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ABSTRACT

Vision Transformers (ViTs) achieve state-of-the-art results across classification,
detection, and segmentation, but their heavy computation hinders deployment on
resource-constrained devices. Quantization is a common technique to improve
efficiency, yet conventional approaches assume static inference and ignore the
input-dependent utility of layers under dynamic strategies such as Early Exiting
(EE). This mismatch leads to inefficient bit allocation: shallow layers may be
over-provisioned while deeper exits, which dominate late-stage decisions, remain
under-optimized. We introduce Amortized-Precision Quantization (APQ), a
new perspective that treats precision as a utilization-dependent resource, exposing
depth—precision and shallow-deep trade-offs. Building on APQ, we propose Mu-
tual Adaptive Quantization with Early Exiting (MAQEE), a bi-level optimiza-
tion framework that jointly calibrates exit thresholds and reallocates bit-widths
under risk control. We theoretically establish MAQEE’s superiority over static
quantization in dynamic inference, and empirically show that it reduces bit opera-
tions by up to 95% while preserving accuracy, outperforming strong baselines by
as much as 20% on ViT classification, detection, and segmentation benchmarks.

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al.l [2020) have achieved remarkable success in image
classification (Chen et al., 2021), object detection (Carion et al., |2020), and semantic segmenta-
tion (Gao et al., 2021). Despite these advances, their large parameter counts and high computational
demands hinder deployment on edge devices such as smartphones and IoT systems (Zheng et al.,
2023} Shang et al.l [2024). To improve efficiency in resource-constrained environments, quantiza-
tion (Courbariaux et al., 2015) has become a widely adopted technique, reducing memory footprint
and inference latency by lowering the bit-width of weights and activations. Early efforts typically
adopt Fixed-Precision Quantization (FPQ) (Krishnamoorthi, 2018 |Jacob et al., 2018} [Yang et al.,
2019), which assigns a uniform bit-width to all layers. However, because ViT layers usually differ
in weight distributions (Liu et al., [2021a) and robustness to quantization noise (Tai et al., [2024),
FPQ often yields suboptimal accuracy—efficiency trade-offs (Gholami et al., 2022). To overcome
this, Mixed-Precision Quantization (MPQ) (Xiao et al.| 2023; |Jeon et al.| [2024) assigns bit-widths
in a fine-grained manner by adapting to the quantization sensitivity of each layer, allowing more
efficient hardware utilization under tight resource budgets.

Although MPQ mitigates the limitations of FPQ, it still assumes a static inference path, executing all
layers end-to-end. As ViTs scale to support diverse tasks, modern architectures increasingly adopt
dynamic inference strategies such as Early Exiting (EE) (Teerapittayanon et al., 2016; Laskaridis
et al., 2021 |Xu et al.,[2023)) to adapt computation dynamically to input complexity. Specifically, EE
attaches lightweight exit heads to intermediate layers of ViT backbones, enabling high-confidence
samples to terminate early and thereby reduce latency. However, conventional quantization inter-
acts poorly with EE because it calibrates precision using training-time activation statistics, under the
assumption of a stable inference path. In contrast, EE introduces input-dependent execution (Rah-
math P et al.| 2024) that violates this assumption, leading to unstable precision requirements and
unreliable confidence estimates. Our preliminary study further substantiates this incompatibility,
showing that quantizing EE-trained models reduces accuracy by up to 50%, whereas applying EE to
quantized models results in unreliable exits and limited efficiency gains.
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Motivated by these observations, we propose Amortized-Precision Quantization (APQ), a quanti-
zation paradigm tailored for dynamic inference. Unlike conventional methods that statically assign
bit-widths, APQ treats precision as a dynamic resource amortized across layers based on their utiliza-
tion. We analyze its sources of error from two perspectives. At the global level, a depth—precision
trade-off arises: allocating fewer bits enables deeper inference under a fixed budget but increases
quantization error, while higher precision reduces noise but limits depth and may trigger premature
or delayed exits. At the local level, a shallow—deep trade-off emerges: allocating more bits to
shallow layers reduces early misclassifications but overuses resources, whereas deeper layers are
more efficient but incur the risk of error propagation. We theoretically prove that naively combining
quantization with early exiting yields suboptimal performance for APQ.

To this end, we introduce Mutual Adaptive Quantization with Early Exiting (MAQEE), a unified
bi-level optimization framework for APQ. In the outer loop, MAQEE calibrates input-adaptive exit
thresholds by minimizing Boundary Sensitivity Risk (BSR), which penalizes unstable decisions that
can be easily flipped under quantization noise. In the inner loop, it reallocates layer-wise bit-widths
by balancing early-exit risks against quantization distortions, measured by Quantization-Induced
Drift (QID). QID captures global distributional shifts in intermediate representations and reflects
the dual requirement of exit heads to support both deeper propagation and premature exits. These
two loops are integrated into an iterative routine that alternates threshold calibration, risk-guided
precision reallocation, and lightweight self-distillation recovery, thereby progressively stabilizing
accuracy under low-bit execution. By tightly coupling quantization with early exiting, MAQEE
enables efficient, low-latency inference without sacrificing accuracy.

Contributions. Our contributions are fourfold: (1) we formalize the incompatibility between con-
ventional quantization and dynamic inference and provide theoretical proof, introducing Amortized-
Precision Quantization (APQ) as a new paradigm that aligns bit-width allocation with layer utiliza-
tion under early exiting; (2) we present Mutual Adaptive Quantization with Early Exiting (MAQEE),
a unified bi-level framework that integrates risk-controlled thresholding, utilization-guided bit-width
allocation, and progressive self-distillation for efficient APQ; (3) we provide theoretical guarantees
that MAQEE outperforms static FPQ/MPQ under early exits; and (4) MAQEE reduces BOPs by
95% while preserving task accuracy, and outperforms strong quantization and early-exiting base-
lines by at least 20% on multiple ViT backbones across three core vision tasks.

2 RELATED WORK

Vision Transformers (ViTs) (Dosovitskiy et al.l [2020) effectively capture long-range dependencies
through self-attention (Vaswani et al., [2017; [Raghu et al., 2021), but their deep architectures and
large token sizes result in substantial computational and memory costs, restricting deployment in
real-time or resource-constrained scenarios (Zheng et al.||2023}; |Shang et al., 2024)).

A prominent line of research mitigates these costs through quantization, which reduces weights
and activations to lower bit-widths (Courbariaux et al.,|2015; [Krishnamoorthi, [2018). Early efforts
relied on Fixed-Precision Quantization (FPQ) (Jacob et al.l 2018; |Yang et al., 2019), applying a
uniform bit-width across all layers. However, since ViT layers exhibit heterogeneous weight distri-
butions (Liu et al.,[2021a)) and varying robustness to quantization noise (Tai et al.| 2024)), FPQ often
fails to achieve an optimal accuracy—efficiency trade-off (Gholami et al., 2022). To overcome this
limitation, Mixed-Precision Quantization (MPQ) allocates different bit-widths to different layers
based on sensitivity (Xiao et al., 2023} Jeon et al.,[2024). Recent studies further refine ViT quantiza-
tion via both Post-Training Quantization (PTQ) (Liu et al.,|2021cj |Ding et al., [2022; |L1 et al., 2023;
Shi et al.| 2024) and Quantization-Aware Training (QAT) (Wang et al.| 2025; Nagel et al.| 2022; L1
et al.,|2022), aiming to preserve accuracy under low-bit constraints.Despite these advances, exist-
ing quantization approaches mainly assume a static inference path, where all layers are executed
end-to-end, leaving their compatibility with dynamic inference largely unexplored.

