound Mℓ, Lipschitz (smooth) constants Lℓ and γ are bounded. By putting |B| = O(N ζ1)

and Q = O(N ζ2) into Eq. (4), the upper bound on algorithmic stability is β = O(Nζ1+
ζ2γ
1+γ −1).

Some techniques such as regularization can be used to ensure that the loss landscape is smooth.
Corollary 1 captures a fundamental trade-off between optimization and stability. Increasing the
number of iterations Q (and/or the batch size) generally improves optimization and reduces the
empirical risk (which is observable). At the same time, our stability analysis shows that larger Q
amplifies the accumulated perturbations along the optimization path, thereby worsening the stability
coefficient β and enlarging the generalization gap.
Corollary 2. [Insufficient Smoothness] Let the conditions in Theorem 1 be true. If γ > (2α)−1(1 +√
1− 4α(1− α)), by putting |B| = O(Nζ1), Q = O(lnN) into Eq. (4), we get β = Õ(Nζ1−1).

Corollary 2 indicates that when the Lipschitz smoothness constant is overly large, constraining
iteration growth to a logarithmic scale effectively mitigates instability.

4.3 DISCREPANCY MEASURE

Given the potential distribution shift between training and target data, a suitable metric that does not
impose distributional assumptions is essential for quantifying their divergence. This paper extends a
discrepancy metric inspired by Kuznetsov & Mohri (2015) to make it hypothesis-space independent.
Definition 6. (Discrepancy Measure) For the estimator TS , the discrepancy measure is defined as

disc(q) :=
1

Nc

Nc∑
j=1

[
EN+1,j −

N∑
i=1

qiEi,j

]
,

where Ei,j = E
[
ℓ(TS(Pi,j−1)∗,:, C

i
j)|{(pm, cm)}i−1

m=1

]
.

The disc(q) measures the degree of misalignment between the target task distribution and the training
distribution. We then show how this discrepancy can be quantified under different scenarios.

I.i.d. Scenario: In the ideal i.i.d. case, where the training and target distributions match, the
discrepancy admits the following asymptotic property (see Appendix E for proof).
Theorem 2. Let TS be a learning algorithm that is uniformly β-stable. Suppose the training data
and test sample are i.i.d.. Then, with confidence at least 1− δ, ∀δ ∈ (0, 1), the discrepancy satisfies
disc(q) ≤ 2β∥q∥2N

√
log(2/δ), where β is defined in Eq equation 4, and thus disc(q) → 0 as

N →∞ provided that β∥q∥2N → 0.

The condition β∥q∥2N → 0 is easy to satisfy under standard choices of the training weights. For
example, if we take uniform weights qi = 1/N for all samples, then ∥q∥N = N1/2, and thus the
requirement becomes simply β = o(N−1/2). Theorem 1 shows that such a decay rate for β is
achievable under multiple concrete regimes. For instance, Corollary 1 implies that β = o(N−1/2)
holds whenever ζ1 + ζ2γ/(1 + γ) < 1/2, where ζ1 and ζ2 characterize the growth rates of the batch
size and the iteration count Q, and γ is the Lipschitz-smoothness parameter of the loss.

Non-i.i.d Scenario: If the target domain is entirely unrelated to the training domains, achieving
accurate predictions becomes nearly impossible. Therefore, we consider a scenario where at least
some training domains share a meaningful relationship with the target domain. Formally, suppose
that there exists an effective prompt such that the example distribution set is drawn from a distribution
related to the training distributions, ensuring 1

Nc

∑Nc

j=1

[
EN+1,j −

∑
i∈I viEi,j

]
≤ ϵ, ϵ > 0, where

I ⊂ {1, ..., N} is the index set that refers to the related training data, and vi is the corresponding
weight. Techniques such as incorporating more diverse training data and designing more effective
ICL prompts can help reduce ϵ by better aligning the training and test environments. For this non-i.i.d

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

scenario, Theorem F provides an sequential Rademacher complexity based upper bound on disc(q)
(See Appendix F for detailed proof).
Theorem 3. Under the above situation and Assumption 1, with confidence at least 1− δ, there holds

disc(q) ≤ ϵ+ sup
T ∈H

 1

Nc

N∑
i=1

Nc∑
j=1

(vi − qi)ℓ(T (pi,j)∗,:, C
i
j)

+ 3Mℓ

√
π logNRN ({ℓ ◦ T })

+ Mℓ∥q− v∥2

√
2 log

1

δ

where the sequential Rademacher complexity RN ({ℓ ◦ T }) over measurable hypothesis space H
(see Definition 7 for more details) satisfies RN ({ℓ ◦ T }) = 4RL∗

T
√
Np +NcBP ∥q − v∥, L∗

T is

the Lipschitz constant given in Eq. (12), and R = max
{
BC , (BW1

BW2
BVBONa)

LBP

}
.

Remark 2. In the non-i.i.d. setting, Theorem 3 reveals how the complexity of the hypothesis space
involved in the second and third terms affects disc(q). For instance, a more complex hypothesis
space, characterized by higher sequential Rademacher complexity, allows the model to fit arbitrary
patterns in the training prompts, increasing its sensitivity to distribution shift and thereby amplifying
the discrepancy. It suggests that regularization techniques, such as weight norm constraints, may
help control this complexity and thus improve alignment between training and testing distributions.
In addition, the weight discrepancy ∥q− v∥ offers a theoretical explanation for the effectiveness of
finetuning, which reweights training samples toward those relevant to the target.

4.4 GENERALISATION ERROR ANALYSIS

Building on the above analysis, this section derives an upper bound on the generalisation errors
L(TS)− L̂(TS). The detailed proof is provided in Appendix D.
Theorem 4. Under Assumption 1, let TS be a β-stable learning algorithm and q = (q1, · · · , qNc

)
be any weight vector used in training objective. For any δ > 0, each of the following bounds holds
with confidence at least 1− δ:

L(TS) ≤ 1

Nc

N∑
i=1

Nc∑
j=1

qiℓ(TS(pi,j)∗,:, c
i
j) + disc(q) + ∥q∥1β + 2∥q∥2Mℓ

√
2 log

4

δ
,

where β is defined in Eq. (4).

The following corollaries provide a more detailed characterization of the asymptotic behavior under
both i.i.d. and non-i.i.d. data settings.
Corollary 3 (Asymptotic Behavior under i.i.d Scenarios). Let the conditions in Theorem 4 and i.i.d.
assumption be true. Let qi = 1

N , |B| = O(Nζ1), and Q = O(Nζ2). a) When the loss function scape
is well-conditioned smoothness, with confidence at least 1− δ, 0 < δ < 1, there holds

L(TS) ≲
1

NcN

N∑
i=1

Nc∑
j=1

ℓ(TS(pi,j)∗,:, c
i
j) +N− 1

2

√
2 log

4

δ

when ζ1 + ζ2γ
1+γ = 1

2 . b) When Lipschitz smoothness constant is large such that γ > (2α)−1(1 +√
1− 4α(1− α)), by setting |B| = O(Nζ1), ζ1 ≤ 1

2 , and Q = O(lnN), there holds

L(TS) ≲
1

NcN

N∑
i=1

Nc∑
j=1

ℓ(TS(pi,j)∗,:, c
i
j) +N− 1

2

√
2 log

4

δ

with at least confidence 1− δ.
Remark 3. In the ideal i.i.d. setting, the corollary above establishes how the generalisation error
bound achieves the fastest convergence rate of O(N− 1

2) under different levels of loss landscape
smoothness. Specifically, when the loss function is sufficiently smooth, the hyper-parameters ζ1, ζ2
are tuned such that 2ζ1 + 2ζ2γ

1+γ = 1. However, when the smoothness constant is large, exceeding the

threshold (2α)−1(1 +
√
1− 4α(1− α)), to achieve the convergence rate O(N− 1

2), the number of
iterations is recommended to scale logarithmically with the sample size.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Scenario Parameter Settings Convergence Rate
I.i.d & Smooth |B| = O(Nζ1), Q = O(N ζ2), 2ζ1 + 2ζ2γ

1+γ = 1 O(N− 1
2)

I.i.d & Non-smooth |B| = O(Nζ1), Q = O(lnN), ζ1 ≤ 1
2 O(N− 1

2)

Non-i.i.d & Smooth
∥q− v∥+ ∥q∥ = O(N ζ3),
|B| = O(N ζ1), Q = O(N ζ2), ζ1 + ζ2γ

1+γ < 1
O(Nmax{ζ3,ζ1+ ζ2γ

1+γ −1})

Non-i.i.d & Non-smooth ∥q− v∥ = O(Nζ3), ∥q∥ = O(Nζ4),
|B| = O(N ζ1), Q = O(lnN), Np = O(N ζ2)

O(Nmax{2Lζ2+ζ3,ζ4,ζ1−1})

Table 2: Summary of Generalisation Error Bounds under Different Scenarios.

Corollary 4. [Asymptotic Behavior under Non-i.i.d Scenarios] Let the conditions in Theorem 4 and
3 be true. a) If the loss landscape is sufficiently smooth and if ∥q− v∥+ ∥q∥ = O(Nη3), then by
setting |B| = O(N ζ1) and Q = O(N ζ2), for any δ > 0, with confidence at least 1− δ, there holds:

L(TS) ≤ 1

Nc

N∑
i=1

Nc∑
j=1

qiℓ(TS(p
i,j)∗,:, c

i
j) + sup

T ∈H

{
N∑
i=1

(vi − qi)ℓ(T (pi,j)∗,:, c
i
j)

}

+ N
max{ζ1+

ζ2γ
1+γ

−1,ζ3}
√

2 log
4

δ
+ ϵ.

b) If ∥q− v∥ = O(Nη3) and ∥q∥ = O(Nη4), then by setting |B| = O(Nζ1), Q = O(lnN), and
the ICL prompt length as Np = O(N ζ2), for any δ > 0, with probability at least 1− δ, there holds

L(TS) ≤ 1

Nc

N∑
i=1

Nc∑
j=1

qiℓ(TS(p
i,j)∗,:, c

i
j) + sup

T ∈H

{
N∑
i=1

(vi − qi)ℓ(T (pi,j)∗,:, c
i
j)

}

+ Nmax{2Lζ2+ζ3,ζ1−1,ζ4}
√

2 log
4

δ
+ ϵ.

