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Abstract
Sentences generated by neural language mod-001
els (LMs) often suffer from coherence errors:002
they describe events and situations inconsistent003
with the state of the world described by pre-004
ceding text. We show that coherence errors can005
arise at multiple stages of LM computation, and006
describe a procedure for distinguishing errors007
in inferring state from errors in generating sen-008
tences. In models with correctable errors of the009
first type, we show that targeted supervision can010
address them. We introduce two procedures for011
using explicit representations of world state as012
auxiliary supervision. These procedures effi-013
ciently improve LM coherence, in some cases014
providing the benefits of 1,000–9,000 training015
examples with only 500 state annotations.016

1 Introduction017

Recent years have seen dramatic improvements in018

the quality of text generated by neural language019

models (LMs; Brown et al., 2020; Raffel et al.,020

2020). Nevertheless, even the best LMs suffer021

from failures of semantic coherence. Samples022

from LMs refer to entities that have not yet been023

mentioned, present contradictory facts, or describe024

impossible events (Marcus and Davis, 2020).025

This paper introduces a framework for under-026

standing and mitigating incoherent language gen-027

eration. First, we identify two distinct sources of028

coherence errors in LMs: failures to represent the029

state of the world described by a discourse, and fail-030

ures to identify next sentences licensed by a given031

state. In LMs with coherence errors, we describe a032

procedure for quantifying how much implicit state033

representations can be improved, and how much034

improvement would affect the coherence of down-035

stream text. Second, we show that in LMs with036

improvable state representations, small amounts037

of state supervision can improve coherence of038

generated text. Given a small set of annotations039

describing the states of mentioned entities in train-040

ing documents (Fig. 1a), we describe how to impute041

ST T′ T T′ 

Latent state S
You see an open chest. 
The only thing in the 
chest is an old key. 
There is a locked door 
leading east. You pick 
up the old key.

You unlock 
the door.

The chest is open. 
The chest is empty. 
You have the old key. 
The door is locked.

Context T Next sent. T’
(a) Examples of contexts, states, and next-sentence completions

(b) Standard language 
      modeling

(c) Our analysis & supervision framework: 
      language modeling with latent state

Figure 1: Language modeling with latent state. (a)
Generating a sentence T ′ in a context T requires first
inferring the state of the world S described by T . (b)
Standard neural LMs do not represent world state explic-
itly, but their representations may encode it implicitly.
(c) By formulating language modeling as an explicit
latent variable problem, we can identify and correct gen-
eration errors in neural LMs.

latent states for remaining examples, then use these 042

states as auxiliary supervision during LM training. 043

In experiments on the TextWorld dataset, applying 044

this procedure with 500 seed annotations gives co- 045

herence improvements comparable to 1,000–9,000 046

additional training sentences. Our results show 047

that errors in LM generation can, in some cases, 048

be linked directly to LMs’ internal representations 049

and corrected with simple supervision. 050

2 Preliminaries 051

A language model (LM) encodes a distribu- 052

tion p(T ′ | T ) over texts T ′ given contexts T 053

(Fig. 1b). Today, LMs are primarily implemented 054

as deep neural networks trained on massive text 055

corpora (Brown et al., 2020). LM generation is 056

prone to several failure modes: samples may be 057

incoherent, untruthful, or unreliable (Zhou et al., 058

2021; Maynez et al., 2020; Martindale et al., 2019), 059

propagate social biases (Abid et al., 2021), or con- 060

tain hateful content (Askell et al., 2021). 061

Incoherent LM output, the focus of this paper, 062
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contradicts known facts from prior context, refers063

