Improving Coherence of Language Model Generation
with Latent Semantic State

Anonymous ACL submission

Abstract

Sentences generated by neural language mod-
els (LMs) often suffer from coherence errors:
they describe events and situations inconsistent
with the state of the world described by pre-
ceding text. We show that coherence errors can
arise at multiple stages of LM computation, and
describe a procedure for distinguishing errors
in inferring state from errors in generating sen-
tences. In models with correctable errors of the
first type, we show that targeted supervision can
address them. We introduce two procedures for
using explicit representations of world state as
auxiliary supervision. These procedures effi-
ciently improve LM coherence, in some cases
providing the benefits of 1,000-9,000 training
examples with only 500 state annotations.

1 Introduction

Recent years have seen dramatic improvements in
the quality of text generated by neural language
models (LMs; Brown et al., 2020; Raffel et al.,
2020). Nevertheless, even the best LMs suffer
from failures of semantic coherence. Samples
from LMs refer to entities that have not yet been
mentioned, present contradictory facts, or describe
impossible events (Marcus and Davis, 2020).

This paper introduces a framework for under-
standing and mitigating incoherent language gen-
eration. First, we identify two distinct sources of
coherence errors in LMs: failures to represent the
state of the world described by a discourse, and fail-
ures to identify next sentences licensed by a given
state. In LMs with coherence errors, we describe a
procedure for quantifying how much implicit state
representations can be improved, and how much
improvement would affect the coherence of down-
stream text. Second, we show that in LMs with
improvable state representations, small amounts
of state supervision can improve coherence of
generated text. Given a small set of annotations
describing the states of mentioned entities in train-
ing documents (Fig. 1a), we describe how to impute

(a) Examples of contexts, states, and next-sentence completions

Context T Latent state S Next sent. T’
You see an open chest.
The only thing in the The chest is open.
chest is an old key. The chest is empty. You unlock
There is a locked door || You have the old key. || the door:

leading east. You pick || The door is locked.
up the old key.

(b) Standard language (c) Our analysis & supervision framework:
modeling language modeling with latent state

O—0 O—60—0

Figure 1: Language modeling with latent state. (a)
Generating a sentence 7" in a context T" requires first
inferring the state of the world S described by 7. (b)
Standard neural LMs do not represent world state explic-
itly, but their representations may encode it implicitly.
(c) By formulating language modeling as an explicit
latent variable problem, we can identify and correct gen-
eration errors in neural LMs.

latent states for remaining examples, then use these
states as auxiliary supervision during LM training.
In experiments on the TextWorld dataset, applying
this procedure with 500 seed annotations gives co-
herence improvements comparable to 1,000-9,000
additional training sentences. Our results show
that errors in LM generation can, in some cases,
be linked directly to LMs’ internal representations
and corrected with simple supervision.

2 Preliminaries

A language model (LM) encodes a distribu-
tion p(T" | T) over texts T" given contexts T
(Fig. 1b). Today, LMs are primarily implemented
as deep neural networks trained on massive text
corpora (Brown et al., 2020). LM generation is
prone to several failure modes: samples may be
incoherent, untruthful, or unreliable (Zhou et al.,
2021; Maynez et al., 2020; Martindale et al., 2019),
propagate social biases (Abid et al., 2021), or con-
tain hateful content (Askell et al., 2021).
Incoherent LM output, the focus of this paper,

contradicts known facts from prior context, refers
to non-existent entities, or describes impossible
events or actions. Existing work addresses co-
herence issues by introducing model architectures
that facilitate global planning (Zhai et al., 2019;
Fan et al., 2018; Kiddon et al., 2016), state track-
ing (Zellers et al., 2021; Storks et al., 2021), or use
external knowledge sources (Lewis et al., 2020b;
Shuster et al., 2021); however, these errors remain
a persistent feature of standard LMs.

How might we represent and reason formally
about coherence errors? One idealization, drawn
from the linguistic theory of dynamic semantics,
states that the process of generating a next sentence
T in a context 7" involves first inferring the state
of the world S described by T, then identifying
utterances that could come next given that .S is true
(Fig. 1c; Heim, 2012). In NLP, recent work has
found that pre-trained LMs implement a version of
this inference procedure: encoders build representa-
tions of mentioned entities and their properties, and
these representations are causally linked to decoder
output (Li et al., 2021). We investigate whether
errors in state representations contribute to errors
in generation (§3), and whether improving them
can improve the coherence of LM output (§4).

