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ABSTRACT

The Log-Periodic Power Law Singularity (LPPLS) model offers a general frame-
work for capturing dynamics and predicting transition points in diverse natural
and social systems. In this work, we present two calibration techniques for the
LPPLS model using deep learning. First, we introduce the Mono-LPPLS-NN
(M-LNN) model; for any given empirical time series, a unique M-LNN model
is trained and shown to outperform state-of-the-art techniques in estimating the
nonlinear parameters (tc,m, ω) of the LPPLS model as evidenced by the compre-
hensive distribution of parameter errors. Second, we extend the M-LNN model
to a more general model architecture, the Poly-LPPLS-NN (P-LNN), which is
able to quickly estimate the nonlinear parameters of the LPPLS model for any
given time-series of a fixed length, including previously unseen time-series during
training. The Poly class of models train on many synthetic LPPLS time-series
augmented with various noise structures in a supervised manner. Given enough
training examples, the P-LNN models also outperform state-of-the-art techniques
for estimating the parameters of the LPPLS model as evidenced by the comprehen-
sive distribution of parameter errors. Additionally, this class of models is shown
to substantially reduce the time to obtain parameter estimates. Finally, we present
applications to the diagnostic and prediction of two financial bubble peaks (fol-
lowed by their crash) and of a famous rockslide. These contributions provide a
bridge between deep learning and the study of the prediction of transition times in
complex time series.

1 INTRODUCTION

The Log-Periodic Power Law Singularity (LPPLS) model provides a flexible and effective mathe-
matical framework for representing the dynamics and for predicting temporal transition points which
occur in a variety of natural and social systems (Sornette, 1998). Examples include the formation
of financial bubbles followed by crashes in financial markets, the catastrophic material failure of
systems subjected to constant or increasing stress loads (Anifrani et al., 1995), transient seismic and
other geophysical activities preceding large earthquakes (Sornette & Sammis, 1995; Sornette et al.,
2021; Mearns & Sornette, 2021), the formation of cusps in the surface curvature on the free surface
of a conducting fluid in an electric field (Zubarev, 1998), vortex collapse of systems of point vortices
(Leoncini et al., 2000), the finite-time formation of black holes according to the equations of General
Relativity of the field metric coupled to a mass field (Choptuik, 1999a;b), the finite-time formation
of fruiting bodies in models of aggregating micro-organisms (Rascle & Ziti, 1995), or in the more
prosaic rotating coin (Euler’s disk) (Moffatt, 2000).

LPPLS contains five words that combine three concepts, (i) singularity, (ii) power law and (iii)
log-periodic, in order of importance.

The term “singularity” refers to the phenomenon where solutions to a large set of (ordinary or
partial) differential equations exist only until a certain “critical” time, tc. Consider the proportional
growth equation dp

dt = rp. Here, p can represent the population of a species, the size of a financial
investment, or the GDP of a country, and r is the growth rate. For a constant r, the solution is
an exponentially growing function, p(t) = p(0)ert. To understand where a singularity can arise,
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assume that the growth rate increases with p as r(p) = ηp, where η > 0 is a positive constant. In fact,
this model reflects the growth of Earth’s human population from around 1800 to the 1960s (Johansen
& Sornette, 2001; Korotayev et al., 2006). This embodies a positive feedback of population on the
growth rate. The solution to the new equation dp

dt = ηp2 is p(t) = 1
tc−t , where the critical time tc

is determined from the initial condition p(0) = 1
tc

. The solution exists for all times less than tc, at
which point a singularity occurs, i.e., p(t) diverges as t → tc. In this case, the mathematical term
for tc is a “movable singularity” (Bender & Orszag, 1999) because its value depends on the initial
conditions (and on the structure of the equation). For t > tc, there is no solution. The equation
dp
dt = ηp2 is said to exhibit a finite-time singularity, a divergence in finite time. For more general
equations, p(t) can remain finite at tc and it is its first derivative that diverges, or higher order
derivatives.

The presence of positive feedback (also known as pro-cyclicality in economics) in many dynamical
systems leads to behaviors that transiently follow finite-time singular trajectories. A particularly
attractive aspect of such mathematical descriptions is that the model contains the prediction of its
own demise, the point where it approaches and passes tc. This characteristic allows these models
to naturally predict “regime changes” expected around tc. Thus, the estimation of tc is crucial;
having a framework to estimate it well could facilitate targeted interventions to either achieve desired
outcomes or avoid undesirable ones.