to non-existent entities, or describes impossible064

events or actions. Existing work addresses co-065

herence issues by introducing model architectures066

that facilitate global planning (Zhai et al., 2019;067

Fan et al., 2018; Kiddon et al., 2016), state track-068

ing (Zellers et al., 2021; Storks et al., 2021), or use069

external knowledge sources (Lewis et al., 2020b;070

Shuster et al., 2021); however, these errors remain071

a persistent feature of standard LMs.072

How might we represent and reason formally073

about coherence errors? One idealization, drawn074

from the linguistic theory of dynamic semantics,075

states that the process of generating a next sentence076

T in a context T ′ involves first inferring the state077

of the world S described by T , then identifying078

utterances that could come next given that S is true079

(Fig. 1c; Heim, 2012). In NLP, recent work has080

found that pre-trained LMs implement a version of081

this inference procedure: encoders build representa-082

tions of mentioned entities and their properties, and083

these representations are causally linked to decoder084

output (Li et al., 2021). We investigate whether085

errors in state representations contribute to errors086

in generation (§3), and whether improving them087

can improve the coherence of LM output (§4).088

3 Identifying improvable state089

representations090

In the idealized generative process of Fig. 1, co-091

herence errors can arise in two places: in p(S | T )092

(state inference errors) and in p(T ′ | S) (sentence093

prediction errors). Li et al. (2021) found that LMs094

approximate this generative process by using con-095

text encodings to represent the state of the world.096

We thus expect state inference errors to manifest as097

encodings from which state representations cannot098

be extracted, and prediction errors to manifest as099

failure to produce coherent text given ground-truth100

state representations. This section presents an ex-101

perimental framework for measuring whether each102

error type is present and correctable in an LM.103

3.1 Models and Datasets104

We study three English language modeling datasets.105

TW is derived from TextWorld (Côté et al., 2018).106

We generate a set of textual game transcripts where107

players navigate through a house, unlocking doors108

and containers to hunt for a target object. The LM109

is trained on these transcripts to generate next ac-110

tions and game responses. As state supervision, we111

TextWorld 
TRIP 
Recipes

Fine-tuned 
Probe

Figure 2: Accuracy of states extracted from LM en-
coders. Solid lines show accuracy of a state probe ap-
plied to fixed encodings from LMs fine-tuned for text
generation with varying amounts of data. Dashed lines
show performance of a state prediction upper bound in
which the encoder and decoder were jointly fine-tuned
to predict state representations. Shaded areas represent
the possible improvement in state prediction that could
be obtained by directly supervising state representations,
which is large for TW but smaller in other domains.

use the set of state variables (given as entity-centric 112

facts) that are verifiable and relevant in the current 113

context.1 TRIP (Storks et al., 2021) features pairs 114

of plausible and implausible short stories which 115

require physical commonsense reasoning to disam- 116

biguate. Models are trained to predict plausible 117

next sentences given histories. The state is given 118

by a set of attributes for each entity, which is up- 119

dated after each sentence. Recipes (Kiddon et al., 120

2016) consists of cooking instructions annotated 121

with state changes and affected ingredients at each 122

step. Models are trained to generate next steps. 123

For all experiments, we use BART-base (Lewis 124

et al., 2020a) as the language model and fine-tune 125

it on the dataset being evaluated. The BART model 126

represents the context with a transformer encoder, 127

then generates a next sentence using a transformer 128

decoder. Fine-tuning uses the AdamW optimizer 129

with learning rate 1e-5 and patience 5–15. 130

3.2 Measuring state inference errors 131

Method We evaluate the accuracy of (1) models 132

trained to predict states given fixed LM encodings, 133

and (2) upper bound models trained to predict states 134

from context text. The magnitude of (1) measures 135

how well LMs encode state, while the difference 136

between (2) and (1) measures how much state rep- 137

resentations could be improved with additional su- 138

pervision. The upper bound is obtained by jointly 139

fine-tuning the encoder and decoder of an LM; the 140

probe is obtained by fine-tuning a decoder only. 141

1See Appendix B.1 for state representation details.
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TextWorld 
TRIP 
Recipes
Condition on Text 
Condition on State

Figure 3: Next sentence prediction, conditioned on text
(solid line) vs. state (dashed line), across 100-10k text-
to-text or state-to-text examples. In TW, ground-truth
states improve next-sentence prediction. In TRIP and
OpenPI, models conditioned on state perform worse.