3 Identifying improvable state
representations

In the idealized generative process of Fig. 1, co-
herence errors can arise in two places: in p(S | T')
(state inference errors) and in p(7” | S) (sentence
prediction errors). Li et al. (2021) found that LMs
approximate this generative process by using con-
text encodings to represent the state of the world.
We thus expect state inference errors to manifest as
encodings from which state representations cannot
be extracted, and prediction errors to manifest as
failure to produce coherent text given ground-truth
state representations. This section presents an ex-
perimental framework for measuring whether each
error type is present and correctable in an LM.

3.1 Models and Datasets

We study three English language modeling datasets.
TW is derived from TextWorld (Co6té et al., 2018).
We generate a set of textual game transcripts where
players navigate through a house, unlocking doors
and containers to hunt for a target object. The LM
is trained on these transcripts to generate next ac-
tions and game responses. As state supervision, we

100
L T
o
5 -
5 60y
O /"\
©
A 40+
8 —— TextWorld = = Fine-tuned
% 201 TRIP = Probe
= Recipes
0 T
100 5000 10000

Text Training Examples

Figure 2: Accuracy of states extracted from LM en-
coders. Solid lines show accuracy of a state probe ap-
plied to fixed encodings from LMs fine-tuned for text
generation with varying amounts of data. Dashed lines
show performance of a state prediction upper bound in
which the encoder and decoder were jointly fine-tuned
to predict state representations. Shaded areas represent
the possible improvement in state prediction that could
be obtained by directly supervising state representations,
which is large for TW but smaller in other domains.

use the set of state variables (given as entity-centric
facts) that are verifiable and relevant in the current
context.! TRIP (Storks et al., 2021) features pairs
of plausible and implausible short stories which
require physical commonsense reasoning to disam-
biguate. Models are trained to predict plausible
next sentences given histories. The state is given
by a set of attributes for each entity, which is up-
dated after each sentence. Recipes (Kiddon et al.,
2016) consists of cooking instructions annotated
with state changes and affected ingredients at each
step. Models are trained to generate next steps.

For all experiments, we use BART-base (Lewis
et al., 2020a) as the language model and fine-tune
it on the dataset being evaluated. The BART model
represents the context with a transformer encoder,
then generates a next sentence using a transformer
decoder. Fine-tuning uses the AdamW optimizer
with learning rate le-5 and patience 5-15.

3.2 Measuring state inference errors

Method We evaluate the accuracy of (1) models
trained to predict states given fixed LM encodings,
and (2) upper bound models trained to predict states
from context text. The magnitude of (1) measures
how well LMs encode state, while the difference
between (2) and (1) measures how much state rep-
resentations could be improved with additional su-
pervision. The upper bound is obtained by jointly
fine-tuning the encoder and decoder of an LM; the
probe is obtained by fine-tuning a decoder only.

!See Appendix B.1 for state representation details.

= = Condition on State

100
=)
8
%’ 801
- / — TextWorld
o
S 60 TRI.P
m = Recipes
E 40 1 = Condition on Text
7]
<
=]
5]
)
O

0k .
100 5000
Text Training Examples

10000

Figure 3: Next sentence prediction, conditioned on text
(solid line) vs. state (dashed line), across 100-10k text-
to-text or state-to-text examples. In TW, ground-truth
states improve next-sentence prediction. In TRIP and
OpenPI, models conditioned on state perform worse.

Results Results are shown in Fig. 2. In TW, we
find a large gap between the upper bound and the
probe, indicating that states are not well-encoded
by models trained on text alone, but learnable with
targeted supervision. In TRIP and Recipes, the gap
is much smaller. In all domains, simply scaling up
the amount of text used to fine-tune the LM does
not yield improved state representations.

3.3 Measuring sentence prediction errors

Method We next evaluate whether, in each prob-
lem domain, LMs with access to ground-truth state
representations can generate more coherent output
than LMs that condition on text representations.
We train (1) an S — 7" LM to map from explicit
state annotations to next sentences, and (2) a base
T — T’ LM. The magnitude of (1) measures the
prevalence of text prediction errors given an ideal
state, while the difference between (2) and (1) mea-
sures how much generation would in principle be
improved by better state representations.

Evaluation We use a contrastive evaluation. For
each test context 7" or S, models are presented with
the true next sentence following the context and
(one or more) distractor sentences. We measure the
fraction of contexts in which the true next sentence
is assigned greater probability than the distractor.
In TW, we select six distractors that cannot be
produced by the simulator in a given context. In
TRIP, we select a single distractor taken from the
implausible story in each pair. Finally, in Recipes,
we use 15 in-batch next sentences as distractors.

Results Results are shown in Fig. 3. In TRIP and
Recipes, even ground-truth state representations
do not promote more coherent text generation.