The second concept “power law” is also illustrated by the above example in which p(t) diverges
according to a power law singularity function, here with exponent equal to 1. Other finite time
singularities can be logarithm like with − ln[tc − t], essential like with e

1
tc−t or oscillatory with

sin[ 1
tc−t ] and so on. One should not confuse this power law singularity with power law distributions.

The third concept “log-periodic” refers to the observable signature of the symmetry of discrete scale
invariance (Sornette, 1998), which corresponds to a partial breaking of the symmetry of continuous
scale invariance. Log-periodicity simply means that there is a periodicity in the logarithm of the
distance to the critical point and, as a consequence a discrete hierarchy of times to tc which appears
on top of the smooth power law structure. The periodicity in log-scale provides an anchor that can
be used to improve prediction of tc, similarly to frequency modulation in radio transmission where
a tiny signal can be extracted by locking-in on a specific frequency. The simplest expression of a
log-periodic function is cos[ω ln(tc − t)] where ω does not have the meaning or dimension of an
angular frequency. It rather represents the value of the ratio λ of the discrete hierarchy of times to tc
according to ω = 2π

lnλ (Sornette, 1998).

The simplest LPPLS model that combines the three concepts reads

O(t) = A+B(tc − t)m + C(tc − t)m cos(ω ln (tc − t)− ϕ) (1)

where O(t) is the observable (for instance, the logarithm of the price for the diagnostic of a financial
bubble). Among its 7 parameters, the three nonlinear parameters tc,m and ω play special roles. In
the regime of interest here where 0 < m < 1, we have O(tc) = A and the singularity occurs in the
first-order derivative of O(t). The sharpness of this singularity is controlled by the exponent m.

In standard calibration methods, one minimises the sum over all data points of the difference be-
tween the observable and the LPPLS model (1). Calculating the corresponding Hessian matrix and
diagonalising it, one finds that parameters tc, ω and m in descending order are the most sloppy in a
technical sense of the term (Brée et al., 2013; Filimonov et al., 2017): the log-likelihood function
is the most flat along the direction tc and, unsurprisingly, the determination of the critical time is
difficult (Demos & Sornette, 2017), if not unstable.

Given these limitations of standard calibration methods, our objective is to investigate the capabil-
ities of neural networks (NNs) as universal function approximators, as highlighted by Hornik et al.
(1989), in estimating the parameters of the LPPLS model. In this study, we present two NN ar-
chitectures that are specifically designed for this purpose. The first architecture processes a single
time-series to solve the inverse problem of optimally identifying the LPPLS parameters for that
given time-series. Physics-Informed Neural Networks (PINNs), introduced by Raissi et al. (2019)
and further developed by Faroughi et al. (2024), have proven effective in addressing inverse prob-
lems. They work by incorporating differential equations representing physical laws directly into
the architecture of the NN, enabling them to learn solutions that inherently comply with the laws
governing the systems they model. Our architecture, largely inspired by PINNs, incorporates the
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LPPLS functional form in its learning process. Because this model operates on a single time-series,
we term it the Mono-LPPLS-NN (M-LNN).

The second architecture we introduce is designed to operate in a conventional supervised manner,
necessitating a large dataset of time-series (features) and their corresponding LPPLS parameters
(labels). As no such empirical dataset exists, we generate a large corpus of synthetic time-series
with known LPPLS parameters and introduce varying degrees of noise to obfuscate the LPPLS
signal. We show that training on the synthetic dataset augmented by noise is sufficient to produce
viable parameter estimates for unseen time-series and that its learning transfers to empirical datasets.
Further, this class of models has the desirable property of any pre-trained NN model in that it can
be deployed for near real-time inference. In our experimentation, we found that this class of models
achieves estimations several orders of magnitude faster than existing state-of-the-art techniques on
similar hardware configurations (see Table 2 in Appendix A.4 for details). Because this model is
presented with many time-series, we term it the Poly-LPPLS-NN (P-LNN).

In the following sections, we describe the analyzed calibration techniques, which include the
Levenberg-Marquardt (LM) method, which stands as the state-of-the-art for LPPLS parameter es-
timation, and our NN models, the M-LNN and P-LNN architectures. Our experimental design is
then outlined, focusing on assessing the effectiveness of these models against the incumbent LM
method by testing on a set of synthetic LPPLS series augmented by white noise and/or AR(1) noise.
We highlight the performance of each model against both synthetic and real-world datasets. We
conclude by discussing the broader implications of our results and proposing directions for future
research.

