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Abstract

We propose a simple modification to standard ResNet architectures—L2 regularization over
feature space—that substantially improves out-of-distribution (OoD) performance on the
previously proposed Deep Deterministic Uncertainty (DDU) benchmark. This change also
induces early Neural Collapse (NC), which we show is an effect under which better OoD
performance is more probable. Our method achieves comparable or superior OoD detection
scores and classification accuracy in a small fraction of the training time of the benchmark.
Additionally, it substantially improves worst case OoD performance over multiple, randomly
initialized models. Though we do not suggest that NC is the sole mechanism or a compre-
hensive explanation for OoD behaviour in deep neural networks (DNN), we believe NC’s
simple mathematical and geometric structure can provide a framework for analysis of this
complex phenomenon in future work.

1 Introduction

It is well known that Deep Neural Networks (DNNs) lack robustness to distribution shift and may not reliably
indicate failure when receiving out of distribution (OoD) inputs [Rabanser et al.| (2018)), |Chen et al.| (2020).
Specifically, networks may give confident predictions in cases where inputs are completely irrelevant, e.g. an
image of a plane input into a network trained to classify dogs or cats maybe produce high confidence scores
for either dogs or cats. This inability for networks to know what they do not know hinders the application
of machine learning in engineering and other safety critical domains Henne et al.| (2020)).

A number of recent developments have attempted to address this problem, the most widely used being
Monte Carlo Dropout (MCD) and ensembles |Gal and Ghahramani (2016), Lakshminarayanan et al.| (2017)).
While supported by a reasonable theoretical background, MCD lacks performance in some applications and
requires multiple forward passes of the model after training Haas and Rabus| (2021)), |Ovadia et al.| (2019).
Ensembles can provide better accuracy than MCD, as well as better OoD detection under larger distribution
shifts, but require a substantial increase in compute |Ovadia et al. (2019)).

These limitations have spurred interest in deterministic and single forward pass methods. Notable amongst
these is Deep Deterministic Uncertainty (DDU) Mukhoti et al.| (2021)). DDU is much simpler than many
competing approaches, |Liu et al.[(2020)),|Van Amersfoort et al.| (2020)), van Amersfoort et al.[(2021)), produces
competitive or state-of-the-art results and has been proposed as a benchmark for uncertainty methods. A
limitation, as shown in our experiments, is that DDU requires long training times and produces models with
inconsistent performance.

We demonstrate that DDU can be substantially improved via L2 regularization over feature space in
standard ResNet architectures. Beyond offering performance gains in accuracy and OoD detection, L2
regularization induces neural collapse (NC) much earlier than standard training. NC was recently found to
occur in NNs in nearly all settings when models are overtrained [Papyan et al. (2020). This may afford a way
to render the complexity of deep neural networks more tractable, such that they can be analyzed through
the relative geometric and mathematical simplicity of simplex Equiangular Tight Frames (simplex ETF)
Mixon et al.| (2022), Zhu et al.| (2021)), [Lu and Steinerberger]| (2020)), [Ji et al.| (2021). Although this simplex
ETF is limited to the feature layer and decision classifier, these layers summarize a substantial amount of
network functionality. While Papyan et al. demonstrate increased adversarial robustness under NC, to the
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Figure 1: Left: In this hypothetical example with a two-dimensional feature space, DDU fits Gaussians over
each of three classes as the components of a GMM, ¢(y, z). Right: with standard decision boundaries (red),
embeddings in this space that are far from class centroids (yellow points) are labelled with high confidence
(darker is higher confidence). This image was taken from Mukhoti et al.| (2021)).

best of our knowledge, we present the first study of the relationship between OoD detection and NC.

We summarize our contributions as follows:

1)L2 regularization over the feature space of deep learning models results in OoD detection and
classification performance that is competitive with or exceeds performance of the DDU benchmark.
Most notably, the lower bound on OoD performance across model seeds is substantially improved in
all cases.