Results Results are shown in Fig. 2. In TW, we142

find a large gap between the upper bound and the143

probe, indicating that states are not well-encoded144

by models trained on text alone, but learnable with145

targeted supervision. In TRIP and Recipes, the gap146

is much smaller. In all domains, simply scaling up147

the amount of text used to fine-tune the LM does148

not yield improved state representations.149

3.3 Measuring sentence prediction errors150

Method We next evaluate whether, in each prob-151

lem domain, LMs with access to ground-truth state152

representations can generate more coherent output153

than LMs that condition on text representations.154

We train (1) an S → T ′ LM to map from explicit155

state annotations to next sentences, and (2) a base156

T → T ′ LM. The magnitude of (1) measures the157

prevalence of text prediction errors given an ideal158

state, while the difference between (2) and (1) mea-159

sures how much generation would in principle be160

improved by better state representations.161

Evaluation We use a contrastive evaluation. For162

each test context T or S, models are presented with163

the true next sentence following the context and164

(one or more) distractor sentences. We measure the165

fraction of contexts in which the true next sentence166

is assigned greater probability than the distractor.167

In TW, we select six distractors that cannot be168

produced by the simulator in a given context. In169

TRIP, we select a single distractor taken from the170

implausible story in each pair. Finally, in Recipes,171

we use 15 in-batch next sentences as distractors.172

Results Results are shown in Fig. 3. In TRIP and173

Recipes, even ground-truth state representations174

do not promote more coherent text generation.175

In TW, this is reversed, and LMs achieve better 176

performance when conditioning on state. 177

178

To summarize: coherence errors in language 179

modeling problems reflect a diverse set of under- 180

lying model failures. In TRIP, states are correctly 181

inferred most of the time, but difficult to use; gen- 182

eration errors arise in next sentence prediction. In 183

Recipes, states are not correctly inferred and not 184

easily correctable, and also seemingly unhelpful for 185

generation. In TW, states are incorrectly inferred 186

but inferrable in principle, and useful if inferred. 187

4 Improving LM coherence 188

§3 predicts that language models for TW (but not 189

other domains) could be improved with better state 190

representations. We next describe a procedure for 191

supervising state representations directly, and show 192

that it leads to improved coherence of LM outputs. 193

We assume access to a large set of text-only 194

examples X (consisting of (T, T ′) pairs), of which 195

only a small subset XA ⊂ X are annotated with 196

state information (and consist of (T, S, T ′) triples). 197

The remaining XU = X \ XA are unaligned. 198

Method 1: Auxiliary Supervision (AS) The 199

baseline BART LM comprises an encoder E and 200

a decoder D. D(E(T )) outputs a distribution over 201

next sentences. E and D are trained to maximize: 202

L(T ′|T ) = log p(T ′|T ) = logD(T ′ | E(T )) (1) 203

To improve state representations, we add an aux- 204

iliary loss. This takes the form of an auxiliary 205

BART decoder DS|T (distinct from the text-to-text 206

LM’s decoder) which is trained to predict S from 207

encodings of the text history E(T ). We define 208

L(S|T ) = log p(S|T ) = logDS|T (S|E(T )) (2) 209

and train the parameters of the encoder (θE ) and 210

both decoders (θD, θDT,S
) to maximize: 211

argmax
θE ,θD,θDT,S

∑
T,T ′∈X

L(T ′|T ) +
∑

T,S∈XA

L(S|T ) (3) 212

We first fine-tune BART-base to convergence on X 213

using LT ′|T , then train on Eq. (3) above. 214

Method 2: Latent Supervision (LS) Even for 215

unannotated examples XU , it may be possible to 216

infer state annotations at training time. States are in 217

general easier to infer at training time (when both 218
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(b) TW Results

S

T T′ 

p(T′ ∣ T )

p(T′ ∣ S)

p(S ∣ T )
enc dec

AS
 d

ec

LS enc/dec

(a) Procedure for Training with 
Auxiliary and Latent State 

Supervision

(c) TRIP Results

Figure 4: Training with auxiliary and latent state supervision. (a) depicts our training procedure: we train an LM with
an auxiliary decoder to predict the state from the context, using an additional encoder/decoder to semi-supervisedly
infer latent state. We run experiments in TW (b) and TRIP (c), assuming access to 1000 total examples and varying
how many of them are aligned with state (from 10-1000). We benchmark generation coherence against LMs trained
on 1k and 10k text-only examples. In TW, state supervision improves generation coherence, sometimes beyond a
model trained on 10k text-only examples. As predicted, state supervision in TRIP is unhelpful.

