

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS A THEORETICAL UNDERSTANDING OF IN- CONTEXT LEARNING: STABILITY AND NON-I.I.D GEN- ERALISATION

Anonymous authors

Paper under double-blind review

## ABSTRACT

In-context learning (ICL) has demonstrated significant performance improvements in transformer-based large models. This study identifies two key factors influencing ICL generalisation under complex non-i.i.d. scenario: algorithmic stability and distributional discrepancy. First, we establish a stability bound for transformer-based models trained with mini-batch gradient descent, revealing how specific optimization configurations interact with the smoothness of the loss landscape to ensure the stability of non-linear Transformers. Next, we introduce a distribution-level discrepancy measure that highlights the importance of aligning the ICL prompt distribution with the training data distribution to achieve effective generalisation. Building on these insights, we derive a generalisation error bound for ICL with asymptotic convergence guarantees, which further reveals that token-wise prediction errors accumulate over time and even lead to generalisation collapse if the prediction length is not properly constrained. Finally, empirical evaluations are provided to validate our theoretical findings.

## 1 INTRODUCTION

In recent years, the AI community has witnessed the emergence of influential Large Models (LMs) such as Generative Pretrained Transformers (GPTs) (Brown et al., 2020; Achiam et al., 2023; Radford et al., 2018; 2019), LLaMa (Touvron et al., 2023), and Pathways Language Model (PaLM) (Chowdhery et al., 2023). A particularly attractive characteristic of LMs is their in-context learning (ICL) capability, which enables effective predictions on downstream tasks using only a short context, without requiring any parameter fine-tuning (Black et al., 2022).

Recently, the empirical success of ICL has attracted growing interest in theoretically analyzing its generalisation capability. Li et al. (2023) establish optimization-independent generalisation bounds for ICL under i.i.d. inputs or trajectories derived from dynamical systems. Other works incorporate training dynamics and prompt structure into the analysis, examining how architectures and optimization strategies influence ICL performance (Huang et al., 2024; Li et al., 2024a; Chen et al., 2024). Notably, Wu et al. (2024) establish a statistical task complexity bound for the attention model pretraining and indicates pretrained model closely matches the optimally tuned ridge regression by achieving nearly Bayes optimal risk on unseen tasks. However, these studies rely on simplifying data assumptions that limit their applicability to real-world settings, such as the pairwise orthogonal token pattern imposed by (Huang et al., 2024; Li et al., 2024a) and the independent token sampling assumption in (Chen et al., 2024; Wu et al., 2024).

This paper moves beyond these ideal assumptions and provides a theoretical analysis of the generalisation ability of nonlinear Transformers for next-token prediction in ICL, leveraging algorithmic stability (Bousquet & Elisseeff, 2002; Charles & Papailiopoulos, 2017; Liu et al., 2017) and discrepancy measure (Kuznetsov & Mohri, 2015; 2020). Our main theoretical contributions are:

**Algorithmic Stability and Discrepancy Measure:** Algorithmic stability ensures that small changes in training data do not cause large inference variations. We theoretically identify conditions under which Transformers achieve stability under mini-batch gradient descent and quantify discrepancy across different scenarios. Theorem 1 reveals three key insights: 1) for a sufficiently smooth loss landscape, algorithmic stability is well-controlled, and allows iteration number to scale polynomially

054 Table 1: Theoretical Contributions (✓-has the given information, ✗-hasn't the given information)  
055

|                     | Multi-Head<br>Multi-Layer | Generalisation<br>Analysis | Optimization<br>Dependent | Distribution<br>Shift | No Special<br>Input Structure | Orthogonality<br>Free |
|---------------------|---------------------------|----------------------------|---------------------------|-----------------------|-------------------------------|-----------------------|
| Li et al. (2024b)   | ✓                         | ✗                          | ✗                         | ✓                     | ✗                             | ✓                     |
| Feng et al. (2023)  | ✓                         | ✗                          | ✗                         | ✓                     | ✓                             | ✓                     |
| Chen et al. (2024)  | ✓                         | ✓                          | ✓                         | ✗                     | ✓                             | ✗                     |
| Bai et al. (2024)   | ✓                         | ✗                          | ✗                         | ✓                     | ✗                             | ✓                     |
| Yang et al. (2024b) | ✓                         | ✓                          | ✓                         | ✓                     | ✗                             | ✓                     |
| Li et al. (2024a)   | ✗                         | ✓                          | ✓                         | ✓                     | ✗                             | ✗                     |
| Ours                | ✓                         | ✓                          | ✓                         | ✓                     | ✓                             | ✓                     |

064 **Special input structure** refers to prompts structured in a specific format to satisfy theoretical constraints.  
065**Orthogonality-free** refers to data that is not constrained by orthogonal patterns in its generation  
066

067 with the training sample size; 2) in non-smooth scenarios, stability deteriorates rapidly as iterations  
068 number increase, especially with a small learning rate, making it advisable to limit iterations number  
069 to a logarithmic scale relative to the sample size; 3) regardless of whether the landscape is sufficiently  
070 smooth, an appropriately chosen step size can ensure that the convergence rate of algorithmic  
071 stability achieves  $O(N^{-1})$ , where  $N$  denotes the sample size. The discrepancy measure captures  
072 distribution shift between training and target data. To quantify this discrepancy, Theorems 2–3  
073 establish a stability-dependent asymptotically vanishing bound for the i.i.d. case, and a bound based  
074 on sequential Rademacher complexity for the non-i.i.d. setting.

075 **Generalisation Bounds:** Theorem 4 establishes the generalisation error of Transformer-based models  
076 under ICL scheme by leveraging algorithmic stability and the discrepancy measure, revealing: 1) In  
077 the ideal i.i.d. data scenario, the ICL generalisation error achieves a convergence rate of  $O(N^{-\frac{1}{2}})$  with  
078 appropriately chosen iteration number and batch size, regardless of the loss landscape’s smoothness;  
079 2) In the non-i.i.d. data scenario, effective generalisation requires properly weighting training samples  
080 and suitable ICL prompting, particularly when the loss landscape exhibits insufficient smoothness;  
081 3) The generalization error accumulates across the intermediate tokens generated by the model.  
082 Theorem 5 suggests that, to ensure effective generalisation, the length of next-token predictions  
083 should be constrained to grow at most logarithmically with the sample size.

## 084 2 RELATED WORK

085 A major line of work investigates the approximation capabilities of ICL in solving diverse tasks, while  
086 another focuses on their generalization and dynamic training behavior, aiming to establish theoretical  
087 guarantees for adaptation to unseen tasks under i.i.d. and distribution shift settings. In the research  
088 line of approximation analysis, Akyürek et al. (2023); Bai et al. (2024) demonstrate that Transformers  
089 are expressive to conduct many machine learning algorithms in context, such as ridge regression  
090 and Lasso regression. Moreover, a series of studies prove the existence of Transformer architectures  
091 capable of implementing gradient-based methods and their variants when given appropriate prompts  
092 (Von Oswald et al., 2023; Ahn et al., 2023; Ding et al., 2024). A particularly influential subclass  
093 of ICL prompts, Chain-of-Thought (CoT), has been extensively studied as a structured form of in-  
094 context reasoning. Several works show that CoT-enhanced Transformers are strictly more expressive  
095 than their standard counterparts (Feng et al., 2023; Li et al., 2024c; Merrill & Sabharwal, 2023).  
096 Specifically, Malach (2024) prove that next-token predictors trained on CoT data can efficiently  
097 simulate any Turing-computable function, while Li et al. (2024b) show that Transformers can even  
098 learn multi-layer perceptrons in context.

099 In another research line, Huang et al. (2024) explore the training dynamics and generalisation of ICL  
100 on single-attention Transformers. Huang et al. (2024) analyze the generalization properties of single-  
101 head attention Transformers, while Chen et al. (2024) study the gradient flow dynamics in multi-head  
102 architectures for multi-task linear regression. Further, Cui et al. (2024) and Yang et al. (2024a) provide  
103 theoretical evidence for the superiority of multi-head attention and standard Transformers over single-  
104 head and recurrent baselines in various reasoning settings. More recently, Gong et al. (2025) examine  
105 the emergence of ICL capabilities in autoregressive next-token prediction models through PAC-Bayes  
106 theory. In addition, Li et al. (2025) provide sample complexity and bounds for training Transformers  
107 to acquire CoT capabilities under a token orthogonality assumption. [Recent theoretical studies](#)

108 have provided elegant geometric and optimization-based explanations of in-context learning through  
 109 structured concept representations. These works substantially deepen the mechanistic understanding  
 110 of how semantic geometry and task-vector behavior emerge in transformer models (Bu et al., 2024;  
 111 2025). Our work focuses on a complementary aspect of the theory. Rather than assuming a particular  
 112 latent concept geometry, we develop a distribution–shift–aware generalization framework based on  
 113 algorithmic stability. In particular, we introduce a discrepancy measure that characterizes how prompt  
 114 distributions deviate from the training distribution and derive PAC-style bounds that remain agnostic  
 115 to the underlying semantic structure.

116 To clearly highlight our contributions, Table 1 provides a comparative analysis of existing theoretical  
 117 works, emphasizing key differences in assumptions and results. Unlike prior works that rely on  
 118 restrictive assumptions, such as orthogonal token patterns (Li et al., 2024b; Feng et al., 2023) or i.i.d.  
 119 sampling (Chen et al., 2024), our analysis does not require idealized input structures and explicitly  
 120 handles non-i.i.d. settings with distribution shift. This makes our generalization bounds applicable to  
 121 a wider range of realistic ICL scenarios, including those where training and inference environments  
 122 differ significantly.

### 124 3 PROBLEM SETUP

126 Suppose we have a sample of size  $N$ , where the  $i$ -th sample variable is denoted as  $(X^i, \mathbf{C}^i)$ , with  $X^i$   
 127 representing the query variable and  $\mathbf{C}^i = (C_1^i, \dots, C_{N_c}^i)$  representing the length- $N_c$  output sequence.  
 128 Importantly, our theoretical results allow for these sample variables to follow distinct distributions.

129 A typical length- $N_p$  ICL prompt consists of an example set  $D^i = \{(X^i, \mathbf{C}^i)\}_{i=1}^{N_e}$ , which is contextually  
 130 associated with the pair  $(X^i, \mathbf{C}^i)$ , followed by a query input  $X^i$ . We formally represent the  
 131 prompt as  $\mathbf{P}^i = [D^i, X^i]$ , where  $[D^i, X^i]$  denotes the concatenation of the example set  $D^i$  and the  
 132 query input  $X^i$  into a single flattened input vector. In practice, we typically predict each intermediate  
 133 token  $C_j^i, j = 1, \dots, N_c$ , in an autoregressive manner, where the prompt for predicting the  $j$ -th token  
 134 incorporates the token from the previous  $j - 1$  steps. Accordingly, we denote the integrated prompt  
 135 for  $j$ -th token prediction as  $\mathbf{P}^{i,j} = [\mathbf{P}^i, C_1^i, \dots, C_{j-1}^i]$ .

136 In practice, instead of relying on the correct intermediate tokens, the estimated intermediate tokens  
 137 are more commonly used to predict the next-token. Under this more general scenario, we define  
 138  $\hat{\mathbf{P}}^{i,j} = (\hat{\mathbf{P}}^{i,j-1}, \mathcal{T}(\hat{\mathbf{P}}^{i,j-1}))$  with  $\hat{\mathbf{P}}^{i,0} = \mathbf{P}^i$ , where  $\mathcal{T}$  is a Transformer-based model. However,  
 139 this approach inevitably results in error accumulation. Appendix G establish the gap between the  
 140 generalisation performance with  $\hat{\mathbf{P}}^{i,j}$  and  $\mathbf{P}^{i,j}$ , highlighting the impact of these accumulated errors.

141 For convenient reference, Appendix A provides a summary of the notations used in this paper.

#### 145 3.1 TRANSFORMERS ARCHITECTURE

146 This section introduces the widely adopted non-linear Transformer architecture, which comprises  
 147 self-attention mechanisms and a multi-layer perceptron (MLP) module.

148 **Definition 1.** (*Multi-head Self-Attention Module*) For any given length- $N_p$  prompt

$$151 \quad \mathbf{P} = \begin{bmatrix} - & z_1^T & - \\ - & z_2^T & - \\ \vdots & \vdots & \vdots \\ - & z_{N_p}^T & - \end{bmatrix} \in \mathbb{R}^{N_p \times D},$$

156 suppose that there are  $N_a$  attention module  $\mathcal{A}(\cdot) : \mathbb{R}^{N_p \times D} \rightarrow \mathbb{R}^{N_p \times D}$ , with parameters  $O_m \in$   
 157  $\mathbb{R}^{D \times D}$  and  $\{(V_m, Q_m, K_m)\} \in \mathbb{R}^{D \times D}$  for each attention module  $m = 1, \dots, N_a$ . The attention  
 158 score associated with  $i$ -th token  $(\mathcal{A}(\cdot))_{i,:} : \mathbb{R}^{N_p \times D} \rightarrow \mathbb{R}^{1 \times D}$  is given by

$$160 \quad \mathcal{A}(\mathbf{P})_{i,:} := \sum_{m=1}^{N_a} \left[ \sum_{j=1}^{N_p} \text{softmax}(z_i^T Q_m K_m z_j) z_j^T V_m \right] O_m,$$

---

162 **Algorithm 1** Mini-batch Gradient Descent Optimizer for Transformer

---

163 **Input:** Observations  $S = \{(\mathbf{p}^i, \mathbf{c}^i)\}_{i=1}^N$ , Initialization  $\theta^0$ , Max-Iter  $Q$ ,  $q = 0$ , Batch Size  $|B|$ .  
 164 **Output:**  $\hat{\theta} = \theta^Q$ .  
 165 **For:**  $q \leq Q$ ;  
 166    $q \leftarrow q + 1$ ;  
 167   Stochastically Sampling  $B \subset \{(\mathbf{p}^i, \mathbf{c}^i)\}_{i=1}^N$ ;  
 168    $\theta^q = \theta^{q-1} - \frac{\eta_{q-1}}{|B|} \sum_{i \in B} \nabla_{\theta} \hat{\mathcal{L}}(\mathcal{T})$ ;

---

171 where the softmax mapping is defined by  
 172

$$173 \text{softmax}(z_i^T Q_m K_m z_j) = \frac{e^{z_i^T Q_m K_m z_j}}{\sum_{j=1}^{N_p} e^{z_i^T Q_m K_m z_j}}.$$


---

176 The vector-based form can be derived easily:  
 177

$$178 \mathcal{A}(\mathbf{P}) := \begin{pmatrix} \mathcal{A}(\mathbf{P})_{1,:} \\ \vdots \\ \mathcal{A}(\mathbf{P})_{N_p,:} \end{pmatrix} \in \mathbb{R}^{N_p \times D} = \sum_{m=1}^{N_a} \text{softmax}(\mathbf{P} Q_m K_m \mathbf{P}^T) \mathbf{P} V_m O_m.$$


---

181 **Definition 2.** (MLP Module) For any given matrix  $\mathbf{Z} \in \mathbb{R}^{N_p \times D}$ , a (token-wise) MLP layer with  
 182 hidden dimension  $D$  is denoted as  $\mathcal{M}(\mathbf{Z}) = \text{ReLU}(\mathbf{Z} W_1) W_2 \in \mathbb{R}^{N_p \times D}$ , where  $W_1, W_2 \in \mathbb{R}^{D \times D}$   
 183 are parameters matrices.

184 Given any prompt  $\mathbf{P}$ , we have the following inference process of  $l$ -layer Transformer  
 185

$$186 \mathbf{H}^l = T^l(\mathbf{H}^{l-1}) := \mathcal{M}^l(\mathcal{A}^l(\mathbf{H}^{l-1})), l = 1, \dots, L,$$

187 where  $\mathbf{H}^l$  is the output of  $l$ -layer block of Transformer and  $\mathbf{H}^0 = \mathbf{P}$ . Consequently, the Transformer  
 188 architecture with  $L$  layers can be expressed as  $\mathcal{T}(\mathbf{P}) = T^L \circ T^{L-1} \circ \dots \circ T^1(\mathbf{P})$ . It is important to  
 189 highlight that in typical usage, only the last token from the final layer, denoted as  $\mathcal{T}(\mathbf{P})_{*,:}$ , is utilized  
 190 as the output corresponding to the queried response.

191 3.2 TRAINING WITH STOCHASTIC GRADIENT DESCENT  
 192

193 This paper considers a training process where each training example is aligned with the test setup.  
 194 This learning scheme ensures that the model learns to mirror the inference process at test time.  
 195 Furthermore, the empirical risk formulation employed in this work is also widely used in both  
 196 theoretical analyses (Li et al., 2024a; Yang et al., 2024b), empirical studies from practical applications  
 197 (Min et al., 2022), and dataset development Longpre et al. (2023).

198 Given  $N$ -size sample set  $S = \{(\mathbf{p}^i, \mathbf{c}^i)\}_{i=1}^N$ , the training objective is formulated as:  
 199

$$200 \hat{\mathcal{L}}(\mathcal{T}) = \sum_{i=1}^N \frac{q_i}{N_c} \sum_{j=1}^{N_c} \ell(\mathcal{T}(\mathbf{p}^{i,j-1})_{*,:}, \mathbf{c}_j^i),$$


---

203 where  $q_i, i = 1, \dots, N$ , represent the weights for the training data, reflecting its relative importance in  
 204 the overall optimization process.

205 Our goal is to predict unknown sequence  $\mathbf{C}^{N+1}$ , based on the given ICL prompt  $\mathbf{P}^i$ . The correspond-  
 206 ing population version is

$$207 \mathcal{L}(\mathcal{T}) = \frac{1}{N_c} \sum_{j=1}^{N_c} \mathbb{E} [\ell(\mathcal{T}(\mathbf{P}^{N+1,j-1})_{*,:}, \mathbf{C}_j^{N+1})]. \quad (1)$$


---

210 Additionally, the expected risk, which takes error accumulation into account, is expressed as  
 211

$$212 \mathcal{L}^{EA}(\mathcal{T}) = \frac{1}{N_c} \sum_{j=1}^{N_c} \mathbb{E} [\ell(\mathcal{T}(\hat{\mathbf{P}}^{N+1,j-1})_{*,:}, \mathbf{C}_j^{N+1})], \quad (2)$$


---

214 For notational simplicity, we use  $\theta = \{O_m^l, V_m^l, Q_m^l, K_m^l, W_1^l, W_2^l\}_{l=1, m=1}^{L, N_a}$ , to represent all trainable  
 215 parameters. Moreover, the training details using mini-batch GD is summarized in Algorithm 1.

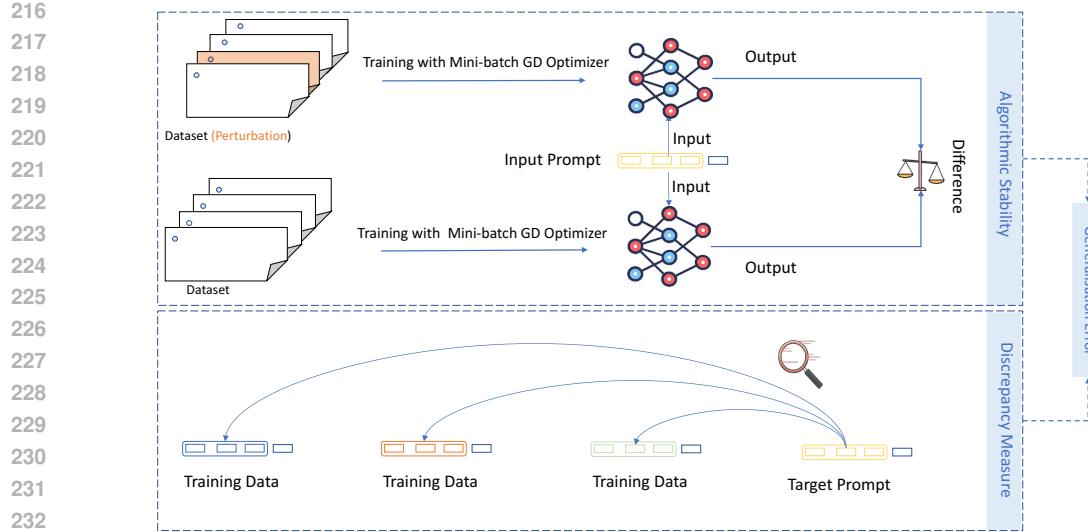


Figure 1: Algorithmic stability quantifies the sensitivity of an algorithm to perturbations in the training data, where higher stability (i.e., lower sensitivity) typically indicates better generalisation. Discrepancy measures the divergence between the target distribution and the training data distribution, assessing how well the training data represents the target data.