Another complementary direction is dynamic inference, which adapts computation to input com-
plexity (Chen et al., 2025} [Riquelme et al.l |2021; |[Hwang et al., [2023) by activating only a subset
of the network, thereby reducing unnecessary computation, inspired by model pruning (Han et al.,
2015). Among such methods, Early Exiting (EE) (Xin et al., [2020; |Schuster et al.| [2022) attaches
lightweight exit heads to intermediate layers, allowing high-confidence samples to terminate early
and reduce inference cost. In the context of ViTs, Bakhtiarnia et al.| (2021) first incorporated multi-
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ple exit branches into the backbone, while | Xu et al.|(2023)) enhanced intermediate feature quality by
combining local perception with global attention, achieving a better accuracy—efficiency trade-off.
More recently, Rahmath P et al.|(2024) proposed adaptive token routing and hierarchical EE archi-
tectures, further underscoring the potential of dynamic execution. However, the effectiveness of EE
hinges on reliable confidence estimation, which is highly susceptible to quantization noise and often
results in premature or delayed exits.

Recently, several studies have explored combining quantization with early exiting. |Saxena & Roy
(2023) integrated mixed-precision quantization into CNN exits, but its per-layer learned parameters
hinder scalability to large ViTs. |[Regol et al.| (2024) enabled per-sample exit paths by maintaining
multiple model precisions, at the cost of high memory usage. In contrast, we theoretically analyze
the interference between quantization and early exiting, and propose Amortized-Precision Quanti-
zation, a unified framework that jointly optimizes bit allocation and exit thresholds.

3 PROBLEM FORMULATION

Here, we formally introduce Amortized-Precision Quantization and formulate its corresponding op-
timization problem.

Quantization. We first briefly review quantization (Jacob et al.,[2018)), which replaces floating-point
operations with low-bit integer operations, thereby reducing both memory footprint and inference
cost. Specifically, quantization uses a scale factor s and zero-point ¢ to map values into [0, 2° — 1],
with dequantization s(x? — t) used to approximately recover the original value. Here, b denotes
the bit-width. Depending on how bit-widths are assigned across layers, two strategies are widely
studied: Fixed-Precision Quantization (FPQ) (Jacob et al.,|2018} Yang et al.,[2019), where all layers
share the same bit-width, and Mixed-Precision Quantization (MPQ) (Xiao et al., [2023; Jeon et al.,
2024), where different layers may use different bit-widths.

Let a network consist of L layers, and let B denote the set of admissible bit-widths (e.g., {2, 4, 8}).
Each layer / is assigned a bit-width b, € B, and we denote the allocation by b = {b;};_,. The
computational cost of layer £ on input z under bit-width b, is written as c;(x,b,), and the total

complexity is given by ZeLﬂ ce(x, by). Following prior works (Shang et al.,[2024;|Chen et al.,[2025)),
we measure this complexity in terms of bit operations (BOPs), which quantify multiplications and
additions under quantized precision. BOPs are defined as FLOPs x B,, x B,, where B, and B,
denote the bit-widths of weights and activations. Since FPQ and MPQ require every input to traverse
all L layers, the expected complexity depends solely on the allocation b.

Early Exiting (EE). In parallel, early exiting improves efficiency by shortening the inference path
through attaching auxiliary classifiers (exit heads) to intermediate layers, allowing samples to ter-
minate computation early once predictions become sufficiently confident (Schuster et al., [2022).
This mechanism yields input-dependent depth: easy samples exit early, while harder ones propagate
deeper. Formally, at layer ¢, let z¢(z) denote the logits before softmax from the exit head for input
x, and define the exit confidence as p¢(x) := max; softmax(z¢(z));. The input exits at layer ¢ if
pe(x) > ¢y, where ¢y € [0, 1] is the confidence threshold for that layer; otherwise, it continues until
the final classifier at layer L. The objective of EE is to jointly train the exit heads and optimize the
thresholds ¢ = {¢¢} 1, across layers.

To quantify the effectiveness of early-exiting, we define the sample-wise utilization indicator
ug(xz, p) = 1{x reaches layer ¢ | ¢ }, which indicates whether input x is processed by layer ¢
under thresholds ¢. Taking the expectation over the data distribution D gives the utilization factor
ug(¢) = Eyoplue(x, )], which quantifies the average probability that a layer is executed. The

expected inference depth is then defined as T'(¢) = 25:1 ug(¢), which characterizes the average
number of layers traversed per input. The objective of EE is to learn thresholds ¢ that reduce the
expected depth T'(¢), thereby lowering computation cost while preserving prediction accuracy.

Amortized-Precision Quantization (APQ). While conventional quantization schemes assume a
static inference path, they overlook the fact that modern architectures increasingly adopt dynamic
inference, where execution depth varies across inputs due to mechanisms such as early exiting. This
mismatch results in unstable precision requirements under input-dependent execution. To address
this issue, we propose Amortized-Precision Quantization (APQ), which allocates precision (bit-



Under review as a conference paper at ICLR 2026

width) according to the utility of each layer—namely, its execution frequency—thereby enabling
robust and efficient inference.

Definition 1 (Amortized-Precision Quantization (APQ)). Consider a network with L layers, where
each layer { is assigned a bit-width by € B, with B denoting the set of admissible bit-widths. The
amortized computational complexity of a bit allocation b under an early-exit policy ¢ is defined as

Complexity,po(b, ZEIND wp(z, @) - co(x,by)] ZW ‘Epoplee(z,be)], (1)
=1

where c;i(x, by) denotes the computational cost of layer ¢ under bit-width by, and ue(z, ¢) € {0,1}
indicates whether layer { is executed for input x given thresholds ¢. Taking the expectation over the
data distribution D yields the utilization factor

ue(P) = Bxnplue(z, )] 2)

Since the utilization factor u(¢) depends on the input x, an effective APQ algorithm must jointly
optimize the bit-width allocation b and exit thresholds ¢ to balance accuracy and efficiency. Unlike
MPQ, which may waste precision on rarely used layers, APQ aligns bit allocation with layer utility,
concentrating precision where it most affects performance. Formally, this yields

(b*v d)*) = arg 1131;)1 ]E(x,y)ND [£CE (f(),b,qﬁ(‘r)a y)] +A- CompleXityAPQ(ba d))v (3)

where Lcg denotes the cross-entropy loss, fg b4 is the quantized network with parameters 6, bit
allocation b, and early-exit policy ¢, and X balances the trade-off between accuracy and efﬁciencyP_-]

4 MUTUAL ADAPTIVE QUANTIZATION WITH EARLY EXITING

To effectively solve APQ, two key allocation trade-offs must be addressed. At the global level, the
depth—precision trade-off balances inference depth against quantization error. At the local level,
the shallow—deep trade-off weighs early-exit accuracy against resource efficiency. These coupled
trade-offs motivate a bi-level optimization framework, Mutual Adaptive Quantization with Early
Exiting (MAQEE), which jointly optimizes exit thresholds and bit-width allocation. A detailed
pseudocode is provided in Appendix [D]

4.1 BI-LEVEL OPTIMIZATION WITH AMORTIZED-PRECISION QUANTIZATION

Since the objective of APQ is to minimize the expected amortized complexity while preserving
prediction accuracy, the problem is naturally formulated as a bi-level optimization over (b, ¢).