2)Models trained with L2 regularization over feature space produce the aforementioned performance
results in 17% (ResNet18) to 29% (ResNet50) of the training time of the DDU benchmark.

3) L2 regularization over feature space induces NC as much as five times faster than standard training.
Controlling the rate of NC may be useful in analyzing DNN behaviour.

4)NC encourages OoD detection. We show evidence that fast NC plays a role in achieving OoD detec-
tion performance with less training, and that training directly on NC has a substantially different
effect on OoD performance than standad cross entropy (CE) training. The connection between
simplex ETFs that naturally arise in DNNs and OoD performance permits an elegant analytical
framework for further study of the underlying mechanisms that govern uncertainty and robustness
in DNNs.

2 Background

2.1 Problem Definition

A standard classification model maps images to classes f : © — y, such that x € X where X is the set of
images and y € {1, ...,k} where there are k possible classes. The model is composed of a feature extractor
which embeds images into feature space z and a linear decision classifier that transforms the feature space
into a vector of length k. These logits are run through a softmax function to produce a probability over
classes over which the argmax function identifies the class prediction y. We note that the set of images
can be broken into X € X, which are images drawn from the same distribution as the training data, and
X € X,ut, which are all other images. For OoD detection, we can conceive of the the model as learning
a data-generating distribution p(y|z) that is composed of in and out of distribution components |[Liu et al.
(2020):

p(ylz) =p(y, z € Xin) +p(y,r € Xour) (1)
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AUROC Accuracy
SVHN CIFAR100 Tiny ImageNet CIFAR10 Test
ResNet18 | No L2 350 No L2 60 L2 60 No L2 350 No L2 60 L2 60 No L2 350 No L2 60 L2 60 No L2 350 No L2 60 L2 60
Min 0.877 0.848 0.924 0.861 0.796 0.878 0.881 0.809 0.898 0.928 0.881 0.924
Max 0.949 0.953 0.961 0.885 0.845 0.886 0.909 0.872 0.911 0.941 0.912 0.929
Mean 0.915+.018  0.9124+.035  0.938+.010 | 0.875+£.008  0.824+.014  0.881+.002 | 0.8944.009  0.8414+.015  0.904+.004 | 0.9354+.005 0.898+.008  0.927+.001

ResNet50 | No L2 350 No L2 100 L2 100 No L2 350 No L2 100 L2 100 No L2 350 No L2 100 L2 100 No L2 350 No L2 100 L2 100

Min 0.903 0.869 0.927 0.817 0.794 0.892 0.881 0.852 0.912 0.930 0.896 0.937
Max 0.987 0.980 0.955 0.891 0.866 0.896 0.909 0.905 0.918 0.946 0.927 0.943
Mean 0.955+.026  0.944:+.029  0.945+.007 | 0.8714.018  0.8374.022  0.894+.001 | 0.894+.020  0.880+£.016  0.915+.002 | 0.939£.006  0.916£.008  0.941+.002

Table 1: OoD detection and classification accuracy results for ResNet18 and ResNet50 models, 15 seeds per
experiment, trained on CIFAR10, and SVHN, CIFAR100 and Tiny ImageNet test sets used as OoD data.
For all models, we indicate whether L2 regularization over feature space was used (L2/No L2) and how many
training epochs occurred (60/100/350). We compare our method with DDU baseline models (No L2 350).
Note that the variability of AUROC scores is substantially reduced under L2 regularization of feature space,
in particular, lower bounds increase.

Under this regime, we desire that the model learns a density over feature space, where ID embeddings
occupy class-wise high density areas, and OoD embeddings occupy low density areas far away from the
ID embeddings under a meaningful distance metric. It is well known that standard deep neural networks
produce arbitrarily high confidence scores for inputs that map to feature space far from the training data,
which is obviously undesirable [Hein et al.| (2018]).