Remark 4. Corollary 4 characterizes ICL generalization under non-i.i.d. settings by establishing two
upper bounds under distinct smoothness conditions. The results show that smoother loss landscapes
and better alignment between training and test prompt distributions (i.e., small ∥q − v∥) yield
improved generalization.
Remark 5. From Corollary 4, to achieve better cross-domain generalization (i.e., minimizing L(TS)),
we shall minimize the following optimization problem:

min
q

{
1

Nc

N∑
i=1

Nc∑
j=1

qiℓ(TS(p
i,j)∗,:, c

i
j) + sup

T ∈H

{
N∑
i=1

(vi − qi)ℓ(T (pi,j)∗,:, c
i
j)

}
+ λ1∥s− q∥22 + λ2∥q∥22

}
,

(5)
where λ1 and λ2 are regularization parameters. The entire optimization procedure can be decom-

posed into two stages. In the first stage, we solve for the optimal sample-weight vector q by optimizing
the latter three terms. This subproblem can be computed via DC programming (Tao & An, 1998) or
gradient-based methods. Once the optimal sample weights have been obtained, we then optimize the
first term accordingly to learn the final model parameters.

In practical scenarios, the model typically uses its own estimated token to predict subsequent tokens.
This approach, by its nature, leads to cumulative errors as inaccuracies in earlier steps propagate
forward. The corresponding theoretical result and proof are provided in Appendix G.

5 NUMERICAL EVALUATION

Our experimental setup follows (Li et al., 2023), where all evaluations are conducted using the
same GPT-2 architecture implemented via the HuggingFace Transformers library (Wolf et al., 2020),
consisting of 12 layers and 8 attention heads. All empirical evaluations are conducted using NVIDIA
H20 GPUs with 80GB of memory.

Evaluation on i.i.d data scenario: In the ideal i.i.d. setting, we focus on validating the asymp-
totic behavior predicted by Corollary 3 and the error accumulation characterized in Theorem 5.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

We consider a d = 10-dimensional linear regression task, where each in-context example is of
the form (p, c). For each sample i, given a parameter vector βi ∈ Rd, we generate a length-L
sequence using the recurrence relation cil = βi

l−1c
i
l−1 + ϵ, for l = 1, . . . , L, where the initial

query ci0 ∼ N (0, 0.1Id), and the noise term ϵ ∼ N (0, 0.1Id). The prompt p is constructed by
concatenating two such examples along with the query input ci0 into a single flattened vector. Each
parameter vector βi ∈ Rd is independently sampled from N (0.1, 0.1Id). We set the sample size
N ∈ {50, 100, 200, 400, 800, 1600}, use uniform training weights qi = 1/N , and set the batch size
to |B| = N1/2 to ensure sufficient training. For evaluation, we independently generate 1000 i.i.d.
test samples. We fix the number of optimization iterations to Q = 200, set the learning rate decay
exponent to α = 1, and systematically vary the sequence length Nc ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}.

(a) Asymptotic behavior (b) Error accumulation

Figure 2: The generalisation error under i.i.d scenario. For extended results under non-i.i.d. distribu-
tions, additional sequence lengths and overfitting risk, please refer to Figures 4 and 5 in Appendix I.

The Generalisation Error Convergence Analysis: We evaluate the generalization error as the number
of training samples N increases. Figure 2(a) demonstrates that the error decreases and asymptotically
vanishes as N → ∞, consistent with the theoretical prediction in Corollary 3 for the i.i.d. setting.
Results are shown for sequence lengths 1 and 2; other lengths follow similar trends but are omitted due
to large differences in error magnitude, which would obscure the overall pattern if plotted together.

The Error Accumulation Analysis: Figure 2(b) shows that the generalization error increases with
sequence length, following an approximately polynomial trend. In particular, once the sequence
length exceeds a threshold near lnN , the error rises sharply. Moreover, this threshold shifts to larger
values as the sample size increases. These empirical findings support Theorem 5.

In addition to the i.i.d. scenario presented above, we also conduct evaluations under non-i.i.d. settings,
which are detailed in Appendix I. These experiments are designed to assess the robustness of our
theoretical claims, particularly under distribution shift conditions where training and test domains
exhibit structural divergence. The results demonstrate consistent alignment with our theoretical
bounds, especially regarding the influence of distributional discrepancy and prompt reweighting.

6 CONCLUSION

This study derives ICL generalisation error bound with asymptotic convergence analysis by exam-
ining algorithmic stability under mini-batch GD and a distribution-level discrepancy measure. Our
results reveal how optimization settings interact with the smoothness of the loss landscape to ensure
algorithmic stability, and how, when combined with high-quality prompts, they enable effective ICL
generalization. On the theoretical side, future work should develop tighter generalization bounds
using techniques such as gradient stability. On the practical side, our findings inform algorithm
design, including strategies like weighted training samples. These extensions will support both
stronger theoretical validation and the development of more promising models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper is theoretical and does not involve human subjects, personally identifiable information,
or sensitive data. All proofs and theoretical analyses are conducted under standard mathematical
assumptions and are intended to advance the understanding of large models’ generalization ability.
We foresee no ethical concerns with the content or potential applications of this work.

REPRODUCIBILITY STATEMENT

Our work is primarily theoretical, and all theoretical results are presented with formal statements,
clearly defined assumptions, and complete proofs provided in Section 5 and Appendix I. To support
the practical relevance of our findings, we include empirical experiments conducted using publicly
available open-source models, specifically, the GPT-2 architecture implemented via the HuggingFace
Transformers library (Wolf et al., 2020). All implementation details, including model configurations,
evaluation protocols, and data processing steps, are thoroughly described in the Numerical Evaluations
section. No proprietary data or code is used, and we are committed to making our results fully
reproducible.

REFERENCE

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, et al. Gpt-4 technical report. arXiv:2303.08774, 2023.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. In Advances in Neural Information
Processing Systems, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. In Proceedings of the International
Conference on Learning Representations, 2023.

Amit Attia and Tomer Koren. A general reduction for high-probability analysis with general light-
tailed distributions. arXiv preprint arXiv:2403.02873, 2024.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Provable
in-context learning with in-context algorithm selection. In Advances in Neural Information
Processing Systems, 2024.

Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of bilevel
programming in hyperparameter optimization. In Advances in Neural Information Processing
Systems, 2021.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745, 2022.

Olivier Bousquet and Andre Elisseeff. Stability and generalization. Journal of Machine Learning
Research, 2(3):499–526, 2002.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, et al.
Language models are few-shot learners. In Advances in Neural Information Processing Systems,
2020.

Dake Bu, Wei Huang, Andi Han, Atsushi Nitanda, Taiji Suzuki, Qingfu Zhang, and Hau-San Wong.
Provably transformers harness multi-concept word semantics for efficient in-context learning. In
Advances in Neural Information Processing Systems (NIPS). 2024.

Dake Bu, Wei Huang, Andi Han, Atsushi Nitanda, Qingfu Zhang, Hau-San Wong, and Taiji Suzuki.
Provable in-context vector arithmetic via retrieving task concepts. In International Conference on
Machine Learning, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zachary Charles and Dimitris S Papailiopoulos. Stability and generalization of learning algorithms
that converge to global optima. In Proceedings of the International Conference on Machine
learning. 2017.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head
softmax attention for in-context learning: Emergence, convergence, and optimality. In The Thirty
Seventh Annual Conference on Learning Theory, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, et al. Palm: Scaling language modeling with pathways. Journal of Machine Learning
Research, 24(240):1–113, 2023.

Yingqian Cui, Jie Ren, Pengfei He, Jiliang Tang, and Yue Xing. Superiority of multi-head attention
in in-context linear regression. arXiv preprint arXiv:2401.17426, 2024.

Nan Ding, Tomer Levinboim, Jialin Wu, Sebastian Goodman, and Radu Soricut. Causallm is not
optimal for in-context learning. In Proceedings of the International Conference on Learning
Representations, 2024.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. In Advances in Neural Information
Processing Systems, 2023.

Zixuan Gong, Xiaolin Hu, Huayi Tang, and Yong Liu. Towards auto-regressive next-token prediction:
In-context learning emerges from generalization. In Proceedings of the International Conference
on Learning Representations, 2025.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. In Proceeding
of the International Conference on Learning Representations, 2024.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
Proceedings of the International Conference on Learning Representations, 2017.

Vitaly Kuznetsov and Mehryar Mohri. Learning theory and algorithms for forecasting non-stationary
time series. In Advances in neural information processing systems, 2015.

Vitaly Kuznetsov and Mehryar Mohri. Discrepancy-based theory and algorithms for forecasting
non-stationary time series. Annals of Mathematics and Artificial Intelligence, 88:367–399, 2020.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus Robert Müller. Efficient backprop. In
Neural Networks: Tricks of the Trade, pp. 9–48. Springer Verlag, 2012.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear
transformers learn and generalize in in-context learning? In Proceedings of the International
Conference on Machine Learning, 2024a.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. Training nonlinear
transformers for chain-of-thought inference: A theoretical generalization analysis. In Proceeding
of the International Conference on Learning Representations, 2025.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transform-
ers as algorithms: Generalization and stability in in-context learning. In Proceedings of the
International Conference on Machine Learning, 2023.

Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and Samet Oymak.
Dissecting chain-of-thought: Compositionality through in-context filtering and learning. In
Advances in Neural Information Processing Systems, 2024b.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. In Proceedings of the International Conference on Learning
Representations, 2024c.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tongliang Liu, Gábor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic stability and hypothesis
complexity. In Proceedings of the International Conference on Machine Learning, 2017.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.
Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods
for effective instruction tuning. In International Conference on Machine Learning, 2023.

Eran Malach. Auto-regressive next-token predictors are universal learners. In Proceedings of the
International Conference on Learning Representations, 2024.

Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks. arXiv
preprint arXiv:1804.07612, 2018.

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023.