Recall that uy(¢) denotes the probability that inference reaches layer ¢, and T'(¢p) = 25:1 ug()
is the expected number of executed layers.

Outer-loop (exit-threshold optimization). Let ¢ = {(bg}f:l denote the confidence thresholds of
each exit head. The outer problem optimizes these thresholds to balance accuracy and latency:

¢* = arg m(;n E(z,y)~p [LCE (fo,0%(9), 6(2); ¥)] + Aouter T(), (C))

where A\outer 1S @ regularization parameter that controls the trade-off between accuracy and latency,
and b*(¢) denotes the optimal bit-width allocation given thresholds ¢, which in turn determine the
depth of the execution path.

Inner-loop (bit-width allocation). For fixed exit thresholds ¢, the bit-width allocation b = {b,}%_,
is chosen to minimize amortized complexity while preserving accuracy:

b = arg mbin E(z,y)ND [ECE(fG, b, ¢.(1’), y)] + Ainner ComplexityApQ (b, ¢), 5)

where Ainner 1S @ regularization parameter that controls the strength of compression. The bi-level
optimization explicitly couples quantization with early exiting: (i) layers with high utilization u,(¢)

"We theoretically prove that naively combining quantization with early exiting degrades performance: (i)
quantization noise can distort exit signals, leading to premature or delayed exits (Theorem [I); and (ii) early
exiting, in turn, amplifies the accumulation of quantization errors across layers (Theorem@.
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are assigned larger bit-widths to preserve fidelity; (ii) layers that are rarely executed are quantized
more aggressively to reduce cost; and (iii) exit thresholds ¢ are optimized while accounting for
quantization-induced noise. By jointly optimizing both ¢ and b, APQ achieves a balanced trade-
off among accuracy, efficiency, and stability in dynamic inference. We prove that APQ is NP-hard
(detailed in Theorem 4] in Appendix [A).

In the following, we detail the optimization of exit thresholds (outer loop) in Section [4.2] and the
allocation of bit-widths (inner loop) in Section #.3] Section [.4] then introduces the full iterative
optimization procedure, which incorporates a self-distillation method for precision recovery.

4.2 OUTER LooP: EXIT-THRESHOLD OPTIMIZATION

The outer loop aims to optimize the exit thresholds ¢ under a fixed bit allocation b. A higher thresh-
old ¢, improves reliability but increases computational cost, whereas a lower threshold reduces cost
at the risk of accuracy loss and greater instability under quantization. However, directly estimating
¢ via gradient descent is computationally expensive, as this requires jointly training the exit heads
and optimizing the thresholds (Rahmath P et al.| [2024). Instead, conventional early-exit methods
adopt a surrogate risk function to evaluate candidate thresholds. In particular, they optimize the
Performance Gap Risk (PGR) (Jazbec et al.,[2024), defined as

PGR¢(¢) = E(a,yy~p[Lcr(be,y) — Lor(d,y)], (6)

where ¢, is the prediction from the selected exit head, and ¢ is the prediction of the full-depth
classifier. Here, ¢ is determined dynamically by the input = and thresholds ¢, i.e., the earliest exit
layer whose confidence score pg(z) exceeds ¢p. Thus, PGR measures the expected excess loss of
the chosen early exit relative to the final Classiﬁer

However, PGR only reflects the performance degradation from early exiting and overlooks the in-
stability introduced by quantization, where confidence scores near thresholds are highly sensitive
to small perturbations, often leading to premature or delayed exits. To address this, we introduce
the Boundary Sensitivity Risk (BSR), which penalizes cases where the confidence score py(x) lies
close to the threshold ¢y, defined as

BSR:(¢) = Evv | 1{lpe(x) — de] < 70} ™

where 7, denotes the tolerance margin at layer ¢, estimated from the unquantized model by treating
early exits as a soft surrogate for the true margin. A high BSR indicates that the exit threshold is
placed near a decision boundary, where even small perturbations can flip exit outcomes. Thus, BSR
complements PGR by providing a stability-aware signal for threshold optimization.

Accordingly, we rewrite the objective in [4]to obtain the optimal thresholds ¢:

L
¢* € arg qun {i Z (PGRe(tb) + BSR@((b)) + Aouter T(qb)}, (8)

(=1

where PGR measures the average excess loss from early exiting, BSR penalizes instability near
decision boundaries, and T'(¢) denotes the expected number of executed layers (i.e., amortized
inference cost). Finally, MAQEE employs coordinate search to determine the optimal ¢. For each
input x, the confidence score py () is obtained with a single feedforward pass, after which candidate
thresholds can be efficiently evaluated without iterative retraining or gradient descent (Jazbec et al.,
2024). By jointly minimizing performance degradation and boundary sensitivity, the outer loop
yields stable confidence thresholds. These optimized thresholds form the basis for the inner loop,
which reallocates bit-widths across layers to further reduce amortized complexity

4.3 INNER LOOP: BIT-WIDTH ALLOCATION

Afterward, the inner loop reallocates bit-widths b conditioned on the exit thresholds ¢ determined
by the outer loop, with the objective of reducing the expected complexity in APQ. Similar to the
exit-threshold optimization in the outer loop, we adopt a risk-based scheme to guide bit allocation

2For object detection, we adopt a bipartite matching loss in PGR (Fang et al., 2021).
3 All quantities are estimated on a held-out calibration set (about 5% of the training data), which provides a
sufficient approximation of D for reliable estimates (L1 et al., [2022).
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in the inner loop. In conventional MPQ (Tai et al., 2024} |[Li et al., 2023)), a standard indicator
for layer-wise precision loss is the inverse signal-to-quantization-noise ratio (SQNR), defined as

2 ~
SQNRZ1 = %, where h, and h, denote the full-precision and quantized activations (i.e.,
e— e

hidden states) of the /-th layer for input z, respectively. The inverse SQNR quantifies the degradation
of signal fidelity under reduced precision: the numerator measures the expected quantization noise
power, while the denominator corresponds to the expected signal power.

However, early exiting not only amplifies quantization noise but also alters the activation distri-
bution, since layers must simultaneously support deeper propagation and premature exits, thereby
exposing them to greater representation distortion and decision instability. This effect becomes
more severe in deeper layers, as quantization errors accumulate across successive transformations,
ultimately destabilizing exit predictions. Therefore, instead of focusing solely on bitwise error (i.e.,
inverse SQNR), we introduce the Quantization-Induced Drift (QID), which measures the discrep-
ancy between the activations of quantized and full-precision models. In general, QID can be defined
using a statistical divergence D (hy, hy) between the full-precision activations h, and their quantized
counterparts hy. However, directly computing divergences such as KL or Wasserstein distance is
computationally expensive, as it requires high-dimensional density estimation (Yuan et al., [2024)
or solving optimal transport problems (Zhang et al., 2023). To make QID practical, we instantiate
it using a lightweight range-ratio approximation that compares the value ranges of quantized and
full-precision activations:

max; iLg(:C)Z — mini iw(l‘)l _1 ?
max; he(z); — min; he(z); ’

QID, = ( (C)]
which captures value-range drift. If quantization alters the output distribution, the dynamic range of
h¢ deviates from that of hy. Thus, a larger QID reflects stronger quantization-induced drift, which
undermines both representation quality and the stability of early-exit decisions, effectively replacing
the extreme-value rule with noise-driven behavior during quantization.