2 METHODOLOGY

The state-of-the-art approach for estimating the tc, m, and ω parameters of the LPPLS model is
the LM method, which we detail in Appendix A.1. In this section, we focus on introducing two
alternative NN calibration methods.

2.1 M-LNN MODEL

The M-LNN model is a feed-forward NN that estimates the nonlinear parameters of the LPPLS
model from a specific time-series of arbitrary length. The M-LNN is a unique application where a
new NN is trained for each empirical time series. This bespoke training approach has the potential
to ensure that the model is adjusted to the characteristics of each unique dataset, perhaps offering
more reliable parameter estimations. However, the trade-off here is that such an approach requires
more computational resources.

2.1.1 MODEL ARCHITECTURE

The architecture of the M-LNN is defined as follows (we also provide a comprehensive architectural
diagram in Figure 1).

h1 = ReLU(W1 ·X + b1), h2 = ReLU(W2 · h1 + b2), Y = Wo · h2 + bo, (2)

where X represents the input time series, h1 and h2 are the outputs from the first and second hidden
layers, respectively, and Y is the final output layer that yields the LPPLS parameter estimates. The
weights W1,W2, and Wo and biases b1, b2, and bo facilitate the transformation within the network
layers. The ReLU (Rectified Linear Unit) function introduces non-linearity, enabling the network to
capture and learn complex data patterns.

The Mean Squared Error (MSE) is used as the loss function LMSE , which measures the discrepancy
between the actual time series data (X) and the LPPLS series derived from the estimated parameters
(LPPLS(Ŷ )). LMSE is the same as the function F (tc,m, ω,A,B,C1, C2) defined by expression
(6) in Appendix A.1 with the change of notations O(τi) → Xi and A − Bfi − C1gi − C2hi →
LPPLS(Ŷ )i, so that LPPLS(Ŷ )i corresponds to the element at the ith position from the LPPLS
time-series derived from the estimated parameters.

To ensure the model’s adherence to the empirical and theoretical constraints of the LPPLS frame-
work (Saleur & Sornette, 1996), a penalty term is incorporated. This term bounds the pa-
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rameter estimates within predefined ranges. The formulation of the penalty term should be
informed by the appropriate application domain. For the application to the financial bub-
ble diagnostics, these constraints have been discussed in e.g. Sornette & Johansen (2001);
Sornette (2002); Sornette et al. (2015). The M-LNN penalty is expressed as LPenalty =

α
∑3

k=1 (max(0, θk,min − θk) + max(0, θk − θk,max)), where θk=1 = tc, θk=2 = m and θk=3 = ω
and α is the penalty coefficient. θk,min and θk,max define the lower and upper bounds for the cor-
responding parameters. The specific parameter bounds we use are t2 − 0.2t2 ≤ tc ≤ t2 + 0.2t2,
0.1 ≤ m ≤ 1 and 6 ≤ ω ≤ 13. The time interval is normalised so that the beginning to the end
of the time series is mapped to the unit segment [0, 1]. t2 is the end time of the time series (here
normalised to 1).

2.1.2 TRAINING PROCEDURE

Training of the M-LNN model (Eq. 2) shown in Figure 1 is conducted through a gradient descent
optimization loop, where the objective is to minimize the combined loss (LMSE + LPenalty) over
a specified number of epochs. It processes the input data to estimate the LPPLS parameters tc, m,
and ω, which are subsequently used to calculate the linear parameters using Eq. 8 n Appendix A.1
and finally the estimated LPPLS time-series. The learning rate is set to 10−2. Prior to training,
the dataset is min-max scaled to normalize the values and ensure consistent training dynamics. The
training loop implements backpropagation to adjust the model parameters based on the total loss
using the Adam optimizer. The model state is preserved at the epoch where the lowest total loss
is achieved, indicative of the most accurate parameter predictions. This state is chosen as the best
model fit.

Figure 1: Diagram of the M-LNN architecture and training process. The network takes an input
vector of length n, representing the time-series data for which the LPPLS parameters are to be es-
timated. The output layer, comprising three nodes, produces the estimated LPPLS parameters tc,
m, and ω. These estimates are then utilized to construct the corresponding LPPLS time-series. The
Mean Squared Error (MSE) between the input time series (X) and the LPPLS time-series is com-
puted as the network’s loss function (L), with an additional penalty term to ensure the parameters
remain within the designated bounds.

2.2 P-LNN MODELS

The P-LNN model adheres to a traditional machine learning paradigm in that it uses a structured set
of training data with corresponding labels.