## 4 THEORETICAL ANALYSIS

We assume that  $\mathcal{T}_S(\cdot)$  denotes a Transformer model trained using mini-batch GD on the dataset  $S = \{(\mathbf{p}^i, \mathbf{c}^i)\}_{i=1}^N$ . The main concern is how to bound the generalisation error in terms of the difference between the population risk and the empirical risk evaluated at  $\mathcal{T}_S$ . We address this question using tools from algorithmic stability and distributional discrepancy, as illustrated in Figure 1.

### 4.1 PROOF SKETCH

Our main results follow a structured sequence of steps. Below we summarize the logical chain of the analysis and involved technical tools.

**Step 1: Formalizing stability and discrepancy.** We begin by defining two key notions: (i) the *algorithmic stability*  $\beta$ , which measures how sensitive the mini-batch SGD-trained Transformer is to replacing a single training example; and (ii) the *discrepancy measure*  $\text{disc}(\mathbf{q})$ , which quantifies the distributional mismatch between the importance-weighted training distribution and the target prompt distribution. These quantities jointly determine the generalization behavior of in-context prediction.

**Step 2: Decomposing generalisation error.** We establish the general decomposition (see the proof of Theorem 4 in Section D):

$$\mathcal{L}(\mathcal{T}_S) \leq \hat{\mathcal{L}}(\mathcal{T}_S) + \text{disc}(\mathbf{q}) + \beta + (\text{vanishing statistical term}), \quad (3)$$

which shows that the generalization error consists of the training loss term, the distribution-shift term  $\text{disc}(\mathbf{q})$ , the algorithmic stability  $\beta$  and vanishing statistical term. Hence, to obtain explicit bounds on  $\mathcal{L}(\mathcal{T}_S)$ , we must control both  $\beta$  and  $\text{disc}(\mathbf{q})$ .

**Step 3: Bounding the stability of Transformers under mini-batch SGD.** To control  $\beta$ , we analyze how perturbing a single training sample influences the multi-head, multi-layer Transformer during  $Q$  mini-batch SGD updates. Using the layer-wise Lipschitz and smoothness constants derived in Appendix H, we derive a recurrence relating the perturbed and unperturbed updates. Solving this recurrence yields the stability bounds in Theorem 1.

**Step 4: Bounding discrepancy.** We next characterize  $\text{disc}(\mathbf{q})$  under both i.i.d (Theorem 2) and non-i.i.d scenarios (Theorem 3) by employing concentration inequalities together with the notion of Sequential Rademacher Complexity (see Definition 7 in Appendix E-F).

270 **Step 5: Combining the bounds.** Substituting the stability bound (Step 3) and discrepancy bounds  
 271 (Step 4) into the decomposition (Step 2) yields our final generalization results.  
 272

273 Finally, Figure 3 (see Appendix B) outlines the technical tool used for our theoretical analysis.  
 274

## 275 4.2 MINI-BATCH GD-DEPENDENT ALGORITHMIC STABILITY

276 This paper utilizes a variant of commonly-used uniform stability in statistical learning theory (Bous-  
 277 quet & Elisseeff, 2002). Let  $S^i$  denote the dataset  $S$  with its  $i$ -th sample replaced by an independent  
 278 sample drawn from the same distribution. The algorithmic stability is defined as below.  
 279

280 **Definition 3.** A randomized algorithm  $\mathcal{G}$  that maps  $N$ -size dataset  $S$  to estimator  $\mathcal{T}_S$  has uniform  
 281 stability  $\beta$  if the following inequality holds  
 282

$$283 \frac{1}{N_c} \sum_{j=1}^{N_c} \mathbb{E}_{\mathcal{G}} \left| \ell(\mathcal{T}_S(\mathbf{P}^{k,j-1})_{*,:}, C_j^k) - \ell(\mathcal{T}_{S^i}(\mathbf{P}^{k,j-1})_{*,:}, C_j^k) \right| \leq \beta, \quad \forall i, k = 1, \dots, N, \quad \forall S, S^i.$$

285 To establish the upper bound on uniform algorithmic stability, we introduce the following assumptions.  
 286

287 **Assumption 1.** [Boundedness] The norm of each row of the input prompt  $\mathbf{P}^i$  and the norm of each  
 288 response vector  $C_j^i$ , for  $j = 1, \dots, N_c$ ,  $i = 1, \dots, N$ , are uniformly bounded by constants  $B_P$  and  
 289  $B_C$ , respectively. Additionally, for any attention head  $m = 1, \dots, N_a$  and any layer  $l = 1, \dots, L$ , the  
 290 parameter norms satisfy the following conditions  $\|W_1^l\|_2 \leq B_{W_1}$ ,  $\|W_2^l\|_2 \leq B_{W_2}$ ,  $\|Q_m^l\|_2 \leq$   
 $B_Q$ ,  $\|K_m^l\|_2 \leq B_Q$ ,  $\|V_m^l\|_2 \leq B_V$ ,  $\|O_m^l\|_2 \leq B_O$ .  
 291

292 This mild boundedness assumption is widely utilized in various theoretical studies (Bai et al., 2024;  
 293 Zhang et al., 2023). Indeed, the boundedness assumptions in our theoretical analysis can be further  
 294 relaxed to unbounded settings, with the theoretical results still holding. For example, one can  
 295 replace the assumption of a hard bound on inputs with a light-tailed distribution assumption (e.g.,  
 296 inputs or features have sub-Gaussian tails) Attia & Koren (2024). This means extremely large input  
 297 values are exponentially unlikely, effectively limiting the influence of outliers without requiring an  
 298 absolute bound. Under this assumption, we thus denote the maximum value of the loss function as  
 299  $M_\ell = \sup \ell(\cdot)$ . Additionally, to establish the bound on algorithmic stability, we consider its Lipschitz  
 300 constant with respect to trainable parameters (Definition 4) and the Lipschitz smoothness constant  $\gamma$   
 (Definition 5). Detailed calculations for both are provided in Appendix H.  
 301

302 **Definition 4.** (Lipschitz constant) For a Lipschitz function  $f$  defined over domain  $\mathcal{X}$ , the Lipschitz  
 303 constant  $L_f$  is defined as the smallest value such that  $\|f(y) - f(x)\|_2 \leq L_f \|y - x\|_2, \forall x, y \in \mathcal{X}$ .  
 304

305 **Definition 5.** (Lipschitz smooth constant) A function  $f$  defined over domain  $\mathcal{X}$  is said to be Lipschitz  
 306 smooth if there exists a constant  $\gamma > 0$  such that  $\|\nabla f(x) - \nabla f(y)\|_2 \leq \gamma \|x - y\|_2$  for all  $x, y \in \mathcal{X}$ .  
 307

308 We then give the bound on the algorithmic stability (See Appendix C for the detailed proof).  
 309

310 **Theorem 1.** Let Assumption 1 be true and the learning rate be  $\eta_k = \frac{1}{k^\alpha}$ ,  $\alpha > 0$ . The algorithmic  
 311 stability satisfies  
 312

$$\beta \lesssim \begin{cases} \frac{BM_\ell L^{\frac{2}{\alpha(1+\gamma)}} Q^{\frac{\gamma}{1+\gamma}}}{N\gamma\alpha}, & \text{if } \gamma \leq \frac{1+\sqrt{1-4\alpha(1-\alpha)}}{2\alpha}, \\ \frac{BM_\ell L^{\frac{2}{\alpha(1+\gamma)}} Q^{\frac{\alpha\gamma^2+1-\alpha}{1+\gamma}}}{N\gamma\alpha}, & \text{if } \gamma > \frac{1+\sqrt{1-4\alpha(1-\alpha)}}{2\alpha}, \end{cases} \quad (4)$$

313 where  $M_\ell$ ,  $L_\ell$ , and  $\gamma$  for Transformer are given in Equations (7)-(9). There constants are related  
 314 to Transformer architecture, e.g., depth  $L$  and the number of attention head. For example, since  
 315 quantities such as  $M_\ell$  grow exponentially in  $L$  (see Equation (7)), a sufficient condition for stability  
 316 is that the depth grows at most logarithmically with  $N$ .  
 317

318 **Remark 1.** The algorithmic stability bound depends on the Lipschitz smoothness constant  $\gamma$ , batch  
 319 size  $B$ , number of iterations  $Q$ , dataset size  $N$ , and learning rate decay  $\alpha$ . For small  $\gamma$ , stability is  
 320 better controlled, while for large  $\gamma$ , stability degrades rapidly with  $Q$ , especially when  $\alpha$  is small.  
 321 A larger dataset  $N$  improves stability, but increasing  $B$  or the maximum loss  $M_\ell$  worsens it. This  
 322 aligns with existing studies indicating that small-batch SGD tends to yield superior generalisation  
 323 performance compared to large-batch SGD or full-batch GD (Keskar et al., 2017; Masters & Luschi,  
 324 2018; LeCun et al., 2012; Wilson & Martinez, 2003). To maintain stability, it is beneficial to use  
 325 smaller batch sizes, moderate  $\alpha$ , and smooth the loss function to keep  $\gamma$  small.  
 326

324 The following corollaries examine its asymptotic behavior under two distinct scenarios, characterized  
 325 by the smoothness of the loss landscape.

326 **Corollary 1.** [Well-conditioned Smoothness] Let the conditions in Theorem 1 be true, and  $\zeta_1$  and  $\zeta_2$  be  
 327 arbitrary non-negative real numbers that control the growth rates of the batch size and iteration count,  
 328 respectively. If the loss landscape is sufficiently smooth, i.e.,  $\gamma \leq (2\alpha)^{-1}(1 + \sqrt{1 - 4\alpha(1 - \alpha)})$ , and  
 329 the upper bound  $M_\ell$ , Lipschitz (smooth) constants  $L_\ell$  and  $\gamma$  are bounded. By putting  $|B| = O(N^{\zeta_1})$   
 330 and  $Q = O(N^{\zeta_2})$  into Eq. (4), the upper bound on algorithmic stability is  $\beta = O(N^{\zeta_1 + \frac{\zeta_2\gamma}{1+\gamma} - 1})$ .  
 331

332 Some techniques such as regularization can be used to ensure that the loss landscape is smooth.  
 333 Corollary 1 captures a fundamental trade-off between optimization and stability. Increasing the  
 334 number of iterations  $Q$  (and/or the batch size) generally improves optimization and reduces the  
 335 empirical risk (which is observable). At the same time, our stability analysis shows that larger  $Q$   
 336 amplifies the accumulated perturbations along the optimization path, thereby worsening the stability  
 337 coefficient  $\beta$  and enlarging the generalization gap.

338 **Corollary 2.** [Insufficient Smoothness] Let the conditions in Theorem 1 be true. If  $\gamma > (2\alpha)^{-1}(1 +$   
 339  $\sqrt{1 - 4\alpha(1 - \alpha)})$ , by putting  $|B| = O(N^{\zeta_1})$ ,  $Q = O(\ln N)$  into Eq. (4), we get  $\beta = \tilde{O}(N^{\zeta_1 - 1})$ .  
 340

341 Corollary 2 indicates that when the Lipschitz smoothness constant is overly large, constraining  
 342 iteration growth to a logarithmic scale effectively mitigates instability.

#### 344 4.3 DISCREPANCY MEASURE

345 Given the potential distribution shift between training and target data, a suitable metric that does not  
 346 impose distributional assumptions is essential for quantifying their divergence. This paper extends a  
 347 discrepancy metric inspired by Kuznetsov & Mohri (2015) to make it hypothesis-space independent.

348 **Definition 6.** (Discrepancy Measure) For the estimator  $\mathcal{T}_S$ , the discrepancy measure is defined as

$$350 \quad \text{disc}(\mathbf{q}) := \frac{1}{N_c} \sum_{j=1}^{N_c} \left[ E_{N+1,j} - \sum_{i=1}^N q_i E_{i,j} \right],$$

354 where  $E_{i,j} = \mathbb{E} [\ell(\mathcal{T}_S(\mathbf{P}^{i,j-1})_{*,:}, C_j^i) | \{(\mathbf{p}^m, \mathbf{c}^m)\}_{m=1}^{i-1}]$ .

355 The  $\text{disc}(\mathbf{q})$  measures the degree of misalignment between the target task distribution and the training  
 356 distribution. We then show how this discrepancy can be quantified under different scenarios.

358 **I.i.d. Scenario:** In the ideal i.i.d. case, where the training and target distributions match, the  
 359 discrepancy admits the following asymptotic property (see Appendix E for proof).

360 **Theorem 2.** Let  $\mathcal{T}_S$  be a learning algorithm that is uniformly  $\beta$ -stable. Suppose the training data  
 361 and test sample are i.i.d.. Then, with confidence at least  $1 - \delta$ ,  $\forall \delta \in (0, 1)$ , the discrepancy satisfies  
 362  $\text{disc}(\mathbf{q}) \leq 2\beta \|\mathbf{q}\|_2 N \sqrt{\log(2/\delta)}$ , where  $\beta$  is defined in Eq. 4, and thus  $\text{disc}(\mathbf{q}) \rightarrow 0$  as  
 363  $N \rightarrow \infty$  provided that  $\beta \|\mathbf{q}\|_2 N \rightarrow 0$ .

364 The condition  $\beta \|\mathbf{q}\|_2 N \rightarrow 0$  is easy to satisfy under standard choices of the training weights. For  
 365 example, if we take uniform weights  $q_i = 1/N$  for all samples, then  $\|\mathbf{q}\|_2 N = N^{1/2}$ , and thus the  
 366 requirement becomes simply  $\beta = o(N^{-1/2})$ . Theorem 1 shows that such a decay rate for  $\beta$  is  
 367 achievable under multiple concrete regimes. For instance, Corollary 1 implies that  $\beta = o(N^{-1/2})$   
 368 holds whenever  $\zeta_1 + \zeta_2 \gamma / (1 + \gamma) < 1/2$ , where  $\zeta_1$  and  $\zeta_2$  characterize the growth rates of the batch  
 369 size and the iteration count  $Q$ , and  $\gamma$  is the Lipschitz-smoothness parameter of the loss.

371 **Non-i.i.d Scenario:** If the target domain is entirely unrelated to the training domains, achieving  
 372 accurate predictions becomes nearly impossible. Therefore, we consider a scenario where at least  
 373 some training domains share a meaningful relationship with the target domain. Formally, suppose  
 374 that there exists an effective prompt such that the example distribution set is drawn from a distribution  
 375 related to the training distributions, ensuring  $\frac{1}{N_c} \sum_{j=1}^{N_c} [E_{N+1,j} - \sum_{i \in \mathcal{I}} v_i E_{i,j}] \leq \epsilon$ ,  $\epsilon > 0$ , where  
 376  $\mathcal{I} \subset \{1, \dots, N\}$  is the index set that refers to the related training data, and  $v_i$  is the corresponding  
 377 weight. Techniques such as incorporating more diverse training data and designing more effective  
 ICL prompts can help reduce  $\epsilon$  by better aligning the training and test environments. For this non-i.i.d

378 scenario, Theorem F provides an sequential Rademacher complexity based upper bound on  $\text{disc}(\mathbf{q})$   
 379 (See Appendix F for detailed proof).

380 **Theorem 3.** *Under the above situation and Assumption 1, with confidence at least  $1 - \delta$ , there holds*

$$382 \text{disc}(\mathbf{q}) \leq \epsilon + \sup_{\mathcal{T} \in \mathcal{H}} \left\{ \frac{1}{N_c} \sum_{i=1}^N \sum_{j=1}^{N_c} (v_i - q_i) \ell(\mathcal{T}(\mathbf{p}^{i,j})_{*,:}, C_j^i) \right\} + 3M_\ell \sqrt{\pi \log N} \mathcal{R}_N(\{\ell \circ \mathcal{T}\}) \\ 385 + M_\ell \|\mathbf{q} - \mathbf{v}\|_2 \sqrt{2 \log \frac{1}{\delta}}$$

387 where the sequential Rademacher complexity  $\mathcal{R}_N(\{\ell \circ \mathcal{T}\})$  over measurable hypothesis space  $\mathcal{H}$   
 388 (see Definition 7 for more details) satisfies  $\mathcal{R}_N(\{\ell \circ \mathcal{T}\}) = 4RL_\mathcal{T}^* \sqrt{N_p + N_c} B_P \|\mathbf{q} - \mathbf{v}\|$ ,  $L_\mathcal{T}^*$  is  
 389 the Lipschitz constant given in Eq. (12), and  $R = \max \{B_C, (B_{W_1} B_{W_2} B_V B_O N_a)^L B_P\}$ .  
 390

391 **Remark 2.** *In the non-i.i.d. setting, Theorem 3 reveals how the complexity of the hypothesis space  
 392 involved in the second and third terms affects  $\text{disc}(\mathbf{q})$ . For instance, a more complex hypothesis  
 393 space, characterized by higher sequential Rademacher complexity, allows the model to fit arbitrary  
 394 patterns in the training prompts, increasing its sensitivity to distribution shift and thereby amplifying  
 395 the discrepancy. It suggests that regularization techniques, such as weight norm constraints, may  
 396 help control this complexity and thus improve alignment between training and testing distributions.  
 397 In addition, the weight discrepancy  $\|\mathbf{q} - \mathbf{v}\|$  offers a theoretical explanation for the effectiveness of  
 398 finetuning, which reweights training samples toward those relevant to the target.*

#### 4.4 GENERALISATION ERROR ANALYSIS

401 Building on the above analysis, this section derives an upper bound on the generalisation errors  
 402  $\mathcal{L}(\mathcal{T}_S) - \hat{\mathcal{L}}(\mathcal{T}_S)$ . The detailed proof is provided in Appendix D.

403 **Theorem 4.** *Under Assumption 1, let  $\mathcal{T}_S$  be a  $\beta$ -stable learning algorithm and  $\mathbf{q} = (q_1, \dots, q_{N_c})$   
 404 be any weight vector used in training objective. For any  $\delta > 0$ , each of the following bounds holds  
 405 with confidence at least  $1 - \delta$ :*

$$407 \mathcal{L}(\mathcal{T}_S) \leq \frac{1}{N_c} \sum_{i=1}^N \sum_{j=1}^{N_c} q_i \ell(\mathcal{T}_S(\mathbf{p}^{i,j})_{*,:}, c_j^i) + \text{disc}(\mathbf{q}) + \|\mathbf{q}\|_1 \beta + 2\|\mathbf{q}\|_2 M_\ell \sqrt{2 \log \frac{4}{\delta}},$$

410 where  $\beta$  is defined in Eq. (4).

411 The following corollaries provide a more detailed characterization of the asymptotic behavior under  
 412 both i.i.d. and non-i.i.d. data settings.

413 **Corollary 3** (Asymptotic Behavior under i.i.d Scenarios). *Let the conditions in Theorem 4 and i.i.d.  
 414 assumption be true. Let  $q_i = \frac{1}{N}$ ,  $|B| = O(N^{\zeta_1})$ , and  $Q = O(N^{\zeta_2})$ . a) When the loss function scape  
 415 is well-conditioned smoothness, with confidence at least  $1 - \delta$ ,  $0 < \delta < 1$ , there holds*

$$417 \mathcal{L}(\mathcal{T}_S) \lesssim \frac{1}{N_c N} \sum_{i=1}^N \sum_{j=1}^{N_c} \ell(\mathcal{T}_S(\mathbf{p}^{i,j})_{*,:}, c_j^i) + N^{-\frac{1}{2}} \sqrt{2 \log \frac{4}{\delta}}$$

419 when  $\zeta_1 + \frac{\zeta_2 \gamma}{1+\gamma} = \frac{1}{2}$ . b) When Lipschitz smoothness constant is large such that  $\gamma > (2\alpha)^{-1}(1 +$   
 420  $\sqrt{1 - 4\alpha(1 - \alpha)})$ , by setting  $|B| = O(N^{\zeta_1})$ ,  $\zeta_1 \leq \frac{1}{2}$ , and  $Q = O(\ln N)$ , there holds

$$423 \mathcal{L}(\mathcal{T}_S) \lesssim \frac{1}{N_c N} \sum_{i=1}^N \sum_{j=1}^{N_c} \ell(\mathcal{T}_S(\mathbf{p}^{i,j})_{*,:}, c_j^i) + N^{-\frac{1}{2}} \sqrt{2 \log \frac{4}{\delta}}$$

425 with at least confidence  $1 - \delta$ .