Sewon Min, M. Lewis, Hannaneh Hajishirzi, et al. Metaicl: Learning to learn in context. In
Proceedings of the North American Chapter of the Association for Computational Linguistics,
2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving Language Under-
standing by Generative Pre-Training. OpenAI, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Sequential complexities and uniform
martingale laws of large numbers. Probability Theory and Related Fields, 161(1):111–153, 2015.

Pham Dinh Tao and Le Thi Hoai An. A dc optimization algorithm for solving the trust-region
subproblem. SIAM Journal on Optimization, 8(2):476–505, 1998.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv:2302.13971, 2023.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
Proceedings of the International Conference on Machine Learning, 2023.

D Randall Wilson and Tony R Martinez. The general inefficiency of batch training for gradient
descent learning. Neural networks, 16(10):1429–1451, 2003.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, 2020.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? In Proceedings
of the International Conference on Learning Representations, 2024.

Kai Yang, Jan Ackermann, Zhenyu He, Guhao Feng, Bohang Zhang, Yunzhen Feng, Qiwei Ye,
Di He, and Liwei Wang. Do efficient transformers really save computation? In Proceedings of the
International Conference on Machine Learning, 2024a.

Tong Yang, Yu Huang, Yingbin Liang, and Yuejie Chi. In-context learning with representations:
Contextual generalization of trained transformers. arXiv preprint arXiv:2408.10147, 2024b.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
learning learn? bayesian model averaging, parameterization, and generalization. arXiv preprint
arXiv:2305.19420, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

CONTENTS

1 Introduction 1

2 Related Work 2

3 Problem Setup 3

4 Theoretical Analysis 5

5 Numerical Evaluation 9

6 Conclusion 10

Reference 11

Contents 14

A Notations 15

B Proof Sketch 15

C Algorithmic Stability (Proof of Theorem 1) 15

D Generalisation Error Bound (Proof of Theorem 4) 18

E The Upper Bound on Discrepancy Measure Under I.i.d Scenario 20

F The Upper Bound on Discrepancy Measure Under Non-i.i.d Scenario 21

G Error Accumulation Analysis (Proof of Theorem 5) 23

H Gradient, Hessian Matrix and Lipschitz (Smooth) Constant 25

I Numerical Evaluations 31

J The Use of Large Language Models (LLMs) 33

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A NOTATIONS

For clarity and ease of reference, Table 3 presents a comprehensive summary of the notations used
throughout this paper. The input and ICL variable spaces for the i-th sample are denoted by X i

and Ci, respectively, while Xi and Ci represent the corresponding input and ICL random variables.
Their specific realizations are given by xi and ci. The dataset consists of N samples, with Np

denoting the length of the prompt P, Ne the number of demonstration examples, and Nc the number
of steps in the ICL inference process. The Transformer model employs Na self-attention heads,
and the batch size in the mini-batch GD optimization scheme is denoted as |B|. The ICL prompt
for the i-th sample, containing Ne examples followed by a query, is represented by Pi, while Pi,j

extends this by incorporating j additional reasoning steps. The estimated version of this prompt is
given by P̂i,j . The parameters associated with the m-th attention module in the l-th layer of the
Transformer are represented as Ol

m, V l
m, Ql

m, and Kl
m, corresponding to the output, value, query,

and key matrices, respectively, while W l
1 and W l

2 denote the parameters of the MLP in the l-th layer.
Finally, the empirical risk is denoted by L̂(θ), while L(θ) represents the expected risk associated
with the ICL prompt P, and LEA(θ) denotes the expected risk when using the estimated ICL prompt
P̂, accounting for potential deviations due to reasoning inaccuracies.

Table 3: Notations

Notations Descriptions
X i, Ci the input and output variable space for i-th sample, respectively
Xi, Ci the input and output random variables for i-th sample, respectively
xi, ci the realizations of X and C for i-th sample, respectively
N the sample size
Np the length-Np prompt P
Ne the size of demonstrations
Nc the length of inference
Na the number of self-attention heads
|B| the batch size in Mini-Batch GD optimization scheme
Pi the i-th ICL prompt variable with Ne examples followed by a query
Pi,j the i-th ICL prompt variable with Ne examples followed by a query and j tokens
P̂i,j the i-th ICL prompt variable with Ne examples followed by a query and j estimated tokens
Ol

m represents the parameter associated with the m-th attention module in the l-th layer
V l
m represents the parameter associated with the m-th attention module in the l-th layer
Ql

m represents the parameter associated with the m-th attention module in the l-th layer
Kl

m represents the parameter associated with the m-th attention module in the l-th layer
W l

1 represents the parameter associated with MLP in the l-th layer
W l

2 represents the parameter associated with MLP in the l-th layer
ℓ(·) the loss function
L̂(θ) the empirical risk
L(θ) the expected risk associated with P

LEA(θ) the expected risk associated with prompt P̂

B PROOF SKETCH

Figure 3 outlines the proof strategy for our generalisation guarantee, which combines algorithmic
stability with a discrepancy measure.

C ALGORITHMIC STABILITY (PROOF OF THEOREM 1)

Building on the insights from the algorithmic stability bound for SGD under bilevel optimization
(Bao et al., 2021), this section derives an upper bound on algorithmic stability of the Transformer
model when trained with the mini-batch GD optimizer.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix C

Theorems 2 & 3Theorem 1

Algorithmic Stability Bound

Inductive Probability Bounding (B.1-B.4)

Lipschitz and Smoothness Constraints (Section G)

Appendix E&F

Sequential Rademacher Complexity (Definition 7)

Concentration Inequalities (e.g., Azuma’s Hoeffding Inequality)

Discrepancy Measure Bound

Appendix D

Martingale Difference Sequences

Azuma’s Inequality (Lemma 1)

Theorem 4

Generalisation Error Bound

Appendix G

Inductive Bounding

Theorem 5

Error Accumulation Analysis

Figure 3: Proof sketch: the logical dependencies among stability, discrepancy, generalisation, and
error accumulation analyses.

For any sample pairs (Pi,j , Ci
j), we give a general version of expected risk with weights vj , j =

1, ..., Nc, which is defined by

L(T) =
Nc∑
j=1

vjE
[
ℓ(T (Pi,j−1), Ci

j)
]
. (6)

Let T (q)
S represent the optimization process after q iterations, following Algorithm 1. Define δq =

∥θ(q) − θ′(q)∥F , where θ(q) and θ
′(q) are the respective outputs of T (q)

S and T (q)
S′ , where S and S′

differ by a single data point.

Under Assumption 1, we establish the following bound:

E[|L(T (q)
S)− L(T (q)

S′)|] = Prob(δq0 = 0)E
[
|L(T (q)

S)− L(T (q)

S′)|
∣∣δq0 = 0]

]
+

[
Prob(δq0 > 0)E[|L(T (q)

S)− L(T (q)

S′)|
∣∣δq0 > 0

]
= Prob(δq0 = 0)

Nc∑
j=1

vjE
[
|ℓ(T (q)

S (Pi,j−1), Ci
j)− ℓ(T (q)

S′ (Pi,j−1), Ci
j)|

∣∣δq0 = 0
]

+ Prob(δq0 > 0)

Nc∑
j=1

vjE
[
|ℓ(T (q)

S (Pi,j−1), Ci
j)− ℓ(T (q)

S′ (Pi,j−1), Ci
j)|

∣∣δq0 > 0
]

≤
Nc∑
j=1

vjLj,ℓE [δq|δq0 = 0] + Prob(δq0 > 0)

Nc∑
j=1

vjMj,ℓ,

where Lj,ℓ is the Lipschitz constant of the loss function ℓ with respect to θ associated with (Pi,j , Ci
j),

and Mj,ℓ is the upper bound of the loss function ℓ associated with (Pi,j , Ci
j).

C.1 BOUNDING PROBABILITY TERMS

If the optimization algorithm T (q0)
S does not select the i-th sample within the first q0 iterations, then

δq0 = 0. By induction, we obtain:

Prob(δq0 = 0) =

(
1−

CB−1
N−1

CB
N

)q0

=

(
1− B

N

)q0

≥ 1− Bq0
N

.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Thus, we also have:

Prob(δq0 > 0) ≤ Bq0
N

.

Correspondingly, we have Prob(δq0 > 0) ≤ Bq0
N . As a result,

E
[
|L(T (q)

S)− L(T (q)
S′)|

]
≤

N−c∑
i=1

viLi,ℓE [δq|δq0 = 0] +
Bq0
N

N−c∑
i=1

viMi,ℓ.

C.2 RECURSIVE BOUND ON E[δq|δq0 = 0]

Let v(q) =
ηq

|Bq|
∑

i∈Bq
∇θL̂(T), and let v

′(q) be its counterpart using perturbed data. Denote

γ =
∑Nc

i=1 viγi by the Lipschitz smooth constant. The update rule in Algorithm 1 gives:

E[δq|δq0 = 0] = Prob(1 ∈ Bq)E[δq|δq0 = 0, 1 ∈ Bq] + Prob(1 /∈ Bq)E[δq|δq0 = 0, 1 /∈ Bq]

=
B

N
E[∥θ(q−1) − θ

′(q−1) + ηq−1(v
′(q−1) − v(q−1))∥|δq0 = 0]

+
N −B
N

E
[
∥θ(q−1) − θ

′(q−1) + ηq−1(v
′(q−1) − v(q−1))∥|δq0 = 0

]
≤ Cq−1E [δq−1|δq0 = 0] +Dq−1,

where

Cq−1 =
B + (N −B)(1 + ηq−1γ)

N
, Dq−1 =

2ηq−1LℓB

N
.

By induction, we obtain:

E[δq|δq0 = 0] ≤
q−1∑
j=q0

Dj

q−1∏
k=j+1

Ck.

C.3 BOUNDING
∏
Ck

Since
Cq = 1 + (1−B/N)ηqγ,

using the inequality 1 + x ≤ ex, we obtain

q∏
k=j+1

Ck ≤ exp

(1−B/N)γ

q∑
k=j+1

ηk

 .

Thus,

E[δq|δq0 = 0] ≤
q−1∑
j=q0

Dj exp

(1−B/N)γ

q−1∑
k=j+1

ηk

 .