2.2.1 TRAINING SETS

Due to the absence of real-world datasets containing labeled LPPLS parameters, synthetic time-
series data must be created to facilitate the training of the P-LNN models. Each variant within the
P-LNN family of models undergoes training with a specific noise configuration and a set of randomly
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generated LPPLS parameters (outlined in Table 1 in Appendix A.2). We train three distinct versions
of the P-LNN model using differently augmented synthetic datasets. The first model, referred to
as P-LNN-100K, is trained on synthetic data augmented with white noise. The second model, P-
LNN-100K-AR1, utilizes synthetic data with AR(1) (autoregressive model of order 1) noise. Lastly,
the P-LNN-100K-BOTH model is trained on a combination of synthetic data, augmented with both
white and AR(1) noises, mixed in approximately equal proportions. This diversification in training
setups allows us to explore the impact of noise characteristics on the model’s performance. We
describe the generation of these synthetic datasets in the following section.

2.2.2 GENERATION OF NOISY LPPLS TIME SERIES USED FOR TRAINING

Given a time-series of length n generated by some known LPPLS parameters, S = {s1, s2, . . . , sn},
we generate a noisy version S′ = {s′1, s′2, . . . , s′n} with s′i = si + ηi where ηi ∼ N (0, α2). The
standard deviation α of the additive white noise quantifies its amplitude. Examples of obtained noisy
synthetic LPPLS time series used for training data are shown in the supplemental material section
in Figure 7.

Real time series described by the LPPLS model are often characterised by residuals that are not
white noise (Zhou & Sornette, 2002a; 2003; Lin et al., 2014). The simplest extension of white noise
to account for some memory is the AR(1) noise process. We thus also generate noisy synthetic
LPPLS time series s′i = si + ηi with AR(1) noise defined by ηt = ϕ · ηt−1 + εt, t = 1, 2, . . . , n,
where εt follows a normal distribution N (0, σ2). The variance σ2

η of the AR(1) noise ηt is given by
σ2
η = σ2

1−ϕ2 .

2.2.3 MODEL ARCHITECTURE

The P-LNN model is configured with an input layer, four hidden layers, and an output layer. Forward
propagation through the network is defined by the following:

h1 = ReLU(W1 ·X + b1), h2 = ReLU(W2 · h1 + b2),

h3 = ReLU(W3 · h2 + b3), h4 = ReLU(W4 · h3 + b4), Y = W5 · h4 + b5,
(3)

where Wi and bi are the weights and biases of the i-th layer, respectively. The ReLU function
introduces non-linearity after each hidden layer, except for the output layer, which linearly combines
the inputs from the last hidden layer to produce the output Y which represents the 3 nonlinear
parameters of the LPPLS model which we wish to estimate.

2.2.4 TRAINING PROCEDURE

The training process of the P-LNN model focuses on directly optimizing its ability to estimate
LPPLS parameters, rather than comparing the original time-series with the estimated one derived
from these parameters. This means that the loss function is chosen to be the sum of the squares of
the three differences between the true and estimated LPPLS nonlinear parameters tc.m, ω. Initially,
the NN is configured with specific architectural dimensions tailored to the input time-series data.
Here, we use 252 nodes corresponding to time windows of n = 252 time points. Training occurs
over 20 epochs, determined empirically to allow ample iterations for learning and weight updates to
achieve satisfactory loss. Each epoch processes data in batches of 8 randomly selected noisy LPPLS
time series. This value of 8 is chosen to balance memory resources and gradient descent efficiency.
Batch processing introduces stochasticity into training, enhancing adaptability. The learning rate is
set to 10−5. Before training, the dataset undergoes min-max scaling to normalize values and ensure
consistent training dynamics. Loss curves for each model are included in Figures [8, 9, 10] in the
appendix.

2.3 EXPERIMENTAL DESIGN

The objective of our experiment is to assess the capability of the parameter estimation techniques
developed in this study. We focus on the LPPLS model parameters: critical time (tc), exponent (m),
and log-periodic oscillation frequency (ω), under various noise conditions. We want to systemati-
cally explore a comprehensive range of these parameters to understand the robustness and accuracy
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Figure 2: A diagram of the P-LNN architecture. The network accepts an input vector of length 252
representing a fixed-length time-series for which you want to obtain the LPPLS estimated param-
eters. Its output layer consists of three nodes which represent the LPPLS parameters tc, m and ω.
Next, we calculate the loss (L) by taking the MSE between the network output and the true LPPLS
parameters used to generate the batch of synthetic LPPLS series.