426 **Remark 3.** *In the ideal i.i.d. setting, the corollary above establishes how the generalisation error  
 427 bound achieves the fastest convergence rate of  $O(N^{-\frac{1}{2}})$  under different levels of loss landscape  
 428 smoothness. Specifically, when the loss function is sufficiently smooth, the hyper-parameters  $\zeta_1, \zeta_2$   
 429 are tuned such that  $2\zeta_1 + \frac{2\zeta_2 \gamma}{1+\gamma} = 1$ . However, when the smoothness constant is large, exceeding the  
 430 threshold  $(2\alpha)^{-1}(1 + \sqrt{1 - 4\alpha(1 - \alpha)})$ , to achieve the convergence rate  $O(N^{-\frac{1}{2}})$ , the number of  
 431 iterations is recommended to scale logarithmically with the sample size.*

| Scenario               | Parameter Settings                                                                                                                                      | Convergence Rate                                                       |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| I.i.d & Smooth         | $ B  = O(N^{\zeta_1}), Q = O(N^{\zeta_2}), 2\zeta_1 + \frac{2\zeta_2\gamma}{1+\gamma} = 1$                                                              | $O(N^{-\frac{1}{2}})$                                                  |
| I.i.d & Non-smooth     | $ B  = O(N^{\zeta_1}), Q = O(\ln N), \zeta_1 \leq \frac{1}{2}$                                                                                          | $O(N^{-\frac{1}{2}})$                                                  |
| Non-i.i.d & Smooth     | $\ \mathbf{q} - \mathbf{v}\  + \ \mathbf{q}\  = O(N^{\zeta_3}),  B  = O(N^{\zeta_1}), Q = O(N^{\zeta_2}), \zeta_1 + \frac{\zeta_2\gamma}{1+\gamma} < 1$ | $O(N^{\max\{\zeta_3, \zeta_1 + \frac{\zeta_2\gamma}{1+\gamma} - 1\}})$ |
| Non-i.i.d & Non-smooth | $\ \mathbf{q} - \mathbf{v}\  = O(N^{\zeta_3}), \ \mathbf{q}\  = O(N^{\zeta_4}),  B  = O(N^{\zeta_1}), Q = O(\ln N), N_p = O(N^{\zeta_2})$               | $O(N^{\max\{2L\zeta_2 + \zeta_3, \zeta_4, \zeta_1 - 1\}})$             |

Table 2: Summary of Generalisation Error Bounds under Different Scenarios.

**Corollary 4.** *[Asymptotic Behavior under Non-i.i.d Scenarios]* Let the conditions in Theorem 4 and 3 be true. a) If the loss landscape is sufficiently smooth and if  $\|\mathbf{q} - \mathbf{v}\| + \|\mathbf{q}\| = O(N^{\eta_3})$ , then by setting  $|B| = O(N^{\zeta_1})$  and  $Q = O(N^{\zeta_2})$ , for any  $\delta > 0$ , with confidence at least  $1 - \delta$ , there holds:

$$\begin{aligned} \mathcal{L}(\mathcal{T}_S) &\leq \frac{1}{N_c} \sum_{i=1}^N \sum_{j=1}^{N_c} q_i \ell(\mathcal{T}_S(\mathbf{p}^{i,j})_{*,:}, c_j^i) + \sup_{\mathcal{T} \in \mathcal{H}} \left\{ \sum_{i=1}^N (v_i - q_i) \ell(\mathcal{T}(\mathbf{p}^{i,j})_{*,:}, c_j^i) \right\} \\ &+ N^{\max\{\zeta_1 + \frac{\zeta_2\gamma}{1+\gamma} - 1, \zeta_3\}} \sqrt{2 \log \frac{4}{\delta}} + \epsilon. \end{aligned}$$

b) If  $\|\mathbf{q} - \mathbf{v}\| = O(N^{\eta_3})$  and  $\|\mathbf{q}\| = O(N^{\eta_4})$ , then by setting  $|B| = O(N^{\zeta_1})$ ,  $Q = O(\ln N)$ , and the ICL prompt length as  $N_p = O(N^{\zeta_2})$ , for any  $\delta > 0$ , with probability at least  $1 - \delta$ , there holds

$$\begin{aligned} \mathcal{L}(\mathcal{T}_S) &\leq \frac{1}{N_c} \sum_{i=1}^N \sum_{j=1}^{N_c} q_i \ell(\mathcal{T}_S(\mathbf{p}^{i,j})_{*,:}, c_j^i) + \sup_{\mathcal{T} \in \mathcal{H}} \left\{ \sum_{i=1}^N (v_i - q_i) \ell(\mathcal{T}(\mathbf{p}^{i,j})_{*,:}, c_j^i) \right\} \\ &+ N^{\max\{2L\zeta_2 + \zeta_3, \zeta_1 - 1, \zeta_4\}} \sqrt{2 \log \frac{4}{\delta}} + \epsilon. \end{aligned}$$

**Remark 4.** Corollary 4 characterizes ICL generalization under non-i.i.d. settings by establishing two upper bounds under distinct smoothness conditions. The results show that smoother loss landscapes and better alignment between training and test prompt distributions (i.e., small  $\|\mathbf{q} - \mathbf{v}\|$ ) yield improved generalization.

**Remark 5.** From Corollary 4, to achieve better cross-domain generalization (i.e., minimizing  $\mathcal{L}(\mathcal{T}_S)$ ), we shall minimize the following optimization problem:

$$\min_{\mathbf{q}} \left\{ \frac{1}{N_c} \sum_{i=1}^N \sum_{j=1}^{N_c} q_i \ell(\mathcal{T}_S(\mathbf{p}^{i,j})_{*,:}, c_j^i) + \sup_{\mathcal{T} \in \mathcal{H}} \left\{ \sum_{i=1}^N (v_i - q_i) \ell(\mathcal{T}(\mathbf{p}^{i,j})_{*,:}, c_j^i) \right\} + \lambda_1 \|\mathbf{s} - \mathbf{q}\|_2^2 + \lambda_2 \|\mathbf{q}\|_2^2 \right\}, \quad (5)$$

where  $\lambda_1$  and  $\lambda_2$  are regularization parameters. The entire optimization procedure can be decomposed into two stages. In the first stage, we solve for the optimal sample-weight vector  $\mathbf{q}$  by optimizing the latter three terms. This subproblem can be computed via DC programming (Tao & An, 1998) or gradient-based methods. Once the optimal sample weights have been obtained, we then optimize the first term accordingly to learn the final model parameters.

In practical scenarios, the model typically uses its own estimated token to predict subsequent tokens. This approach, by its nature, leads to cumulative errors as inaccuracies in earlier steps propagate forward. The corresponding theoretical result and proof are provided in Appendix G.

## 5 NUMERICAL EVALUATION

Our experimental setup follows (Li et al., 2023), where all evaluations are conducted using the same GPT-2 architecture implemented via the HuggingFace Transformers library (Wolf et al., 2020), consisting of 12 layers and 8 attention heads. All empirical evaluations are conducted using NVIDIA H20 GPUs with 80GB of memory.

**Evaluation on i.i.d data scenario:** In the ideal i.i.d. setting, we focus on validating the asymptotic behavior predicted by Corollary 3 and the error accumulation characterized in Theorem 5.

We consider a  $d = 10$ -dimensional linear regression task, where each in-context example is of the form  $(\mathbf{p}, \mathbf{c})$ . For each sample  $i$ , given a parameter vector  $\beta^i \in \mathbb{R}^d$ , we generate a length- $L$  sequence using the recurrence relation  $c_l^i = \beta_{l-1}^i c_{l-1}^i + \epsilon$ , for  $l = 1, \dots, L$ , where the initial query  $c_0^i \sim \mathcal{N}(0, 0.1\mathbf{I}_d)$ , and the noise term  $\epsilon \sim \mathcal{N}(0, 0.1\mathbf{I}_d)$ . The prompt  $\mathbf{p}$  is constructed by concatenating two such examples along with the query input  $c_0^i$  into a single flattened vector. Each parameter vector  $\beta^i \in \mathbb{R}^d$  is independently sampled from  $\mathcal{N}(0.1, 0.1\mathbf{I}_d)$ . We set the sample size  $N \in \{50, 100, 200, 400, 800, 1600\}$ , use uniform training weights  $q_i = 1/N$ , and set the batch size to  $|B| = N^{1/2}$  to ensure sufficient training. For evaluation, we independently generate 1000 i.i.d. test samples. We fix the number of optimization iterations to  $Q = 200$ , set the learning rate decay exponent to  $\alpha = 1$ , and systematically vary the sequence length  $N_c \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ .

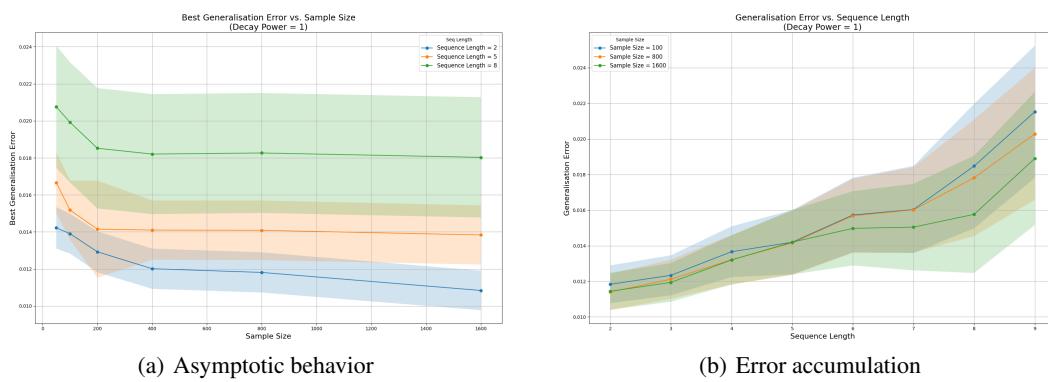


Figure 2: The generalisation error under i.i.d scenario. For extended results under non-i.i.d. distributions, additional sequence lengths and overfitting risk, please refer to Figures 4 and 5 in Appendix I.

*The Generalisation Error Convergence Analysis:* We evaluate the generalization error as the number of training samples  $N$  increases. Figure 2(a) demonstrates that the error decreases and asymptotically vanishes as  $N \rightarrow \infty$ , consistent with the theoretical prediction in Corollary 3 for the i.i.d. setting. Results are shown for sequence lengths 1 and 2; other lengths follow similar trends but are omitted due to large differences in error magnitude, which would obscure the overall pattern if plotted together.

*The Error Accumulation Analysis:* Figure 2(b) shows that the generalization error increases with sequence length, following an approximately polynomial trend. In particular, once the sequence length exceeds a threshold near  $\ln N$ , the error rises sharply. Moreover, this threshold shifts to larger values as the sample size increases. These empirical findings support Theorem 5.

In addition to the i.i.d. scenario presented above, we also conduct evaluations under non-i.i.d. settings, which are detailed in Appendix I. These experiments are designed to assess the robustness of our theoretical claims, particularly under distribution shift conditions where training and test domains exhibit structural divergence. The results demonstrate consistent alignment with our theoretical bounds, especially regarding the influence of distributional discrepancy and prompt reweighting.

## 6 CONCLUSION

This study derives ICL generalisation error bound with asymptotic convergence analysis by examining algorithmic stability under mini-batch GD and a distribution-level discrepancy measure. Our results reveal how optimization settings interact with the smoothness of the loss landscape to ensure algorithmic stability, and how, when combined with high-quality prompts, they enable effective ICL generalization. On the theoretical side, future work should develop tighter generalization bounds using techniques such as gradient stability. On the practical side, our findings inform algorithm design, including strategies like weighted training samples. These extensions will support both stronger theoretical validation and the development of more promising models.

540  
541 ETHICS STATEMENT542  
543 This paper is theoretical and does not involve human subjects, personally identifiable information,  
544 or sensitive data. All proofs and theoretical analyses are conducted under standard mathematical  
545 assumptions and are intended to advance the understanding of large models' generalization ability.  
546 We foresee no ethical concerns with the content or potential applications of this work.547  
548 REPRODUCIBILITY STATEMENT549  
550 Our work is primarily theoretical, and all theoretical results are presented with formal statements,  
551 clearly defined assumptions, and complete proofs provided in Section 5 and Appendix I. To support  
552 the practical relevance of our findings, we include empirical experiments conducted using publicly  
553 available open-source models, specifically, the GPT-2 architecture implemented via the HuggingFace  
554 Transformers library (Wolf et al., 2020). All implementation details, including model configurations,  
555 evaluation protocols, and data processing steps, are thoroughly described in the Numerical Evaluations  
556 section. No proprietary data or code is used, and we are committed to making our results fully  
557 reproducible.558  
559 REFERENCE560  
561 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,  
562 Diogo Almeida, et al. Gpt-4 technical report. *arXiv:2303.08774*, 2023.563  
564 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement  
565 preconditioned gradient descent for in-context learning. In *Advances in Neural Information  
Processing Systems*, 2023.566  
567 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-  
568 rithm is in-context learning? investigations with linear models. In *Proceedings of the International  
Conference on Learning Representations*, 2023.569  
570 Amit Attia and Tomer Koren. A general reduction for high-probability analysis with general light-  
571 tailed distributions. *arXiv preprint arXiv:2403.02873*, 2024.572  
573 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Provable  
574 in-context learning with in-context algorithm selection. In *Advances in Neural Information  
Processing Systems*, 2024.575  
576 Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of bilevel  
577 programming in hyperparameter optimization. In *Advances in Neural Information Processing  
Systems*, 2021.578  
579 Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,  
580 Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autoregressive  
581 language model. *arXiv preprint arXiv:2204.06745*, 2022.582  
583 Olivier Bousquet and Andre Elisseeff. Stability and generalization. *Journal of Machine Learning  
Research*, 2(3):499–526, 2002.584  
585 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, et al.  
586 Language models are few-shot learners. In *Advances in Neural Information Processing Systems*,  
587 2020.588  
589 Dake Bu, Wei Huang, Andi Han, Atsushi Nitanda, Taiji Suzuki, Qingfu Zhang, and Hau-San Wong.  
590 Provably transformers harness multi-concept word semantics for efficient in-context learning. In  
591 *Advances in Neural Information Processing Systems (NIPS)*. 2024.592  
593 Dake Bu, Wei Huang, Andi Han, Atsushi Nitanda, Qingfu Zhang, Hau-San Wong, and Taiji Suzuki.  
Provably in-context vector arithmetic via retrieving task concepts. In *International Conference on  
Machine Learning*, 2025.

- 594 Zachary Charles and Dimitris S Papailiopoulos. Stability and generalization of learning algorithms  
 595 that converge to global optima. In *Proceedings of the International Conference on Machine*  
 596 *learning*. 2017.
- 597
- 598 Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head  
 599 softmax attention for in-context learning: Emergence, convergence, and optimality. In *The Thirty*  
 600 *Seventh Annual Conference on Learning Theory*, 2024.
- 601 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam  
 602 Roberts, et al. Palm: Scaling language modeling with pathways. *Journal of Machine Learning*  
 603 *Research*, 24(240):1–113, 2023.
- 604
- 605 Yingqian Cui, Jie Ren, Pengfei He, Jiliang Tang, and Yue Xing. Superiority of multi-head attention  
 606 in in-context linear regression. *arXiv preprint arXiv:2401.17426*, 2024.
- 607 Nan Ding, Tomer Levinboim, Jialin Wu, Sebastian Goodman, and Radu Soricut. Causallm is not  
 608 optimal for in-context learning. In *Proceedings of the International Conference on Learning*  
 609 *Representations*, 2024.
- 610
- 611 Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing  
 612 the mystery behind chain of thought: a theoretical perspective. In *Advances in Neural Information*  
 613 *Processing Systems*, 2023.
- 614
- 615 Zixuan Gong, Xiaolin Hu, Huayi Tang, and Yong Liu. Towards auto-regressive next-token prediction:  
 616 In-context learning emerges from generalization. In *Proceedings of the International Conference*  
 617 *on Learning Representations*, 2025.
- 618
- 619 Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. In *Proceeding*  
 620 *of the International Conference on Learning Representations*, 2024.
- 621
- 622 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter  
 623 Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In  
 624 *Proceedings of the International Conference on Learning Representations*, 2017.
- 625
- 626 Vitaly Kuznetsov and Mehryar Mohri. Learning theory and algorithms for forecasting non-stationary  
 627 time series. In *Advances in neural information processing systems*, 2015.
- 628
- 629 Vitaly Kuznetsov and Mehryar Mohri. Discrepancy-based theory and algorithms for forecasting  
 630 non-stationary time series. *Annals of Mathematics and Artificial Intelligence*, 88:367–399, 2020.
- 631
- 632 Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus Robert Müller. Efficient backprop. In  
 633 *Neural Networks: Tricks of the Trade*, pp. 9–48. Springer Verlag, 2012.
- 634
- 635 Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear  
 636 transformers learn and generalize in in-context learning? In *Proceedings of the International*  
 637 *Conference on Machine Learning*, 2024a.
- 638
- 639 Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. Training nonlinear  
 640 transformers for chain-of-thought inference: A theoretical generalization analysis. In *Proceeding*  
 641 *of the International Conference on Learning Representations*, 2025.
- 642
- 643 Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transform-  
 644 ers as algorithms: Generalization and stability in in-context learning. In *Proceedings of the*  
 645 *International Conference on Machine Learning*, 2023.
- 646
- 647 Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and Samet Oymak.  
 648 Dissecting chain-of-thought: Compositionality through in-context filtering and learning. In  
 649 *Advances in Neural Information Processing Systems*, 2024b.
- 650
- 651 Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to  
 652 solve inherently serial problems. In *Proceedings of the International Conference on Learning*  
 653 *Representations*, 2024c.

- 648 Tongliang Liu, Gábor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic stability and hypothesis  
 649 complexity. In *Proceedings of the International Conference on Machine Learning*, 2017.
- 650
- 651 Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.  
 652 Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods  
 653 for effective instruction tuning. In *International Conference on Machine Learning*, 2023.
- 654 Eran Malach. Auto-regressive next-token predictors are universal learners. In *Proceedings of the*  
 655 *International Conference on Learning Representations*, 2024.
- 656 Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks. *arXiv*  
 657 *preprint arXiv:1804.07612*, 2018.
- 658
- 659 William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.  
 660 *arXiv preprint arXiv:2310.07923*, 2023.
- 661 Sewon Min, M. Lewis, Hannaneh Hajishirzi, et al. Metaicl: Learning to learn in context. In  
 662 *Proceedings of the North American Chapter of the Association for Computational Linguistics*,  
 663 2022.
- 664
- 665 Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. *Improving Language Under-*  
 666 *standing by Generative Pre-Training*. OpenAI, 2018.
- 667 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language  
 668 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
- 669
- 670 Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Sequential complexities and uniform  
 671 martingale laws of large numbers. *Probability Theory and Related Fields*, 161(1):111–153, 2015.
- 672 Pham Dinh Tao and Le Thi Hoai An. A dc optimization algorithm for solving the trust-region  
 673 subproblem. *SIAM Journal on Optimization*, 8(2):476–505, 1998.
- 674
- 675 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée  
 676 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand  
 677 Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language  
 678 models. *arXiv:2302.13971*, 2023.
- 679
- 680 Johannes Von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,  
 681 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In  
 682 *Proceedings of the International Conference on Machine Learning*, 2023.
- 683
- 684 D Randall Wilson and Tony R Martinez. The general inefficiency of batch training for gradient  
 685 descent learning. *Neural networks*, 16(10):1429–1451, 2003.
- 686
- 687 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,  
 688 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick  
 689 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,  
 Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural  
 690 language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural  
 Language Processing: System Demonstrations*, pp. 38–45, 2020.
- 691
- 692 Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett.  
 693 How many pretraining tasks are needed for in-context learning of linear regression? In *Proceedings*  
 694 *of the International Conference on Learning Representations*, 2024.
- 695
- 696 Kai Yang, Jan Ackermann, Zhenyu He, Guhao Feng, Bohang Zhang, Yunzhen Feng, Qiwei Ye,  
 697 Di He, and Liwei Wang. Do efficient transformers really save computation? In *Proceedings of the*  
 698 *International Conference on Machine Learning*, 2024a.
- 699
- 700 Tong Yang, Yu Huang, Yingbin Liang, and Yuejie Chi. In-context learning with representations:  
 701 Contextual generalization of trained transformers. *arXiv preprint arXiv:2408.10147*, 2024b.
- 702
- 703 Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context  
 704 learning learn? bayesian model averaging, parameterization, and generalization. *arXiv preprint*  
 705 *arXiv:2305.19420*, 2023.