In TW, this is reversed, and LMs achieve better
performance when conditioning on state.

To summarize: coherence errors in language
modeling problems reflect a diverse set of under-
lying model failures. In TRIP, states are correctly
inferred most of the time, but difficult to use; gen-
eration errors arise in next sentence prediction. In
Recipes, states are not correctly inferred and not
easily correctable, and also seemingly unhelpful for
generation. In TW, states are incorrectly inferred
but inferrable in principle, and useful if inferred.

4 Improving LM coherence

§3 predicts that language models for TW (but not
other domains) could be improved with better state
representations. We next describe a procedure for
supervising state representations directly, and show
that it leads to improved coherence of LM outputs.

We assume access to a large set of text-only
examples X’ (consisting of (7, T") pairs), of which
only a small subset X4 C X" are annotated with
state information (and consist of (T, S, T") triples).
The remaining Ay = X'\ X4 are unaligned.

Method 1: Aucxiliary Supervision (AS) The
baseline BART LM comprises an encoder £ and
a decoder D. D(E(T)) outputs a distribution over
next sentences. £ and D are trained to maximize:

L(T'|T) =log p(T'|T) =1og D(T" | £(T)) (1)

To improve state representations, we add an aux-
iliary loss. This takes the form of an auxiliary
BART decoder Dgr (distinct from the text-to-text
LM’s decoder) which is trained to predict S from
encodings of the text history £(7"). We define

L(S

T) =logp(S

I') = log Dgir(SIE(T)) (2)

and train the parameters of the encoder (f¢) and
both decoders (6p, GDT? ¢) to maximize:

arg max Z L(T'|T) + Z L(SIT) (3)

Oe.9D.9Dr 5 T e ¥ T,S€X 4

We first fine-tune BART-base to convergence on X
using L7, then train on Eq. (3) above.

Method 2: Latent Supervision (LS) Even for
unannotated examples A7, it may be possible to
infer state annotations at training time. States are in
general easier to infer at training time (when both

(a)ggiclff;igrz nfgrLTar;inntiré%a\;ith (b) TW Results (c) TRIP Results
Supervision J
p 87 < 56
<
S o 861 10k % 55
R / 2 e =
. ~\[J(T [S) 2 o5 £ 54
: : 1
p(S | T) ': . S g4l 3 3 —— Aux Supervision
; ‘4 = Latent Supervision
""") 83 3 = =+ Text-only Baseline
7T HES—>e—E2—> T - : 51— .
-------------------- > 10100 500 1000 10100 500 1000

pI'|T)

Aligned Training Examples

Aligned Training Examples

Figure 4: Training with auxiliary and latent state supervision. (a) depicts our training procedure: we train an LM with
an auxiliary decoder to predict the state from the context, using an additional encoder/decoder to semi-supervisedly
infer latent state. We run experiments in TW (b) and TRIP (c), assuming access to 1000 total examples and varying
how many of them are aligned with state (from 10-1000). We benchmark generation coherence against LMs trained
on lk and 10k text-only examples. In TW, state supervision improves generation coherence, sometimes beyond a
model trained on 10k text-only examples. As predicted, state supervision in TRIP is unhelpful.

T and T" are available) than at test time (when only
T is observed). AS may thus be extended to incor-
porate latent supervision, in which state variables
are simultaneously inferred and used as auxiliary
supervision for a model that predicts p(7" | T'). We
do so with the objective:

argmax » L(T'|T)+ Y (L(S|T)+ L(T'|S, T))
o,S s

7,7’ T,

ex €EX A

+ > (LSID) +o118.1)),)
T,7',8
exy

Eq. (4) extends AS by concurrently train-
ing an encoder-decoder My g7 to model
p(T"|S,T). The full set of parameters is O =
{0¢,0p, 0Dg)7+ 0 M, S,T}’ optimized via alternat-
ing coordinate ascent on © and S. We initialize
Os,0p, 0pg, ;. using AS, and b7+ by fine-tuning to
convergence on X'4. We then iterate between:

1. Set § ~ argmaxgp(S | T)p(T"|S) for
Xy by sampling five state candidates from

p(S | T'), then reranking these candidates ac-
cording to p(S | T)p(T" | S).

2. Using the new S, train © to maximize Eq. (4).
Rather than training to convergence, we per-
form SGD on Eq. (4) for five epochs.

As in AS, £ is shared between the p(7” | T') and
p(S | T). Information about inferred states shapes
text generation via the auxiliary decoding objective.