of the estimation techniques. To facilitate this, we randomly generate scenarios from the range of
values for tc, m, ω, and noise levels, as summarized in Table 1 in Appendix A.2. We establish
250 unique scenarios providing a dense sampling of the parameter space for evaluation. For each
unique scenario, we generate a time series data with known LPPLS parameters, overlaying them
with noise as described in the methodology section 2.2.2. This setup allows for a precise ground
truth against which the performance of each estimation technique is compared. By analyzing the
estimation accuracy across all scenarios, we provide a comprehensive comparative analysis of the
each model’s effectiveness in parameter estimation across diverse conditions. We also record the
wall-clock timing for each technique and report results in Table 2 in Appendix A.4.

3 RESULTS

3.1 SYNTHETIC DATA

The relative performances of the M-LNN and P-LNN models are assessed via the cumulative dis-
tribution function (CDF) of estimation errors. For each model, we generate four cumulative distri-
bution functions (CDFs): one for the errors on tc, another for the errors on m, a third for the error
on ω and the fourth for the mean squared error (MSE) between the resulting calibrated LPPLS and
the ground truth. Figure 3 shows these CDFs organized by rows according to the nature of the noise
used to generate the synthetic noisy LPPLS time series used to train the models.

Using CDFs for performance comparison provides a full distributional view of all the characteristics
of the competing models, which is better than usual statistics using average errors, quantiles and
other point-wise metrics. The first important observation is that the M-LNN and P-LNN models
tend to overperform the standard LM model, as seen from their stochastic dominance. For instance,
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the M-LNN model is first-order stochastic dominant to the LM model for all three errors on the three
nonlinear parameters.

Figure 3: Cumulative distribution function (CDF) of absolute parameter error per estimation tech-
nique organized along rows for three classes of noise used in model training and ordered in four
columns according to the variable whose error is quantified.

The P-LNN-100K model excels in minimizing smaller errors, demonstrating a sensitivity to param-
eter deviations. In contrast, the P-LNN-100K-BOTH model shows a greater tolerance for small
to intermediate-sized errors but has fewer large errors, suggesting a trade-off in training with both
white and AR(1) noise. This balance implies that, while training with just white noise prevents mis-
learning AR(1) structures, a mixed noise approach enhances the model’s robustness against large
errors.

The MSE distributions are less informative compared to the individual parameter distributions. The
trained models do not distinguish themselves much in the resulting distance between calibrated and
input time series. The MSE of the time series is a weak discriminating factor. That is, the models
whose goal is to minimize the error between the observed time series and the time series constructed
with the estimated LPPLS parameters do not necessarily yield accurate estimations of the actual
parameters. This indicates that MSE minimization alone does not sufficiently differentiate model
performance. This finding supports the notion of refining the calibration method by incorporating a
penalty for errors in critical parameters like tc.

3.2 EMPIRICAL DATA

To assess the transferability of the NN models to empirical data, we consider three datasets: (1)
the daily adjusted closing price from the Nasdaq Composite Index from 1997 to 2000, a period en-
compassing the Dot-com bubble; (2) the daily adjusted closing price from the ProShares UltraSilver
ETF from 2010 to 2011; (3) a dataset from the Veslemannen rockslide in 2019 (Kristensen et al.,
2021). Each empirical dataset is resampled such that there are 252 observations preceding the criti-
cal time. This is to accommodate the current structure of the P-LNN model requiring an input size
of 252. For each dataset, multiple calibrations are performed over a series of predefined observation
windows within the time series data. Each window shifts the starting and ending value in order to
systematically explore different temporal contexts. The ultimate goal is to identify the critical time
tc, which indicates an impending peak or crash in the time series, as predicted by each model.

We plot the actual time series data alongside the model fits and their extensions to visually assess the
accuracy of each model’s predictions. The visualization also includes probability density functions
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(PDFs) of the predicted tc values across different calibration windows, providing a statistical view
of each model’s predictions. These plots allow us to compare the consistency and reliability of each
modeling approach in identifying critical times in synthetic datasets designed to mimic real-world
financial or physical systems exhibiting critical dynamics.