# 702 Appendix

## 703 CONTENTS

|     |                                                                          |    |
|-----|--------------------------------------------------------------------------|----|
| 704 | <b>1 Introduction</b>                                                    | 1  |
| 705 | <b>2 Related Work</b>                                                    | 2  |
| 706 | <b>3 Problem Setup</b>                                                   | 3  |
| 707 | <b>4 Theoretical Analysis</b>                                            | 5  |
| 708 | <b>5 Numerical Evaluation</b>                                            | 9  |
| 709 | <b>6 Conclusion</b>                                                      | 10 |
| 710 | <b>Reference</b>                                                         | 11 |
| 711 | <b>Contents</b>                                                          | 14 |
| 712 | <b>A Notations</b>                                                       | 15 |
| 713 | <b>B Proof Sketch</b>                                                    | 15 |
| 714 | <b>C Algorithmic Stability (Proof of Theorem 1)</b>                      | 15 |
| 715 | <b>D Generalisation Error Bound (Proof of Theorem 4)</b>                 | 18 |
| 716 | <b>E The Upper Bound on Discrepancy Measure Under I.i.d Scenario</b>     | 20 |
| 717 | <b>F The Upper Bound on Discrepancy Measure Under Non-i.i.d Scenario</b> | 21 |
| 718 | <b>G Error Accumulation Analysis (Proof of Theorem 5)</b>                | 23 |
| 719 | <b>H Gradient, Hessian Matrix and Lipschitz (Smooth) Constant</b>        | 25 |
| 720 | <b>I Numerical Evaluations</b>                                           | 31 |
| 721 | <b>J The Use of Large Language Models (LLMs)</b>                         | 33 |

756 A NOTATIONS  
757

759 For clarity and ease of reference, Table 3 presents a comprehensive summary of the notations used  
760 throughout this paper. The input and ICL variable spaces for the  $i$ -th sample are denoted by  $\mathcal{X}^i$   
761 and  $\mathcal{C}^i$ , respectively, while  $X^i$  and  $C^i$  represent the corresponding input and ICL random variables.  
762 Their specific realizations are given by  $x^i$  and  $c^i$ . The dataset consists of  $N$  samples, with  $N_p$   
763 denoting the length of the prompt  $\mathbf{P}$ ,  $N_e$  the number of demonstration examples, and  $N_c$  the number  
764 of steps in the ICL inference process. The Transformer model employs  $N_a$  self-attention heads,  
765 and the batch size in the mini-batch GD optimization scheme is denoted as  $|B|$ . The ICL prompt  
766 for the  $i$ -th sample, containing  $N_e$  examples followed by a query, is represented by  $\mathbf{P}^i$ , while  $\mathbf{P}^{i,j}$   
767 extends this by incorporating  $j$  additional reasoning steps. The estimated version of this prompt is  
768 given by  $\hat{\mathbf{P}}^{i,j}$ . The parameters associated with the  $m$ -th attention module in the  $l$ -th layer of the  
769 Transformer are represented as  $O_m^l$ ,  $V_m^l$ ,  $Q_m^l$ , and  $K_m^l$ , corresponding to the output, value, query,  
770 and key matrices, respectively, while  $W_1^l$  and  $W_2^l$  denote the parameters of the MLP in the  $l$ -th layer.  
771 Finally, the empirical risk is denoted by  $\hat{\mathcal{L}}(\theta)$ , while  $\mathcal{L}(\theta)$  represents the expected risk associated  
772 with the ICL prompt  $\mathbf{P}$ , and  $\mathcal{L}^{EA}(\theta)$  denotes the expected risk when using the estimated ICL prompt  
773  $\hat{\mathbf{P}}$ , accounting for potential deviations due to reasoning inaccuracies.

774 Table 3: Notations  
775

| Notations                      | Descriptions                                                                                     |
|--------------------------------|--------------------------------------------------------------------------------------------------|
| $\mathcal{X}^i, \mathcal{C}^i$ | the input and output variable space for $i$ -th sample, respectively                             |
| $X^i, C^i$                     | the input and output random variables for $i$ -th sample, respectively                           |
| $x^i, c^i$                     | the realizations of $X$ and $C$ for $i$ -th sample, respectively                                 |
| $N$                            | the sample size                                                                                  |
| $N_p$                          | the length- $N_p$ prompt $\mathbf{P}$                                                            |
| $N_e$                          | the size of demonstrations                                                                       |
| $N_c$                          | the length of inference                                                                          |
| $N_a$                          | the number of self-attention heads                                                               |
| $ B $                          | the batch size in Mini-Batch GD optimization scheme                                              |
| $\mathbf{P}^i$                 | the $i$ -th ICL prompt variable with $N_e$ examples followed by a query                          |
| $\mathbf{P}^{i,j}$             | the $i$ -th ICL prompt variable with $N_e$ examples followed by a query and $j$ tokens           |
| $\hat{\mathbf{P}}^{i,j}$       | the $i$ -th ICL prompt variable with $N_e$ examples followed by a query and $j$ estimated tokens |
| $O_m^l$                        | represents the parameter associated with the $m$ -th attention module in the $l$ -th layer       |
| $V_m^l$                        | represents the parameter associated with the $m$ -th attention module in the $l$ -th layer       |
| $Q_m^l$                        | represents the parameter associated with the $m$ -th attention module in the $l$ -th layer       |
| $K_m^l$                        | represents the parameter associated with the $m$ -th attention module in the $l$ -th layer       |
| $W_1^l$                        | represents the parameter associated with MLP in the $l$ -th layer                                |
| $W_2^l$                        | represents the parameter associated with MLP in the $l$ -th layer                                |
| $\ell(\cdot)$                  | the loss function                                                                                |
| $\hat{\mathcal{L}}(\theta)$    | the empirical risk                                                                               |
| $\mathcal{L}(\theta)$          | the expected risk associated with $\mathbf{P}$                                                   |
| $\mathcal{L}^{EA}(\theta)$     | the expected risk associated with prompt $\hat{\mathbf{P}}$                                      |

799 B PROOF SKETCH  
800

801 Figure 3 outlines the proof strategy for our generalisation guarantee, which combines algorithmic  
802 stability with a discrepancy measure.  
803

804 C ALGORITHMIC STABILITY (PROOF OF THEOREM 1)  
805

806 Building on the insights from the algorithmic stability bound for SGD under bilevel optimization  
807 (Bao et al., 2021), this section derives an upper bound on algorithmic stability of the Transformer  
808 model when trained with the mini-batch GD optimizer.  
809

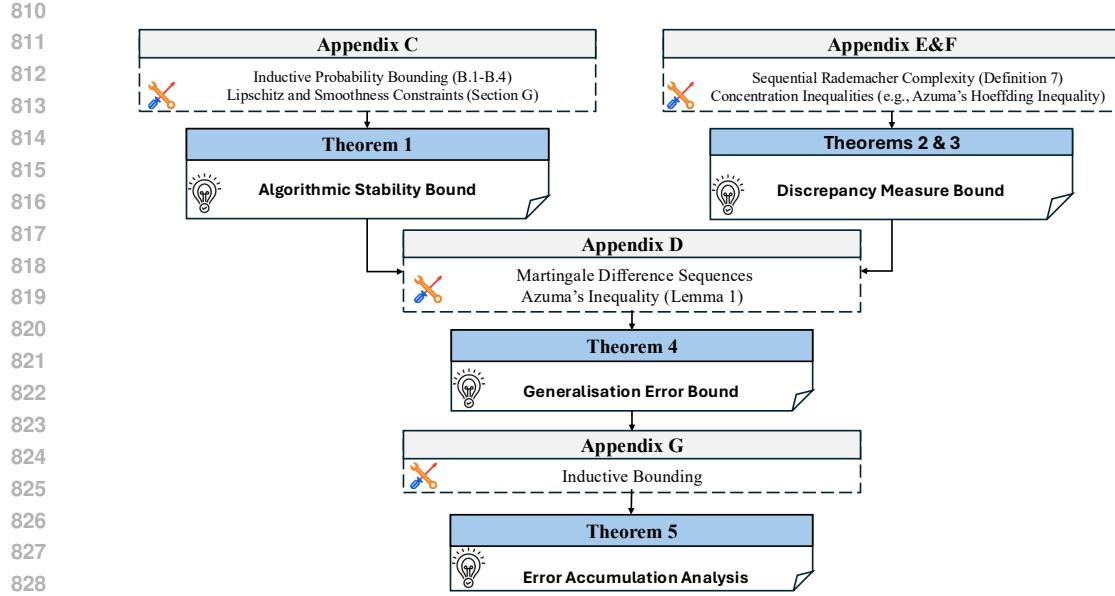


Figure 3: Proof sketch: the logical dependencies among stability, discrepancy, generalisation, and error accumulation analyses.

For any sample pairs  $(\mathbf{P}^{i,j}, C_j^i)$ , we give a general version of expected risk with weights  $v_j, j = 1, \dots, N_c$ , which is defined by

$$\mathcal{L}(\mathcal{T}) = \sum_{j=1}^{N_c} v_j \mathbb{E} [\ell(\mathcal{T}(\mathbf{P}^{i,j-1}), C_j^i)]. \quad (6)$$

Let  $\mathcal{T}_S^{(q)}$  represent the optimization process after  $q$  iterations, following Algorithm 1. Define  $\delta_q = \|\theta^{(q)} - \theta'^{(q)}\|_F$ , where  $\theta^{(q)}$  and  $\theta'^{(q)}$  are the respective outputs of  $\mathcal{T}_S^{(q)}$  and  $\mathcal{T}_{S'}^{(q)}$ , where  $S$  and  $S'$  differ by a single data point.

Under Assumption 1, we establish the following bound:

$$\begin{aligned} \mathbb{E}[\|\mathcal{L}(\mathcal{T}_S^{(q)}) - \mathcal{L}(\mathcal{T}_{S'}^{(q)})\|] &= \text{Prob}(\delta_{q_0} = 0) \mathbb{E} [\|\mathcal{L}(\mathcal{T}_S^{(q)}) - \mathcal{L}(\mathcal{T}_{S'}^{(q)})\| \mid \delta_{q_0} = 0] \\ &\quad + \left[ \text{Prob}(\delta_{q_0} > 0) \mathbb{E} [\|\mathcal{L}(\mathcal{T}_S^{(q)}) - \mathcal{L}(\mathcal{T}_{S'}^{(q)})\| \mid \delta_{q_0} > 0] \right] \\ &= \text{Prob}(\delta_{q_0} = 0) \sum_{j=1}^{N_c} v_j \mathbb{E} \left[ \|\ell(\mathcal{T}_S^{(q)}(\mathbf{P}^{i,j-1}), C_j^i) - \ell(\mathcal{T}_{S'}^{(q)}(\mathbf{P}^{i,j-1}), C_j^i)\| \mid \delta_{q_0} = 0 \right] \\ &\quad + \text{Prob}(\delta_{q_0} > 0) \sum_{j=1}^{N_c} v_j \mathbb{E} \left[ \|\ell(\mathcal{T}_S^{(q)}(\mathbf{P}^{i,j-1}), C_j^i) - \ell(\mathcal{T}_{S'}^{(q)}(\mathbf{P}^{i,j-1}), C_j^i)\| \mid \delta_{q_0} > 0 \right] \\ &\leq \sum_{j=1}^{N_c} v_j L_{j,\ell} \mathbb{E} [\delta_q \mid \delta_{q_0} = 0] + \text{Prob}(\delta_{q_0} > 0) \sum_{j=1}^{N_c} v_j M_{j,\ell}, \end{aligned}$$

where  $L_{j,\ell}$  is the Lipschitz constant of the loss function  $\ell$  with respect to  $\theta$  associated with  $(\mathbf{P}^{i,j}, C_j^i)$ , and  $M_{j,\ell}$  is the upper bound of the loss function  $\ell$  associated with  $(\mathbf{P}^{i,j}, C_j^i)$ .

### C.1 BOUNDING PROBABILITY TERMS

If the optimization algorithm  $\mathcal{T}_S^{(q_0)}$  does not select the  $i$ -th sample within the first  $q_0$  iterations, then  $\delta_{q_0} = 0$ . By induction, we obtain:

$$\text{Prob}(\delta_{q_0} = 0) = \left(1 - \frac{C_{N-1}^{B-1}}{C_N^B}\right)^{q_0} = \left(1 - \frac{B}{N}\right)^{q_0} \geq 1 - \frac{Bq_0}{N}.$$

864 Thus, we also have:

$$865 \quad \text{Prob}(\delta_{q_0} > 0) \leq \frac{Bq_0}{N}.$$

868 Correspondingly, we have  $\text{Prob}(\delta_{q_0} > 0) \leq \frac{Bq_0}{N}$ . As a result,

$$869 \quad \mathbb{E} \left[ |\mathcal{L}(\mathcal{T}_S^{(q)}) - \mathcal{L}(\mathcal{T}_{S'}^{(q)})| \right] \leq \sum_{i=1}^{N-c} v_i L_{i,\ell} \mathbb{E} [\delta_q | \delta_{q_0} = 0] + \frac{Bq_0}{N} \sum_{i=1}^{N-c} v_i M_{i,\ell}.$$

## 873 C.2 RECURSIVE BOUND ON $\mathbb{E}[\delta_q | \delta_{q_0} = 0]$

875 Let  $v^{(q)} = \frac{\eta_q}{|B_q|} \sum_{i \in B_q} \nabla_{\theta} \hat{\mathcal{L}}(\mathcal{T})$ , and let  $v'^{(q)}$  be its counterpart using perturbed data. Denote  
876  $\gamma = \sum_{i=1}^{N_c} v_i \gamma_i$  by the Lipschitz smooth constant. The update rule in Algorithm 1 gives:

$$877 \quad \begin{aligned} \mathbb{E}[\delta_q | \delta_{q_0} = 0] &= \text{Prob}(1 \in B_q) \mathbb{E}[\delta_q | \delta_{q_0} = 0, 1 \in B_q] + \text{Prob}(1 \notin B_q) \mathbb{E}[\delta_q | \delta_{q_0} = 0, 1 \notin B_q] \\ 878 &= \frac{B}{N} \mathbb{E}[\|\theta^{(q-1)} - \theta'^{(q-1)} + \eta_{q-1}(v'^{(q-1)} - v^{(q-1)})\| | \delta_{q_0} = 0] \\ 879 &+ \frac{N-B}{N} \mathbb{E} \left[ \|\theta^{(q-1)} - \theta'^{(q-1)} + \eta_{q-1}(v'^{(q-1)} - v^{(q-1)})\| | \delta_{q_0} = 0 \right] \\ 880 &\leq C_{q-1} \mathbb{E} [\delta_{q-1} | \delta_{q_0} = 0] + D_{q-1}, \end{aligned}$$

884 where

$$885 \quad C_{q-1} = \frac{B + (N-B)(1 + \eta_{q-1}\gamma)}{N}, \quad D_{q-1} = \frac{2\eta_{q-1}L_{\ell}B}{N}.$$

887 By induction, we obtain:

$$888 \quad \mathbb{E}[\delta_q | \delta_{q_0} = 0] \leq \sum_{j=q_0}^{q-1} D_j \prod_{k=j+1}^{q-1} C_k.$$

## 892 C.3 BOUNDING $\prod C_k$

893 Since

$$894 \quad C_q = 1 + (1 - B/N)\eta_q\gamma,$$

896 using the inequality  $1 + x \leq e^x$ , we obtain

$$897 \quad \prod_{k=j+1}^q C_k \leq \exp \left( (1 - B/N)\gamma \sum_{k=j+1}^q \eta_k \right).$$

901 Thus,

$$902 \quad \mathbb{E}[\delta_q | \delta_{q_0} = 0] \leq \sum_{j=q_0}^{q-1} D_j \exp \left( (1 - B/N)\gamma \sum_{k=j+1}^{q-1} \eta_k \right).$$

## 906 C.4 FINAL BOUND ON $\beta$

908 Combining the above results, we get

$$910 \quad \mathbb{E} \left[ |\mathcal{L}(\mathcal{T}_S^{(Q)}) - \mathcal{L}(\mathcal{T}_{S'}^{(Q)})| \right] \leq \sum_{j=q_0+1}^Q D_j \exp \left( \frac{N-B}{N} \gamma \sum_{k=j+1}^Q \eta_k \right) \sum_{i=1}^{N_c} v_i L_{i,\ell} + \frac{Bq_0}{N} \sum_{i=1}^{N_c} v_i M_{i,\ell}.$$

913 Denote by  $L_{\ell} = \sum_{i=1}^{N_c} v_i L_{i,\ell}$  and  $M_{\ell} = \sum_{i=1}^{N_c} v_i M_{i,\ell}$ , where  $L_{i,\ell}$ ,  $M_{i,\ell}$  and  $\gamma_i$  are obtained in  
914 Section H.9. Finally, optimizing  $q_0$  leads to the stability bound:

$$916 \quad \beta \leq \min_{q_0 \in \{1, \dots, Q\}} \left\{ L_{\ell} \sum_{j=q_0+1}^Q D_j \exp \left( \gamma \sum_{k=j+1}^Q \eta_k \right) + \frac{M_{\ell}Bq_0}{N} \right\}.$$

918 We denote the original objective function by  
919

$$\begin{aligned}
H(q_0) &= L_\ell \sum_{j=q_0+1}^Q \frac{2\eta_j L_\ell B}{N} \exp \left( \gamma \sum_{k=j+1}^Q \eta_k \right) + \frac{M_\ell B q_0}{N} \\
&\leq \frac{2L_\ell^2 B}{N} \sum_{j=q_0+1}^Q \frac{1}{j^\alpha} \left( \frac{Q^\alpha}{j^\alpha} \right)^\gamma + \frac{M_\ell B q_0}{N}, \quad \text{as } Q \rightarrow \infty, a \geq 1 \\
&\leq \frac{2L_\ell^2 B Q^{\alpha\gamma}}{N} \sum_{j=q_0+1}^Q \left( \frac{1}{j^\alpha} \right)^{\gamma+1} + \frac{M_\ell B q_0}{N} \\
&\leq \frac{2L_\ell^2 B Q^{\alpha\gamma}}{N} \frac{Q^{1-\alpha\gamma-\alpha} - q_0^{1-\alpha\gamma-\alpha}}{1-\alpha\gamma-\alpha} + \frac{M_\ell B q_0}{N} \\
&= \frac{2L_\ell^2 B Q^{1-\alpha}}{N(1-\alpha\gamma-\alpha)} - \frac{2L_\ell^2 B Q^{\alpha\gamma} q_0^{1-\alpha\gamma-\alpha}}{N(1-\alpha\gamma-\alpha)} + \frac{M_\ell B q_0}{N} \\
&= \frac{2L_\ell^2 B}{N(1-\alpha\gamma-\alpha)} \left( Q^{1-\alpha} - Q^{\alpha\gamma} q_0^{1-\alpha\gamma-\alpha} \right) + \frac{M_\ell B q_0}{N}
\end{aligned}$$