Importantly, we do not regularize complexity in[5] as this would bias the allocation toward minimiz-
ing cost while neglecting the instability and accuracy loss caused by low-precision operations and
premature exits. Following MPQ (Tai et al., 2024), we adopt a fixed bit budget and optimize the
allocation b by introducing per-layer risk scores R,;, which combine decision-level risks from early
exiting (PGR and BSR) with representation-level risks from quantization (QID and SQNR ™).

Ry = a(BSR¢ + PGRy) + (1 — o) (QID, + SQNR; '), (10)
where « € [0, 1] controls the trade-off between decision-level and representation-level risks.

To optimize the bit allocation b, we normalize R, by the marginal expected BOPs:

R,
uz((ﬁ) . ABOPS@/Abg +¢’

U, = Y
where ug(¢p) = Eplue(x, ¢)] denotes the layer utility, i.e., the expected probability that an input
reaches layer ¢ under thresholds ¢. Here, ABOPs,/Aby is the marginal increase in bit-operations
when the bit-width of layer ¢ is raised by one unit, with € added for numerical stability.

By normalizing risk with its marginal contribution to the APQ complexity, ¥, accounts for both
utility and bit-wise cost, ensuring that bits are not wasted on low-utility layers while prioritizing
those that incur high instability per unit complexity. In practice, MAQEE iteratively reallocates bits
from layers with low W, to those with high W, until the bit budget is fully utilized or no further
improvements can be achieved. This inner-loop allocation complements the outer-loop threshold
optimization and sets the stage for the iterative routine described in Section .4}

4.4 ITERATIVE OPTIMIZATION WITH SELF-DISTILLATION RECOVERY

Finally, we integrate outer-loop threshold adaptation and inner-loop precision reallocation into an
iterative routine. Each round consists of three steps: (i) updating exit thresholds ¢ via grid search
given a fixed bit allocation b, (ii) reallocating bit-widths b based on risk—cost ratios W,, and (iii)
applying a lightweight recovery step on model weights 6 to mitigate accuracy degradation caused
by quantization and early exiting.
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In step (iii), we adopt a self-distillation scheme for accuracy recovery. Given an input x with label
y, the full-precision model fp produces logits z = fy(z), while the quantized early-exit model
fo.6,¢ produces logits Z = fy p »(x). We define the corresponding probability distributions under
temperature T as p(z; fo,T) = Softmax(%) and p(z; fop.g, T) = softmax(%). The recovery loss
combines ground-truth supervision with distribution alignment via KL divergence:

£(0;2,y) = Lr(p(@; oo, 1), ) + BT - KL(p(a: fo, T) | (s fows T)), (12)

where T' > 1 controls the softness of the probability distributions, and § balances the two objec-
tives. This recovery step mitigates quantization-induced distortions by aligning the predictions of
the quantized model with those of the full-precision model. Together with threshold and precision
updates, it ensures that exit heads adapt smoothly to noise while maintaining consistency with full-
precision behavior.

5 THEORETICAL ANALYSIS

Here, we first formally analyze the mutual interference between quantization and early exiting.
We then demonstrate that the bi-level optimization in MAQEE adapts precision to utilization by
leveraging APQ, thereby outperforming static FPQ and MPQ under early exiting.

Quantization Undermines Early Exiting. We first show that quantization perturbs the logits and
hence undermines early exiting. For each layer ¢, let Ay(x) = p¢(x) — ¢, denote the confidence
margin relative to the exit threshold ¢,. When this margin is small, even mild quantization noise can
overturn the exit decision.

Theorem 1. Consider a symmetric by-bit affine quantizer applied to activations uniformly dis-

2
tributed in [—ay, o). The resulting mean-squared error is £4(by) = 3;‘—&2 which decays expo-
nentially as the bit-width by increases. Consequently, the probability of mis-exit at layer { grows
monotonically with €¢(by).

When Ay(z) > 0, quantization noise can erase a valid exit by lowering the confidence; when
Ay(x) < 0, it can trigger a false exit by artificially raising the confidence; and when Ay(z) = 0,
any perturbation flips the decision. As the bit-width decreases, £¢(b¢) grows, and both types of
errors become more frequent. Thus, when fragile early-exit decision margins coincide with low-
precision quantization, the exit mechanism becomes highly unstable, leading to the severe accuracy
degradation observed in practice, as captured by our BSR in equation|[7}

Early Exiting Undermines Quantization. While quantization noise destabilizes early exiting,
the reverse also holds: input-dependent early exiting weakens the effectiveness of quantization. For
a bit allocation b, define the per-layer error Dy(by) > 0 (e.g., MSE or SNR loss) and the cumulative

error Fy(k) := Zlgzl Dy(by), which measures the total error after k& executed layers. This leads to
the following theorem.

Theorem 2. Let K be the empirical exit depth under thresholds ¢, with mean px and variance
0% > 0. Let Fy(k) denote the cumulative quantization distortion under bit allocation b. If Fy(k)

is convex in depth k, then E[Fy(K)] > Fy(ur) + %é(z) o2, where 0% is the variance of exit
depths and 8@ is the minimum discrete curvature of Fy (k).

The stochasticity of exit decisions introduces variance in stopping behavior, causing the cumulative
distortion to deviate from its deterministic counterpart. This excess distortion grows at least linearly
with 0%, and becomes more pronounced in deeper networks due to positive curvature & ) since
per-layer errors Dy typically escalate more rapidly in later blocks as a result of attention mixing,
residual stacking, and activation scaling (Zhou et al., 2018). Consequently, unstable early exits
amplify quantization error and render static allocations suboptimal.

MAQEE Achieves Better APQ. Finally, to formally evaluate the benefit of joint optimization, we
analyze the convergence and optimality of MAQEE under the APQ objective.

Theorem 3. The bi-level optimization in MAQEE, i.e., iteratively updating the thresholds ¢ and the
bit allocation b, strictly decreases the APQ loss (defined in Eq. |3)) at each iteration and converges
to a coordinate-wise optimum, moreover, with a fixed bit budget, no static FPQ or MPQ allocation
outperforms MAQEE under early exiting.
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Figure 1: Accuracy—throughput/BOPs results across varying exit thresholds on CIFAR-100. The
LGVIiT+ERQ configuration fell short of achieving 80% accuracy.

In summary, MAQEE guarantees continual improvement and convergence through bi-level opti-
mization, and provably outperforms static FPQ and MPQ in the presence of early exiting.

6 EXPERIMENT

We conduct extensive experiments across multiple vision tasks and backbones to validate the effec-
tiveness of MAQEE, comparing it with three early-exiting methods and three quantization methods
on three different backbones. Overall, MAQEE achieves a 95% reduction in computation while
maintaining performance comparable to the full-precision model.

6.1 SETUP

Dataset and Baselines. To evaluate MAQEE on APQ, we conduct experiments across three core
vision tasks: image classification (CIFAR-100 (Krizhevsky et al., [2009), ImageNet (Deng et al.,
2009)), semantic segmentation (SceneParse150 (Zhou et al., [2017)), and object detection (MS
COCO (Lin et al.,[2014)). We report task metrics: accuracy for classification, IoU for segmentation,
and mAP for detection. We evaluate MAQEE with three backbones: DeiT (Touvron et al., [2021)),
ViT (Dosovitskiy et al.l [2020), and Swin (Liu et al.| [2021b). We compare MAQEE against early-
exiting methods, including ViT-EE (Bakhtiarnia et al.,2021) and LGViT (Xu et al.,[2023)), as well as
quantization approaches for ViTs: (i) fixed-precision quantization (FPQ), including RepQ (L1 et al.,
2023)) and ERQ (Zhong et al.| 2025); and (ii) mixed-precision quantization (MPQ), represented by
MPTQ (Tai et al., 2024). All quantization is performed under the W4A4 setting (4-bit weights and
activations). Here, FP4/4 enforces uniform 4-bit quantization across layers, whereas MP4/4 allows
layer-wise variation in bit-widths while maintaining an average precision of 4 bits.