C.4 FINAL BOUND ON β

Combining the above results, we get

E
[
|L(T (Q)

S)− L(T (Q)

S′)|
]
≤

Q∑
j=q0+1

Dj exp

N −B

N
γ

Q∑
k=j+1

ηk

 Nc∑
i=1

viLi,ℓ +
Bq0
N

Nc∑
i=1

viMi,ℓ.

Denote by Lℓ =
∑Nc

i=1 viLi,ℓ and Mℓ =
∑Nc

i=1 viMi,ℓ, where Li,ℓ, Mi,ℓ and γi are obtained in
Section H.9. Finally, optimizing q0 leads to the stability bound:

β ≤ min
q0∈{1,...,Q}

Lℓ

Q∑
j=q0+1

Dj exp

γ Q∑
k=j+1

ηk

+
MℓBq0
N

 .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We denote the original objective function by

H(q0) = Lℓ

Q∑
j=q0+1

2ηjLℓB

N
exp

(
γ

Q∑
k=j+1

ηk

)
+
MℓBq0
N

≤ 2L2
ℓB

N

Q∑
j=q0+1

1

jα
(
Qα

jα
)γ +

MℓBq0
N

, as Q→∞, a ≥ 1

≤ 2L2
ℓBQ

αγ

N

Q∑
j=q0+1

(
1

jα
)γ+1 +

MℓBq0
N

≤ 2L2
ℓBQ

αγ

N

Q1−αγ−α − q1−αγ−α
0

1− αγ − α
+
MℓBq0
N

=
2L2

ℓBQ
1−α

N(1− αγ − α)
− 2L2

ℓBQ
αγq1−αγ−α

0

N(1− αγ − α)
+
MℓBq0
N

=
2L2

ℓB

N(1− αγ − α)

(
Q1−α −Qαγq1−αγ−α

0

)
+
MℓBq0
N

The goal is to minimize H(q0), ensuring that:

β ≤ min
1≤q0<Q

2L2
ℓB

N(1− αγ − α)

(
Q1−α −Qαγq1−αγ−α

0

)
+
MℓBq0
N

.

Setting dH
dq0

= 0, we obtain:

−2(1− αγ − α)L2
ℓBQ

αγ

N(1− αγ − α)
q−αγ−α
0 +

MℓB

N
= 0.

For an optimal selection of q∗, using ηk = 1
kα , we approximate:

q∗ =

(
2L2

ℓQ
αγ

Mℓ

) 1
α(1+γ)

Finally, by setting wi =
1
Nc

, the upper bound on stability is

β ≤ H(q∗) =
2L2

ℓB

N(1− αγ − α)

(
Q1−α −Q

αγ2+1−α
1+γ L

2−2α(1+γ)
α(1+γ)

ℓ M
α(1+γ)−1
α(1+γ)

ℓ

)
+ M

1− 1
α(1+γ)

ℓ BL
2

α(1+γ)

ℓ Q
γ

1+γN−1

≲ α−1γ−1N−1BM
α(1+γ)−1
α(1+γ)

ℓ L
2

α(1+γ)

ℓ Q
max{γ,αγ2+1−α}

1+γ

We finally derive the desirable result

β ≲


BM

α(1+γ)−1
α(1+γ)

ℓ L
2

α(1+γ)
ℓ Q

γ
1+γ

Nγα , if γ ≤ 1+
√

1−4α(1−α)

2α , α > 0,

BM

α(1+γ)−1
α(1+γ)

ℓ L
2

α(1+γ)
ℓ Q

αγ2+1−α
1+γ

Nγα , if γ > 1+
√

1−4α(1−α)

2α , α > 0.

D GENERALISATION ERROR BOUND (PROOF OF THEOREM 4)

This proof closely follows the approach of Theorem 8 in (Kuznetsov & Mohri, 2015), with the key
distinction that we extend the analysis to a weighted average version. For the sake of completeness,
we present it here, beginning with an essential concentration inequality.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma 1. (Azuma’s Inequality) Suppose {Y0, · · · , Yn} is a martingale difference sequence with
respect to the filtration F0 ⊂ F1 ⊂ · · · ⊂ FN . If

at ≤ E[Yt+1|Ft] ≤ bt+1, ∀0 ≤ t ≤ N,

then the following probability bound holds:

Prob

(
N∑
i=1

|Yi| ≥ ϵ

)
≤ 2 exp

(
− 2ϵ2∑N

i=1(bi − ai)2

)
.

For notational simplicity, we denote, for the i-th sample, the random variables as Zi = (Pi,Ci),
Zi
j = (Pi,j−1, Ci

j), and the sequence as Zi:m
j = (Zi

j , . . . , Z
m
j). We define Ŝ(i) as the sequence set

(Z1, . . . , Zi, Z̃i+1, . . . , Z̃N),

where Z̃i is independently drawn from the same distribution of Zi. Now, consider the following
quantities:

Ai
j = E

Zi+1:N
j ,Z̄i+1

j

[
ℓ(TS , Z̄

i+1
j)|Z1:i

]
− EZ̄i+1

[
ℓ(TŜ(i), Z̄

i+1
j)|Z1:i

]
,

and
Bi

j = EZi
j+1

[
ℓ(TŜ(i+1), Z

i+1
j)|Z1:i

]
− ℓ(TS , Zi+1

j),

where Z̄i+1
j ∼ ρ(·|Z1:i

j) is independent of Zi+1:N
j and Z̃i+1:N

j . By construction, we observe that:

EZi+1:N
j ,Z̃i+1:N

j ,Z̄i+1
j

[Ai
j] = 0,

and
EZi+1

j ,Z̃i+2:N
j

[Bi
j] = 0.

These equations indicate that both sequences Ai
j , j = 1, . . . , Nc and Bi

j , j = 1, . . . , Nc form
martingale difference sequences. By applying Azuma’s Inequality (Lemma 1), for any δ > 0, with
probability at least 1− δ/2, we obtain:

N−1∑
i=0

qiA
i
j ≤ ∥q∥2Mj,ℓ

√
2 log

4

δ
,

and
N−1∑
i=1

qiB
i
j ≤ ∥q∥2Mj,ℓ

√
2 log

4

δ
,

where Mj,ℓ is the upper bound of the loss function associated with input Pi.

Summing both inequalities, we obtain:

N−1∑
i=1

qi(A
i
j +Bi

j) ≤ 2∥q∥2Mj,ℓ

√
2 log

4

δ
.

Next, we define the weighted sequences:

Āi =

Nc∑
j=1

cjA
i
j , B̄i =

Nc∑
j=1

cjB
i
j ,

where
∑Nc

j=1 cj = 1. Since these sequences also form martingale difference sequences, we apply the
definition of uniform stability, which states that:∣∣∣ Nc∑

j=1

cjEj

∣∣∣ ≤ β,
19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where
Ej := EZi+1

j

[
ℓ(TŜ(i+1), Z

i+1
j)|Z1:i

]
− EZi+1

j

[
ℓ(TŜ(i), Z

i+1
j)|Z1:i

]
.

Thus, with probability at least 1− δ, we obtain:

N∑
i=1

qi(Ā
i + B̄i) ≤ 2∥q∥2Mℓ

√
2 log

4

δ
,

where Mℓ =
∑Nc

i=1 wiMi,ℓ. By the definition of algorithmic stability, it follows that:

N∑
i=1

qi(Ā
i + B̄i) ≤ 2∥q∥2Mℓ

√
2 log

4

δ
.

and
N∑
i=1

qi

Nc∑
j=1

cjEZi+1:N
j ,Z̄i

j
[ℓ(TS , Z̄i

j)|Z1:i
j] ≤

N∑
i=1

qi

Nc∑
j=1

cjℓ(TS , Zi
j) + ∥q∥1β + 2∥q∥2Mℓ

√
2 log

2

δ
.

Finally, using the definition of discrepancy, we arrive at the final bound:

L(TS) ≤
N∑
i=1

qi

Nc∑
j=1

cjℓ(TS , Zi
j) + disc(q) + ∥q∥1β + 2∥q∥2Mℓ

√
2 log

2

δ
.

By taking wi =
1
Nc

and combining the upper bound on β (4), we obtain the desirable result.

E THE UPPER BOUND ON DISCREPANCY MEASURE UNDER I.I.D SCENARIO

Lemma 2 (Asymptotic Vanishing of Discrepancy). Let TS be a learning algorithm that is uniformly
β-stable. Suppose the training data and test sample are i.i.d., and ∥q∥1 = 1. Then, the discrepancy
term satisfies |disc(q)| ≤ 2β∥q∥2N

√
log(2/δ), and thus disc(q) → 0 as N → ∞ provided that

βN → 0.

Proof. Fix token index j ∈ {1, . . . , Nc} and define

Dj := E[ℓ(TS , Z̄N+1
j) | Z1:N]−

N∑
i=1

qi E[ℓ(TS , Z̄i
j) | Z1:i−1].

We analyze each summand

∆i := E[ℓ(TS , Z̄N+1
j) | Z1:N]− E[ℓ(TS , Z̄i

j) | Z1:i−1].

Introduce an intermediate model h(i) := TS(i) trained on S(i) = S \ {Zi}. Decompose ∆i as:

∆i = E[ℓ(TS , Z̄N+1
j) | Z1:N]− E[ℓ(TS , Z̄i

j) | Z1:N]︸ ︷︷ ︸
(A)

+E[ℓ(TS , Z̄i
j) | Z1:N]− E[ℓ(TS , Z̄i

j) | Z1:i−1]︸ ︷︷ ︸
(B)

.

Since Z̄i
j ∼ Z̄

N+1
j are i.i.d. and independent of TS once Z1:N is fixed, we have:

E[ℓ(TS , Z̄N+1
j) | Z1:N] = E[ℓ(TS , Z̄i

j) | Z1:N].

Hence, (A) = 0.

To control the second term, define a filtration Ft := σ(Z1, . . . , Zt) and define Doob martingale:

Xt := E[ℓ(TS , Z̄i
j) | Z1, . . . , Zt], t = 0, . . . , N.