T and T ′ are available) than at test time (when only219

T is observed). AS may thus be extended to incor-220

porate latent supervision, in which state variables221

are simultaneously inferred and used as auxiliary222

supervision for a model that predicts p(T ′ | T ). We223

do so with the objective:224

argmax
Θ,Ŝ

∑
T,T ′

∈X

L(T ′|T ) +
∑

T,T ′,S
∈XA

(
L(S|T ) + L(T ′|S, T )

)
225

+
∑

T,T ′,Ŝ
∈XU

(
L(Ŝ|T ) + L(T ′|Ŝ, T )

)
, (4)226

Eq. (4) extends AS by concurrently train-227

ing an encoder-decoder MT ′|S,T to model228

p(T ′|S, T ). The full set of parameters is Θ =229

{θE , θD, θDS|T , θMT ′|S,T }, optimized via alternat-230

ing coordinate ascent on Θ and Ŝ. We initialize231

θE , θD, θDS|T using AS, and θT ′|S by fine-tuning to232

convergence on XA. We then iterate between:233

1. Set Ŝ ≈ argmaxS p(S | T )p(T ′ | S) for234

XU by sampling five state candidates from235

p(S | T ), then reranking these candidates ac-236

cording to p(S | T )p(T ′ | S).237

2. Using the new Ŝ, train Θ to maximize Eq. (4).238

Rather than training to convergence, we per-239

form SGD on Eq. (4) for five epochs.240

As in AS, E is shared between the p(T ′ | T ) and241

p(S | T ). Information about inferred states shapes242

text generation via the auxiliary decoding objective.243

Evaluation We select 1000 training examples244

(|X | = 1000) and experiment with varying245

amounts of alignment (|XA| = {10, 100, 500, 1000246

}). For each size of XA, we randomly create 8 dif- 247

ferent training sets (both X and XA can vary among 248

the 8) and train LMs using Eq. (3) and Eq. (4). For 249

each context in the TW test set, we draw five sam- 250

ples from the LM and measure the fraction of these 251

that are semantically coherent by comparing them 252

to possible outputs of the TW simulator. In TRIP, 253

we use the contrastive evaluation from §3.3. 254

Results We report results in TW (Fig. 4b), and 255

TRIP (Fig. 4c). We report means and standard 256

errors across the 8 training sets. In TW, 10-50 257

state annotations suffice to outperform the text-only 258

baseline, and with 500 state annotations, LS gives 259

comparable coherence improvements to training 260

on 9,000 more text-only examples. (Note, though, 261

that there is high variability across replicates: we 262

should expect LS with 500 annotations to underper- 263

form 1,000 annotations asymptotically.) Additional 264

experiments in Appendix C.1 show that these im- 265

provements come at no cost to generation diversity. 266

In TRIP (and Recipes, see Appendix C.2), state 267

supervision is unhelpful. This is consistent with 268

the prediction in §3 that state supervision is helpful 269

only when LM state representations are initially 270

incorrect, fixable, and usable. 271

5 Conclusion 272

Effective generation of coherent text requires rea- 273

soning about the world that text describes. We have 274

introduced a framework for measuring how well 275

LMs perform this reasoning, and described an algo- 276

rithm for sample-efficiently improving them. Our 277

results point to a potentially broad role for semantic 278

supervision in LM training—in some cases, small 279

amounts can yield large coherence improvements. 280

4



6 Impact Statement281

This work introduces ways of using state supervi-282

sion for diagnosing and improving the coherence283

of language model generations. This can be used284

to reduce the incidence of false or misleading gen-285

erations from language models. Furthermore, we286

found that training with small amounts state super-287

vision can, in certain circumstances, be comparable288

to to training with a much larger amount of text-289

only supervision. Thus, state supervision could290

be one way to reduce the scale of pre-training,291

which would be both environmentally friendlier,292

and would reduce the risk of unknowingly pre-293

training on toxic content or private data.294

However, the methods described in this paper295

can also be used maliciously to improve the coher-296

ence of automatically-generated misinformation,297

hate speech, or other harmful content. Furthermore,298

the methods described here are imperfect and work299

only in certain domains (§4). We encourage future300

work to examine different ways of incorporating301

state annotations, and also to think carefully about302

what kinds of state annotations would be useful303

when developing new datasets.304
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A OpenPI Dataset: State Inference 441