Evaluation We select 1000 training examples
(|¥| = 1000) and experiment with varying
amounts of alignment (] X 4| = {10, 100, 500, 1000

}). For each size of X4, we randomly create 8 dif-
ferent training sets (both X and X4 can vary among
the 8) and train LMs using Eq. (3) and Eq. (4). For
each context in the TW test set, we draw five sam-
ples from the LM and measure the fraction of these
that are semantically coherent by comparing them
to possible outputs of the TW simulator. In TRIP,
we use the contrastive evaluation from §3.3.

Results We report results in TW (Fig. 4b), and
TRIP (Fig. 4c). We report means and standard
errors across the 8 training sets. In TW, 10-50
state annotations suffice to outperform the text-only
baseline, and with 500 state annotations, LS gives
comparable coherence improvements to training
on 9,000 more text-only examples. (Note, though,
that there is high variability across replicates: we
should expect LS with 500 annotations to underper-
form 1,000 annotations asymptotically.) Additional
experiments in Appendix C.1 show that these im-
provements come at no cost to generation diversity.
In TRIP (and Recipes, see Appendix C.2), state
supervision is unhelpful. This is consistent with
the prediction in §3 that state supervision is helpful
only when LM state representations are initially
incorrect, fixable, and usable.

5 Conclusion

Effective generation of coherent text requires rea-
soning about the world that text describes. We have
introduced a framework for measuring how well
LMs perform this reasoning, and described an algo-
rithm for sample-efficiently improving them. Our
results point to a potentially broad role for semantic
supervision in LM training—in some cases, small
amounts can yield large coherence improvements.

6 Impact Statement

This work introduces ways of using state supervi-
sion for diagnosing and improving the coherence
of language model generations. This can be used
to reduce the incidence of false or misleading gen-
erations from language models. Furthermore, we
found that training with small amounts state super-
vision can, in certain circumstances, be comparable
to to training with a much larger amount of text-
only supervision. Thus, state supervision could
be one way to reduce the scale of pre-training,
which would be both environmentally friendlier,
and would reduce the risk of unknowingly pre-
training on toxic content or private data.

However, the methods described in this paper
can also be used maliciously to improve the coher-
ence of automatically-generated misinformation,
hate speech, or other harmful content. Furthermore,
the methods described here are imperfect and work
only in certain domains (§4). We encourage future
work to examine different ways of incorporating
state annotations, and also to think carefully about
what kinds of state annotations would be useful
when developing new datasets.

References

Abubakar Abid, Maheen Farooqi, and James Zou. 2021.
Persistent Anti-Muslim Bias in Large Language Mod-
els, page 298-306. Association for Computing Ma-
chinery, New York, NY, USA.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, Nelson El-
hage, Zac Hatfield-Dodds, Danny Hernandez, Jack-
son Kernion, Kamal Ndousse, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam Mc-
Candlish, Chris Olah, and Jared Kaplan. 2021. A
general language assistant as a laboratory for align-
ment.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Marc-Alexandre Coté, Akos Kadar, Xingdi (Eric) Yuan,
Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mah-
moud Adada, Wendy Tay, and Adam Trischler.
2018. Textworld: A learning environment for text-
based games. In Computer Games Workshop at
ICML/IJCAI 2018, pages 1-29.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889-898, Melbourne, Australia. Association
for Computational Linguistics.

Irene Heim. 2012. File change semantics and the famil-
iarity theory of definiteness. de Gruyter.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi. 2016.
Globally coherent text generation with neural check-
list models. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 329-339, Austin, Texas. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020a.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020b.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459—
9474. Curran Associates, Inc.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. 2021.
Implicit representations of meaning in neural lan-
guage models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1813-1827, Online. Association for
Computational Linguistics.

Gary Marcus and Ernest Davis. 2020. Gpt-3, bloviator:
Openai’s language generator has no idea what it’s
talking about. [Online; posted 22-August-2020].

Marianna Martindale, Marine Carpuat, Kevin Duh, and
Paul McNamee. 2019. Identifying fluently inade-
quate output in neural and statistical machine transla-
tion. In Proceedings of Machine Translation Summit
XVII: Research Track, pages 233-243, Dublin, Ire-
land. European Association for Machine Translation.

https://doi.org/10.1145/3461702.3462624
https://doi.org/10.1145/3461702.3462624
https://doi.org/10.1145/3461702.3462624
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2112.00861
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.microsoft.com/en-us/research/publication/textworld-a-learning-environment-for-text-based-games/
https://www.microsoft.com/en-us/research/publication/textworld-a-learning-environment-for-text-based-games/
https://www.microsoft.com/en-us/research/publication/textworld-a-learning-environment-for-text-based-games/
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/D16-1032
https://doi.org/10.18653/v1/D16-1032
https://doi.org/10.18653/v1/D16-1032
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.143
https://doi.org/10.18653/v1/2021.acl-long.143
https://doi.org/10.18653/v1/2021.acl-long.143
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906-1919, On-
line. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,

21(140):1-67.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation
reduces hallucination in conversation.

Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai.
2021. Tiered reasoning for intuitive physics: Toward
verifiable commonsense language understanding. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4902-4918, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi,
Dheeraj Rajagopal, Peter Clark, Michal Guerquin,
Kyle Richardson, and Eduard Hovy. 2020. A dataset
for tracking entities in open domain procedural text.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6408-6417, Online. Association for Computa-
tional Linguistics.

Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh
Mottaghi, Aniruddha Kembhavi, Ali Farhadi, and
Yejin Choi. 2021. PIGLeT: Language grounding
through neuro-symbolic interaction in a 3D world.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2040-2050, Online. Association for Computational
Linguistics.

Fangzhou Zhai, Vera Demberg, Pavel Shkadzko, Wei
Shi, and Asad Sayeed. 2019. A hybrid model for
globally coherent story generation. In Proceedings
of the Second Workshop on Storytelling, pages 34—
45, Florence, Italy. Association for Computational
Linguistics.

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab,
Francisco Guzman, Luke Zettlemoyer, and Marjan
Ghazvininejad. 2021. Detecting hallucinated content
in conditional neural sequence generation. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 1393—-1404, Online.
Association for Computational Linguistics.

A OpenPI Dataset: State Inference
Accuracy & NSP on Accurate States

In addition to the datasets in §3.1, we also ran ex-
periments on OpenPI (Tandon et al., 2020), which
consists of instruction sequences annotated with the
changes to entity states that result from executing
each instruction.

As shown in Fig. 5(a), in OpenPI, similar to
in TRIP and in Recipes, training with state super-
vision does not improve state inference accuracy.
For domains where state supervision does not help,
state inference is either too difficult, even in the
presence of explicit supervision (OpenPl), or too
easy and already learned from text-only training
(TRIP).

In Fig. 5(b), it appears that conditioning the LM
on states result in more accurate next sentence
predictions than conditioning the LM on text in
OpenPl. However, this is simply because the state
contains the full set of entities, even unknown ones
that have not yet appeared in the prior context. This
is supported by the fact that conditioning the LM
on the full set of entities alone results in compara-
ble gains as conditioning on state. This is a quirk of
the contrastive evaluation—the LM simply needs
to check whether the entities mentioned in the next
sentence matches one of the entities in the state.
Thus, we cannot conclude that the state, in and of
itself, is any more informative of the next sentence
than the text context. (It is natural to ask whether
this is also the case for TW. However, in TW, we
are conditioning on the current belief state rather
than the full state, which contains only known facts
about known entities. See more in §B.)

B Constructing the State

B.1 State supervision in each domain

In each domain, the state is a collection of facts
(attributes and/or relations) about each entity. It is
updated each time there is a new action, instruc-
tion, or sentence. We convert the state to natural
language to take advantage of existing linguistic un-
derstanding in pre-trained models. Future work can
examine the effect of using non-natural-language
forms of state.

Below, we discuss the details of this conversion
from the available state annotations in each do-
mains. Sample states from each domain can be
found in Table 1.

https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2104.07567
http://arxiv.org/abs/2104.07567
http://arxiv.org/abs/2104.07567
https://doi.org/10.18653/v1/2021.findings-emnlp.422
https://doi.org/10.18653/v1/2021.findings-emnlp.422
https://doi.org/10.18653/v1/2021.findings-emnlp.422
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2021.acl-long.159
https://doi.org/10.18653/v1/2021.acl-long.159
https://doi.org/10.18653/v1/2021.acl-long.159
https://doi.org/10.18653/v1/W19-3404
https://doi.org/10.18653/v1/W19-3404
https://doi.org/10.18653/v1/W19-3404
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120

(a) State Inference Results

100
e 80
&
g
= 60
2 _________________________________
g //\
& 404 == TW == Recipes
% TRIP == OpenPl
L2 901 = = Fine-tuned
= Probe
0- :
100 5000 10000

Text Training Examples

(b) Sentence Prediction Results
100

== Condition on Text
= = Condition on State

40
R ===+ Condition on Entities

Contrastive Exact Match

0+ .
100 5000
Text Training Examples

Figure 5: (a) State inference accuracies and (b) sentence prediction accuracies for all 4 domains (TW, TRIP, Recipes,
OpenPI). We run the experiments described in §3.2 and §3.3 on the OpenPI domain. Results in OpenPI mirror
results in TRIP and Recipes: training explicitly on state does not significantly reduce state inference errors, and
states are difficult to use for next sentence prediction (conditioning NSP on state is comparable to conditioning on

just the full set of entities alone).