Since TS is β-uniformly stable, replacing one sample Zt changes the expected loss by at most β. So:

|Xt −Xt−1| ≤ β.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Then, Azuma-Hoeffding implies that with probability at least 1− δ:∣∣E[ℓ(TS , Zi,j) | Z1:N]− E[ℓ(TS , Zi,j) | Z1:i−1]
∣∣ ≤ β√2(N − i+ 1) log(2/δ).

Using ∥q∥2 ≤ 1 and Jensen’s inequality:

|Dj | ≤
N∑
i=1

qi|∆i| ≤ ∥q∥2 ·

√√√√ N∑
i=1

β22(N − i+ 1) log(2/δ) ≤ 2β∥q∥N
√
log(2/δ).

Finally, averaging over j:

|disc(q)| ≤ 1

Nc

Nc∑
j=1

|Dj | ≤ 2β∥q∥2N
√

log(2/δ).

We complete the proof.

F THE UPPER BOUND ON DISCREPANCY MEASURE UNDER NON-I.I.D
SCENARIO

We firstly introduce the definition of Sequential Rademacher utilized in (Rakhlin et al., 2015;
Kuznetsov & Mohri, 2015; 2020).

Definition 7. [Sequential Rademacher Complexity] Let σ = (σ1, . . . , σT) be a sequence of
Rademacher random variables (each σt independently taking values ±1 with equal probability), and
let q = (q1, . . . , qT) ∈ RT be a given weight vector. For a function class G defined on sequential
data z1, z2, . . . , zT , the sequential Rademacher complexity is

Rseq
N (G) := sup

z
Eσ

[
sup
g∈G

N∑
t=1

σt qt g
(
zt(σ)

)]
,

where the supremum is over all complete (depth-N) binary trees or adversarial sequences
zt(σ1, . . . , σt−1).

In simpler terms,Rseq
T (G) measures how well G can fit random signs {σt} in an online or sequential

manner.

F.1 FUNCTION CLASS: TRANSFORMER HYPOTHESIS SPACE

We fix a Transformer architecture (with Na heads per layer, hidden dimension D, and L layers), and
let θ collect all parameters {Qm,Km, Vm, Om,W1,W2, . . . } across L layers. Denote the overall
parameter space by Θ, and suppose we have a norm constraint ∥θ∥ ≤ Λ, bounding all weight matrices
in operator norm (or some suitable layerwise norm). Let FTrans be the function class:

FTrans :=
{
fθ : P 7→ T (P)

∣∣∣ θ ∈ Θ, ∥θ∥ ≤ Λ
}
.

For sequential inputs P(σ1, . . . , σt), this means the Transformer is invoked on each partial prompt
P1:t.

F.2 REWRITING THE LOSS AS A COMPOSITE FUNCTION.

Let us set
g(P) = T (P)n,: ∈ RD,

and define a function
ϕ
(
x,y

)
:= ∥x− y∥22,

where x,y ∈ RD. Then

ℓ(T) = ϕ
(
g(P), Y

)
= ∥T (P)n,: −Y∥22.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Hence the loss class G = {ℓ(T)} is precisely ϕ ◦G where

G :=
{
g(P) = T (P)n,: : T ∈ HTrans

}
.

We check how ϕ(x,y) = ∥x− y∥2 depends on x. Let R = max{BC ,max{∥HL
n,:∥}} be a constant.

Suppose ∥x∥ ≤ R and ∥y∥ ≤ R for all feasible (x,y). We can show that ϕ(x,y) is Lϕ-Lipschitz in
x with

Lϕ ≤ 4R,

because ∣∣∥x− y∥2 − ∥x′ − y∥2
∣∣ ≤ 4R ∥x− x′∥.

Thus, if the model outputs x = P and targets Y remain within a ball of radius RL∗
T , then ϕ(·,y) is

4RL∗
T -Lipschitz in the first coordinate.

F.3 SEQUENTIAL RADEMACHER COMPLEXITY OF TRANSFORMERS

Inside the expectation Eσ[·], the random variables {σt} are independent Rademacher signs. Let us
write:

Eσ

[
sup
f∈F

∣∣∣ N∑
t=1

σt qt f(zt)
∣∣∣] ≤ 4RL∗

T Eσ

[∥∥∥ N∑
t=1

σt qt zt

∥∥∥].
Thus, it remains to bound Eσ

[
∥
∑N

t=1 σt qt zt∥
]
. A typical assumption in bounding Rademacher-

based complexities is that each zt has a finite norm ∥zt∥ ≤
√
nBP . Then according to the fact that if

s < t then
Eσ[σtσsqtqsztzs] = Eσ[σt]Eσ[σsqtqsztzs] = 0,

we have the following:

E
[∥∥ N∑

t=1

σt qt zt
∥∥] ≤

√√√√E
[∥∥ N∑

t=1

σt qt zt
∥∥2] =

√√√√ N∑
t=1

q2t ∥zt∥2 ≤
√
nBP ∥q∥2.

Putting all these pieces together:

RN

(
{ℓ(T)}

)
≤ 4RL∗

T
√
nBP ∥q∥2.

This shows that under norm constraints and bounded inputs/targets, the sequential Rademacher
complexity of the squared-ℓ2 loss class is finite and depends primarily on the Lipschitz constant of
the loss w.r.t. the model’s output, as well as on the base complexity of the Transformer itself.

Remark. While the above bound may appear loose (e.g. exponential in the number of layers L),
it nonetheless demonstrates qualitatively that the capacity of squared-ℓ2 losses is controlled by
parameter norms, data magnitude R, sequence length T , and any submultiplicative structure in the
Transformer layers.

For given hypothesis spaceH and define by ˆdisc(q) := supT ∈H
1
Nc

∑Nc

j=1

[
EN+1,j−

∑N
i=1 qiEi,j

]
,

where Ei,j = E
[
ℓ(T (Pi,j−1)∗,:, C

i
j)|{(pm, cm)}i−1

m=1

]
.

By further combining the fact disc(q) ≤ ˆdisc(q) with the following lemma (Kuznetsov & Mohri,
2020), we obtain the final result.

Lemma 3. For any δ > 0, with probability at least 1− δ, for all f ∈ F and all α > 0, we have

N∑
t=1

E
[
qtf(Zt) | Zt−1

1

]
≤

N∑
t=1

qt f(Zt) + ∥q∥2 + 6Mℓ

√
π log T RT (F) + Mℓ ∥q∥2

√
2 log

1

δ
.

Combining this lemma with above results, we complete the proof.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G ERROR ACCUMULATION ANALYSIS (PROOF OF THEOREM 5)

In practical scenarios, the model typically uses its own estimated token to predict subsequent tokens.
This approach leads to cumulative errors as inaccuracies in steps propagate forward. DenoteLi(T) :=
L(T (Pi,j−1), Ci

j) the population risk at i-th step prediction such that L(T) = 1
Nc

∑Nc

i=1 Li(T). We
have the following relation between LEA(T) and L(T).
Theorem 5. (Error Accumulation Analysis) Let L(T) and LEA(T) be defined in Eqs (1) - (2).
Assume the conditions in Theorem 4 hold. For any 0 < δ < 1, we have

LEA(TS) ≤
1

Nc
LNc

+
L∗
T
Nc

Nc−1∑
j=1

[1

L∗
T

+ δj=1

Nc−1∏
i=2

(1 +
L∗
T
i
) +

Nc−1∑
i=j+1

Nc−1∏
k=i+1

(1 +
L∗
T
k

)
]
Lj ,

where δ(·) is the Kronecker delta.

It is evident that L∗
T (defined in Eq. (12)) increases with the number of layers L, and polynomially

with the prompt length, as well as linearly with the model size parameters Na and D. Based on this
observation, we focus on analyzing the impact of inference length on the generalization error bound.
Corollary 5. [Generalisation under i.i.d Scenario] Let |B| = O(N ζ1), ζ1 ≤ 1

2 , Q = O(lnN) and
Nc = O((lnN)ζ2). With at least confidence 1− δ, there holds

LEA(TS) ≲
N∑
i=1

Nc∑
j=1

qiηjℓ(TS(pi)∗,:, c
i
j) + ψ

√
2 log

4

δ
,

where ψ = (log n)ζ2(logn)ζ22L

N−1/2, and the weights ηj , j = 1, . . . , Nc equal to

L∗
T
Nc

[1

L∗
T

+ δj=1

Nc−1∏
i=2

(1 +
L∗
T
i
) +

Nc−1∑
i=j+1

Nc−1∏
k=i+1

(1 +
L∗
T
k

)
]
.

This result suggests, in scenarios where error accumulation occurs, the length of the inference
process should be constrained to a logarithmic scale relative to the sample size to ensure effective
generalisation. Notably, this finding aligns with (Merrill & Sabharwal, 2023), which states that
transformers with a logarithmic number of intermediate tokens may exhibit enhanced computational
power. Similar results can be easily extended to the non-i.i.d. setting.

Proof. According to the definitions of L(θ) and LEA(θ), we have the follows

LEA(θ)− L(θ) =
1

Nc

Nc∑
i=1

LEA
i (θ)− 1

Nc

Nc∑
i=1

Li(θ)

=
1

Nc

Nc∑
j=1

E[ℓ(T (P̂N+1,j−1)∗,:, C
N+1
j)]− E[ℓ(T (PN+1,j−1)∗,:, C

N+1
j)]

=
1

Nc

Nc∑
j=1

E[∥T (PN+1,j−1)∗,: − T (P̂N+1,j−1)∗,:∥22].

According to the Lipschitz property of Transformer, we have

1

Nc

Nc∑
j=1

E[∥T (PN+1,j−1)− T (P̂N+1,j−1)∥22] ≤
L∗
T
Nc

Nc∑
j=1

E[∥PN+1,j−1 − P̂N+1,j−1∥22]

=
L∗
T
Nc

Nc∑
i=1

i∑
j=1

E[∥T (P̂N+1,j−1)− CN+1
j ∥22]

=
L∗
T
Nc

Nc−1∑
i=1

i∑
j=1

LEA
j (θ),

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

For notational simplicity, we denote AEA
i =

∑i
j=1 LEA

j (θ) and Ai =
∑i

j=1 Lj(θ). Then we have

AEA
m ≤ Am +

L∗
T
m

m−1∑
i=1

AEA
i .