To evaluate models, we merge ID and OoD images into a single test set. QoD performance is then considered
a binary classification task, where we measure how well OoD images can be separated from ID images using
a score derived from our model. As with the DDU benchmark, we use the log probabilities generated by
the fitted GMM and evaluate using area under ROC curve using CIFAR10, CIFAR100, SVHN and Tiny
ImageNet datasets.

2.2 Deep Deterministic Uncertainty

Deep Deterministic Uncertainty (DDU) was proposed by Mukhoti et al. as a simple but competitive method
to detect OoD samples Mukhoti et al. (2021). It requires only a single pass through a single network. To
evaluate uncertainty, it uses a class-wise Gaussian mixture model (GMM) ¢(y, z), with mean and covariance
parameters retrieved from the feature layer via a one-time pass over the training set from a converged model.
At test time, feature densities z are evaluated under the GMM as q(z) = 3_, q(z[y)q(y). This log probability
used as the scoring method for an area under ROC curve to assess separability of ID and OoD data, where
the OoD data is drawn from standard machine learning community datasets.

Van Amersfoort et al. hypothesize that feature collapse—the case wherein different images are embedded into
the same location in feature space—is a significant reason that uncertainty and OoD estimation methods fail
Van Amersfoort et al.[(2020). They argue that feature collapse can be mitigated through the management of
sensitivity and smoothness. The former refers to the network differentiating different images in feature space,
and the latter to ensuring that small differences in images do not result in large differences in feature space
position. Together, these can be thought of as a bi-lipschitz constraint over features with respect to inputs.
More broadly, it is an attempt to impose a metric space over features. The motivation here is simply that,
if achieved, high density regions of embedding space would contain ID images, low density regions would
contain OoD images, and one could then measure the relevant distances in embedding space to determine
whether an input sample was drawn from the training dataset.

DDU employs spectral normalization to enforce bi-lipschitzness, in addition to Leaky ReLUs and strided
average pooling instead of 1x1 convolutions to perform downsampling in residual connections [Liu et al.
(2020). These latter interventions are introduced to increase sensitivity. In section IV we show that 1.2
regularization over feature space further improves the effect of the DDU regularization scheme, and that
these improvements are connected with neural collapse.
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Intervention AUROC Accuracy
Spectral Norm | Leaky/GAP | L2 Norm | Min Max Mean | Min Max Mean
X 0.855 0.939 0910 | 0.884 0.927 0.916
0.894 0.951 0.932 | 0.924 0.930 0.927
0.830 0.965 0.889 | 0.872 0.909  0.898
0.917 0.958 0.944 | 0.925 0.929 0.927
0.884 0.954 0.923 | 0.904 0.926 0.917
0.903 0.959 0.934 | 0.925 0.931 0.928
0.848 0.953 0.912 | 0.881 0.912  0.898
0.924 0961 0.938 | 0.924 0.929 0.927
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Table 2: ResNetl8 ablation study of effects from the DDU benchmark along with our method, 15 seeds
per experiment. Models trained on CIFAR10, with SVHN as OoD data. When combined with any other
interventions, our method improves lower bounds and average performance.

2.3 Neural Collapse

Papyan et al.| (2020)) recently observed a phenomenon known as Neural Collapse that occurs when networks
are overtrained i.e. training continues well after cross-entropy loss goes to zero on the training set. NC has
four properties:

NC1: Variability collapse: the intra-class covariance of each class in feature space approaches zero.

NC2: Convergence to a simplex equiangular tight frame (ETF): the angles between each class mean are
maximized and equal and the distances of each class mean from the global mean of classes are equal, i.e.
class means are placed at maximally equiangular locations on a hypersphere.

NC3: Convergence to self-duality: model decision regions and class means converge to a symmetry where
each class mean occupies the center of it’s decision region, and all decision regions are equally sized.

NC4: Simplification to Nearest Class Center (NCC): the classifier assigns the highest probability for a given
point in feature space to the nearest class mean.

The measurements for each of these properties is outlined in Section III.