Accuracy & NSP on Accurate States 442

In addition to the datasets in §3.1, we also ran ex- 443

periments on OpenPI (Tandon et al., 2020), which 444

consists of instruction sequences annotated with the 445

changes to entity states that result from executing 446

each instruction. 447

As shown in Fig. 5(a), in OpenPI, similar to 448

in TRIP and in Recipes, training with state super- 449

vision does not improve state inference accuracy. 450

For domains where state supervision does not help, 451

state inference is either too difficult, even in the 452

presence of explicit supervision (OpenPI), or too 453

easy and already learned from text-only training 454

(TRIP). 455

In Fig. 5(b), it appears that conditioning the LM 456

on states result in more accurate next sentence 457

predictions than conditioning the LM on text in 458

OpenPI. However, this is simply because the state 459

contains the full set of entities, even unknown ones 460

that have not yet appeared in the prior context. This 461

is supported by the fact that conditioning the LM 462

on the full set of entities alone results in compara- 463

ble gains as conditioning on state. This is a quirk of 464

the contrastive evaluation—the LM simply needs 465

to check whether the entities mentioned in the next 466

sentence matches one of the entities in the state. 467

Thus, we cannot conclude that the state, in and of 468

itself, is any more informative of the next sentence 469

than the text context. (It is natural to ask whether 470

this is also the case for TW. However, in TW, we 471

are conditioning on the current belief state rather 472

than the full state, which contains only known facts 473

about known entities. See more in §B.) 474

B Constructing the State 475

B.1 State supervision in each domain 476

In each domain, the state is a collection of facts 477

(attributes and/or relations) about each entity. It is 478

updated each time there is a new action, instruc- 479

tion, or sentence. We convert the state to natural 480

language to take advantage of existing linguistic un- 481

derstanding in pre-trained models. Future work can 482

examine the effect of using non-natural-language 483

forms of state. 484

Below, we discuss the details of this conversion 485

from the available state annotations in each do- 486

mains. Sample states from each domain can be 487

found in Table 1. 488
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(a) State Inference Results (b) Sentence Prediction Results

Figure 5: (a) State inference accuracies and (b) sentence prediction accuracies for all 4 domains (TW, TRIP, Recipes,
OpenPI). We run the experiments described in §3.2 and §3.3 on the OpenPI domain. Results in OpenPI mirror
results in TRIP and Recipes: training explicitly on state does not significantly reduce state inference errors, and
states are difficult to use for next sentence prediction (conditioning NSP on state is comparable to conditioning on
just the full set of entities alone).