Evaluation Protocol. For a fair comparison (Shang et al.| 2024), we evaluate the balance between
accuracy and efﬁc1ency along two axes. First, under the Controlled Performance setting, we measure
the exit layer L and bit operations BOPs required to reach a target accuracy, defined as quantization-
only performance without EE: 87% for CIFAR-100, 79% for ImageNet, 30% for SceneParsel50,
and 55% for MS COCO. Models that fail to meet this target are reported with L and BOPs as
N/A. Second, under the Standard Configuration setting, baseline models use default thresholds and
quantization, while MAQEE applies optimized thresholds ¢ and bit allocations b. We report the
average exit layer L, bit operations BOPs, and the resulting task performance. Other implementation
details and hyperparameter settings are provided in Appendix

6.2 EXPERIMENTAL RESULTS

As shown in Table [T and Figure [T} under both the Controlled Performance and Standard Configu-
ration settings, MAQEE consistently achieves the best trade-off between efficiency and accuracy,
reducing BOPs by over 95% while maintaining accuracy close to the full-precision model across
backbones (DeiT results are given in Appendix consistent with other ViTs). In contrast, fixed-
precision baselines such as RepQ and ERQ exhibit unstable behavior. RepQ, in particular, suffers
from severe distribution shift, as uniformly quantizing all layers amplifies the mismatch between
layer sensitivity and quantization noise (formalized in Theorem [2). As a result, RepQ frequently
fails to meet the performance target and suffers substantial accuracy degradation under standard
settings. Although MPTQ incorporates mixed precision and offers more flexible bit allocations,
it remains restricted to a static inference path and overlooks the dynamic utility of layers under
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Bi CIFAR-100 ImageNet
1S Quant  EE
(W/A) Controlled Perf. Std. Config Controlled Perf. Std. Config
Ll BOPs| L| BOPs| Acct L| BOPs| L| BOPs| Acct
/ / 24 139EI3 9416  / / 24 1.39EI3 84.50
FP32 © VITEE 1359 930EI2 1647 1.09EI3 9080 1662 123E13 1823 135EI3  83.68
LGVIiT 9.88 1.02E13 13.80 9.4IE12 8938 11.13 8.83E12 1420 1.10E13 827
4 Repg  VITEE  N/A N/A 1872 2.12EI1 8223 N/A N/A 2016 227E1l 7475
= rpan PR 1GVIT  N/A N/A 1369 1.65E11 7438 N/A N/A 1897 2.19E1l  69.85
w
pro VITEE 2372 269EIl 2126 229EIl 8358 2346 265EIl 2096 23IEIl 7545
LGViT N/A N/A 1976 196E1l 7674 N/A N/A 2080 238Ell 7397
mprg VITEE  N/A N/A 2101 236E1l 8162 N/A N/A 2099 239E1l 7155
MP4/4 LGVIT N/A N/A 1656 190E1l 75.07 N/A N/A 2123 242E11 7435
MAQEE 1258 1.53E11 1379 1.65E11 89.13 17.60 2.09E11 1875 2.12E11 80.78
- / / 12 1.80EI3 9047  / / 12 1.80EI3 82.54
FP32 ° WITEE 709 18IEI3 727 189EI3 8751 765 190EI3 868 20SEI3 79.60
LGViT 590 1.68E13 643 1.76E13 8851 6.69 1.80E13 7.08 1.86E13 80.3
@ Repo  VITEE 1178 394EI1 990 3SIEIL 8571 N/A N/A 1083 3.71E1l  74.67
£ —_— PR Lovit  NA N/A 808 3.13EIl 7352 N/A N/A 874 33IEIl  72.30
prg VITEE 877 323EIl 926 334EIl 8782 N/A N/A 988 349E11 7735
LGViT 11.15 38IE1l  7.68 3.04El11 77.64 N/A N/A 9.12 340E11 73.06
mpro VITEE 893 327BIL 871 320EIl 8541 NA N/A 1026 358E1l 7658
MP4/4 LGViT 10.80 3.74E11 8.05 3.14E11 8444 1025 3.68El1l 933 345E1l 7753
MAQEE 574 252E11 607 266E1l 88.12 7.04 285E11 726 293E1l 79.41
Table 1: Performance on Image Classification.
Segmentation (SceneParse150) Detection (MS COCO)
Method Controlled Perf. Std. Config Controlled Perf. Std. Config
Ly BOPs . L, BOPs, IoUt L| BOPs) L| BOPs] mAP®@0.5"
FP32 / / 12 1.89E13  34.14 / / 12 1.95E13 68.23
m
£  VITEE+ERQ N/A N/A 8.10 3.17E+11 2734 N/A N/A 872 334Ell 40.42
> VIT-EE+MPQ 1146 3.94E+11 8.08 3.16E+11 2652 N/A N/A 859 3.30Ell 41.04

MAQEE 574 2.60E+11 6.79 2.86E+11 31.20 1040 3.77E11 8.68 3.32Ell 50.83

Table 2: Performance on Semantic Segmentation and Object Detection.

early-exiting. Consequently, MPTQ often selects unnecessarily deep exits or even disables early-
exiting. By contrast, MAQEE jointly evaluates the decision-level risk (PGR and BSR) and the
representation-level risk (SQNR~! and QID), thus effectively mitigating both premature and de-
layed exits. This leads to more stable exit behavior and up to a 50% reduction in exit depth and
BOPs compared to all quantization baselines. Since ViTs are widely used for different downstream
tasks, we also evaluate MAQEE on semantic segmentation and object detection in Table|2| Overall,
MAQEE delivers superior results on these challenging benchmarks, improving accuracy by at least
15% under the standard configuration and providing up to 2x speedup at the target performance.
In detection, however, early exiting combined with quantization causes a notable accuracy drop, as
detection depends heavily on mid-level, multi-scale features encoding global context. Early exits
truncate these pathways, while quantization distorts regression and classification outputs, with both
effects propagating downstream and leading to mislocalization and unstable predictions.

7 CONCLUSION

In this work, we introduced Mutual Adaptive Quantization with Early Exiting (MAQEE), a
bi-level optimization framework for efficient ViT inference under the Amortized-Precision Quan-
tization (APQ) paradigm. Our theoretical analysis provides stability and convergence guarantees,
proving that no static FPQ or MPQ scheme can match MAQEE under early exiting. Experiments
on classification, segmentation, and detection demonstrate that MAQEE consistently achieves su-
perior accuracy—efficiency trade-offs, reducing BOPs by over 95% while maintaining or even sur-
passing full-precision accuracy. These results highlight the importance of jointly optimizing pre-
cision and dynamic execution, pointing toward a practical path for low-latency ViT deployment in
resource-constrained environments. Looking ahead, extending MAQEE to multimodal transformers
and hardware-aware settings offers exciting opportunities to further advance efficient deep learning.
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REPRODUCIBILITY STATEMENT

All theoretical results, including formal proofs of convergence, optimality, and hardness (Theorems
1-4), are presented in detail in the Appendix to facilitate independent verification. For experimental
evaluation, we provide a complete description of datasets (CIFAR-100, ImageNet, SceneParse150,
and MS COCO) and evaluation metrics in Section 6, with additional hyperparameters and training
details reported in Appendix[C.1} To further improve transparency, we release our implementation as
anonymous supplementary material at https://anonymous.4open.science/r/MAQEE.
This includes training scripts, quantization routines, and code for mutual adaptive optimization.
For theoretical claims, all assumptions are explicitly stated, and proofs are provided for key results
regarding APQ and MAQEE.
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A DETAILED PROOF

A.l PROOF OF THEOREM

Theorem 4. The APQ bi-level optimization is NP-hard. Moreover, each level is NP-hard on its
own: (i) with fixed exit thresholds @, the inner bit-width allocation is NP-hard; and (ii) with fixed
bit-widths b, the outer exit-threshold optimization is also NP-hard.