937 The goal is to minimize  $H(q_0)$ , ensuring that:  
938

$$\beta \leq \min_{1 \leq q_0 < Q} \frac{2L_\ell^2 B}{N(1-\alpha\gamma-\alpha)} \left( Q^{1-\alpha} - Q^{\alpha\gamma} q_0^{1-\alpha\gamma-\alpha} \right) + \frac{M_\ell B q_0}{N}.$$

941  
942 Setting  $\frac{dH}{dq_0} = 0$ , we obtain:  
943

$$-\frac{2(1-\alpha\gamma-\alpha)L_\ell^2 B Q^{\alpha\gamma}}{N(1-\alpha\gamma-\alpha)} q_0^{-\alpha\gamma-\alpha} + \frac{M_\ell B}{N} = 0.$$

944 For an optimal selection of  $q^*$ , using  $\eta_k = \frac{1}{k^\alpha}$ , we approximate:  
945

$$q^* = \left( \frac{2L_\ell^2 Q^{\alpha\gamma}}{M_\ell} \right)^{\frac{1}{\alpha(1+\gamma)}}$$

946 Finally, by setting  $w_i = \frac{1}{N_c}$ , the upper bound on stability is  
947

$$\begin{aligned}
\beta &\leq H(q^*) = \frac{2L_\ell^2 B}{N(1-\alpha\gamma-\alpha)} \left( Q^{1-\alpha} - Q^{\frac{\alpha\gamma^2+1-\alpha}{1+\gamma}} L_\ell^{\frac{2-2\alpha(1+\gamma)}{\alpha(1+\gamma)}} M_\ell^{\frac{\alpha(1+\gamma)-1}{\alpha(1+\gamma)}} \right) \\
&+ M_\ell^{1-\frac{1}{\alpha(1+\gamma)}} B L_\ell^{\frac{2}{\alpha(1+\gamma)}} Q^{\frac{\gamma}{1+\gamma}} N^{-1} \\
&\lesssim \alpha^{-1} \gamma^{-1} N^{-1} B M_\ell^{\frac{\alpha(1+\gamma)-1}{\alpha(1+\gamma)}} L_\ell^{\frac{2}{\alpha(1+\gamma)}} Q^{\frac{\max\{\gamma, \alpha\gamma^2+1-\alpha\}}{1+\gamma}}
\end{aligned}$$

948 We finally derive the desirable result  
949

$$\beta \lesssim \begin{cases} \frac{B M_\ell^{\frac{\alpha(1+\gamma)-1}{\alpha(1+\gamma)}} L_\ell^{\frac{2}{\alpha(1+\gamma)}} Q^{\frac{\gamma}{1+\gamma}}}{N \gamma \alpha}, & \text{if } \gamma \leq \frac{1+\sqrt{1-4\alpha(1-\alpha)}}{2\alpha}, \alpha > 0, \\ \frac{B M_\ell^{\frac{\alpha(1+\gamma)-1}{\alpha(1+\gamma)}} L_\ell^{\frac{2}{\alpha(1+\gamma)}} Q^{\frac{\alpha\gamma^2+1-\alpha}{1+\gamma}}}{N \gamma \alpha}, & \text{if } \gamma > \frac{1+\sqrt{1-4\alpha(1-\alpha)}}{2\alpha}, \alpha > 0. \end{cases}$$

## D GENERALISATION ERROR BOUND (PROOF OF THEOREM 4)

950 This proof closely follows the approach of Theorem 8 in (Kuznetsov & Mohri, 2015), with the key  
951 distinction that we extend the analysis to a weighted average version. For the sake of completeness,  
952 we present it here, beginning with an essential concentration inequality.  
953

972     **Lemma 1.** (Azuma's Inequality) Suppose  $\{Y_0, \dots, Y_n\}$  is a martingale difference sequence with  
 973     respect to the filtration  $F_0 \subset F_1 \subset \dots \subset F_N$ . If  
 974

$$975 \quad a_t \leq \mathbb{E}[Y_{t+1}|F_t] \leq b_{t+1}, \quad \forall 0 \leq t \leq N,$$

976     then the following probability bound holds:  
 977

$$978 \quad \text{Prob} \left( \sum_{i=1}^N |Y_i| \geq \epsilon \right) \leq 2 \exp \left( -\frac{2\epsilon^2}{\sum_{i=1}^N (b_i - a_i)^2} \right).$$

981     For notational simplicity, we denote, for the  $i$ -th sample, the random variables as  $Z^i = (\mathbf{P}^i, \mathbf{C}^i)$ ,  
 982      $Z_j^i = (\mathbf{P}^{i,j-1}, C_j^i)$ , and the sequence as  $Z_j^{i:m} = (Z_j^i, \dots, Z_j^m)$ . We define  $\hat{S}(i)$  as the sequence set  
 983

$$984 \quad (Z^1, \dots, Z^i, \tilde{Z}^{i+1}, \dots, \tilde{Z}^N),$$

986     where  $\tilde{Z}^i$  is independently drawn from the same distribution of  $Z^i$ . Now, consider the following  
 987     quantities:  
 988

$$989 \quad A_j^i = \mathbb{E}_{Z_j^{i+1:N}, \tilde{Z}_j^{i+1}} [\ell(\mathcal{T}_S, \tilde{Z}_j^{i+1})|Z^{1:i}] - \mathbb{E}_{\tilde{Z}^{i+1}} [\ell(\mathcal{T}_{\hat{S}(i)}, \tilde{Z}_j^{i+1})|Z^{1:i}],$$

990     and

$$991 \quad B_j^i = \mathbb{E}_{Z_j^{i+1}} [\ell(\mathcal{T}_{\hat{S}(i+1)}, Z_j^{i+1})|Z^{1:i}] - \ell(\mathcal{T}_S, Z_j^{i+1}),$$

993     where  $\tilde{Z}_j^{i+1} \sim \rho(\cdot|Z_j^{1:i})$  is independent of  $Z_j^{i+1:N}$  and  $\tilde{Z}_j^{i+1:N}$ . By construction, we observe that:  
 994

$$995 \quad \mathbb{E}_{Z_j^{i+1:N}, \tilde{Z}_j^{i+1:N}, \tilde{Z}_j^{i+1}} [A_j^i] = 0,$$

997     and

$$998 \quad \mathbb{E}_{Z_j^{i+1}, \tilde{Z}_j^{i+2:N}} [B_j^i] = 0.$$

999     These equations indicate that both sequences  $A_j^i, j = 1, \dots, N_c$  and  $B_j^i, j = 1, \dots, N_c$  form  
 1000     martingale difference sequences. By applying Azuma's Inequality (Lemma 1), for any  $\delta > 0$ , with  
 1001     probability at least  $1 - \delta/2$ , we obtain:  
 1002

$$1003 \quad \sum_{i=0}^{N-1} q_i A_j^i \leq \|\mathbf{q}\|_2 M_{j,\ell} \sqrt{2 \log \frac{4}{\delta}},$$

1006     and

$$1007 \quad \sum_{i=1}^{N-1} q_i B_j^i \leq \|\mathbf{q}\|_2 M_{j,\ell} \sqrt{2 \log \frac{4}{\delta}},$$

1010     where  $M_{j,\ell}$  is the upper bound of the loss function associated with input  $\mathbf{P}_i$ .  
 1011

1012     Summing both inequalities, we obtain:

$$1013 \quad \sum_{i=1}^{N-1} q_i (A_j^i + B_j^i) \leq 2 \|\mathbf{q}\|_2 M_{j,\ell} \sqrt{2 \log \frac{4}{\delta}}.$$

1016     Next, we define the weighted sequences:  
 1017

$$1018 \quad \bar{A}^i = \sum_{j=1}^{N_c} c_j A_j^i, \quad \bar{B}^i = \sum_{j=1}^{N_c} c_j B_j^i,$$

1021     where  $\sum_{j=1}^{N_c} c_j = 1$ . Since these sequences also form martingale difference sequences, we apply the  
 1022     definition of uniform stability, which states that:  
 1023

$$1024 \quad \left| \sum_{j=1}^{N_c} c_j E_j \right| \leq \beta,$$

1026 where

$$1027 \quad E_j := \mathbb{E}_{Z_j^{i+1}} [\ell(\mathcal{T}_{\hat{S}(i+1)}, Z_j^{i+1}) | Z^{1:i}] - \mathbb{E}_{Z_j^{i+1}} [\ell(\mathcal{T}_{\hat{S}(i)}, Z_j^{i+1}) | Z^{1:i}].$$

1029 Thus, with probability at least  $1 - \delta$ , we obtain:

$$1030 \quad 1031 \quad \sum_{i=1}^N q_i (\bar{A}^i + \bar{B}^i) \leq 2\|\mathbf{q}\|_2 M_\ell \sqrt{2 \log \frac{4}{\delta}},$$

1033 where  $M_\ell = \sum_{i=1}^{N_c} w_i M_{i,\ell}$ . By the definition of algorithmic stability, it follows that:

$$1035 \quad 1036 \quad \sum_{i=1}^N q_i (\bar{A}^i + \bar{B}^i) \leq 2\|\mathbf{q}\|_2 M_\ell \sqrt{2 \log \frac{4}{\delta}}.$$

1038 and

$$1040 \quad 1041 \quad \sum_{i=1}^N q_i \sum_{j=1}^{N_c} c_j \mathbb{E}_{Z_j^{i+1:N}, \bar{Z}_j^i} [\ell(\mathcal{T}_S, \bar{Z}_j^i) | Z_j^{1:i}] \leq \sum_{i=1}^N q_i \sum_{j=1}^{N_c} c_j \ell(\mathcal{T}_S, Z_j^i) + \|\mathbf{q}\|_1 \beta + 2\|\mathbf{q}\|_2 M_\ell \sqrt{2 \log \frac{2}{\delta}}.$$

1043 Finally, using the definition of discrepancy, we arrive at the final bound:

$$1044 \quad 1045 \quad \mathcal{L}(\mathcal{T}_S) \leq \sum_{i=1}^N q_i \sum_{j=1}^{N_c} c_j \ell(\mathcal{T}_S, Z_j^i) + \text{disc}(\mathbf{q}) + \|\mathbf{q}\|_1 \beta + 2\|\mathbf{q}\|_2 M_\ell \sqrt{2 \log \frac{2}{\delta}}.$$

1048 By taking  $w_i = \frac{1}{N_c}$  and combining the upper bound on  $\beta$  (4), we obtain the desirable result.

## 1050 E THE UPPER BOUND ON DISCREPANCY MEASURE UNDER I.I.D SCENARIO

1052 **Lemma 2** (Asymptotic Vanishing of Discrepancy). *Let  $\mathcal{T}_S$  be a learning algorithm that is uniformly  
1053  $\beta$ -stable. Suppose the training data and test sample are i.i.d., and  $\|\mathbf{q}\|_1 = 1$ . Then, the discrepancy  
1054 term satisfies  $|\text{disc}(\mathbf{q})| \leq 2\beta\|\mathbf{q}\|_2 N \sqrt{\log(2/\delta)}$ , and thus  $\text{disc}(\mathbf{q}) \rightarrow 0$  as  $N \rightarrow \infty$  provided that  
1055  $\beta_N \rightarrow 0$ .*

1057 *Proof.* Fix token index  $j \in \{1, \dots, N_c\}$  and define

$$1059 \quad 1060 \quad D_j := \mathbb{E}[\ell(\mathcal{T}_S, \bar{Z}_j^{N+1}) | Z^{1:N}] - \sum_{i=1}^N q_i \mathbb{E}[\ell(\mathcal{T}_S, \bar{Z}_j^i) | Z^{1:i-1}].$$

1062 We analyze each summand

$$1063 \quad \Delta_i := \mathbb{E}[\ell(\mathcal{T}_S, \bar{Z}_j^{N+1}) | Z^{1:N}] - \mathbb{E}[\ell(\mathcal{T}_S, \bar{Z}_j^i) | Z^{1:i-1}].$$

1065 Introduce an intermediate model  $h^{(i)} := \mathcal{T}_{S^{(i)}}$  trained on  $S^{(i)} = S \setminus \{Z^i\}$ . Decompose  $\Delta_i$  as:

$$1067 \quad \Delta_i = \underbrace{\mathbb{E}[\ell(\mathcal{T}_S, \bar{Z}_j^{N+1}) | Z^{1:N}] - \mathbb{E}[\ell(\mathcal{T}_S, \bar{Z}_j^i) | Z^{1:N}]}_{(A)} + \underbrace{\mathbb{E}[\ell(\mathcal{T}_S, \bar{Z}_j^i) | Z^{1:N}] - \mathbb{E}[\ell(\mathcal{T}_S, \bar{Z}_j^i) | Z^{1:i-1}]}_{(B)}.$$

1070 Since  $\bar{Z}_j^i \sim \bar{Z}_j^{N+1}$  are i.i.d. and independent of  $\mathcal{T}_S$  once  $Z^{1:N}$  is fixed, we have:

$$1072 \quad \mathbb{E}[\ell(\mathcal{T}_S, \bar{Z}_j^{N+1}) | Z^{1:N}] = \mathbb{E}[\ell(\mathcal{T}_S, \bar{Z}_j^i) | Z^{1:N}].$$

1073 Hence, (A) = 0.

1075 To control the second term, define a filtration  $\mathcal{F}_t := \sigma(Z^1, \dots, Z^t)$  and define Doob martingale:

$$1076 \quad 1077 \quad X_t := \mathbb{E}[\ell(\mathcal{T}_S, \bar{Z}_j^i) | Z^1, \dots, Z^t], \quad t = 0, \dots, N.$$

1078 Since  $\mathcal{T}_S$  is  $\beta$ -uniformly stable, replacing one sample  $Z^t$  changes the expected loss by at most  $\beta$ . So:  
1079

$$|X_t - X_{t-1}| \leq \beta.$$

1080 Then, Azuma-Hoeffding implies that with probability at least  $1 - \delta$ :

$$1082 \quad |\mathbb{E}[\ell(\mathcal{T}_S, Z_{i,j}) \mid Z^{1:N}] - \mathbb{E}[\ell(\mathcal{T}_S, Z_{i,j}) \mid Z^{1:i-1}]| \leq \beta \sqrt{2(N-i+1) \log(2/\delta)}.$$

1084 Using  $\|\mathbf{q}\|_2 \leq 1$  and Jensen's inequality:

$$1085 \quad |D_j| \leq \sum_{i=1}^N q_i |\Delta_i| \leq \|\mathbf{q}\|_2 \cdot \sqrt{\sum_{i=1}^N \beta^2 2(N-i+1) \log(2/\delta)} \leq 2\beta \|\mathbf{q}\|_2 N \sqrt{\log(2/\delta)}.$$

1089 Finally, averaging over  $j$ :

$$1090 \quad |\text{disc}(\mathbf{q})| \leq \frac{1}{N_c} \sum_{j=1}^{N_c} |D_j| \leq 2\beta \|\mathbf{q}\|_2 N \sqrt{\log(2/\delta)}.$$

1094 We complete the proof.  $\square$

## 1096 F THE UPPER BOUND ON DISCREPANCY MEASURE UNDER NON-I.I.D 1097 SCENARIO

1099 We firstly introduce the definition of Sequential Rademacher utilized in (Rakhlin et al., 2015;  
1100 Kuznetsov & Mohri, 2015; 2020).

1101 **Definition 7.** [Sequential Rademacher Complexity] Let  $\sigma = (\sigma_1, \dots, \sigma_T)$  be a sequence of  
1102 Rademacher random variables (each  $\sigma_t$  independently taking values  $\pm 1$  with equal probability), and  
1103 let  $q = (q_1, \dots, q_T) \in \mathbb{R}^T$  be a given weight vector. For a function class  $\mathcal{G}$  defined on sequential  
1104 data  $z_1, z_2, \dots, z_T$ , the sequential Rademacher complexity is

$$1106 \quad \mathcal{R}_N^{\text{seq}}(\mathcal{G}) := \sup_z \mathbb{E}_{\sigma} \left[ \sup_{g \in \mathcal{G}} \sum_{t=1}^N \sigma_t q_t g(z_t(\sigma)) \right],$$

1109 where the supremum is over all complete (depth- $N$ ) binary trees or adversarial sequences  
1110  $z_t(\sigma_1, \dots, \sigma_{t-1})$ .

1111 In simpler terms,  $\mathcal{R}_T^{\text{seq}}(\mathcal{G})$  measures how well  $\mathcal{G}$  can fit random signs  $\{\sigma_t\}$  in an online or sequential  
1112 manner.

### 1114 F.1 FUNCTION CLASS: TRANSFORMER HYPOTHESIS SPACE

1116 We fix a Transformer architecture (with  $N_a$  heads per layer, hidden dimension  $D$ , and  $L$  layers), and  
1117 let  $\theta$  collect all parameters  $\{Q_m, K_m, V_m, O_m, W_1, W_2, \dots\}$  across  $L$  layers. Denote the overall  
1118 parameter space by  $\Theta$ , and suppose we have a norm constraint  $\|\theta\| \leq \Lambda$ , bounding all weight matrices  
1119 in operator norm (or some suitable layerwise norm). Let  $\mathcal{F}_{\text{Trans}}$  be the function class:

$$1121 \quad \mathcal{F}_{\text{Trans}} := \left\{ f_{\theta} : \mathbf{P} \mapsto \mathcal{T}(\mathbf{P}) \mid \theta \in \Theta, \|\theta\| \leq \Lambda \right\}.$$

1123 For *sequential* inputs  $\mathbf{P}(\sigma_1, \dots, \sigma_t)$ , this means the Transformer is invoked on each partial prompt  
1124  $\mathbf{P}_{1:t}$ .

### 1125 F.2 REWRITING THE LOSS AS A COMPOSITE FUNCTION.

1128 Let us set

$$1129 \quad g(\mathbf{P}) = \mathcal{T}(\mathbf{P})_{n,:} \in \mathbb{R}^D,$$

1130 and define a function

$$1131 \quad \phi(\mathbf{x}, \mathbf{y}) := \|\mathbf{x} - \mathbf{y}\|_2^2,$$

1132 where  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$ . Then

$$1133 \quad \ell(\mathcal{T}) = \phi(g(\mathbf{P}), \mathbf{Y}) = \|\mathcal{T}(\mathbf{P})_{n,:} - \mathbf{Y}\|_2^2.$$

1134 Hence the loss class  $\mathcal{G} = \{\ell(\mathcal{T})\}$  is precisely  $\phi \circ G$  where  
 1135

$$1136 \quad G := \{g(\mathbf{P}) = \mathcal{T}(\mathbf{P})_{n,:} : \mathcal{T} \in \mathcal{H}_{\text{Trans}}\}.$$

1138 We check how  $\phi(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^2$  depends on  $\mathbf{x}$ . Let  $R = \max\{B_C, \max\{\|\mathbf{H}_{n,:}^L\|\}\}$  be a constant.  
 1139 Suppose  $\|\mathbf{x}\| \leq R$  and  $\|\mathbf{y}\| \leq R$  for all feasible  $(\mathbf{x}, \mathbf{y})$ . We can show that  $\phi(\mathbf{x}, \mathbf{y})$  is  $L_\phi$ -Lipschitz in  
 1140  $\mathbf{x}$  with

$$1141 \quad L_\phi \leq 4R,$$

1142 because

$$1143 \quad |\|\mathbf{x} - \mathbf{y}\|^2 - \|\mathbf{x}' - \mathbf{y}\|^2| \leq 4R \|\mathbf{x} - \mathbf{x}'\|.$$

1144 Thus, if the model outputs  $\mathbf{x} = \mathbf{P}$  and targets  $\mathbf{Y}$  remain within a ball of radius  $RL_{\mathcal{T}}^*$ , then  $\phi(\cdot, \mathbf{y})$  is  
 1145  $4RL_{\mathcal{T}}^*$ -Lipschitz in the first coordinate.