2.4 Related Work

Until recently, most research toward uncertainty estimation in deep learning took a Bayesian approach.
The high number of parameters in DL models renders posterior integration intractable, so approximations
(typically variational inference) have been used |Gal and Ghahramani| (2016). Monte Carlo Dropout (MCD),
which draws a connection between test time dropout and variational inference, has emerged as a popular
method to estimate uncertainty |Gal and Ghahramani| (2016). Despite MCD’s simplicity, scalability and
applicability to nearly any model architecture, it is often outperformed by deterministic ensembles |Ovadia,
et al.| (2019). Lakshminarayanan et al. observed that a simple average over the predictions of multiple
deterministic models with the same architecture but unique parameter initialisations produces a competitive
uncertainty estimate Lakshminarayanan et al.| (2017)).

The compute required for running multiple model passes at test time and for training and testing ensembles
has motivated recent research around single model, single pass uncertainty estimates. Van Amersfoort et al.
enforce a bi-lipschitz penalty on gradients during training to create a distance-aware feature space, which
is then measured with a radial basis function (RBF) instead of a standard linear classifier [Van Amersfoort
et al|(2020). While showing some promise, bi-lipschitz penalties can be unstable during training Mukhoti
et al.| (2021). In later work, van Amersfoort et al.| (2021)) replace the RBF apparatus with a deep kernel
and point Gaussian Process (GP), while still enforcing distance-awareness with spectral normalization. A
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similar approach by |Liu et al| (2020) uses a Random Fourier Feature approximation to construct the GP,
but results are not as competitive.

Lee et al.| (2018) propose fitting a class-wise conditional Gaussian with shared covariance matrix to multiple
layers, but employ OoD and adversarial data to learn a weighted average of scores over layers. They also
add noise to inputs at test time to enhance OoD separability.

Parseval tight frames have been proposed to induce a lipschitz constraint on feature layers|Cisse et al.[ (2017)).
These were found to reduce training time and improve adversarial robustness, but require constraining each
layer’s weights to a Parseval tight frame.

L2 regularization and the notion of a hypersphere embedding space have been explored elsewhere. |Liu
et al.| (2017) proposed using an angular margin softmax that enforced low intraclass and high interclass
decision separation on a hypersphere for face recognition. They found that a distance-aware feature space
arises from the induced hypersphere manifold and produced better results than (at the time) state-of-the-art
methods that used explicit metric losses. We note that our method is much simpler in that it requires
no hyperparameter tuning and no changes to the loss function. |Wei et al| (2022) introduce a normalized
cross-entropy loss function to decouple magnitude and direction in the logit (decision) layer, which produces
competitive results for OoD detection using softmax scores or metrics that depend on them. Though it uses
L2 normalization to do so, it remains substantially different from our method in that we do not modify the
loss function and apply normalization only to the feature layer.

3 Methodology

3.1 Models and Training

For all baselines we used the ResNet18 and ResNet50 models provided in the DDU benchmark [Mukhoti et al.
(2021). All models (except those explicitly noted in the ablation study) use spectral normalization, leaky
ReLUs and Global Average Pooling (GAP), as these produce the strongest baselines. Each experiment was
conducted with fifteen randomly initialized model parameter sets; no fixed seeds were used at any time for
initialization. We set the batch size to 1024 for all training runs, except the NC intervention models, which
were more stable when training with a batch size of 2048. All training was conducted on four NVIDIA V100
GPUs in PyTorch 1.10.1 [Paszke et al.| (2019).

Stochastic gradient descent (SGD) with an initial learning rate of le~1 was used as the optimizer for all
experiments. We used a learning rate schedule that decreased by one order of magnitude at 150 and 250
epochs for the 350 epoch models, as per the DDU benchmark. We adjust the learning rate at 75 and 90 for
the 100 epoch ResNet50 models, and at 40 and 50 for the 60 epoch ResNet18 models. Models were trained
on the standard CIFAR-10 training data set with a validation size of 10% created with a fixed random seed.