We denote by Sn =
∑n

i=1A
EA
i . Since

Sn = Sn−1 +AEA
n ≤ (1 +

L∗
T
n

)Sn−1 +An

≤
n∏

i=2

(1 +
L∗
T
i
)A1 +

n∑
i=2

n∏
k=i+1

(1 +
L∗
T
k

)Ai

≤
n∑

j=1

[
δj=1

n∏
i=2

(1 +
L∗
T
i
) +

n∑
i=j+1

n∏
k=i+1

(1 +
L∗
T
k

)
]
Lj .

Thus, we have

LEA(θ) ≤ L(θ) + L∗
T
Nc

Nc−1∑
i=1

AEA
i (θ)

≤ 1

Nc

Nc∑
i=1

Li +
L∗
T
Nc

Nc−1∑
j=1

[
δj=1

Nc−1∏
i=2

(1 +
L∗
T
i
) +

Nc−1∑
i=j+1

Nc−1∏
k=i+1

(1 +
L∗
T
k

)
]
Lj

≤ 1

Nc
LNc

+
L∗
T
Nc

Nc−1∑
j=1

[1

L∗
T

+ δj=1

Nc−1∏
i=2

(1 +
L∗
T
i
) +

Nc−1∑
i=j+1

Nc−1∏
k=i+1

(1 +
L∗
T
k

)
]
Lj .

This completes the proof.

We then simplify these weights. Using the logarithmic approximation, there holds

Nc−1∏
i=2

(
1 +

L∗
T
i

)
≈ exp

(
L∗
T

Nc−1∑
i=2

1

i

)
≤ NL∗

T
c .

Similarly,

Nc−1∏
k=i+1

(
1 +

L∗
T
k

)
≤
(
Nc

i+ 1

)L∗
T

.

Approximating the summation, we have

Nc−1∑
i=j+1

(
Nc

i+ 1

)L∗
T

≈
∫ Nc

j

(
Nc

x

)L∗
T

dx.

Evaluating the integral yields

NLT
c

LT

[
(N

−L∗
T +1

c − j−L∗
T +1)

]
=
N

L∗
T

c − jL∗
T

L∗
T

.

Thus, the dominant term in the simplified bound is:

O
(
L∗
TN

L∗
T −1

c − jL
∗
T −1

)
.

By combining above results with the generalisation bound established above, we obtain Corollary
5.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H GRADIENT, HESSIAN MATRIX AND LIPSCHITZ (SMOOTH) CONSTANT

This section gives the gradient and hessian of Transformer models. Note that, n,Np ≤ n ≤ Np +Nc

in this section refers to the length of input prompt.

H.1 GRADIENT W.R.T. Hl
n,: AND ITS NORM UPPER BOUND

It is easy to obtain the gradient of loss w.r.t. final output HL
n,:, i.e.,

∂L
∂HL

∗,:
= 2(HL

∗,: − y).

To establish the upped bound on ∥ ∂L
∂HL

∗,:
∥2, we need to bound the upper bound on the output ∥HL

∗,:∥2.
The definition of Transformer models yields

HL
∗,: =ML(AL(HL−1))∗,: = ReLU(ALHL−1

∗,: WL
1)WL

2

and
∥ML(AL(HL−1))i,:∥2 ≤ BW1

BW2
sup ∥ALHL−1

i,: ∥2,
We have

∥AL(HL−1))n,:∥2 = ∥
Na∑
m=1

softmax
(
(HL−1)i,:Q

L
mK

L
m(HL−1)T

)
HL−1V L

mO
L
m∥2

≤ BVBONa

n∑
j=1

sj∥HL−1
j,: ∥2

≤ BVBONa sup
j=1,...,n

∥HL−1
j,: ∥2.

Combined with above result, we obtain
sup ∥HL

i,:∥2 ≤ BW1BW2BVBONa sup
i=1,...,n

∥HL−1
i,: ∥2 ≤ (BW1BW2BVBONa)

L sup
i=1,...,n

∥H0
i,:∥2.

Under Assumption 1, we have

sup ∥2(HL
n,: − y)∥2 ≤

√
2(BW1

BW2
BVBONa)

LBP +
√
2BC =: CL

Similarly, the maximum of loss function can be bounded by
Mℓ = 2(BW1

BW2
BVBONa)

2LBP + 2B2
C .

H.2 GRADIENT W.R.T. W l
2 AND ITS NORM UPPER BOUND

For any l = 1, ..., L, the gradient w.r.t. W l
2, we get

∂L
∂W l

2

=
∂L
∂HL

n,:

[∂HL
n,:

∂HL−1
· · · ∂H

l+1

∂Hl

] ∂Hl

∂W l
2

.

According to the definition ofM and A, we have
∂Hl

∂W l
2

= ReLU(Al(Hl−1)W l
1).

Recalling the Lipschitz property of Transformer, we have

∥
∂HL

n,:

∂HL−1
· · · ∂H

l+1

∂Hl
∥F ≤ n−1L

L−l
L

T := Cl:L

We then can bound the gradient w.r.t W l
2 by

∥ ∂L
∂W l

2

∥F ≤ CLCl:LBW1∥Al(Hl−1)∥F ,

where
∥Al(Hl−1)∥F ≤

√
n sup

i=1,...,n
∥Al(Hl−1)i,:∥F

≤
√
nBVBONa sup

i=1,...,n
∥Hl−1

i,: ∥F ≤
√
nBl

VB
l
ON

l
a(BW1BW2)

l−1BP := CW2 .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

H.3 GRADIENT W.R.T. W l
1 AND ITS NORM UPPER BOUND

We next to give the upper bound on the norm of the gradient w.r.t. W l
1. Similarly, for any l = 1, ..., L,

we have
∂L
∂W l

1

=
∂L
∂HL

n,:

[∂HL
n,:

∂HL−1
· · · ∂H

l+1

∂Hl

] ∂Hl

∂W l
1

.

and
∂Hl

∂W l
1

=
[
Rl ⊙ ∂Al(Hl−1)W l

1

∂W l
1

]
W l

2 = [Rl ⊙Al(Hl−1)]W l
2,

where Rl
ij = 1 if (Al(Hl−1)W l

1)ij > 0, otherwise Rij = 0. The upper bound is

∥ ∂L
∂W l

1

∥F ≤ CLCl:LBW2∥Rl ⊙Al(Hl−1)∥F ≤ CLCl:LBW2∥Al(Hl−1)∥F .

H.4 GRADIENT W.R.T. Ql
m AND ITS NORM UPPER BOUND

For any l = 1, ..., L, the gradient w.r.t. Ql
m is

∂L
∂Ql

m

=
∂L
∂HL

n,:

[∂HL
n,:

∂HL−1
· · · ∂H

l+1

∂Hl

] ∂Hl

∂Ql
m

and

∂Hl

∂Ql
m

=
∂Hl

∂Al(Hl−1)

∂Al(Hl−1)

∂Ql
m

=

 diag(Rl
1)W

l
1W

l
2

...
diag(Rl

n)W
l
1W

l
2

 ∂Al(Hl−1)

∂Ql
m

,

where
∂Al(Hl−1)

∂Ql
m

= softmax′ · (Hl−1)⊤Hl−1Kl
mHl−1V l

mO
l
m

and
softmax′ = softmax(Z)(I− softmax(Z)T).

Note that Z = Hl−1Ql
mK

l
m(Hl−1)T and

∥softmax′∥F ≤
√
n

2
.

Then the corresponding upper bound is

∥ ∂L
∂Ql

m

∥F ≤ CLCl:L

√
nBW1

BW2
∥∂A

l(Hl−1)

∂Ql
m

∥F

≤ CLCl:LnBW1
BW2

BKBVBO∥Hl−1∥3/22

≤ CLCl:Ln
2B

3l−1
2

W1
B

3l−1
2

W2
BKB

3l−1
2

V B
3l−1

2

O N
3(l−1)

2
a B

3
2

P .

H.5 GRADIENT W.R.T. Kl
m AND ITS NORM UPPER BOUND

Similarly, the corresponding upper bound of the norm of the gradient w.r.t. Kl
m is∥∥∥∥ ∂Hl

∂Kl
m

∥∥∥∥
F

≤ CLCl:L

√
nBW1

BW2

∥∥∥∥∂Al(Hl−1)

∂Kl
m

∥∥∥∥
F

≤ CLCl:Ln
2B

3l−1
2

W1
B

3l−1
2

W2
BQB

3l−1
2

V B
3l−1

2

O N
3(l−1)

2
a B

3
2

P .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

H.6 GRADIENT W.R.T. V l
m AND ITS NORM UPPER BOUND

For any l = 1, ..., L, the gradient w.r.t. V l
m is

∂L
∂V l

m

=
∂L
∂HL

n,:

[∂HL
n,:

∂HL−1
· · · ∂H

l+1

∂Hl

] ∂Hl

∂V l
m

.

and

∂Hl

∂V l
m

=
∂Hl

∂Al(Hl−1)

∂Al(Hl−1)

∂V l
m

=

 diag(Rl
1)W

l
1W

l
2

...
diag(Rl

n)W
l
1W

l
2

 ∂Al(Hl−1)

∂V l
m

,

where
∂Al(Hl−1)

∂V l
m

= softmax
(
Hl−1Ql

m(Hl−1Kl
m)⊤

)⊤
Hl−1Ol

m.

Then we can bound ∥ ∂Hl

∂V l
m
∥F by

∥ ∂L
∂V l

m

∥F ≤ CLCl:L

√
nBW1

BW2
∥∂A

l(Hl−1)

∂V l
m

∥F

≤ CLCl:LnBW1
BW2

BO∥Hl−1∥F
≤ CLCl:Ln

3
2BW1

BW2
BO∥Hl−1

n,: ∥F
≤ CLCl:Ln

3
2Bl

W1
Bl

W2
Bl

OB
l−1
V N l−1

a BP .