Proof. We first prove that the inner-level bit-width allocation is NP-hard when the thresholds ¢ are
fixed (Lemma [I)), and then show that the outer-level threshold optimization is NP-hard when the
bit-widths b are fixed (Lemmal|2).

Lemma 1. Fix any thresholds ¢. Consider the decision problem: “Does there exist a bit
allocation b € B (e.g., discrete per-layer bit choices) such that the expected complexity
Ee[D> ", we(x; @) co(x,be)] is at most B while the expected loss B, ) [Lcu(fo,b,¢(),y)] is at most
A?” This problem is NP-hard.

Proof. Reduce from the classical 0—1 Knapsack. Given items {1,...,L} with values vy, > 0,
weights w, > 0, and capacity W, ask whether there exists a subset S with Zee swe < W
and ), gve > V. Construct an APQ instance with L layers and a binary bit-choice set

By = {bﬁo), bgl)} per layer: i) Complexity mapping: set cy(-) and (fixed) utilization u,(-; ¢) so

that E;[ug co(z, bEl) )] — B [we co(z, bEO))] = wy. ii) Accuracy mapping: choose a dataset and a head
such that turning on the high-bit option at layer ¢ reduces the loss by exactly v in expectation (e.g.,

via a separable surrogate Dy (b,) scaled appropriately). Set B = 3, E,[us co(x, bgo))] + W and

A = Ly — V, where Ly is the loss under all baselines b((go). Then selecting S = {¢: b, = bél)} is
feasible iff the knapsack instance is feasible. Hence NP-hardness follows. O

Lemma 2. Fix any bit-widths b. Consider the decision problem: “Does there exist thresh-
olds ¢ such that the expected complexity E,[T(¢)] is at most B while the expected loss
E(e,) [Lce(fo,p,¢(x),y)] is at most A?” This problem is NP-hard.

Proof. Reduce from 0-I1 Knapsack. Take a two-exit cascade (layers 1 and 2) with fixed log-
its/softmax scores precomputed on a finite dataset {z;}?_;. Let Cy(x;) € (0,1) be the confidence
at the first exit and suppose the final exit (layer 2) always predicts correctly with unit cost, while
exiting at layer 1 costs zero additional depth but may misclassify some points. Associate each item
¢ with a sample x; and set: i) If x; exits at layer 1 (i.e., C1(x;) > ¢1), we save expected depth
w; > 0 (benefit), but we incur a loss penalty p; > 0 if that early decision is wrong. ii) If it proceeds
to layer 2 (i.e., C1(z;) < ¢1), we pay depth w; but incur no penalty.

Choose the surrogate loss so that total early-exit penalty equals » ;¢ p;, where S = {i : C1(x;)
¢1}. Then the constraints E,[T'(¢)] < B and E[Lcg] < Abecome ), qw; > Vand ), op;
W, exactly the knapsack feasibility test. Thus finding ¢; is NP-hard. The argument extends t
multiple exits by letting only the first threshold be active.

O INIV

Concluding Lemmas [T] and [2] each level already involves an NP-hard subproblem, even when the
other level is fixed. Consequently, the joint bi-level problem is at least as hard as solving either level
in isolation, thereby implying NP-hardness. Hence, the theorem follows. O

A.2 PROOF OF THEOREME]

Theorem I} Consider a symmetric b;-bit affine quantizer applied to activations uniformly dis-

2
tributed in [—ay, o). The resulting mean-squared error is £4(by) = 3;‘—&2 which decays expo-
nentially as the bit-width by increases. Consequently, the probability of mis-exit at layer { grows
monotonically with €¢(by).

Proof. Consider activations 2 uniformly distributed on [—ay, a¢] and a symmetric b,-bit affine quan-
tizer on that range. Let the (per-layer) mean-squared quantization error be £4(by) and let the exit rule
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at layer ¢ compare a confidence statistic sy to a threshold 7,, with margin r, := sy — 7,. We show
that the mis-exit probability

D = Pr[sign(rg) # sign(ry + 5@)} (13)
is monotonically increasing in £ (b,) and therefore monotonically decreasing in by.

A bg-bit symmetric affine quantizer over [—ay, cv] has step

20[[
Under the standard high-resolution model, the quantization error 7, := & — « is uniform on [ -
%, %] , independent of x, with
A2 4o 2
Var(n,) = —% = Qe _ % go(be). (15)

12 12-2% 322
Thus &, (by) decays exponentially in by.
Let r, = sy, — 74 be the noise-free margin and let quantization perturb the statistic by an additive
error dy, so the noisy margin is 7y + d,. A mis-exit occurs exactly when the sign flips:
{mis-exit} <= sign(ry) # sign(re + d¢). (16)
Condition on a fixed magnitude r := |ry| > 0. By symmetry of Jy,
pe(Agsr) = Pr[oy < —r] = F5,(-r), A7)

where F, is the CDF of d;. For smooth s,(+), d; scales linearly with the quantizer step, so write
d¢ = AU, where U is a zero-mean, symmetric r.v. independent of A, (e.g., U ~ Unif[—%, %])
Hence
r
pe(Ag;r) = Pr[U < —’I“/Ag] = Fy (—Az>. (18)

Since Fy is increasing and —r /A, moves toward 0 as Ay increases, py(Ay; ) is monotonically
increasing in Ay. If Fyy has density fyy > 0, this is explicit:

0 T r
_ N = —_—— _— > .
A, Pe(Ag;7) fU( Az) Az = 0 (19)

Finally, since ey = A%/lQ, scaling Ay — ¢/, is equivalent to £, — ey, s0 pg is monotonically

increasing in €. Because
2

_ Y
ce(be) = 5o (20)
decreases with by, the mis-exit probability decreases with by and increases with £4(by). The theorem
follows. 0

A.3 PROOF OF COROLLARY

Corollary 1. Layers or samples with small margins Ay(x) are inherently unstable under low-bit
quantization, since even minor perturbations can flip exit outcomes.