All baselines employed the standard cross entropy (CE) objective function during training. The NC inter-
vention group described in Section IV did not use a use a CE loss, but instead used a loss function containing
the differentiable metrics described below in Section III:

LNC(f(x)) = NCl + ENmeans + ENclassifie'r + EAmeans + EAclassifier + NOS (2)

Note that the metric for NC4 is not used, as it requires an argmin function which is not differentiable.
Although these metrics do not all have the same scale, they all proceed to zero, and we did not find it
necessary to use any weighting scheme within the loss function. OoD testing used the CIFAR-10 test set
merged with the SVHN test set.



Under review as submission to TMLR

Intervention NC1 NC2 EA Means | NC2 EA Class | NC2 EN Means | NC2 EN Class NC3 NC4
Spectral Norm | Leaky/GAP | L2 Norm | Mean SD | Mean SD Mean SD Mean SD Mean SD Mean SD | Mean SD
X 1.967  0.136 | 0.076 0.007 0.033 0.011 0.098 0.008 0.094 0.005 0.169  0.015 | 0.002  0.001
X 4 0.154  0.004 | 0.014 0.001 0.023 0.001 0.044 0.002 0.083 0.001 0.038  0.001 | 0.000 0.000
v/ X 2.558  0.329 | 0.100 0.018 0.064 0.027 0.118 0.017 0.112 0.030 0.271  0.059 | 0.008  0.005
4 0.170  0.005 | 0.013 0.001 0.024 0.001 0.047 0.002 0.084 0.001 0.039  0.001 | 0.000 0.000
X X 2139 0.412 | 0.083 0.019 0.036 0.013 0.108 0.018 0.095 0.006 0.182  0.029 | 0.004 0.004
v/ v 0.163  0.005 | 0.015 0.002 0.024 0.001 0.047 0.002 0.085 0.001 0.038  0.001 | 0.000 0.000
4 X 2.690 0.368 | 0.111 0.018 0.051 0.020 0.124 0.015 0.106 0.012 0.260  0.031 | 0.008 0.005
v 0.171  0.005 | 0.014 0.002 0.023 0.001 0.049 0.003 0.084 0.001 0.039  0.001 | 0.000 0.000

Table 3: ResNetl8 ablation study: measure of NC metrics across DDU and our method. 15 seeds per
experiment, models trained for 60 epochs. Lower indicates more NC. Most metrics are an order of magnitude
lower with the L2 intervention.

3.2 Measuring Neural Collapse

Papyan et al. (2020]) use seven different metrics (Eq. 3 to Eq. 8) to observe properties NC'1 through NC4
described above. All are differentiable and used in the NC loss function for the experiment in Section 4,
except for the NC4 metric (Eq. 8), which is not differentiable.

The within-class variance, NC1, is measured by comparing the within-class variance to the between-class
variance,

NC1=Tr{ZwEi\C} (3)

where Tr is the trace operator, [-]' indicates the Moore-Penrose pseudoinverse, and C is the number of
classes. Although [Papyan et al| (2020) could simply have used the trace of Xy to measure variability
collapse, we speculate they incorporated Z; (i.e. the between-class precision) because it becomes smaller as
the class-means separate from each other around the hypersphere.

NC2 is indicated through four measurements. The equinormality of class means and classifier means is given
by their coefficient of variation,

stde (|| ue — ug ||2)
avge(|| ue — ug ||2)

ENmeans = (4)

stde (]| w ||2)

ENulassifier = ——ol = _12)
classifier avgc(” wT ||2)

(5)

where u,. and ug are the class and global means of classes, std and avg are standard deviation and average
operators, and || - ||z is the L2 norm operator.