TW In TW, the simulator gives us the full state,
or the full set of facts describing the state of the
world after executing each agent action. Facts are
either entity properties (e.g. locked(door)), or
relations between two entities (e.g. is-in(key,
chest)). However, since the agent has not ex-
plored the full state at the start of each game, at
each step, we compute a subset of the facts that the
agent knows about. We call this the belief state.
We further restrict this subset to only facts that are
causally relevant to any possible next action that
the agent can take, such that all possible next ac-
tions can be inferred from just this set. We call this
the current belief state. (We explore whether this
choice to use different subsets of the state actually
matters in §B.2).

We compute both these sets heuristically: the be-
lief state consists of all facts about any currently or
previously accessible entities that the agent has en-
countered. For the current belief state, we discard
all facts about previously accessible entities and
keep only facts about currently accessible entities.
Specifically, the current belief set consists of facts
about: 1. player location, 2. all currently accessible
items (i.e. in the current room or in the inventory),
3. which doorways are accessible from the current
room and/or which rooms neighbor current room.

We convert collections of facts to natural lan-
guage following the same procedure as Li et al.
(2021). Specifically, propositions p(o0) are con-
verted to “the {o} is {p}”, while relations r (o1, 02)
are converted to “the {o1} is {r} {02}".

TRIP In TRIP, each sentence of each story is an-
notated with the state changes applied to each of
the (up to 15) attributes of that entity. The state an-
notations take the form of (entity, attribute, value)
triples. Each attribute is annotated with a value
indicating the direction of change for that attribute.
For example, (shirt, cleanliness, true — false) in-
dicates the shirt became dirty.

We directly use the provided annotations in TRIP,
without filtering for known/unknown facts as in TW.
We do this simply out of ease—TW is synthetically
generated, allowing us to hard-code rules for dis-
covering the known subset, while TRIP is real and
more complex. However, note in TRIP that only
the relevant entities and attributes are annotated,
rather than the full state, so the provided annota-
tions are already a specially-chosen subset of the
full state.

Because there are a finite set of (15) attributes
and (8) values, we enumerate rules for converting
all (attribute, value) pairs to natural language pred-
icates VP. We then convert (entity, attribute, value)
triples into “the {entity} VP”.

Recipes In Recipes, each instruction is annotated
with the list of ingredients that have undergone
state changes (e.g. sugar, dough, apples), and all
new states induced by the events in the instruc-
tion, given as a list of (attribute, value) pairs (e.g.
(temperature, hot); (shape, sliced)).

Since the provided annotations did not specify
which state changes were associated with which
entity, we heuristically convert these into entity-

(a) Coherence Results

95.0

Consistency
o) e Ne
S S ©
W S W

0
B
(=)

82.54

80.0 +— .
1001000 5000
Text Training Examples

10000

(b) Diversity Results

Recall

Text only
+Full state

= +Full belief state

= +Current belief state

o .
1001000 5000
Text Training Examples

10000

Figure 6: Coherence and diversity improvements from training with different subsets of the state as auxiliary
supervision in TextWorld. We see that the choice of state matters, and that using just the causally significant portions
of the state (red line) outperforms using the full state (orange line).

centric facts by simply assuming all state changes
have been applied to all ingredients. Note this can
often be a faulty assumption—for example, in Ta-
ble 1, the deformed shape attribute only applies
to the chocolate rather than the water.

Finally, we convert these (entity, attribute, value)
triples into natural language descriptions as “the
{attribute} of {entity} is {value}”. For example,
(apples, shape, sliced) becomes “the shape of ap-
ples is sliced”.

OpenPI In OpenPl, each instruction is annotated
state changes in the form of (entity, attribute, previ-
ous value, new value). We convert these to natural
language as “the {attribute} of {entity} is {new
value}”. For example, (eraser, location, at store,
at home) becomes “the location of eraser is at
home”.

B.2 What facts to use as auxiliary supervision
in TW?

As noted in §B.1, in TW, we used a subset of the
full state that (1) includes only facts that the agent
knows about, and (2) is causally sufficient for pre-
dicting all plausible next sentences. In this section,
we explore whether the choice to use this subset
actually makes a difference.