TW In TW, the simulator gives us the full state,489

or the full set of facts describing the state of the490

world after executing each agent action. Facts are491

either entity properties (e.g. locked(door)), or492

relations between two entities (e.g. is-in(key,493

chest)). However, since the agent has not ex-494

plored the full state at the start of each game, at495

each step, we compute a subset of the facts that the496

agent knows about. We call this the belief state.497

We further restrict this subset to only facts that are498

causally relevant to any possible next action that499

the agent can take, such that all possible next ac-500

tions can be inferred from just this set. We call this501

the current belief state. (We explore whether this502

choice to use different subsets of the state actually503

matters in §B.2).504

We compute both these sets heuristically: the be-505

lief state consists of all facts about any currently or506

previously accessible entities that the agent has en-507

countered. For the current belief state, we discard508

all facts about previously accessible entities and509

keep only facts about currently accessible entities.510

Specifically, the current belief set consists of facts511

about: 1. player location, 2. all currently accessible512

items (i.e. in the current room or in the inventory),513

3. which doorways are accessible from the current514

room and/or which rooms neighbor current room.515

We convert collections of facts to natural lan-516

guage following the same procedure as Li et al.517

(2021). Specifically, propositions p(o) are con-518

verted to “the {o} is {p}”, while relations r(o1, o2)519

are converted to “the {o1} is {r} {o2}”.520

TRIP In TRIP, each sentence of each story is an- 521

notated with the state changes applied to each of 522

the (up to 15) attributes of that entity. The state an- 523

notations take the form of (entity, attribute, value) 524

triples. Each attribute is annotated with a value 525

indicating the direction of change for that attribute. 526

For example, (shirt, cleanliness, true → false) in- 527

dicates the shirt became dirty. 528

We directly use the provided annotations in TRIP, 529

without filtering for known/unknown facts as in TW. 530

We do this simply out of ease—TW is synthetically 531

generated, allowing us to hard-code rules for dis- 532

covering the known subset, while TRIP is real and 533

more complex. However, note in TRIP that only 534

the relevant entities and attributes are annotated, 535

rather than the full state, so the provided annota- 536

tions are already a specially-chosen subset of the 537

full state. 538

Because there are a finite set of (15) attributes 539

and (8) values, we enumerate rules for converting 540

all (attribute, value) pairs to natural language pred- 541

icates VP. We then convert (entity, attribute, value) 542

triples into “the {entity} VP”. 543

Recipes In Recipes, each instruction is annotated 544

with the list of ingredients that have undergone 545

state changes (e.g. sugar, dough, apples), and all 546

new states induced by the events in the instruc- 547

tion, given as a list of (attribute, value) pairs (e.g. 548

(temperature, hot); (shape, sliced)). 549

Since the provided annotations did not specify 550

which state changes were associated with which 551

entity, we heuristically convert these into entity- 552
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(a) Coherence Results (b) Diversity Results

Figure 6: Coherence and diversity improvements from training with different subsets of the state as auxiliary
supervision in TextWorld. We see that the choice of state matters, and that using just the causally significant portions
of the state (red line) outperforms using the full state (orange line).

centric facts by simply assuming all state changes553

have been applied to all ingredients. Note this can554

often be a faulty assumption—for example, in Ta-555

ble 1, the deformed shape attribute only applies556

to the chocolate rather than the water.557

Finally, we convert these (entity, attribute, value)558

triples into natural language descriptions as “the559

{attribute} of {entity} is {value}”. For example,560

(apples, shape, sliced) becomes “the shape of ap-561

ples is sliced”.562

OpenPI In OpenPI, each instruction is annotated563

state changes in the form of (entity, attribute, previ-564

ous value, new value). We convert these to natural565

language as “the {attribute} of {entity} is {new566

value}”. For example, (eraser, location, at store,567

at home) becomes “the location of eraser is at568

home”.569

B.2 What facts to use as auxiliary supervision570

in TW?571

As noted in §B.1, in TW, we used a subset of the572

full state that (1) includes only facts that the agent573

knows about, and (2) is causally sufficient for pre-574

dicting all plausible next sentences. In this section,575

we explore whether the choice to use this subset576

actually makes a difference.577

Specifically, we train with auxiliary supervision578

(described in method 1 of §4) using the three dif-579

ferent choices of state (described in §B.1): the580

full state, the belief state, and the current belief581

state. Results are shown in Fig. 6. We find that582

the training with the full state is often not signifi-583

cantly better than simply training on text only, and584

Aux Supervision 
Latent Supervision 
Text-only Baseline 
Condition on State

Figure 7: Impact of training with auxiliary and latent
state supervision on LM generation diversity, in the
TW domain. We assume access to 1000 total examples,
varying the number of them that are aligned with state.
We see that training with state supervision does not
negatively affect diversity. However, we are still lag far
behind a model that sees state at test-time (dotted line).