Maximum equiangularity is measured as the mutual coherence of normalized class means or classifier means.
Mutual coherence is the Gram matrix of class mean vectors, i.e. the matrix whose elements are the angles
between each pair of vectors. Maximum cosine distance between C classes is —1/(C — 1) (assuming that the
dimension of the embedding space is high enough to embed all vectors at equal angles from each other). We
thus add this quantity to each element of the mutual coherence matrix, since all elements will then go to
zero as we converge to equiangularity. Finally, we assign zero to the diagonal, as we do not need the distance
of vectors with themselves, and we have

|| G + Ccos - dlag{G + Cmaw} Hl
- (6)
Cx*(C-1)

EAmeans =

where G is the Gram matrix of normalized class means, C.,s is the matrix whose elements are set to
—1/(C — 1), and diag retrieves the diagonal of a matrix. We take the L1 norm to map this quantity to a
single number, and then normalize by the number of pair combinations.
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Figure 2: Equiangularity of class means (NC2) vs. AUROC scores during training for 15 ResNet18 seeds
trained for 350 epochs. Each point is the score of an individual model at a particular epoch, every tenth
epoch is captured. Colors are segmented by training epochs: blue 0-40, green 50-140, orange 150-190, and
red 190-350. The Pearson R coefficient is -0.894 (NC is decreasing as AUROC increases). Right: only
epochs 150-350 are shown (individual models tend to appear as clusters). No correlation exists for this
region of training, however, there is evidence of a tightening lower bound with longer training and more
neural collapse.

The self-duality of class means and classifiers, NC3, is measured as the square of normed differences between
classifier and class means,

NGy =|| WT — M |3 (7)

where W is the matrix of last-layer classifier weights, M is the matrix of class means, [-] denotes a matrix
with unit normed means over columns, and || - ||3 denotes the square of the L2 norm.

Finally, Nearest Class Center classification, NC4, is measured as the proportion of training set samples that
are misclassified when a simple decision rule based on the distance of the feature space activations to the
nearest class is used,

NCy = argmin. || z — uc ||2 (8)
where z is the feature space vector for a given input.

3.3 Regularization of Feature Space

L2 regularization over feature space constrains the feature vector to a point on the surface of a hypersphere
in R,

z
Znorm = 1 .1 N
maz(|| z ||, €) (9)

where R? is the space of real numbers over d dimensions and e is added in the event of the zero norm. We
note that L2 regularization of the feature space constrains equinormality (NC2) from the onset of training.
Since feature vector magnitude is no longer a discriminatory factor for the classifier, embeddings must be
differentiated entirely by angular distance. This expedites the progression to maximal equiangularity as well
as the other aspects of NC (Table 3). Importantly, this can be easily implemented in one line of code and
does not require a a sophisticated loss function or parameter tuning.
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Figure 3: ResNet1l8 NC measurements, along with CE loss and classification accuracy, epoch of additional
training is on all horizontal axes, the particular metric is on the vertical. Left (9 images): control group, Right
(9 images): intervention group. In contrast to the control group, the intervention group has substantially
more NC, while CE loss and training set classification accuracy are relatively unchanged.

4 Experiments

4.1 Faster and More Robust OoD Results

Our results in Table 1 demonstrate that L2 regularization over feature space produces results that are
competitive with or exceed those obtained with the DDU benchmark, but are obtained in less training time
for ResNet18 and ResNet50 models. For ResNet18, our mean AUROC scores exceed those of the baseline in
only 60 epochs, with only a .008 reduction in classification accuracy. For ResNet50, we achieve higher mean
accuracy than the the baseline in only 100 epochs, while mean AUROC is lower by only 1 point.

Most notably, the lower bounds of OoD detection performance are significantly improved on both models
(Table 1). For Resnetl8, we improve the AUROC baseline by .047, and on ResNet50 we improve by .024.
These effects are even more pronounced when compared with the same number of training epochs in the
absence of L2 regularization. Note that while scores could be improved with more training, our scope
here is to emphasize that a substantial reduction in compute is possible with this technique. We achieve a
substantially better lower bound on OoD performance with only 17-29% of the training time stated in the
DDU benchmark. Notably, the variability of AUROC performance is also heavily decreased with L2.