H.7 GRADIENT W.R.T. Ol
m AND ITS NORM UPPER BOUND

Similarly, there also holds

∂L
∂Ol

m

=
∂L
∂HL

n,:

[∂HL
n,:

∂HL−1
· · · ∂H

l+1

∂Hl

] ∂Hl

∂Ol
m

and

∂Hl

∂Ol
m

=
∂Hl

∂Al(Hl−1)

∂Al(Hl−1)

∂Ol
m

=

 diag(Rl
1)W

l
1W

l
2

...
diag(Rl

n)W
l
1W

l
2

 ∂Al(Hl−1)

∂Ol
m

,

where
∂Al(Hl−1)

∂Ol
m

= softmax
(
Hl−1Ql

m(Hl−1Kl
m)⊤

)⊤
Hl−1V l

m.

Then we can bound ∥ ∂Hl

∂Ol
m
∥F by

∥ ∂L
∂Ol

m

∥F ≤ CLCl:L

√
nBW1BW2∥

∂Al(Hl−1)

∂Ol
m

∥F

≤ CLCl:LnBW1
BW2

BV ∥Hl−1∥F
≤ CLCl:Ln

3
2BW1BW2BV ∥Hl−1

n,: ∥F
≤ CLCl:Ln

3
2Bl

W1
Bl

W2
Bl

VB
l−1
O N l−1

a BP .

H.8 HESSIAN MATRIX

We firstly calculate the Hessian of Transformer T l w.r.t Hl−1 and its upper bound.

For l-th layer, the Hessian matrix is

HT l = ∇2
Hl−1ReLU(Al(Hl−1)W l

1)W
l
2 = diag(ReLU′(Al(Hl−1)W l

1))∇2
Hl−1Al(Hl−1)W l

1W
l
2.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

where

∇2
Hl−1Al =

Na∑
m=1

(
∇2

Zm
softmax(Zm) · (∇Hl−1Zm)2 · V l

mO
l
m +∇Zm

softmax(Zm) · ∇2
Hl−1Zm · V l

mO
l
m

)
and

Zm = Hl−1Ql
mK

l
m(Hl−1)T .

The norm of each component in Lipschitz smooth constant for T l w.r.t Hl−1 is

∥diag(ReLU′(Al(Hl−1)W l
1))∥ ≤

√
nD,

∇2
Hl−1Al(Hl−1) ≤ CsoftmaxNaBVBOBQBK∥Hl−1∥F (BQBK∥Hl−1∥F + 2),

where a conservative bound Csoftmax = D2/8. Then we have

∥HT l∥F ≤
√
nD

3
2NaBVBOBQBKBW1BW2∥Hl−1∥F (∥Hl−1∥F + 2).

For W l
1 and W l

2, their Lipschitz smooth constants are 0. For Ql
m, we have the Hessian matrix

HQl
m

= ∇2
Ql

m
ReLU(Al(Hl−1)W l

1)W
l
2 = diag(ReLU′(Al(Hl−1)W l

1))∇2
Ql

m
Al(Hl−1)W l

1W
l
2.

where

∇2
Ql

m
Al =

Na∑
m=1

(
∇2

Zm
softmax(Zm) · (∇Ql

m
Zm)2 · V l

mO
l
m +∇Zmsoftmax(Zm) · ∇2

Ql
m
Zm · V l

mO
l
m

)
and

∥∇2
Ql

m
Al∥F ≤ NaD

2BVBOB
2
K∥Hl−1∥2.

For Kl
m, we similarly have

∥∇2
Kl

m
Al∥F ≤ NaD

2BVBOB
2
Q∥Hl−1∥2.

For V l
m and Ol

m, the Lipschitz smooth constants are 0.

H.9 LIPSCHITZ CONSTANT Lℓ, LIPSCHITZ SMOOTH CONSTANT γ AND MAXIMUM OF LOSS
FUNCTION Mℓ

According to the results in Appendix H, the upper bound on Lℓ, Mℓ and γ are

Mℓ = 2(BW1BW2BVBONa)
2LBP + 2B2

C , (7)

Lℓ =

(Ne+1)Nc∑
n=NeNc+1

vn

L∑
l=1

(Cl
W1

+ Cl
W2

+Na(C
l
Q + Cl

K + Cl
V + Cl

O)) (8)

where
Cl

W1
= CLCl:LBW2

√
nBl

VB
l
ON

l
a(BW1BW2)

l−1BP

Cl
W2

= CLCl:LBW1

√
nBl

VB
l
ON

l
a(BW1BW2)

l−1BP

Cl
Q = CLCl:Ln

2B
3l−1

2

W1
B

3l−1
2

W2
BKB

3l−1
2

V B
3l−1

2

O N
3(l−1)

2
a B

3
2

P .

Cl
K = CLCl:Ln

2B
3l−1

2

W1
B

3l−1
2

W2
BQB

3l−1
2

V B
3l−1

2

O N
3(l−1)

2
a B

3
2

P

Cl
V = CLCl:Ln

3
2Bl

W1
Bl

W2
Bl

OB
l−1
V N l−1

a BP .

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Cl
O = CLCl:Ln

3
2Bl

W1
Bl

W2
Bl

VB
l−1
O N l−1

a BP .

The Lipschitz smooth constant is

γ =

(Ne+1)Nc∑
n=NeNc+1

vn

L∑
l=1

Na(γ
l
Q + γlK) (9)

where

γlQ =
(√

nD
3
2NaBVBOBQBKBW1

BW2
∥Hl−1∥F (∥Hl−1∥F+2)

)L−l

NaD
2BVBOB

2
K∥Hl−1∥2

and

γlK =
(√

nD
3
2NaBVBOBQBKBW1

BW2
∥Hl−1∥F (∥Hl−1∥F+2)

)L−l

NaD
2BVBOB

2
Q∥Hl−1∥2,

where
∥Hl−1∥F ≤ n

1
2 (BW1BW2BVBONa)

l−1BP .

Putting the above results into the upper bound of stability will obtain the desirable results.

H.10 LIPSCHITZ CONSTANT W.R.T INPUT LT

In a Transformer, the ReLU activation function is piecewise linear and thus non-differentiable at
certain points. In particular, the concept of a Jacobian, defined in terms of the network’s outputs
relative to its inputs, indicates how those outputs vary with small changes in the inputs. The Jacobian
at a point x is computed via the chain rule during backpropagation. However, it is only well-defined if
all ReLU nodes are differentiable at that point, meaning their inputs must be strictly positive or strictly
negative. Consequently, if an input equals zero, one must assume the existence of a sub-gradient
within [0, 1].

According to the chain rule, the Jacobian at a point p (namely H0), if defined, can be compactly
represented as:

Jp[T] = Jp[T
L ◦ TL−1 ◦ · · · ◦ T 1] = JHL−1 [TL] · · · JH0 [T 1].

To obtain JHl−1 [T l], l = 1, ..., L, we need to calculate JAl(Hl−1)[Ml] and JHl−1 [Al], respectively.
Since bothMl and Al map from RNp×D to RNp×D, their Jacobian matrices have the same form

J l
11 J l

12 · · · J l
1Np

J l
21 J l

22 · · · J l
2Np

...
...

. . .
...

J l
Np1

J l
Np2

· · · J l
NpNp

 ∈ RNpD×NpD (10)

We firstly give the Jacobian matrix for JAl [Ml]. We denote by Al = Al(Hl−1) ∈ RNp×D. Recall
the definition of mapping

Ml(Al) = ReLU(AlW l
1)W

l
2 =


MT

1 (Al)
MT

2 (Al)
...

MT
N (Al)

 ∈ RNp×D,

where Mi(A
l) = ReLU(Al

iW
l
1)W

l
2. By taking partial derivatives, for any i, j ∈ [Np], we have

J l
ij =

∂Mi(A
l)

∂Al
j

=
∂ReLU(Al

iW1)W2

∂Al
j

= δijW
T
2 W

T
1 Gli,

where Gl encodes the activation pattern of a layer l caused by the input x, and δij is the Kronecker
delta. The matrix Gli is a diagonal matrix, having 1s as elements if the corresponding neuron is active,
otherwise 0s for inactive neurons. The Jacobian is the same for all the points strictly inside a linear

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

region with the same activation pattern. Since ReLU networks are piece-wise linear in nature, the
Lipschitz constant is exactly equal to the p-norm of the Jacobian at one such linear region in the input
domain. Thus, the jacobian matrix forM is a diagonal block matrix, having WT

2 W
T
1 Gli as elements

if i = j, otherwise 0D×D for i ̸= j. We then have

sup
Al

∥JAl [Ml]∥2 ≤ N1/2
p DBW1BW2 .

In fact, there have been some studies analyzed JHl−1 [Al], l = 1, ..., L and the Lipschitz constant of
attention . Since transformer T is a map from RNp×D to RNp×D, the element of Jacobian is J l

ij =
∂(Al(Hl−1))i

∂Hl−1
j

. The Jacobian of the softmax is also well-known. Suppose that v = softmax(u) ∈

RNp×1. Then we have
∂v

∂u
= diag(v)− vvT

Recall the definition of mapping

Al(Hl−1) :=

Na∑
m=1

softmax
(
Hl−1Ql

mK
l
m(Hl−1)T

)
Hl−1V l

mO
l
m =


AT

1 (H
l−1)

AT
2 (H

l−1)
...

AT
N (Hl−1)

 ∈ RNp×D,

where

Ai(H
l−1) =

Na∑
m=1

[

Np∑
j=1

Mij(O
l
m)T (V l

m)T (Hl−1
j)T]

and
Mi: = softmax(Hl−1

i Ql
mK

l
m(Hl−1)T).

For any l = 1, ..., L, by taking partial derivatives we obtain that

J l
ij =

Na∑
m=1

[

Np∑
t=1

Mij(O
l
m)T (V l

m)T] +

Na∑
m=1

[

Np∑
t=1

Hl−1
j V l

mOl
m]

∂Mij

∂Hl−1
t

=

Na∑
m=1

Np∑
t=1

[
Mit(O

l
m)T (V l

m)T +Hl−1
t V l

mOl
mMi(EtiH

l−1Ql
mKl

m +Hl−1(Kl
m)T (Ql

m)T δij)
]
,

where Mi := diag(Mi:) −MT
i:Mi: with sup ∥Mi∥ ≤ 1

2 , and Eij ∈ RNp×Np is a binary matrix
with zeros everywhere except the (i, j)-th entry.