### 1147 F.3 SEQUENTIAL RADEMACHER COMPLEXITY OF TRANSFORMERS

1149 Inside the expectation  $\mathbb{E}_\sigma[\cdot]$ , the random variables  $\{\sigma_t\}$  are independent Rademacher signs. Let us  
 1150 write:

$$1151 \quad \mathbb{E}_\sigma \left[ \sup_{f \in \mathcal{F}} \left| \sum_{t=1}^N \sigma_t q_t f(z_t) \right| \right] \leq 4RL_{\mathcal{T}}^* \mathbb{E}_\sigma \left[ \left\| \sum_{t=1}^N \sigma_t q_t z_t \right\| \right].$$

1154 Thus, it remains to bound  $\mathbb{E}_\sigma \left[ \left\| \sum_{t=1}^N \sigma_t q_t z_t \right\| \right]$ . A typical assumption in bounding Rademacher-  
 1155 based complexities is that each  $z_t$  has a finite norm  $\|z_t\| \leq \sqrt{n}B_P$ . Then according to the fact that if  
 1156  $s < t$  then

$$1158 \quad \mathbb{E}_\sigma[\sigma_t \sigma_s q_t q_s z_t z_s] = \mathbb{E}_\sigma[\sigma_t] \mathbb{E}_\sigma[\sigma_s q_t q_s z_t z_s] = 0,$$

1159 we have the following:

$$1160 \quad \mathbb{E} \left[ \left\| \sum_{t=1}^N \sigma_t q_t z_t \right\| \right] \leq \sqrt{\mathbb{E} \left[ \left\| \sum_{t=1}^N \sigma_t q_t z_t \right\|^2 \right]} = \sqrt{\sum_{t=1}^N q_t^2 \|z_t\|^2} \leq \sqrt{n}B_P \|\mathbf{q}\|_2.$$

1164 Putting all these pieces together:

$$1166 \quad \mathcal{R}_N(\{\ell(\mathcal{T})\}) \leq 4RL_{\mathcal{T}}^* \sqrt{n}B_P \|\mathbf{q}\|_2.$$

1168 This shows that under norm constraints and bounded inputs/targets, the sequential Rademacher  
 1169 complexity of the squared- $\ell_2$  loss class is finite and depends primarily on the Lipschitz constant of  
 1170 the loss w.r.t. the model's output, as well as on the base complexity of the Transformer itself.

1172 **Remark.** While the above bound may appear loose (e.g. exponential in the number of layers  $L$ ),  
 1173 it nonetheless demonstrates qualitatively that *the capacity of squared- $\ell_2$  losses is controlled* by  
 1174 parameter norms, data magnitude  $R$ , sequence length  $T$ , and any submultiplicative structure in the  
 1175 Transformer layers.

1177 For given hypothesis space  $\mathcal{H}$  and define by  $\hat{\text{disc}}(\mathbf{q}) := \sup_{\mathcal{T} \in \mathcal{H}} \frac{1}{N_c} \sum_{j=1}^{N_c} \left[ E_{N+1,j} - \sum_{i=1}^N q_i E_{i,j} \right]$ ,  
 1178 where  $E_{i,j} = \mathbb{E} [\ell(\mathcal{T}(\mathbf{P}^{i,j-1})_{*,:}, C_j^i) | \{(\mathbf{p}^m, \mathbf{c}^m)\}_{m=1}^{i-1}]$ .

1180 By further combining the fact  $\text{disc}(\mathbf{q}) \leq \hat{\text{disc}}(\mathbf{q})$  with the following lemma (Kuznetsov & Mohri,  
 1181 2020), we obtain the final result.

1182 **Lemma 3.** *For any  $\delta > 0$ , with probability at least  $1 - \delta$ , for all  $f \in \mathcal{F}$  and all  $\alpha > 0$ , we have*

$$1184 \quad \sum_{t=1}^N \mathbb{E}[q_t f(Z_t) | Z_1^{t-1}] \leq \sum_{t=1}^N q_t f(Z_t) + \|\mathbf{q}\|_2 + 6M_\ell \sqrt{\pi \log T} \mathcal{R}_T(\mathcal{F}) + M_\ell \|\mathbf{q}\|_2 \sqrt{2 \log \frac{1}{\delta}}.$$

1187 Combining this lemma with above results, we complete the proof.

---

## 1188 G ERROR ACCUMULATION ANALYSIS (PROOF OF THEOREM 5) 1189

1190 In practical scenarios, the model typically uses its own estimated token to predict subsequent tokens.  
1191 This approach leads to cumulative errors as inaccuracies in steps propagate forward. Denote  $\mathcal{L}_i(\mathcal{T}) :=$   
1192  $\mathcal{L}(\mathcal{T}(\mathbf{P}^{i,j-1}), C_j^i)$  the population risk at  $i$ -th step prediction such that  $\mathcal{L}(\mathcal{T}) = \frac{1}{N_c} \sum_{i=1}^{N_c} \mathcal{L}_i(\mathcal{T})$ . We  
1193 have the following relation between  $\mathcal{L}^{EA}(\mathcal{T})$  and  $\mathcal{L}(\mathcal{T})$ .  
1194

1195 **Theorem 5.** (Error Accumulation Analysis) *Let  $\mathcal{L}(\mathcal{T})$  and  $\mathcal{L}^{EA}(\mathcal{T})$  be defined in Eqs (1) - (2).  
1196 Assume the conditions in Theorem 4 hold. For any  $0 < \delta < 1$ , we have*

$$1197 \mathcal{L}^{EA}(\mathcal{T}_S) \leq \frac{1}{N_c} \mathcal{L}_{N_c} + \frac{L_{\mathcal{T}}^*}{N_c} \sum_{j=1}^{N_c-1} \left[ \frac{1}{L_{\mathcal{T}}^*} + \delta_{j=1} \prod_{i=2}^{N_c-1} \left(1 + \frac{L_{\mathcal{T}}^*}{i}\right) + \sum_{i=j+1}^{N_c-1} \prod_{k=i+1}^{N_c-1} \left(1 + \frac{L_{\mathcal{T}}^*}{k}\right) \right] \mathcal{L}_j,$$

1200 where  $\delta_{(\cdot)}$  is the Kronecker delta.  
1201

1202 It is evident that  $L_{\mathcal{T}}^*$  (defined in Eq. (12)) increases with the number of layers  $L$ , and polynomially  
1203 with the prompt length, as well as linearly with the model size parameters  $N_a$  and  $D$ . Based on this  
1204 observation, we focus on analyzing the impact of inference length on the generalization error bound.

1205 **Corollary 5.** [Generalisation under i.i.d Scenario] *Let  $|B| = O(N^{\zeta_1})$ ,  $\zeta_1 \leq \frac{1}{2}$ ,  $Q = O(\ln N)$  and  
1206  $N_c = O((\ln N)^{\zeta_2})$ . With at least confidence  $1 - \delta$ , there holds*

$$1208 \mathcal{L}^{EA}(\mathcal{T}_S) \lesssim \sum_{i=1}^N \sum_{j=1}^{N_c} q_i \eta_j \ell(\mathcal{T}_S(\mathbf{p}^i)_{*,:}, c_j^i) + \psi \sqrt{2 \log \frac{4}{\delta}},$$

1211 where  $\psi = (\log n)^{\zeta_2(\log n)^{\zeta_2 2L}} N^{-1/2}$ , and the weights  $\eta_j, j = 1, \dots, N_c$  equal to

$$1213 \frac{L_{\mathcal{T}}^*}{N_c} \left[ \frac{1}{L_{\mathcal{T}}^*} + \delta_{j=1} \prod_{i=2}^{N_c-1} \left(1 + \frac{L_{\mathcal{T}}^*}{i}\right) + \sum_{i=j+1}^{N_c-1} \prod_{k=i+1}^{N_c-1} \left(1 + \frac{L_{\mathcal{T}}^*}{k}\right) \right].$$

1216 This result suggests, in scenarios where error accumulation occurs, the length of the inference  
1217 process should be constrained to a logarithmic scale relative to the sample size to ensure effective  
1218 generalisation. Notably, this finding aligns with (Merrill & Sabharwal, 2023), which states that  
1219 transformers with a logarithmic number of intermediate tokens may exhibit enhanced computational  
1220 power. Similar results can be easily extended to the non-i.i.d. setting.

1221 *Proof.* According to the definitions of  $\mathcal{L}(\theta)$  and  $\mathcal{L}^{EA}(\theta)$ , we have the follows

$$1224 \mathcal{L}^{EA}(\theta) - \mathcal{L}(\theta) = \frac{1}{N_c} \sum_{i=1}^{N_c} \mathcal{L}_i^{EA}(\theta) - \frac{1}{N_c} \sum_{i=1}^{N_c} \mathcal{L}_i(\theta) \\ 1225 = \frac{1}{N_c} \sum_{j=1}^{N_c} \mathbb{E}[\ell(\mathcal{T}(\hat{\mathbf{P}}^{N+1,j-1})_{*,:}, C_j^{N+1})] - \mathbb{E}[\ell(\mathcal{T}(\mathbf{P}^{N+1,j-1})_{*,:}, C_j^{N+1})] \\ 1226 = \frac{1}{N_c} \sum_{j=1}^{N_c} \mathbb{E}[\|\mathcal{T}(\mathbf{P}^{N+1,j-1})_{*,:} - \mathcal{T}(\hat{\mathbf{P}}^{N+1,j-1})_{*,:}\|_2^2].$$

1227 According to the Lipschitz property of Transformer, we have

$$1228 \frac{1}{N_c} \sum_{j=1}^{N_c} \mathbb{E}[\|\mathcal{T}(\mathbf{P}^{N+1,j-1}) - \mathcal{T}(\hat{\mathbf{P}}^{N+1,j-1})\|_2^2] \leq \frac{L_{\mathcal{T}}^*}{N_c} \sum_{j=1}^{N_c} \mathbb{E}[\|\mathbf{P}^{N+1,j-1} - \hat{\mathbf{P}}^{N+1,j-1}\|_2^2] \\ 1229 = \frac{L_{\mathcal{T}}^*}{N_c} \sum_{i=1}^{N_c} \sum_{j=1}^i \mathbb{E}[\|\mathcal{T}(\hat{\mathbf{P}}^{N+1,j-1}) - C_j^{N+1}\|_2^2] \\ 1230 = \frac{L_{\mathcal{T}}^*}{N_c} \sum_{i=1}^{N_c-1} \sum_{j=1}^i \mathcal{L}_j^{EA}(\theta),$$

1242 For notational simplicity, we denote  $A_i^{EA} = \sum_{j=1}^i \mathcal{L}_j^{EA}(\theta)$  and  $A_i = \sum_{j=1}^i \mathcal{L}_j(\theta)$ . Then we have  
 1243

$$1244 \quad A_m^{EA} \leq A_m + \frac{L_\tau^*}{m} \sum_{i=1}^{m-1} A_i^{EA}. \\ 1245 \\ 1246$$

1247 We denote by  $S_n = \sum_{i=1}^n A_i^{EA}$ . Since  
 1248

$$1249 \quad S_n = S_{n-1} + A_n^{EA} \leq (1 + \frac{L_\tau^*}{n}) S_{n-1} + A_n \\ 1250 \\ 1251 \quad \leq \prod_{i=2}^n (1 + \frac{L_\tau^*}{i}) A_1 + \sum_{i=2}^n \prod_{k=i+1}^n (1 + \frac{L_\tau^*}{k}) A_i \\ 1252 \\ 1253 \\ 1254 \quad \leq \sum_{j=1}^n \left[ \delta_{j=1} \prod_{i=2}^n (1 + \frac{L_\tau^*}{i}) + \sum_{i=j+1}^n \prod_{k=i+1}^n (1 + \frac{L_\tau^*}{k}) \right] \mathcal{L}_j. \\ 1255 \\ 1256$$

1257 Thus, we have

$$1258 \quad \mathcal{L}^{EA}(\theta) \leq \mathcal{L}(\theta) + \frac{L_\tau^*}{N_c} \sum_{i=1}^{N_c-1} A_i^{EA}(\theta) \\ 1259 \\ 1260 \quad \leq \frac{1}{N_c} \sum_{i=1}^{N_c} \mathcal{L}_i + \frac{L_\tau^*}{N_c} \sum_{j=1}^{N_c-1} \left[ \delta_{j=1} \prod_{i=2}^{N_c-1} (1 + \frac{L_\tau^*}{i}) + \sum_{i=j+1}^{N_c-1} \prod_{k=i+1}^{N_c-1} (1 + \frac{L_\tau^*}{k}) \right] \mathcal{L}_j \\ 1261 \\ 1262 \\ 1263 \\ 1264 \quad \leq \frac{1}{N_c} \mathcal{L}_{N_c} + \frac{L_\tau^*}{N_c} \sum_{j=1}^{N_c-1} \left[ \frac{1}{L_\tau^*} + \delta_{j=1} \prod_{i=2}^{N_c-1} (1 + \frac{L_\tau^*}{i}) + \sum_{i=j+1}^{N_c-1} \prod_{k=i+1}^{N_c-1} (1 + \frac{L_\tau^*}{k}) \right] \mathcal{L}_j. \\ 1265 \\ 1266$$

1267 This completes the proof.

1268 We then simplify these weights. Using the logarithmic approximation, there holds  
 1269

$$1270 \quad \prod_{i=2}^{N_c-1} \left( 1 + \frac{L_\tau^*}{i} \right) \approx \exp \left( L_\tau^* \sum_{i=2}^{N_c-1} \frac{1}{i} \right) \leq N_c^{L_\tau^*}. \\ 1271 \\ 1272 \\ 1273$$

1274 Similarly,  
 1275

$$1276 \quad \prod_{k=i+1}^{N_c-1} \left( 1 + \frac{L_\tau^*}{k} \right) \leq \left( \frac{N_c}{i+1} \right)^{L_\tau^*}. \\ 1277 \\ 1278 \\ 1279$$

1280 Approximating the summation, we have  
 1281

$$1282 \quad \sum_{i=j+1}^{N_c-1} \left( \frac{N_c}{i+1} \right)^{L_\tau^*} \approx \int_j^{N_c} \left( \frac{N_c}{x} \right)^{L_\tau^*} dx. \\ 1283 \\ 1284$$

1285 Evaluating the integral yields  
 1286

$$1287 \quad \frac{N_c^{L_\tau^*}}{L_\tau^*} \left[ (N_c^{-L_\tau^*+1} - j^{-L_\tau^*+1}) \right] = \frac{N_c^{L_\tau^*} - j^{L_\tau^*}}{L_\tau^*}. \\ 1288 \\ 1289 \\ 1290$$

1291 Thus, the dominant term in the simplified bound is:  
 1292

$$1293 \quad O \left( L_\tau^* N_c^{L_\tau^*-1} - j^{L_\tau^*-1} \right). \\ 1294$$

1295 By combining above results with the generalisation bound established above, we obtain Corollary  
 5.  $\square$

---

## 1296 H GRADIENT, HESSIAN MATRIX AND LIPSCHITZ (SMOOTH) CONSTANT

1298 This section gives the gradient and hessian of Transformer models. Note that,  $n, N_p \leq n \leq N_p + N_c$   
 1299 in this section refers to the length of input prompt.

1301 H.1 GRADIENT W.R.T.  $\mathbf{H}_{n,:}^l$  AND ITS NORM UPPER BOUND

1303 It is easy to obtain the gradient of loss w.r.t. final output  $\mathbf{H}_{n,:}^L$ , i.e.,

$$1304 \frac{\partial \mathcal{L}}{\partial \mathbf{H}_{*,:}^L} = 2(\mathbf{H}_{*,:}^L - \mathbf{y}).$$

1307 To establish the upped bound on  $\|\frac{\partial \mathcal{L}}{\partial \mathbf{H}_{*,:}^L}\|_2$ , we need to bound the upper bound on the output  $\|\mathbf{H}_{*,:}^L\|_2$ .

1308 The definition of Transformer models yields

$$1309 \mathbf{H}_{*,:}^L = \mathcal{M}^L(\mathcal{A}^L(\mathbf{H}^{L-1}))_{*,:} = \text{ReLU}(\mathcal{A}^L \mathbf{H}_{*,:}^{L-1} W_1^L) W_2^L$$

1310 and

$$1311 \|\mathcal{M}^L(\mathcal{A}^L(\mathbf{H}^{L-1}))_{i,:}\|_2 \leq B_{W_1} B_{W_2} \sup \|\mathcal{A}^L \mathbf{H}_{i,:}^{L-1}\|_2,$$

1312 We have

$$1314 \|\mathcal{A}^L(\mathbf{H}^{L-1})_{n,:}\|_2 = \left\| \sum_{m=1}^{N_a} \text{softmax}((\mathbf{H}^{L-1})_{i,:} Q_m^L K_m^L (\mathbf{H}^{L-1})^T) \mathbf{H}^{L-1} V_m^L O_m^L \right\|_2$$

$$1315 \leq B_V B_O N_a \sum_{j=1}^n s_j \|\mathbf{H}_{j,:}^{L-1}\|_2$$

$$1319 \leq B_V B_O N_a \sup_{j=1,\dots,n} \|\mathbf{H}_{j,:}^{L-1}\|_2.$$

1321 Combined with above result, we obtain

$$1322 \sup \|\mathbf{H}_{i,:}^L\|_2 \leq B_{W_1} B_{W_2} B_V B_O N_a \sup_{i=1,\dots,n} \|\mathbf{H}_{i,:}^{L-1}\|_2 \leq (B_{W_1} B_{W_2} B_V B_O N_a)^L \sup_{i=1,\dots,n} \|\mathbf{H}_{i,:}^0\|_2.$$

1324 Under Assumption 1, we have

$$1325 \sup \|\mathbf{H}_{n,:}^L - \mathbf{y}\|_2 \leq \sqrt{2} (B_{W_1} B_{W_2} B_V B_O N_a)^L B_P + \sqrt{2} B_C =: C_L$$

1327 Similarly, the maximum of loss function can be bounded by

$$1328 M_\ell = 2(B_{W_1} B_{W_2} B_V B_O N_a)^{2L} B_P + 2B_C^2.$$

1330 H.2 GRADIENT W.R.T.  $W_2^l$  AND ITS NORM UPPER BOUND

1332 For any  $l = 1, \dots, L$ , the gradient w.r.t.  $W_2^l$ , we get

$$1333 \frac{\partial \mathcal{L}}{\partial W_2^l} = \frac{\partial \mathcal{L}}{\partial \mathbf{H}_{n,:}^L} \left[ \frac{\partial \mathbf{H}_{n,:}^L}{\partial \mathbf{H}^{L-1}} \cdots \frac{\partial \mathbf{H}^{l+1}}{\partial \mathbf{H}^l} \right] \frac{\partial \mathbf{H}^l}{\partial W_2^l}.$$

1335 According to the definition of  $\mathcal{M}$  and  $\mathcal{A}$ , we have

$$1337 \frac{\partial \mathbf{H}^l}{\partial W_2^l} = \text{ReLU}(\mathcal{A}^l(\mathbf{H}^{l-1}) W_1^l).$$

1339 Recalling the Lipschitz property of Transformer, we have

$$1341 \left\| \frac{\partial \mathbf{H}_{n,:}^L}{\partial \mathbf{H}^{L-1}} \cdots \frac{\partial \mathbf{H}^{l+1}}{\partial \mathbf{H}^l} \right\|_F \leq n^{-1} L \tau^{\frac{L-l}{L}} := C_{l:L}$$

1343 We then can bound the gradient w.r.t  $W_2^l$  by

$$1344 \left\| \frac{\partial \mathcal{L}}{\partial W_2^l} \right\|_F \leq C_L C_{l:L} B_{W_1} \|\mathcal{A}^l(\mathbf{H}^{l-1})\|_F,$$

1346 where

$$1347 \|\mathcal{A}^l(\mathbf{H}^{l-1})\|_F \leq \sqrt{n} \sup_{i=1,\dots,n} \|\mathcal{A}^l(\mathbf{H}^{l-1})_{i,:}\|_F$$

$$1348 \leq \sqrt{n} B_V B_O N_a \sup_{i=1,\dots,n} \|\mathbf{H}_{i,:}^{l-1}\|_F \leq \sqrt{n} B_V^l B_O^l N_a^l (B_{W_1} B_{W_2})^{l-1} B_P := C_{W_2}.$$