occasionally slightly worse. Training on the sub- 585

set of belief facts outperforms training with the full 586

state, and training with the smaller subset of current 587

belief facts is even better. 588

This highlights the importance of choosing 589

an appropriate state representation when using 590

state as supervision. The experiments here sug- 591

gest choosing strategically in accordance with the 592

causal model depicted in Fig. 1(c): we want to 593

reinforce only facts that 1. can be deduced from 594

context (belief state), and 2. will be used when 595

generating the next sentence (current state). 596
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Text-only Baseline 
Aux Supervision

(a) TRIP (b) Recipes (c) OpenPI

Figure 8: Training with auxiliary state supervision in TRIP, Recipes, and OpenPI. We vary the total number of
examples available, and assume all examples have state annotations. We can see that in all 3 domains, training with
auxiliary supervision is unhelpful.

C Additional Results for Auxiliary and597

Latent State Supervision598

C.1 Effect of State Supervision on Generation599

Diversity in TW600

To measure the diversity of LM outputs, we use re-601

call between the set of LM generations and the full602

set of ground-truth valid sentences. This latter set603

is provided to us by the TextWorld simulator. Note604

that this set is not entirely complete, as there will605

be generations that are consistent with the known606

facts from the prior context but contradict an un-607

known fact, and is consequently not accepted by608

the simulator. However, recall against the simula-609

tor’s set of valid sentences remains a good heuristic610

for diversity.611

We examine how training with auxiliary or la-612

tent state supervision affects generation diversity.613

We use the same models trained in §4 (on 1000614

TW examples paired with varying amounts of state615

supervision) and evaluate their generation diversity.616

Recall from §4 that both auxiliary and latent state617

supervision improve coherence. As shown in Fig. 7,618

neither of them reduce diversity to achieve coher-619

ence gains. However, they do not improve diversity620

either. In Fig. 7, we train a LM on 1000 examples621

to explicitly predict the next sentence from state.622

This is plotted as a dotted line. We can see that a623

LM that is able to condition on state explicitly pro-624

duces much more diverse generations, improving625

recall by over 6 points. It remains an open question626

as to how to transfer this large diversity improve-627

ment to the setting where state annotations are only628

available at training time.629

C.2 Auxiliary State Supervision in Recipes 630

and OpenPI 631

Results for training with auxiliary state supervision 632

across various data sizes, in the setting where exam- 633

ples are fully aligned with states, is shown in Fig. 8 634

for Recipes, OpenPI, and TRIP. The analogous TW 635

results can be seen by comparing the blue and red 636

lines in Fig. 6. 637

In both Recipes and OpenPI, we find similar 638

trends as TRIP: training with auxiliary state does 639

not improve generation coherence. This comes at 640

no surprise given what we found from the state in- 641

ference accuracy and sentence prediction accuracy 642

experiments in §3 and §A. State supervision is only 643

useful in domains where state representations are 644

fixable and usable. 645

D Sample LM Generations in TW 646

Sample generations from the language model, be- 647

fore & after training with state supervision, can be 648

found in Table 2. 649

E Infrastructure and Reproduciility 650

We ran all experiments on a single 32GB NVIDIA 651

Tesla V100 GPU. We use a BART-base model 652

which has 6 Transformer layers each in its encoder 653

and decoder, and 139M total parameters. Training 654

time varies depending on domain and data size, but 655

generally do not take longer than a few hours. As 656

a reference point: on 1000 TW examples, training 657

takes ∼1 hour for text-only training, ∼1-2 hours for 658

training with auxiliary state supervision, and ∼1-3 659

hours for training with latent state supervision. 660
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Dataset Sample T Sample S Sample T ′

TW -= Garage =-
[...] You see a locker. You can make out a table. On the table you can make out an American limited
edition passkey. There is a closed American limited edition hatch leading west. There is an unblocked
exit to the north.
> inventory
You are carrying nothing.
> go north
-= Cookhouse =-
[...] You make out a case. [...] You see a plate. [...] But oh no! there’s nothing on this piece of junk.
You hear a noise behind you and spin around, but you can’t see anything other than a rack. But oh no!
there’s nothing on this piece of garbage. You can see a saucepan. The saucepan [...] has nothing on it.
[...] You need an unguarded exit? You should try going south.
> examine case
The case looks strong, and impossible to break. You can’t see inside it because the lid’s in your way.