Specifically, we train with auxiliary supervision
(described in method 1 of §4) using the three dif-
ferent choices of state (described in §B.1): the
full state, the belief state, and the current belief
state. Results are shown in Fig. 6. We find that
the training with the full state is often not signifi-
cantly better than simply training on text only, and

18 e T R EEEEEEELEELEEEEEECLLII T
== Aux Supervision
16 1 Latent Supervision
= = = Text-only Baseline
= N T Condition on State
Q
& 144

10 100 500
Aligned Training Examples

1000

Figure 7: Impact of training with auxiliary and latent
state supervision on LM generation diversity, in the
TW domain. We assume access to 1000 total examples,
varying the number of them that are aligned with state.
We see that training with state supervision does not
negatively affect diversity. However, we are still lag far
behind a model that sees state at test-time (dotted line).

occasionally slightly worse. Training on the sub-
set of belief facts outperforms training with the full
state, and training with the smaller subset of current
belief facts is even better.

This highlights the importance of choosing
an appropriate state representation when using
state as supervision. The experiments here sug-
gest choosing strategically in accordance with the
causal model depicted in Fig. 1(c): we want to
reinforce only facts that 1. can be deduced from
context (belief state), and 2. will be used when
generating the next sentence (current state).

(a) TRIP (b) Recipes (c) OpenPI
60 5
224 === Text-only Baseline

5 581 5 - = 181
2 i1 Aux Supervision 2
3 § 20 §
E 361 k3] S 16
& g 181 £
54 A 53] jsa|
2 161 2,
% 52 Z 5 141
g £ 141 g
= = =
S 501 S} S
@] O 121 O 1nd

481

100 1000 2000 3238 100 5000 10000 100 1000 2000 3194

Text Training Examples

Text Training Examples

Text Training Examples

Figure 8: Training with auxiliary state supervision in TRIP, Recipes, and OpenPI. We vary the total number of
examples available, and assume all examples have state annotations. We can see that in all 3 domains, training with

auxiliary supervision is unhelpful.

C Additional Results for Auxiliary and
Latent State Supervision

C.1 Effect of State Supervision on Generation
Diversity in TW

To measure the diversity of LM outputs, we use re-
call between the set of LM generations and the full
set of ground-truth valid sentences. This latter set
is provided to us by the TextWorld simulator. Note
that this set is not entirely complete, as there will
be generations that are consistent with the known
facts from the prior context but contradict an un-
known fact, and is consequently not accepted by
the simulator. However, recall against the simula-
tor’s set of valid sentences remains a good heuristic
for diversity.

We examine how training with auxiliary or la-
tent state supervision affects generation diversity.
We use the same models trained in §4 (on 1000
TW examples paired with varying amounts of state
supervision) and evaluate their generation diversity.
Recall from §4 that both auxiliary and latent state
supervision improve coherence. As shown in Fig. 7,
neither of them reduce diversity to achieve coher-
ence gains. However, they do not improve diversity
either. In Fig. 7, we train a LM on 1000 examples
to explicitly predict the next sentence from state.
This is plotted as a dotted line. We can see that a
LM that is able to condition on state explicitly pro-
duces much more diverse generations, improving
recall by over 6 points. It remains an open question
as to how to transfer this large diversity improve-
ment to the setting where state annotations are only
available at training time.

C.2 Auxiliary State Supervision in Recipes
and OpenPI

Results for training with auxiliary state supervision
across various data sizes, in the setting where exam-
ples are fully aligned with states, is shown in Fig. 8
for Recipes, OpenPl, and TRIP. The analogous TW
results can be seen by comparing the blue and red
lines in Fig. 6.

In both Recipes and OpenPI, we find similar
trends as TRIP: training with auxiliary state does
not improve generation coherence. This comes at
no surprise given what we found from the state in-
ference accuracy and sentence prediction accuracy
experiments in §3 and §A. State supervision is only
useful in domains where state representations are
fixable and usable.

D Sample LM Generations in TW

Sample generations from the language model, be-
fore & after training with state supervision, can be
found in Table 2.

E Infrastructure and Reproduciility

We ran all experiments on a single 32GB NVIDIA
Tesla V100 GPU. We use a BART-base model
which has 6 Transformer layers each in its encoder
and decoder, and 139M total parameters. Training
time varies depending on domain and data size, but
generally do not take longer than a few hours. As
a reference point: on 1000 TW examples, training
takes ~1 hour for text-only training, ~1-2 hours for
training with auxiliary state supervision, and ~1-3
hours for training with latent state supervision.