1350 H.3 GRADIENT W.R.T.  $W_1^l$  AND ITS NORM UPPER BOUND  
13511352 We next to give the upper bound on the norm of the gradient w.r.t.  $W_1^l$ . Similarly, for any  $l = 1, \dots, L$ ,  
1353 we have

1354 
$$\frac{\partial \mathcal{L}}{\partial W_1^l} = \frac{\partial \mathcal{L}}{\partial \mathbf{H}_{n,:}^L} \left[ \frac{\partial \mathbf{H}_{n,:}^L}{\partial \mathbf{H}^{L-1}} \cdots \frac{\partial \mathbf{H}^{l+1}}{\partial \mathbf{H}^l} \right] \frac{\partial \mathbf{H}^l}{\partial W_1^l}.$$
  
1355  
1356

1357 and

1358 
$$\frac{\partial \mathbf{H}^l}{\partial W_1^l} = \left[ \mathbf{R}^l \odot \frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1}) W_1^l}{\partial W_1^l} \right] W_2^l = [\mathbf{R}^l \odot \mathcal{A}^l(\mathbf{H}^{l-1})] W_2^l,$$
  
1359  
1360

1361 where  $R_{ij}^l = 1$  if  $(\mathcal{A}^l(\mathbf{H}^{l-1}) W_1^l)_{ij} > 0$ , otherwise  $R_{ij}^l = 0$ . The upper bound is

1362 
$$\|\frac{\partial \mathcal{L}}{\partial W_1^l}\|_F \leq C_L C_{l:L} B_{W_2} \|\mathbf{R}^l \odot \mathcal{A}^l(\mathbf{H}^{l-1})\|_F \leq C_L C_{l:L} B_{W_2} \|\mathcal{A}^l(\mathbf{H}^{l-1})\|_F.$$
  
1363  
1364

1365 H.4 GRADIENT W.R.T.  $Q_m^l$  AND ITS NORM UPPER BOUND  
13661367 For any  $l = 1, \dots, L$ , the gradient w.r.t.  $Q_m^l$  is

1368 
$$\frac{\partial \mathcal{L}}{\partial Q_m^l} = \frac{\partial \mathcal{L}}{\partial \mathbf{H}_{n,:}^L} \left[ \frac{\partial \mathbf{H}_{n,:}^L}{\partial \mathbf{H}^{L-1}} \cdots \frac{\partial \mathbf{H}^{l+1}}{\partial \mathbf{H}^l} \right] \frac{\partial \mathbf{H}^l}{\partial Q_m^l}$$
  
1369  
1370

1371 and

1372 
$$\frac{\partial \mathbf{H}^l}{\partial Q_m^l} = \frac{\partial \mathbf{H}^l}{\partial \mathcal{A}^l(\mathbf{H}^{l-1})} \frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial Q_m^l} = \begin{pmatrix} \text{diag}(\mathbf{R}_1^l) W_1^l W_2^l \\ \vdots \\ \text{diag}(\mathbf{R}_n^l) W_1^l W_2^l \end{pmatrix} \frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial Q_m^l},$$
  
1373  
1374

1375 where

1376 
$$\frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial Q_m^l} = \text{softmax}' \cdot (\mathbf{H}^{l-1})^\top \mathbf{H}^{l-1} K_m^l \mathbf{H}^{l-1} V_m^l O_m^l$$
  
1377  
1378

1379 and

1380 
$$\text{softmax}' = \text{softmax}(Z)(\mathbf{I} - \text{softmax}(Z)^T).$$
  
1381

1382 Note that  $Z = \mathbf{H}^{l-1} Q_m^l K_m^l (\mathbf{H}^{l-1})^T$  and

1383 
$$\|\text{softmax}'\|_F \leq \frac{\sqrt{n}}{2}.$$
  
1384  
1385

1386 Then the corresponding upper bound is

1387 
$$\begin{aligned} \|\frac{\partial \mathcal{L}}{\partial Q_m^l}\|_F &\leq C_L C_{l:L} \sqrt{n} B_{W_1} B_{W_2} \left\| \frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial Q_m^l} \right\|_F \\ &\leq C_L C_{l:L} n B_{W_1} B_{W_2} B_K B_V B_O \|\mathbf{H}^{l-1}\|_2^{3/2} \\ &\leq C_L C_{l:L} n^2 B_{W_1}^{\frac{3l-1}{2}} B_{W_2}^{\frac{3l-1}{2}} B_K B_V^{\frac{3l-1}{2}} B_O^{\frac{3l-1}{2}} N_a^{\frac{3(l-1)}{2}} B_P^{\frac{3}{2}}. \end{aligned}$$
  
1388  
1389

1390 H.5 GRADIENT W.R.T.  $K_m^l$  AND ITS NORM UPPER BOUND  
13911392 Similarly, the corresponding upper bound of the norm of the gradient w.r.t.  $K_m^l$  is

1393 
$$\begin{aligned} \left\| \frac{\partial \mathbf{H}^l}{\partial K_m^l} \right\|_F &\leq C_L C_{l:L} \sqrt{n} B_{W_1} B_{W_2} \left\| \frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial K_m^l} \right\|_F \\ &\leq C_L C_{l:L} n^2 B_{W_1}^{\frac{3l-1}{2}} B_{W_2}^{\frac{3l-1}{2}} B_Q B_V^{\frac{3l-1}{2}} B_O^{\frac{3l-1}{2}} N_a^{\frac{3(l-1)}{2}} B_P^{\frac{3}{2}}. \end{aligned}$$
  
1394  
1395  
1396

1404 H.6 GRADIENT W.R.T.  $V_m^l$  AND ITS NORM UPPER BOUND  
14051406 For any  $l = 1, \dots, L$ , the gradient w.r.t.  $V_m^l$  is  
1407

1408 
$$\frac{\partial \mathcal{L}}{\partial V_m^l} = \frac{\partial \mathcal{L}}{\partial \mathbf{H}_{n,:}^L} \left[ \frac{\partial \mathbf{H}_{n,:}^L}{\partial \mathbf{H}^{L-1}} \cdots \frac{\partial \mathbf{H}^{l+1}}{\partial \mathbf{H}^l} \right] \frac{\partial \mathbf{H}^l}{\partial V_m^l}.$$
  
1409

1410 and  
1411

1412 
$$\frac{\partial \mathbf{H}^l}{\partial V_m^l} = \frac{\partial \mathbf{H}^l}{\partial \mathcal{A}^l(\mathbf{H}^{l-1})} \frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial V_m^l} = \begin{pmatrix} \text{diag}(\mathbf{R}_1^l) W_1^l W_2^l \\ \vdots \\ \text{diag}(\mathbf{R}_n^l) W_1^l W_2^l \end{pmatrix} \frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial V_m^l},$$
  
1413  
1414  
1415

1416 where  
1417

1418 
$$\frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial V_m^l} = \text{softmax}(\mathbf{H}^{l-1} Q_m^l (\mathbf{H}^{l-1} K_m^l)^\top)^\top \mathbf{H}^{l-1} O_m^l.$$
  
1419

1420 Then we can bound  $\|\frac{\partial \mathbf{H}^l}{\partial V_m^l}\|_F$  by  
1421

1422 
$$\begin{aligned} \|\frac{\partial \mathcal{L}}{\partial V_m^l}\|_F &\leq C_L C_{l:L} \sqrt{n} B_{W_1} B_{W_2} \|\frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial V_m^l}\|_F \\ &\leq C_L C_{l:L} n B_{W_1} B_{W_2} B_O \|\mathbf{H}^{l-1}\|_F \\ &\leq C_L C_{l:L} n^{\frac{3}{2}} B_{W_1} B_{W_2} B_O \|\mathbf{H}_{n,:}^{l-1}\|_F \\ &\leq C_L C_{l:L} n^{\frac{3}{2}} B_{W_1}^l B_{W_2}^l B_O^l B_V^{l-1} N_a^{l-1} B_P. \end{aligned}$$
  
1423  
1424  
1425  
1426  
1427

1428 H.7 GRADIENT W.R.T.  $O_m^l$  AND ITS NORM UPPER BOUND  
14291430 Similarly, there also holds  
1431

1432 
$$\frac{\partial \mathcal{L}}{\partial O_m^l} = \frac{\partial \mathcal{L}}{\partial \mathbf{H}_{n,:}^L} \left[ \frac{\partial \mathbf{H}_{n,:}^L}{\partial \mathbf{H}^{L-1}} \cdots \frac{\partial \mathbf{H}^{l+1}}{\partial \mathbf{H}^l} \right] \frac{\partial \mathbf{H}^l}{\partial O_m^l}$$
  
1433  
1434

1435 and  
1436

1437 
$$\frac{\partial \mathbf{H}^l}{\partial O_m^l} = \frac{\partial \mathbf{H}^l}{\partial \mathcal{A}^l(\mathbf{H}^{l-1})} \frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial O_m^l} = \begin{pmatrix} \text{diag}(\mathbf{R}_1^l) W_1^l W_2^l \\ \vdots \\ \text{diag}(\mathbf{R}_n^l) W_1^l W_2^l \end{pmatrix} \frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial O_m^l},$$
  
1438  
1439

1440 where  
1441

1442 
$$\frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial O_m^l} = \text{softmax}(\mathbf{H}^{l-1} Q_m^l (\mathbf{H}^{l-1} K_m^l)^\top)^\top \mathbf{H}^{l-1} V_m^l.$$
  
1443

1444 Then we can bound  $\|\frac{\partial \mathbf{H}^l}{\partial O_m^l}\|_F$  by  
1445

1446 
$$\begin{aligned} \|\frac{\partial \mathcal{L}}{\partial O_m^l}\|_F &\leq C_L C_{l:L} \sqrt{n} B_{W_1} B_{W_2} \|\frac{\partial \mathcal{A}^l(\mathbf{H}^{l-1})}{\partial O_m^l}\|_F \\ &\leq C_L C_{l:L} n B_{W_1} B_{W_2} B_V \|\mathbf{H}^{l-1}\|_F \\ &\leq C_L C_{l:L} n^{\frac{3}{2}} B_{W_1} B_{W_2} B_V \|\mathbf{H}_{n,:}^{l-1}\|_F \\ &\leq C_L C_{l:L} n^{\frac{3}{2}} B_{W_1}^l B_{W_2}^l B_V^l B_O^{l-1} N_a^{l-1} B_P. \end{aligned}$$
  
1447  
1448  
1449  
1450  
1451  
1452

## 1453 H.8 HESSIAN MATRIX

1454 We firstly calculate the Hessian of Transformer  $T^l$  w.r.t  $\mathbf{H}^{l-1}$  and its upper bound.  
14551456 For  $l$ -th layer, the Hessian matrix is  
1457

1458 
$$H_{T^l} = \nabla_{\mathbf{H}^{l-1}}^2 \text{ReLU}(\mathcal{A}^l(\mathbf{H}^{l-1}) W_1^l) W_2^l = \text{diag}(\text{ReLU}'(\mathcal{A}^l(\mathbf{H}^{l-1}) W_1^l)) \nabla_{\mathbf{H}^{l-1}}^2 \mathcal{A}^l(\mathbf{H}^{l-1}) W_1^l W_2^l.$$

1458 where

$$1460 \quad \nabla_{\mathbf{H}^{l-1}}^2 \mathcal{A}^l = \sum_{m=1}^{N_a} \left( \nabla_{Z_m}^2 \text{softmax}(Z_m) \cdot (\nabla_{\mathbf{H}^{l-1}} Z_m)^2 \cdot V_m^l O_m^l + \nabla_{Z_m} \text{softmax}(Z_m) \cdot \nabla_{\mathbf{H}^{l-1}}^2 Z_m \cdot V_m^l O_m^l \right)$$

1462 and

$$1464 \quad Z_m = \mathbf{H}^{l-1} Q_m^l K_m^l (\mathbf{H}^{l-1})^T.$$

1465 The norm of each component in Lipschitz smooth constant for  $T^l$  w.r.t  $\mathbf{H}^{l-1}$  is

$$1466 \quad \|\text{diag}(\text{ReLU}'(\mathcal{A}^l(\mathbf{H}^{l-1}) W_1^l))\| \leq \sqrt{nD},$$

$$1468 \quad \nabla_{\mathbf{H}^{l-1}}^2 \mathcal{A}^l(\mathbf{H}^{l-1}) \leq C_{\text{softmax}} N_a B_V B_O B_Q B_K \|\mathbf{H}^{l-1}\|_F (B_Q B_K \|\mathbf{H}^{l-1}\|_F + 2),$$

1470 where a conservative bound  $C_{\text{softmax}} = D^2/8$ . Then we have

$$1471 \quad \|H_{T^l}\|_F \leq \sqrt{n} D^{\frac{3}{2}} N_a B_V B_O B_Q B_K B_{W_1} B_{W_2} \|\mathbf{H}^{l-1}\|_F (\|\mathbf{H}^{l-1}\|_F + 2).$$

1474 For  $W_1^l$  and  $W_2^l$ , their Lipschitz smooth constants are 0. For  $Q_m^l$ , we have the Hessian matrix

$$1475 \quad H_{Q_m^l} = \nabla_{Q_m^l}^2 \text{ReLU}(\mathcal{A}^l(\mathbf{H}^{l-1}) W_1^l) W_2^l = \text{diag}(\text{ReLU}'(\mathcal{A}^l(\mathbf{H}^{l-1}) W_1^l)) \nabla_{Q_m^l}^2 \mathcal{A}^l(\mathbf{H}^{l-1}) W_1^l W_2^l.$$

1477 where

$$1479 \quad \nabla_{Q_m^l}^2 \mathcal{A}^l = \sum_{m=1}^{N_a} \left( \nabla_{Z_m}^2 \text{softmax}(Z_m) \cdot (\nabla_{Q_m^l} Z_m)^2 \cdot V_m^l O_m^l + \nabla_{Z_m} \text{softmax}(Z_m) \cdot \nabla_{Q_m^l}^2 Z_m \cdot V_m^l O_m^l \right)$$

1481 and

$$1483 \quad \|\nabla_{Q_m^l}^2 \mathcal{A}^l\|_F \leq N_a D^2 B_V B_O B_K^2 \|\mathbf{H}^{l-1}\|^2.$$

1485 For  $K_m^l$ , we similarly have

$$1486 \quad \|\nabla_{K_m^l}^2 \mathcal{A}^l\|_F \leq N_a D^2 B_V B_O B_Q^2 \|\mathbf{H}^{l-1}\|^2.$$

1488 For  $V_m^l$  and  $O_m^l$ , the Lipschitz smooth constants are 0.

## 1490 H.9 LIPSCHITZ CONSTANT $L_\ell$ , LIPSCHITZ SMOOTH CONSTANT $\gamma$ AND MAXIMUM OF LOSS 1491 FUNCTION $M_\ell$

1493 According to the results in Appendix H, the upper bound on  $L_\ell$ ,  $M_\ell$  and  $\gamma$  are

$$1494 \quad M_\ell = 2(B_{W_1} B_{W_2} B_V B_O N_a)^{2L} B_P + 2B_C^2, \quad (7)$$

$$1497 \quad L_\ell = \sum_{n=N_e N_c + 1}^{(N_e + 1) N_c} v_n \sum_{l=1}^L (C_{W_1}^l + C_{W_2}^l + N_a (C_Q^l + C_K^l + C_V^l + C_O^l)) \quad (8)$$

1500 where

$$1501 \quad C_{W_1}^l = C_L C_{l:L} B_{W_2} \sqrt{n} B_V^l B_O^l N_a^l (B_{W_1} B_{W_2})^{l-1} B_P$$

$$1503 \quad C_{W_2}^l = C_L C_{l:L} B_{W_1} \sqrt{n} B_V^l B_O^l N_a^l (B_{W_1} B_{W_2})^{l-1} B_P$$

$$1505 \quad C_Q^l = C_L C_{l:L} n^2 B_{W_1}^{\frac{3l-1}{2}} B_{W_2}^{\frac{3l-1}{2}} B_K B_V^{\frac{3l-1}{2}} B_O^{\frac{3l-1}{2}} N_a^{\frac{3(l-1)}{2}} B_P^{\frac{3}{2}}$$

$$1509 \quad C_K^l = C_L C_{l:L} n^2 B_{W_1}^{\frac{3l-1}{2}} B_{W_2}^{\frac{3l-1}{2}} B_Q B_V^{\frac{3l-1}{2}} B_O^{\frac{3l-1}{2}} N_a^{\frac{3(l-1)}{2}} B_P^{\frac{3}{2}}$$

$$1511 \quad C_V^l = C_L C_{l:L} n^{\frac{3}{2}} B_{W_1}^l B_{W_2}^l B_O^l B_V^{l-1} N_a^{l-1} B_P.$$

1512

$$C_O^l = C_L C_{l:L} n^{\frac{3}{2}} B_{W_1}^l B_{W_2}^l B_V^l B_O^{l-1} N_a^{l-1} B_P.$$

1514  
1515 The Lipschitz smooth constant is

$$\gamma = \sum_{n=N_e N_c + 1}^{(N_e + 1) N_c} v_n \sum_{l=1}^L N_a (\gamma_Q^l + \gamma_K^l) \quad (9)$$

1519 where

$$\gamma_Q^l = \left( \sqrt{n} D^{\frac{3}{2}} N_a B_V B_O B_Q B_K B_{W_1} B_{W_2} \|\mathbf{H}^{l-1}\|_F (\|\mathbf{H}^{l-1}\|_F + 2) \right)^{L-l} N_a D^2 B_V B_O B_K^2 \|\mathbf{H}^{l-1}\|^2$$

1520 and

$$\gamma_K^l = \left( \sqrt{n} D^{\frac{3}{2}} N_a B_V B_O B_Q B_K B_{W_1} B_{W_2} \|\mathbf{H}^{l-1}\|_F (\|\mathbf{H}^{l-1}\|_F + 2) \right)^{L-l} N_a D^2 B_V B_O B_Q^2 \|\mathbf{H}^{l-1}\|^2,$$

1521 where

$$\|\mathbf{H}^{l-1}\|_F \leq n^{\frac{1}{2}} (B_{W_1} B_{W_2} B_V B_O N_a)^{l-1} B_P.$$

1522 Putting the above results into the upper bound of stability will obtain the desirable results.

1523

1524 H.10 LIPSCHITZ CONSTANT W.R.T INPUT  $L_{\mathcal{T}}$ 

1525

1526 In a Transformer, the ReLU activation function is piecewise linear and thus non-differentiable at  
 1527 certain points. In particular, the concept of a Jacobian, defined in terms of the network's outputs  
 1528 relative to its inputs, indicates how those outputs vary with small changes in the inputs. The Jacobian  
 1529 at a point  $x$  is computed via the chain rule during backpropagation. However, it is only well-defined if  
 1530 all ReLU nodes are differentiable at that point, meaning their inputs must be strictly positive or strictly  
 1531 negative. Consequently, if an input equals zero, one must assume the existence of a sub-gradient  
 1532 within  $[0, 1]$ .