Under assumption 1, for any l = 1, ..., L, we then have

sup ∥J l
ij∥ ≤ CLipNaBOBVBKBQ∥Hl−1∥2,

and

sup ∥JHl−1 [Al]∥ ≤ Np sup ∥J l
ij∥ ≤ CLipNpNaBOBVBKBQ∥Hl−1∥2,

where CLip is a positive constant.

Then the Lipschitz constant of L layer Transformer is

LT = CLipN
2
pDBKBQBP

L∏
l=1

N l
aB

l
W1
Bl

W2
Bl

OB
l
V . (11)

Specifically, if the output Transformer model is assumed to take the last token at L-layer, its Lipschitz
constant is

L∗
T = N

− 1
2

p LT . (12)

This completes the proof.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

I NUMERICAL EVALUATIONS

Evaluation on non-i.i.d data scenario: In the non-i.i.d scenario, besides the asymptotic behavior
and error accumulation, we additionally validate the impact of distributional alignment (quantified by
∥q− v∥) in Corollary 4. We consider a complex scenario where the training and test tasks are drawn
from related but non-identical distributions. Specifically, for each sample i, given a parameter vector
βi, we similarly generate a length-L sequence via the recurrence relation cil = βi

l−1c
i
l−1 + ϵ for

l = 1, . . . , L, where ci0 ∼ N (0, Id) is the query and ϵ ∼ N (0, 0.1 · Id). Different from i.i.d scenario,
in this scenario, the training parameter β is drawn from a mixture of two Gaussian distributions
ptrain(x) = p1 · N (1, 0.1 · Id) + p2 · N (0.2, 0.1 · Id), where p1 and p2 are the weights such that
p1 + p2 = 1. The test data is drawn from a different distribution: ptest(x) = N (0.1, 0.1 · Id). We
consider the prompting format that incorporates a single in-context example. For training samples,
the in-context example is drawn from the same distribution as the query task, i.e., both query and
support samples share the same βi. For test samples, the in-context example is instead drawn
from N (0.2, 0.1 · Id), regardless of the test query’s distribution. This design aims to reduce the
distributional divergence between the support and query examples in the test setting.

Under this setting, we assign group-wise importance weights based on the product of pairwise
overlaps between the training and test component distributions:

G(k) ∝ Overlap(N (µk, σk),N (0.1, 0.1 · Id)) · Overlap(N (µk, σk),N (0.2, 0.1 · Id)), k = 1, 2

where k = 1, 2 means the two class distributions of prompts in training process, and the total overlap
between two distributions p(x) and q(x) is defined as Overlap(p, q) =

∫∞
−∞ min{p(x), q(x)} dx.

(a) Distributional Alignment
Analysis

(b) Error accumulation (c) Error accumulation

Figure 4: The generalisation error under non-i.i.d scenario.

This value lies in the interval [0, 1], where 1 indicates complete distributional alignment and 0 denotes
no overlap. We then can approximate the optimal weights v ∈ RN as:

v = (
Ḡ(1)

p1N
, · · · , Ḡ

(1)

p1N︸ ︷︷ ︸
p1N

,
Ḡ(2)

p2N
, · · · , Ḡ

(2)

p2N︸ ︷︷ ︸
p2N

) ∈ RN ,

where Ḡ(k) is re-nomalized constant such that
∑

k Ḡ
(k) = 1, p1 and p2 are the proportions of the

two training components, and N is the total number of training samples. These weights are then
uniformly assigned to all training prompts according to their source component. For training weights,
we set w = {0, 0.2, 0.4, 0.6, 0.8, 1} and let the training weights be

q = (
w

p1N
, · · · , w

p1N︸ ︷︷ ︸
p1N

,
(1− w)
p2N

· · · , (1− w)
p2N︸ ︷︷ ︸

p2N

).

The impact of distributional alignment on non-i.i.d generalisation: We evaluate the role of distribution
mismatch by explicitly controlling the norm ∥q− v∥, which quantifies the divergence between the
empirical training distribution q and the ideal importance-weighted distribution v. Figure 4(a) shows
that the ℓ2 distance between q and v steadily increases, and the non-i.i.d. generalisation ability
correspondingly deteriorates, manifesting as a larger generalisation error. This observation validates

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Corollary 4, which asserts that tighter alignment between the training and test prompt distributions
yields better generalisation under distribution shift. Moreover, it underscores the importance of
high-quality prompts for non-i.i.d. settings, since they reduce the gap between training and test
distributions and thus improve generalisation.

The Generalisation Error Convergence Analysis: We evaluate the generalization error as the number
of training samples N increases. Figure 4(b) demonstrates that the error decreases and asymptotically
vanishes as N →∞, consistent with the theoretical prediction in Corollary 4 for the non-i.i.d. setting.

The Error Accumulation Analysis: Figure 4(c) shows that the generalization error increases with
sequence length, following an approximately logarithmic trend. In particular, once the sequence
length exceeds a threshold near lnN , the error rises sharply. Moreover, this threshold shifts to larger
values as the sample size increases. These empirical findings support Theorem 5 under non-i.i.d.

(a) The Length of Sequence is 6 (b) The Length of Sequence is 7 (c) The Length of Sequence is 8

Figure 5: Generalisation error progression over optimization steps in the non-i.i.d. setting.

Overfitting Risk: Figure 5 depicts how the generalisation error evolves with the number of optimization
steps. As the sequence length increases, the task becomes more complex and the loss landscape
grows more non-smooth, resulting in a heightened risk of overfitting. These observations align with
the conclusions of Theorem 4.

Empirical evaluation on realistic data:We conduct an additional NLP experiment on a sentiment-
classification task. The training set consists of labeled movie reviews, and the test-time prompts
contain several review–label demonstration pairs. We collected approximately 600 movie reviews
from Douban, segmented them into sentences, and fine-tuned a base GPT-2 model. Another 100
reviews were prepared for in-domain testing. Using the same procedure, we also constructed a
literary-text test set from online literature platforms to create a distinct out-of-domain distribution.

After fine-tuning on movie reviews, we examined how the discrepancy measure disc(q) relates to
generalization behavior. To this end, we formed target-prompt mixtures spanning both movie-review
and literary domains, with mixture ratios ranging from 0:7 to 7:0. The results are reported in Table 4.
Mixtures containing a higher proportion of literary prompts correspond to larger disc(q), as literary
texts differ more substantially from movie reviews (empirically, their bidirectional KL divergences are
around 12). These higher-discrepancy mixtures exhibit moderately increased predictive loss, whereas
mixtures more aligned with the training distribution (smaller disc(q)) show lower loss and stronger
in-context performance. Overall, the observed trend is consistent with the qualitative dependence
predicted by our theoretical analysis.

Prompt Config Loss Top-1 Acc. Prompt Config Loss Top-1 Acc.
7:0 0.9319 90.78% 3:4 0.9416 90.64%
6:1 0.9363 90.71% 2:5 0.9434 90.61%
5:2 0.9374 90.66% 1:6 0.9474 90.57%
4:3 0.9398 90.64% 0:7 0.9477 90.60%

Table 4: Prompt configuration vs. performance on sentiment classification.

The Validation of Assumption on Lipschitz Constant: Although the theoretical and empirical constants
need not coincide numerically, observing that the empirical estimates follow the same scaling laws
across model sizes and datasets confirms the asymptotic tightness of our Lipschitz and smoothness

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Number of Layers # Lipschitz (Layers) Attention Heads Lipschitz (Heads) Embedding Dim Lipschitz (Embedding)
12 19.38 4 19.38 1218 19.38
24 43.46 8 29.20 2506 48.52
36 59.52 32 38.71 5712 108.31
48 70.22 – – 11044 908.74
60 820.52 – – – –
72 938.16 – – – –
84 1168.58 – – – –
96 1961.24 – – – –

Table 5: Lipschitz-related quantities across Transformer configurations.

bounds. To validate it, we approximate the constant by sampling multiple inputs, computing gradient
and Hessian norms, and taking the maximum observed value. This approach effectively captures
the dominant scaling behavior and serves as a reliable empirical proxy. As shown in Eqs. 7–9, the
Lipschitz (smoothness) upper bound depends on factors such as QKV matrix size, model depth,
and other architectural parameters. We varied these factors to examine their influence, with the
results summarized in Table 5. The empirical results reveal clear scaling patterns of the Lipschitz
constant with respect to key architectural parameters such as model depth, embedding dimensions
and attention head. The consistent asymptotic behavior provides empirical evidence supporting the
effectiveness of our theoretical Lipschitz (smoothness) bound.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs (e.g., ChatGPT) only as a general-purpose writing assistant. Its roles were limited
to polishing language (grammar and clarity), and concise rephrasing or shortening of paragraphs
without adding technical content. The LLMs did not generate research ideas, problem formulations,
proofs, theorems, algorithms, experiments, results, figures, or evaluations. All technical content
(definitions, lemmas/theorems, proofs, algorithms), experimental designs, and conclusions are solely
by the authors and were fully verified by us. The authors take full responsibility for all text in this
paper. The LLM is not an author.

33

	Introduction
	Related Work
	Problem Setup
	Transformers Architecture
	Training with Stochastic Gradient Descent

	Theoretical Analysis
	Proof Sketch
	Mini-Batch GD-dependent Algorithmic Stability
	Discrepancy Measure
	Generalisation Error Analysis

	Numerical Evaluation
	Conclusion
	Reference
	Contents
	Notations
	Proof Sketch
	Algorithmic Stability (Proof of Theorem 1)
	Generalisation Error Bound (Proof of Theorem 4)
	The Upper Bound on Discrepancy Measure Under I.i.d Scenario
	The Upper Bound on Discrepancy Measure Under Non-i.i.d Scenario
	Error Accumulation Analysis (Proof of Theorem 5)
	Gradient, Hessian Matrix and Lipschitz (Smooth) Constant
	Numerical Evaluations
	The Use of Large Language Models (LLMs)