Proof. Let Ay(x) be the noise-free exit margin at layer ¢ for sample x, and let the quantizer induce
an additive perturbation d,(x) with E[d;(z)] = 0 and a symmetric distribution. The mis-exit event
is a sign flip:

pe(z) = Pr[sign(A(z)) # sign(A(a)+e(2))] = Pr[de(z) < —|Ag(2)]] = Fs,(—|Ae(2)]),

(21)
where Fj, is the CDF of §,(x), hence pe(z) is monotonically decreasing in |Ay(z)| and monotoni-
cally increasing in the noise scale. In the uniform-error (affine quantizer) model, if the quantizer step
is A, and the margin statistic is locally L,-Lipschitz so that 6, () = L 1 with n ~ Unif[— %, %] ,
then 6y(x) ~ Unif[—a, a] with a = L;A,/2, yielding

1 A
pe(z) = max{ 0, 3 L;(sz' }7 (22)

15



Under review as a conference paper at ICLR 2026

so whenever |Ay(x)| < LgA, the flip probability is strictly positive and decreases linearly as the
margin grows. More generally, if §¢(z) is sub-Gaussian with proxy variance o7 (e.g., 07 = ¢ Le,
with ¢, the per-layer MSE of the quantizer), then the one-sided tail bound gives

pe(z) = Prloy(a) < —|Ag(@)]] < exp(_ﬁégﬂé)?), o3

which is increasing in the noise scale o7 (or £¢) and decreasing in |Ay(z)|. Therefore, layers or
samples with small margins Ay(x) are inherently unstable under low-bit quantization, since even
minor perturbations can flip exit outcomes. The corollary follows. O

A.4 PROOF OF THEOREM

Theorem 2| Let K be the empirical exit depth under thresholds ¢, with mean jx and variance
02 > 0. Let Fy(k) denote the cumulative quantization distortion under bit allocation b. If Fy(k)

is convex in depth k, then E[Fp(K)] > Fp(ur) + %Q(Q) 0%, where 0% is the variance of exit
depths and 8® is the minimum discrete curvature of Fy(k).

Proof. Let K be the (integer—valued) random exit depth with mean py := E[K] and variance
0% := Var(K). Write the discrete forward differences of F}, as

AFy(k) := Fp(k) — Fp(k — 1) = Dy(by),
so the discrete second difference is
A?Fy(k) := AFy(k) — AFy(k — 1) = Dy(bi) — Dp_1(bg_1).
By assumption, Fy, is (discretely) convex and its discrete curvature is bounded below:

A2 Fy(k4+1)=A2Fy (k) = Dyr1 (brs1)—2Dp(bg)+Dp—1(br—1) > 8@ for all k in the support of .

This means F}, is m-strongly convex on Z with parameter m := § () in the discrete sense: for any
x € Rand k € Z there exists a subgradient g, € dFp(x) of a convex extension Fp : R — R
satisfying
~ m
Fo(k) = Fo(x) + go (k—2) + 5 (k—2)" (24)
(One convenient extension is the standard piecewise—linear/quadratic convex interpolation, whose

second derivative in the distributional sense is bounded below by m; then Eq. [24]is the usual strong
convexity inequality.)

Apply Eq. P4 with = pux and take expectations with respect to K:
~ m
E[Fy(K)] > Fo(ix) + guw BIK — pic] + 5 E[(K = px)?] (25)
The middle term vanishes since E[K — px] = 0, and E[(K — px)?| = o%. Moreover, by con-

struction ﬁb(ﬂ k) = Fy(uk) when pug € Z, and in general ﬁb coincides with Fy at integer points
while preserving convexity, so the bound reads

1
5 587 ok (26)
The theorem follows. O

E[Fy(K)| > Folux) + mo% = Fp(ug) +

A.5 PROOF OF COROLLARY

Corollary 2. Under input-dependent early exiting, no static bit allocation b can be uniformly opti-
mal, since exit randomness inevitably amplifies quantization error in convex regimes.

Proof. Let K be the random exit depth induced by thresholds ¢ and an input =, and let Fp(k)
denote the cumulative quantization distortion up to depth k£ under a static bit allocation b. Assume
the convex (discrete) regime with minimum curvature

3D (b) = min (Dy1(be41) = 2Dx(br) + Di—1(bg-1)) > 0. 27)
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For the distribution P of K, write ux = Ep[K] and 0% = Varp(K). By discrete strong convexity
(Jensen with a curvature correction),

Ep[Fo(K)] > Fo(px) + 367 (b) ok (28)
Define the performance functional for b under P as
J(b; P) = Ep[Fy(K)]. (29)

Consider two exit-depth distributions Py, P, with the same mean px but different variances 0 <
v1 < va. From equation 28]

Jb:P) > Fy(ux) + 26P(b)v;,  ie{l,2}. (30)

Optimization over b therefore faces a bias—curvature trade-off: for small-variance P; the leading

term is Fp (), while for large-variance P the curvature penalty % 9 @ (b) vy dominates. Let

by € argmin Fy(ur), (31)

and
b € argmin 3 (b). (32)

In any nondegenerate convex regime there exist allocations with different curvatures (changing b
reshapes the per-depth distortions Dy (b)), hence typically by # by. Choose vy sufficiently large
so that, for all b,

Fy, (ui) — Fy(ug) < 18P (b) — 8 (by)) va, (33)

which forces bs to be optimal for P, while by is optimal for P;. Consequently, there is no single
static b that minimizes 7 (b; P) for both P; and P. Since input-dependent early exiting induces
input-dependent exit-depth distributions P, with generally different variances, any fixed b cannot
be uniformly optimal across inputs. Intuitively, exit randomness amplifies quantization error via
the convex penalty %Q(Q)(b)af( in equation because 0'? (b) itself depends on b, the optimal
trade-off necessarily varies with the variance of K, precluding a uniform optimum. The corollary
follows. H

A.6 PROOF OF THEOREM

Theorem[3| The bi-level optimization in MAQEE, i.e., iteratively updating the thresholds ¢ and the
bit allocation b, strictly decreases the APQ loss (defined in Eq. 3) at each iteration and converges
to a coordinate-wise optimum, moreover, with a fixed bit budget, no static FPQ or MPQ allocation
outperforms MAQEE under early exiting.

Proof. Let the network have L layers with early-exit heads at layers 1,...,L — 1. Let ¢ =

(¢1,...,¢r—1) be the exit thresholds, and let s;(x) be the confidence statistic at exit ¢ for input
x drawn from the data distribution. Define the random exit depth
Ke(x) :=min{l € {1,...,L} : sp(x) > ¢¢}, Kg(r) = L if none triggers. 34)

Write Ky when the dependence on x is implicit. Set px, = E[Ky], afq) := Var(Ky), and
T(¢) := E[K).

Let the bit allocation be b = (b, . .., br) with budget Zle by = B. For each layer ¢, let Dy(by) >
0 denote the expected increase of the task loss from quantizing layer ¢ at b, bits (holding shallower
layers fixed). Assume Dy(-) is nonincreasing and convex. Define the cumulative distortion up to
depth k,

Fo(k) == Dy(by), (35)

~
HM?r
L

and its discrete curvature lower bound

5 (b) = ,min (Dyy1(bks1) — 2Dy (by) + Dy—1(by—1)) > 0. (36)
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The APQ loss is

Assume the discrete strong-convexity variance bound holds:
E[Fp(Ky)] > Folux,) + 302 (b) ok, (38)

Assume that a small change ¢ — ¢’ that moves thresholds away from near-boundary regions strictly
reduces 0%% while changing T'(¢) by o(1). Assume also that, under the fixed budget, moving one

bit from layer i to j according to a risk—cost rule strictly decreases Fy(1ix,) and does not increase
52 (b). With fixed b, using the variance bound,

L(b,¢) > Fylpx,)+ 302 (b) ok, + AT(). (39)
Choose a small update ¢ — ¢’ that reduces U%(d) and changes T'(¢) by o(1). Then

L(b,¢') — L(b,p) < %5(2)@)(03%, —0%,) +Ao(1) < 0. (40)

With fixed ¢’, reallocate one bit from layer ¢ to j under the budget. With T'(¢') unchanged and
A5 (b) < 0, the first-order change satisfies

AL = Oy Fo(pk, ) — O Fo(pk,, ) + %U%(d,, AP (b) < 0. (41)

Each iteration (threshold update followed by bit reallocation) strictly decreases L(b, ¢b). Since the
feasible set {b : > ,b, = B, by > 0} x ® is compact in practice and £ is bounded below, the
sequence is monotonically decreasing and converges to a coordinate-wise optimum.