0]

Dataset Sample T’ Sample S Sample 7"
™ -= Garage =- The plate is in cookhouse > open case
[...] You see a locker. You can make out a table. On the table you can make out an American limited The saucepan is in cookhouse
edition passkey. There is a closed American limited edition hatch leading west. There is an unblocked The case is in cookhouse
exit to the north. The cookhouse is mapped north of garage
> inventory The rack is in cookhouse
You are carrying nothing. The case is closed
> go north The garage is mapped south of cookhouse
-= Cookhouse =- The player is in cookhouse
[...] You make out a case. [...] You see a plate. [...] But oh no! there’s nothing on this piece of junk.
You hear a noise behind you and spin around, but you can’t see anything other than a rack. But oh no!
there’s nothing on this piece of garbage. You can see a saucepan. The saucepan [...] has nothing on it.
[...] You need an unguarded exit? You should try going south.
> examine case
The case looks strong, and impossible to break. You can’t see inside it because the lid’s in your way.
TRIP Tom picked up the paper from the copier. Tom is conscious Tom used the scissors to
Tom picked up the scissors. The scissors is picked up cut the paper.
The scissors are existent
The scissors are functional
The scissors are moveable
Recipes Ingredients: chocolate, water, egg white, vanilla, sugar, flour, baking powder, salt, sugar. the shape of chocolate is deformed Remove from heat
In large heatproof bowl set over hot water, melt chocolate with water, stirring until smooth. the cookedness of chocolate is cooked
the location of chocolate is bowl
the temperature of chocolate is hot
the shape of water is deformed
the cookedness of water is cooked
the location of water is bowl
the temperature of water is hot
OpenPl How to spool knit a winter hat. shape of the webbing is rectangular Join the five-inch ends,

Knit eighty-four inches of flat web.

Begin five inches from the end of the web, turn and sew into a rectangular form five inches wide and

eight inches long.

width of the webbing is wider
connection of the ends is unjoined
state of ends is loose

state of the ends is unattached
shape of the yarn is rectangular
state of the top is open

and draw in the top
with the needle and a
piece of the material
from which the cap was
made.

Table 1: Sample contexts, states, and next sentences from each domain.

I

Context 1k Text-only Examples 1k Text Examples + 500 State
Annotations (Latent supervi-
sion)

-= Garage =- > examine plate > examine plate

[...] You see alocker. You can make out a table. On the table you can make out an American limited edition passkey.

There is a closed American limited edition hatch leading west. There is an unblocked exit to the north.

> inventory

You are carrying nothing.

[...]

> go north

-= Cookhouse =-

[...] You make out a case. There’s something strange about this thing being here, but you don’t have time to worry about that
now. You see a plate. Now why would someone leave that there? The plate is usual. But oh no! there’s nothing on this piece of
junk. You hear a noise behind you and spin around, but you can’t see anything other than a rack. But oh no! there’s nothing on
this piece of garbage. You can see a saucepan. The saucepan is typical. However, the saucepan, like an empty saucepan, has
nothing on it. Hm. Oh well

You need an unguarded exit? You should try going south.

> examine case

The case looks strong, and impossible to break. You can’t see inside it because the lid’s in your way.

[...]

> examine plate
> examine plate
> examine plate
> open plate

> examine plate

> examine plate

> examine plate

> open American limited edition
hatch

-= Bar =-

[...] You see a box. The box is empty, what a horrible day! You can see a basket. Something scurries by right in the corner of
your eye. Probably nothing. You can make out a suitcase. You can see a recliner. But the thing is empty, unfortunately. Were you
looking for a mantle? Because look over there, it’s a mantle. Looks like someone’s already been here and taken everything off it,
though. If you haven’t noticed it already, there seems to be something there by the wall, it’s a bed stand. But the thing is empty.
There is a closed type Z door leading west. You don’t like doors? Why not try going east, that entranceway is unguarded.

> inventory

You are carrying nothing.

> open basket

You open the basket.

[...]

> go east

-= Salon =-

[...] Asif things weren’t amazing enough already, you can even see a portmanteau. Look over there! a couch. Now why would
someone leave that there? The couch is normal. On the couch you can see a type Z latchkey.

There is an exit to the west. Don’t worry, it is unblocked.

[...]

> examine portmanteau

The portmanteau looks strong, and impossible to destroy. You can’t see inside it because the lid’s in your way.

[...]

> open portmanteau

You open the portmanteau.

> g0 west

> go west

> examine couch

> examine bed stand
> examine bed stand

> g0 west

> go west

> examine couch

> examine suitcase

> take type Z latchkey from
couch

Table 2: LM generations in TW, before and after training with state supervision. We take 5 samples from each LM for each context. Green indicates coherent generations. Red

indicates incoherent generations.