An ablation study shows that mean and minimum accuracy and AUROC are improved across all L2 cases
verses those without (Table 2). Furthermore, the lowest minimum and mean scores in the L2 conditions
exceed the respective maximum scores for non-L2 conditions.

4.2 Improved OoD Detection Under Neural Collapse

All aspects of NC are induced more rapidly under L2 regularization of feature space. Nearly all measures
indicate greater NC in 60 epochs than equivalent models trained for 350 epochs. We also note that in
models with no L2 regularization, NC and OoD performance are substantially lower after 60 epochs. At first
glance, NC appears to be correlated with OoD performance. Figure 2 shows the effect of training non-L2
ResNet18’s for 350 epochs on NC and AUROC scores. While there is a general correlation over the course
of training (which we would expect, as NC and OoD detection are already known to increase with training),
this correlation disappears between epochs 150 and 350. OoD detection can decline with NC, at least near
the end of training. There is also evidence of a tightening lower bound as NC and training progress (Figure
2).
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Figure 4: ResNet18 neural collapse control group (left) vs intervention group (right): Relative change in
AUROC when training from the 50th epoch over 15 unique model seeds for an additional 20 epochs. The
intervention group AUROC score improves an average of 0.38 after two epochs, 4.75x more than the control
group mean improvement of .008 over the same period.

In order to investigate the connection between NC and OoD detection further, we use the 15 randomly
seeded models from the ResNet18 350 epoch, no-L2 case to create intervention and control groups. We
observe that after only 50 epochs of training, accuracy scores and in particular, AUROC scores, approach
noisy plateaus, making this a good point for intervention. We continue training all models from the 50th
epoch using the differentiable NC metrics listed above (the intervention group) and separately again with
standard cross entropy (the control group). As we had earlier observed that the first learning rate step down
to le~2 (at epoch 150) results in increases to both AUROC and accuracy, we start the learning rate for the
intervention and control groups an order of magnitude lower (1e~2) than its initial setting (1le=!), and then
step down to 1le~3 after 10 epochs in order to control for a possible effect from learning rate.

As shown in Figure 3, models in the intervention group have substantially greater amounts of NC, as would
be expected. CE loss and classification accuracy remain relatively stable in the intervention models, owing
to the fact that CE is excluded from the loss function. The intervention group is thus largely disentangled
from confounding influence from the learning rate or the CE objective.

In Figure 4, we see that the effect of NC is substantially different between intervention and control groups as
measured by OoD detection performance. Models perform better under NC and these improved scores arrive
with less training: after only 2 epochs, intervention models improve AUROC an average of 0.038 points from
intervention onset, 4.75x the average improvement of .008 from control models at during this time. Even if
allowed to train for the full 20 epochs, control models improve to a maximum average of .017.

Notably, more NC is not always better. Nearly all models begin to perform worse than their peak after 5
epochs of direct NC training (Figure 4). Moreover, we observe that no amount of NC-by individual measure
or in total-is directly correlated with AUROC. While it is clear that NC has a regularizing effect on OoD
detection performance, the precise mechanism at play is unclear and is a subject of future study.

5 Conclusion and Future Work

We propose a simple, one-line-of-code modification of the proposed Deep Deterministic Uncertainty bench-
mark Mukhoti et al|(2021) that provides near or superior OoD detection and classification accuracy results
in a fraction of the training time. We also establish that L2 regularization induces Neural Collapse faster
than regular training, and that NC mediates OoD detection performance. Although we do not suggest that
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NC is the sole or even a comprehensive explanation for QoD performance, we do expect that its simple struc-
ture can provide insight into the complex and poorly understood behaviour of uncertainty in deep neural
networks. We believe that this connection is a compelling area of future research in topics of uncertainty
and robustness.
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