1533 According to the chain rule, the Jacobian at a point  $\mathbf{p}$  (namely  $\mathbf{H}^0$ ), if defined, can be compactly  
 1534 represented as:

$$J_{\mathbf{p}}[\mathcal{T}] = J_{\mathbf{p}}[T^L \circ T^{L-1} \circ \dots \circ T^1] = J_{\mathbf{H}^{L-1}}[T^L] \dots J_{\mathbf{H}^0}[T^1].$$

1535 To obtain  $J_{\mathbf{H}^{l-1}}[T^l]$ ,  $l = 1, \dots, L$ , we need to calculate  $J_{\mathcal{A}^l(\mathbf{H}^{l-1})}[\mathcal{M}^l]$  and  $J_{\mathbf{H}^{l-1}}[\mathcal{A}^l]$ , respectively.  
 1536 Since both  $\mathcal{M}^l$  and  $\mathcal{A}^l$  map from  $\mathbb{R}^{N_p \times D}$  to  $\mathbb{R}^{N_p \times D}$ , their Jacobian matrices have the same form

$$\begin{bmatrix} J_{11}^l & J_{12}^l & \dots & J_{1N_p}^l \\ J_{21}^l & J_{22}^l & \dots & J_{2N_p}^l \\ \vdots & \vdots & \ddots & \vdots \\ J_{N_p 1}^l & J_{N_p 2}^l & \dots & J_{N_p N_p}^l \end{bmatrix} \in \mathbb{R}^{N_p D \times N_p D} \quad (10)$$

1537 We firstly give the Jacobian matrix for  $J_{\mathbf{A}^l}[\mathcal{M}^l]$ . We denote by  $\mathbf{A}^l = \mathcal{A}^l(\mathbf{H}^{l-1}) \in \mathbb{R}^{N_p \times D}$ . Recall  
 1538 the definition of mapping

$$\mathcal{M}^l(\mathbf{A}^l) = \text{ReLU}(\mathbf{A}^l W_1^l) W_2^l = \begin{bmatrix} M_1^T(\mathbf{A}^l) \\ M_2^T(\mathbf{A}^l) \\ \vdots \\ M_N^T(\mathbf{A}^l) \end{bmatrix} \in \mathbb{R}^{N_p \times D},$$

1539 where  $M_i(\mathbf{A}^l) = \text{ReLU}(\mathbf{A}_i^l W_1^l) W_2^l$ . By taking partial derivatives, for any  $i, j \in [N_p]$ , we have

$$J_{ij}^l = \frac{\partial M_i(\mathbf{A}^l)}{\partial \mathbf{A}_j^l} = \frac{\partial \text{ReLU}(\mathbf{A}_i^l W_1^l) W_2^l}{\partial \mathbf{A}_j^l} = \delta_{ij} W_2^T W_1^T \mathcal{G}_i^l,$$

1540 where  $\mathcal{G}^l$  encodes the activation pattern of a layer  $l$  caused by the input  $x$ , and  $\delta_{ij}$  is the Kronecker  
 1541 delta. The matrix  $\mathcal{G}_i^l$  is a diagonal matrix, having 1s as elements if the corresponding neuron is active,  
 1542 otherwise 0s for inactive neurons. The Jacobian is the same for all the points strictly inside a linear

region with the same activation pattern. Since ReLU networks are piece-wise linear in nature, the Lipschitz constant is exactly equal to the  $p$ -norm of the Jacobian at one such linear region in the input domain. Thus, the jacobian matrix for  $\mathcal{M}$  is a diagonal block matrix, having  $W_2^T W_1^T \mathcal{G}_i^l$  as elements if  $i = j$ , otherwise  $0^{D \times D}$  for  $i \neq j$ . We then have

$$\sup_{\mathbf{A}^l} \|J_{\mathbf{A}^l}[\mathcal{M}^l]\|_2 \leq N_p^{1/2} DB_{W_1} B_{W_2}.$$

In fact, there have been some studies analyzed  $J_{\mathbf{H}^{l-1}}[\mathcal{A}^l]$ ,  $l = 1, \dots, L$  and the Lipschitz constant of attention. Since transformer  $\mathcal{T}$  is a map from  $\mathbb{R}^{N_p \times D}$  to  $\mathbb{R}^{N_p \times D}$ , the element of Jacobian is  $J_{ij}^l = \frac{\partial(\mathcal{A}^l(\mathbf{H}^{l-1}))_i}{\partial \mathbf{H}_j^{l-1}}$ . The Jacobian of the softmax is also well-known. Suppose that  $\mathbf{v} = \text{softmax}(\mathbf{u}) \in \mathbb{R}^{N_p \times 1}$ . Then we have

$$\frac{\partial \mathbf{v}}{\partial \mathbf{u}} = \text{diag}(\mathbf{v}) - \mathbf{v} \mathbf{v}^T$$

Recall the definition of mapping

$$\mathcal{A}^l(\mathbf{H}^{l-1}) := \sum_{m=1}^{N_a} \text{softmax}(\mathbf{H}^{l-1} Q_m^l K_m^l (\mathbf{H}^{l-1})^T) \mathbf{H}^{l-1} V_m^l O_m^l = \begin{bmatrix} A_1^T(\mathbf{H}^{l-1}) \\ A_2^T(\mathbf{H}^{l-1}) \\ \vdots \\ A_N^T(\mathbf{H}^{l-1}) \end{bmatrix} \in \mathbb{R}^{N_p \times D},$$

where

$$A_i(\mathbf{H}^{l-1}) = \sum_{m=1}^{N_a} \left[ \sum_{j=1}^{N_p} M_{ij} (O_m^l)^T (V_m^l)^T (\mathbf{H}_j^{l-1})^T \right]$$

and

$$M_{i:} = \text{softmax}(\mathbf{H}_i^{l-1} Q_m^l K_m^l (\mathbf{H}^{l-1})^T).$$

For any  $l = 1, \dots, L$ , by taking partial derivatives we obtain that

$$\begin{aligned} J_{ij}^l &= \sum_{m=1}^{N_a} \left[ \sum_{t=1}^{N_p} M_{ij} (O_m^l)^T (V_m^l)^T \right] + \sum_{m=1}^{N_a} \left[ \sum_{t=1}^{N_p} \mathbf{H}_j^{l-1} V_m^l O_m^l \right] \frac{\partial M_{ij}}{\partial \mathbf{H}_t^{l-1}} \\ &= \sum_{m=1}^{N_a} \sum_{t=1}^{N_p} \left[ M_{it} (O_m^l)^T (V_m^l)^T + \mathbf{H}_t^{l-1} V_m^l O_m^l \mathbf{M}^i (E_{ti} \mathbf{H}^{l-1} Q_m^l K_m^l + \mathbf{H}^{l-1} (K_m^l)^T (Q_m^l)^T \delta_{ij}) \right], \end{aligned}$$

where  $\mathbf{M}^i := \text{diag}(M_{i:}) - M_{i:}^T M_{i:}$  with  $\sup \|\mathbf{M}^i\| \leq \frac{1}{2}$ , and  $E_{ij} \in \mathbb{R}^{N_p \times N_p}$  is a binary matrix with zeros everywhere except the  $(i, j)$ -th entry.

Under assumption 1, for any  $l = 1, \dots, L$ , we then have

$$\sup \|J_{ij}^l\| \leq C_{Lip} N_a B_O B_V B_K B_Q \|\mathbf{H}^{l-1}\|_2,$$

and

$$\sup \|J_{\mathbf{H}^{l-1}}[\mathcal{A}^l]\| \leq N_p \sup \|J_{ij}^l\| \leq C_{Lip} N_p N_a B_O B_V B_K B_Q \|\mathbf{H}^{l-1}\|_2,$$

where  $C_{Lip}$  is a positive constant.

Then the Lipschitz constant of  $L$  layer Transformer is

$$L_{\mathcal{T}} = C_{Lip} N_p^2 D B_K B_Q B_P \prod_{l=1}^L N_a^l B_{W_1}^l B_{W_2}^l B_O^l B_V^l. \quad (11)$$

Specifically, if the output Transformer model is assumed to take the last token at  $L$ -layer, its Lipschitz constant is

$$L_{\mathcal{T}}^* = N_p^{-\frac{1}{2}} L_{\mathcal{T}}. \quad (12)$$

This completes the proof.

## 1620 I NUMERICAL EVALUATIONS

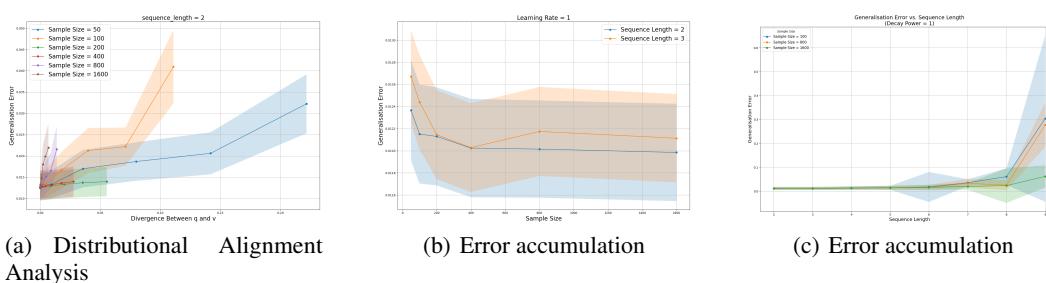
1621

1622 **Evaluation on non-i.i.d data scenario:** In the non-i.i.d scenario, besides the asymptotic behavior  
1623 and error accumulation, we additionally validate the impact of distributional alignment (quantified by  
1624  $\|\mathbf{q} - \mathbf{v}\|$ ) in Corollary 4. We consider a complex scenario where the training and test tasks are drawn  
1625 from related but non-identical distributions. Specifically, for each sample  $i$ , given a parameter vector  
1626  $\beta^i$ , we similarly generate a length- $L$  sequence via the recurrence relation  $c_l^i = \beta_{l-1}^i c_{l-1}^i + \epsilon$  for  
1627  $l = 1, \dots, L$ , where  $c_0^i \sim \mathcal{N}(0, \mathbf{I}_d)$  is the query and  $\epsilon \sim \mathcal{N}(0, 0.1 \cdot \mathbf{I}_d)$ . Different from i.i.d scenario,  
1628 in this scenario, the training parameter  $\beta$  is drawn from a mixture of two Gaussian distributions  
1629  $p_{\text{train}}(x) = p_1 \cdot \mathcal{N}(1, 0.1 \cdot \mathbf{I}_d) + p_2 \cdot \mathcal{N}(0.2, 0.1 \cdot \mathbf{I}_d)$ , where  $p_1$  and  $p_2$  are the weights such that  
1630  $p_1 + p_2 = 1$ . The test data is drawn from a different distribution:  $p_{\text{test}}(x) = \mathcal{N}(0.1, 0.1 \cdot \mathbf{I}_d)$ . We  
1631 consider the prompting format that incorporates a single in-context example. For training samples,  
1632 the in-context example is drawn from the same distribution as the query task, i.e., both query and  
1633 support samples share the same  $\beta^i$ . For test samples, the in-context example is instead drawn  
1634 from  $\mathcal{N}(0.2, 0.1 \cdot \mathbf{I}_d)$ , regardless of the test query’s distribution. This design aims to reduce the  
1635 distributional divergence between the support and query examples in the test setting.

1636 Under this setting, we assign group-wise importance weights based on the product of pairwise  
1637 overlaps between the training and test component distributions:

$$1638 G^{(k)} \propto \text{Overlap}(\mathcal{N}(\mu_k, \sigma_k), \mathcal{N}(0.1, 0.1 \cdot \mathbf{I}_d)) \cdot \text{Overlap}(\mathcal{N}(\mu_k, \sigma_k), \mathcal{N}(0.2, 0.1 \cdot \mathbf{I}_d)), k = 1, 2$$

1639 where  $k = 1, 2$  means the two class distributions of prompts in training process, and the total overlap  
1640 between two distributions  $p(x)$  and  $q(x)$  is defined as  $\text{Overlap}(p, q) = \int_{-\infty}^{\infty} \min\{p(x), q(x)\} dx$ .



1653 Figure 4: The generalisation error under non-i.i.d scenario.

1654

1655 This value lies in the interval  $[0, 1]$ , where 1 indicates complete distributional alignment and 0 denotes  
1656 no overlap. We then can approximate the optimal weights  $\mathbf{v} \in \mathbb{R}^N$  as:

$$1657 \mathbf{v} = \left( \underbrace{\frac{\bar{G}^{(1)}}{p_1 N}, \dots, \frac{\bar{G}^{(1)}}{p_1 N}}_{p_1 N}, \underbrace{\frac{\bar{G}^{(2)}}{p_2 N}, \dots, \frac{\bar{G}^{(2)}}{p_2 N}}_{p_2 N} \right) \in \mathbb{R}^N,$$

1661 where  $\bar{G}^{(k)}$  is re-nomalized constant such that  $\sum_k \bar{G}^{(k)} = 1$ ,  $p_1$  and  $p_2$  are the proportions of the  
1662 two training components, and  $N$  is the total number of training samples. These weights are then  
1663 uniformly assigned to all training prompts according to their source component. For training weights,  
1664 we set  $w = \{0, 0.2, 0.4, 0.6, 0.8, 1\}$  and let the training weights be

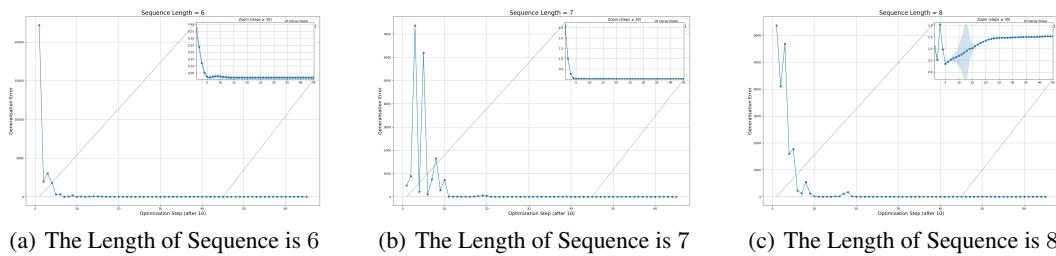
$$1666 \mathbf{q} = \left( \underbrace{\frac{w}{p_1 N}, \dots, \frac{w}{p_1 N}}_{p_1 N}, \underbrace{\frac{(1-w)}{p_2 N}, \dots, \frac{(1-w)}{p_2 N}}_{p_2 N} \right).$$

1670 *The impact of distributional alignment on non-i.i.d generalisation:* We evaluate the role of distribution  
1671 mismatch by explicitly controlling the norm  $\|\mathbf{q} - \mathbf{v}\|$ , which quantifies the divergence between the  
1672 empirical training distribution  $\mathbf{q}$  and the ideal importance-weighted distribution  $\mathbf{v}$ . Figure 4(a) shows  
1673 that the  $\ell_2$  distance between  $\mathbf{q}$  and  $\mathbf{v}$  steadily increases, and the non-i.i.d. generalisation ability  
correspondingly deteriorates, manifesting as a larger generalisation error. This observation validates

1674 Corollary 4, which asserts that tighter alignment between the training and test prompt distributions  
 1675 yields better generalisation under distribution shift. Moreover, it underscores the importance of  
 1676 high-quality prompts for non-i.i.d. settings, since they reduce the gap between training and test  
 1677 distributions and thus improve generalisation.

1678 *The Generalisation Error Convergence Analysis:* We evaluate the generalization error as the number  
 1679 of training samples  $N$  increases. Figure 4(b) demonstrates that the error decreases and asymptotically  
 1680 vanishes as  $N \rightarrow \infty$ , consistent with the theoretical prediction in Corollary 4 for the non-i.i.d. setting.  
 1681

1682 *The Error Accumulation Analysis:* Figure 4(c) shows that the generalization error increases with  
 1683 sequence length, following an approximately logarithmic trend. In particular, once the sequence  
 1684 length exceeds a threshold near  $\ln N$ , the error rises sharply. Moreover, this threshold shifts to larger  
 1685 values as the sample size increases. These empirical findings support Theorem 5 under non-i.i.d.  
 1686



1694 Figure 5: Generalisation error progression over optimization steps in the non-i.i.d. setting.  
 1695

1696 *Overfitting Risk:* Figure 5 depicts how the generalisation error evolves with the number of optimization  
 1697 steps. As the sequence length increases, the task becomes more complex and the loss landscape  
 1698 grows more non-smooth, resulting in a heightened risk of overfitting. These observations align with  
 1699 the conclusions of Theorem 4.  
 1700

1701 *Empirical evaluation on realistic data:* We conduct an additional NLP experiment on a sentiment-  
 1702 classification task. The training set consists of labeled movie reviews, and the test-time prompts  
 1703 contain several review-label demonstration pairs. We collected approximately 600 movie reviews  
 1704 from Douban, segmented them into sentences, and fine-tuned a base GPT-2 model. Another 100  
 1705 reviews were prepared for in-domain testing. Using the same procedure, we also constructed a  
 1706 literary-text test set from online literature platforms to create a distinct out-of-domain distribution.  
 1707

1708 After fine-tuning on movie reviews, we examined how the discrepancy measure  $disc(\mathbf{q})$  relates to  
 1709 generalization behavior. To this end, we formed target-prompt mixtures spanning both movie-review  
 1710 and literary domains, with mixture ratios ranging from 0:7 to 7:0. The results are reported in Table 4.  
 1711 Mixtures containing a higher proportion of literary prompts correspond to larger  $disc(\mathbf{q})$ , as literary  
 1712 texts differ more substantially from movie reviews (empirically, their bidirectional KL divergences are  
 1713 around 12). These higher-discrepancy mixtures exhibit moderately increased predictive loss, whereas  
 1714 mixtures more aligned with the training distribution (smaller  $disc(\mathbf{q})$ ) show lower loss and stronger  
 1715 in-context performance. Overall, the observed trend is consistent with the qualitative dependence  
 1716 predicted by our theoretical analysis.

| Prompt Config | Loss   | Top-1 Acc. | Prompt Config | Loss   | Top-1 Acc. |
|---------------|--------|------------|---------------|--------|------------|
| 7:0           | 0.9319 | 90.78%     | 3:4           | 0.9416 | 90.64%     |
| 6:1           | 0.9363 | 90.71%     | 2:5           | 0.9434 | 90.61%     |
| 5:2           | 0.9374 | 90.66%     | 1:6           | 0.9474 | 90.57%     |
| 4:3           | 0.9398 | 90.64%     | 0:7           | 0.9477 | 90.60%     |

1723 Table 4: Prompt configuration vs. performance on sentiment classification.  
 1724

1725 *The Validation of Assumption on Lipschitz Constant:* Although the theoretical and empirical constants  
 1726 need not coincide numerically, observing that the empirical estimates follow the same scaling laws  
 1727 across model sizes and datasets confirms the asymptotic tightness of our Lipschitz and smoothness

|      | Number of Layers | # Lipschitz (Layers) | Attention Heads | Lipschitz (Heads) | Embedding Dim | Lipschitz (Embedding) |
|------|------------------|----------------------|-----------------|-------------------|---------------|-----------------------|
| 1729 | 12               | 19.38                | 4               | 19.38             | 1218          | 19.38                 |
| 1730 | 24               | 43.46                | 8               | 29.20             | 2506          | 48.52                 |
| 1731 | 36               | 59.52                | 32              | 38.71             | 5712          | 108.31                |
| 1732 | 48               | 70.22                | —               | —                 | 11044         | 908.74                |
| 1733 | 60               | 820.52               | —               | —                 | —             | —                     |
| 1734 | 72               | 938.16               | —               | —                 | —             | —                     |
| 1735 | 84               | 1168.58              | —               | —                 | —             | —                     |
| 1736 | 96               | 1961.24              | —               | —                 | —             | —                     |

Table 5: Lipschitz-related quantities across Transformer configurations.

bounds. To validate it, we approximate the constant by sampling multiple inputs, computing gradient and Hessian norms, and taking the maximum observed value. This approach effectively captures the dominant scaling behavior and serves as a reliable empirical proxy. As shown in Eqs. 7–9, the Lipschitz (smoothness) upper bound depends on factors such as QKV matrix size, model depth, and other architectural parameters. We varied these factors to examine their influence, with the results summarized in Table 5. The empirical results reveal clear scaling patterns of the Lipschitz constant with respect to key architectural parameters such as model depth, embedding dimensions and attention head. The consistent asymptotic behavior provides empirical evidence supporting the effectiveness of our theoretical Lipschitz (smoothness) bound.

## J THE USE OF LARGE LANGUAGE MODELS (LLMs)

We used LLMs (e.g., ChatGPT) only as a general-purpose writing assistant. Its roles were limited to polishing language (grammar and clarity), and concise rephrasing or shortening of paragraphs without adding technical content. The LLMs did not generate research ideas, problem formulations, proofs, theorems, algorithms, experiments, results, figures, or evaluations. All technical content (definitions, lemmas/theorems, proofs, algorithms), experimental designs, and conclusions are solely by the authors and were fully verified by us. The authors take full responsibility for all text in this paper. The LLM is not an author.

1757  
1758  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781