For the static suboptimality claim, choose ¢1, ¢2 with the same ik, and with 0 < O’%((p < Uf% .
1 2
For any static b,

L(b,¢2) — L(b,p1) > 56 (b) (0%, — 0%, ) > 0, (42)

and because §(?) (b) depends on b, the allocation favored under ¢; generally differs from that under
®2. Hence no static FPQ or MPQ allocation outperforms MAQEE under early exiting. O]
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B NOTATION TABLE

Symbol Description

L Number of transformer layers.

B Set of admissible bit-widths (e.g., {3,4, 5}).

be Bit-width assigned to layer .

b Vector of layer bit-widths.

%) Confidence threshold at exit /.

@ Vector of exit thresholds.

ze() Logits from the exit head at layer ¢ for input x.
pe(x) Exit confidence at layer /.

ug(x, @) Indicator that input x reaches layer £ under (.
ug(p) Expected utilization of layer £.

T(p) Expected depth (average number of executed layers).
co(x, by) Compute cost of layer ¢ at bit-width by (e.g., BOPs).

Complexity s pq (b, )
)\7 )\outera >\inner
he, by
SQNR;*
QID,
PGRy(¢)
BSRe(¢)

Ry

)

x’ y

fa,b,«p

Lck

KL([), T, B
«

T¢

Qy

E[(bz)

Ka KK, 0-%(
Dy(be), Fy(k)

Amortized compute under policy ¢ and bit allocation b.
Trade-off coefficients in optimization objectives.

Full-precision and quantized activations at layer ¢.

Inverse signal-to-quantization-noise ratio at layer £.
Quantization-induced drift (range distortion).

Performance gap risk at exit ¢.

Boundary sensitivity risk near threshold ;.

Per-layer risk combining decision- and representation-level terms.
Risk—cost ratio for prioritizing precision allocation.

Input sample and label.

Quantized network with weights 6, bit allocation b, and policy ¢.
Cross-entropy loss.

Terms in the self-distillation loss.

Trade-off between decision- and representation-level risks.
Tolerance margin used in BSR.

Activation range parameter (used in Theorem 1).

Quantization MSE for a b,-bit uniform affine quantizer.

Random exit depth and its mean/variance.

Per-layer and cumulative quantization distortions.

C EXPERIMENTS

C.1

All training are conducted on NVIDIA H100 GPUs. We adopt the SegFormer (Xie et al., [2021)
head on a ViT-B for semantic segmentation, and conduct object detection experiments on YOLOS-
Base (Fang et al., [2021)), which is based on DeiT-B. For each model, we configure four exit heads:
the first two are convolutional, and the latter two are attention-based. In the 12-layer DeiT-B and
ViT-B models, the exit heads are inserted at the 4", 6, 8", and 10™ layers. For the Swin model,
they are placed at the 2", 4", 14" and 20" layers, approximately uniformly distributed with respect
to computational cost. All models are trained with AdamW and a cosine-decay schedule with a
1 x 1075 peak LR. For MPQ optimization, the process is initialized using the FPQ configuration of
the layer immediately preceding the target precision. The optimization is then progressively refined
toward the desired precision until convergence is achieved. We set the hyperparameters as follows:
Aouter = 0.5, Aipner = 0.5, & = 0.75, = 0.5, 7 = 0.05, ¢ = 1076, T = 2, byin = 3, and byay = 5.

Table 3: Notation used throughout the paper.

IMPLEMENTATION DETAILS
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Table 4: Performance on Image Classification with DeiT dataset.

Bits CIFAR-100 ImageNet

(WIA) Quant EE Fix Acc. Default ¢ Fix Acc. Default ¢
L, BOPs| L| BOPs| Acct L| BOPs| L| BOPs| Acct
/ / 12 1.80EI3 91.86 / / 12 1.80EI3 83.10
FP32 VILEE 720 1.84E13 8.10 1.97E13 8924 959 2.19E13 8.5 197EI3 8051
LGVIT 547 16IE13 633 1.70E13 89.03 6.19 172EI3 7.18 1.87E13 81.70
= RepQ ViT-EE  N/A N/A 991 3.59El11 8479 N/A N/A 1142 385E1l 70.58
8B rpas PYLGviT  NA N/A 937 342El11 7543 N/A N/A 1003 3.56E11 69.31
pro VITEE 877 323EIl 928 33SEll 8786 1179 39IEIl 1086 372EIl  77.59
LGViT N/A N/A  9.00 334Ell 7851 N/A N/A 9.09 3.37E1l  71.32
MPQ VIT-EE 881 3.25El11 851 3.17E1l 8457 11.80 3.94E1l 10.56 3.65E1l 76.15
MP4/4 LGViT 1135 3.93El1l 7.6 3.07E1l 83.15 12  4.09E11 886 3.34E1l 73.58
MAQEE 586 2.61E11 598 2.64E11 87.86 7.92 3.10E11 7.59 3.01E11 78.57

C.2 DEIT RESULTS

As shown in Table [] DeiT delivers performance broadly comparable to ViT, consistent with their
structural similarity. MAQEE preserves FP32-level exiting accuracy and enables, on average, 3—4
earlier exits at the same accuracy. Although MPQ alleviates part of the accuracy degradation of FPQ
under Early Exiting, its assumption of a fixed inference path constrains exit efficiency, leaving it less
effective than MAQEE.

D BI-LEVEL OPTIMIZATION ALGORITHM

Algorithm 1 Bi-level optimization

Require: Parameters 6; datasets Dyin, Dcar; initial bit allocation b(®: threshold grid A; hyper-
parameters «, [3; accuracy drop tolerance €,.; per-layer bit bounds byin, bmax
Ensure: Thresholds ¢*, bit-widths b*
Initialization: set thresholds (?) (e.g., high-confidence defaults); quantize model with b(%);
estimate utilization u,(¢(?)) and expected depth T'(¢(?)) = 3=, us((?)) on Dey.
Set p «+ (0, b + b,
while true do
bprev L)
Outer loop (threshold search):
Given b:
for each exit ¢ and candidate A € A do
Compute PGR())(equation [6) and BSR,())(equation [7).
end for
Update thresholds ¢ by coordinate/grid search (equation g)).
Re-estimate uy(¢) on D).
Inner loop (bit re-allocation):
for each layer / do
Compute per-layer risk Ry (equation
Compute normalized score ¥, (equation by Ry and updated uy(¢p).
end for
Define feasible sets: £, = {€ | by > bmin}, L4 ={C] by < bax}-
Choose release target {* = arg mingez, ¥y, allocation target (T = arg maxyer, Uy.
Update bits (budget-conserving): byy <—bypr — 1; byt <—bpr + 1.
Self-distillation recovery: train on Dy, with loss £(6; x, y) (equation .
Evaluate A, on Dgy.
Convergence check:
if b = by, then
break
end if
end while
return p* =, b*=Db
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