The plate is in cookhouse
The saucepan is in cookhouse
The case is in cookhouse
The cookhouse is mapped north of garage
The rack is in cookhouse
The case is closed
The garage is mapped south of cookhouse
The player is in cookhouse

> open case

TRIP Tom picked up the paper from the copier.
Tom picked up the scissors.

Tom is conscious
The scissors is picked up
The scissors are existent
The scissors are functional
The scissors are moveable

Tom used the scissors to
cut the paper.

Recipes Ingredients: chocolate, water, egg white, vanilla, sugar, flour, baking powder, salt, sugar.
In large heatproof bowl set over hot water, melt chocolate with water, stirring until smooth.

the shape of chocolate is deformed
the cookedness of chocolate is cooked
the location of chocolate is bowl
the temperature of chocolate is hot
the shape of water is deformed
the cookedness of water is cooked
the location of water is bowl
the temperature of water is hot

Remove from heat

OpenPI How to spool knit a winter hat.
Knit eighty-four inches of flat web.
Begin five inches from the end of the web, turn and sew into a rectangular form five inches wide and
eight inches long.

shape of the webbing is rectangular
width of the webbing is wider
connection of the ends is unjoined
state of ends is loose
state of the ends is unattached
shape of the yarn is rectangular
state of the top is open

Join the five-inch ends,
and draw in the top
with the needle and a
piece of the material
from which the cap was
made.

Table 1: Sample contexts, states, and next sentences from each domain.
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Context 1k Text-only Examples 1k Text Examples + 500 State
Annotations (Latent supervi-
sion)

-= Garage =-
[...] You see a locker. You can make out a table. On the table you can make out an American limited edition passkey.
There is a closed American limited edition hatch leading west. There is an unblocked exit to the north.
> inventory
You are carrying nothing.
[...]
> go north
-= Cookhouse =-
[...] You make out a case. There’s something strange about this thing being here, but you don’t have time to worry about that
now. You see a plate. Now why would someone leave that there? The plate is usual. But oh no! there’s nothing on this piece of
junk. You hear a noise behind you and spin around, but you can’t see anything other than a rack. But oh no! there’s nothing on
this piece of garbage. You can see a saucepan. The saucepan is typical. However, the saucepan, like an empty saucepan, has
nothing on it. Hm. Oh well
You need an unguarded exit? You should try going south.
> examine case
The case looks strong, and impossible to break. You can’t see inside it because the lid’s in your way.
[...]

> examine plate
> examine plate
> examine plate
> examine plate
> open plate

> examine plate
> examine plate
> examine plate
> examine plate
> open American limited edition
hatch

-= Bar =-
[...] You see a box. The box is empty, what a horrible day! You can see a basket. Something scurries by right in the corner of
your eye. Probably nothing. You can make out a suitcase. You can see a recliner. But the thing is empty, unfortunately. Were you
looking for a mantle? Because look over there, it’s a mantle. Looks like someone’s already been here and taken everything off it,
though. If you haven’t noticed it already, there seems to be something there by the wall, it’s a bed stand. But the thing is empty.
There is a closed type Z door leading west. You don’t like doors? Why not try going east, that entranceway is unguarded.
> inventory
You are carrying nothing.
> open basket
You open the basket.
[...]
> go east
-= Salon =-
[...] As if things weren’t amazing enough already, you can even see a portmanteau. Look over there! a couch. Now why would
someone leave that there? The couch is normal. On the couch you can see a type Z latchkey.
There is an exit to the west. Don’t worry, it is unblocked.
[...]
> examine portmanteau
The portmanteau looks strong, and impossible to destroy. You can’t see inside it because the lid’s in your way.
[...]
> open portmanteau
You open the portmanteau.

> go west
> go west
> examine couch
> examine bed stand
> examine bed stand

> go west
> go west
> examine couch
> examine suitcase
> take type Z latchkey from
couch

Table 2: LM generations in TW, before and after training with state supervision. We take 5 samples from each LM for each context. Green indicates coherent generations. Red
indicates incoherent generations.
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