Figure 4: Dot-com bubble: the Nasdaq composite index price is plotted as a function of time (dark
line) together with the LPPLS fits of the three competing models. The time interval of calibration
goes from t1 (green vertical dotted-dashed line) to t2 (vertical red dotted-dashed line) and is repre-
sented in grey. We place ourselves in the “present” time t2 so that all data to the right of t2 is not
seen and corresponds to the out-of-sample or future evolution that we aim to predict, and in particu-
lar, the actual tc. Thus, all PDFs are constructed at time t2. This realised critical time is interpreted
to lie between the time of the price peak (black dotted-dashed vertical line) and the trough of its
drawdown (black dashed vertical line). This range is indicated in shaded red colour. The M-LNN
model (orange line) forecasts reasonably well the critical time, as evidenced from its PDF of tc’s
that overlaps largely the interval of the realised drawdown. The LM model (blue line) predicts tc’s
that are too late and with more variability in its predictions, reflected in its wider PDF spread. The
P-LNN-100K model (purple line) captures the price trend well, with a narrower PDF indicating a
higher concentration of tc predictions that are slightly early compared with the range of the actual
critical time.

Figure 5: 2011 Silver bubble: the silver AGQ price is plotted as a function of time (dark line)
together with the LPPLS fits of the three competing models. Same meaning of the different lines
as in figure 4. In particular, the “present” time t2 is indicated by the vertical red dotted-dashed line
and the goal is to predict the subsequent behavior and especially the realized critical time tc of the
crash. This time is well-defined by the vertical black dotted-dashed line indicating the time when
the silver price peaked followed by an abrupt crash. The comparison of the three PDFs shows the
significant superior performance of the NN models with the M-LNN model (orange line) providing
an excellent prediction.
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Figure 6: Vaslemannen rockslide Kristensen et al. (2021): the cumulative displacement of the rock-
mass is plotted as a function of time. The rockslide occurs at the time indicated by the vertical black
dotted-dashed line. Same meaning of the different lines as in Figure 4. The LM method predicts a
tc much too early. In fact, it seems to interpret the latest acceleration just before present time t2 as
the imminent occurrence of the rockslide. In contrast, the two NN models give excellent forecasts
with a slight superiority for the M-LNN method.

4 LIMITATIONS

A limitation of our study arises from the methodology used to generate both the training and testing
datasets. We employed the same synthetic data generation technique for creating both sets of data.
While this approach ensures consistency across training and testing phases, it also introduces poten-
tial biases towards the models’ performance, as they are evaluated on data that may not adequately
represent real-world variability and complexity. However, the good performance on the three empir-
ical data sets, which are both unseen during the training and containing unknown noise structures,
augurs well for the robustness of our NN models.

A second limitation is the relatively simple nature of the noise added to the LPPLS trajectories in
the synthetic datasets used for the supervised training of P-LNN models. The residuals of LPPLS
calibrations to real data are likely to be more structured than a white noise or even an AR(1) process
as shown e.g. in Zhou & Sornette (2002b; 2003); Lin et al. (2014). Future works will need to extend
the present methodology to noises that possess both long-range correlations and non-Gaussian fat
tailed properties in the spirit of Ref. (Zhou & Sornette, 2002b). Indeed, one should always remember
that the complete specification of a model includes both the model itself and the noise. Noise
specification is often an afterthought of modellers while it should be an integral part of the model.

We have tested the performance of the trained NN models on three empirical datasets, with very
encouraging results. However, this small sample size does not fully capture the diversity and com-
plexity of real-world phenomena that could be modeled by NNs. A broader array of empirical
datasets encompassing a more varied set of critical events may reveal novel properties of both the
LPPLS structure and its residuals. This could inspire the development of more sophisticated LPPLS
NN models, including generalised LPPLS formalisms in the spirit of Gluzman & Sornette (2002)
and more powerful NN architectures.

5 CONCLUSION

Our research confirms the capability of NN models, specifically Mono-LPPLS-NN (M-LNN) and
Poly-LPPLS-NN (P-LNN) models in estimating the parameters of the LPPLS model. This is demon-
strated by our finding that they exhibit first-order stochastic dominance over the standard Levenberg-
Marquardt (LM) method. Notably, the P-LNN-100K model trained with just white noise excelled
in minimizing small errors, whereas the P-LNN-100K-BOTH model, trained with a blend of white
noise and AR(1) noise, showed proficiency in reducing large errors, thus illustrating a balance in
noise training methodologies.
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The insights from our analysis underscore the need for a sophisticated approach in training these
Poly NN models, particularly emphasizing the role of noise diversity in enhancing robustness and
error. The observed variations in performance across different noise configurations indicate that tai-
lored training strategies could significantly improve model adaptability and the accuracy of param-
eter estimation. One promising research path is the exploration of curriculum learning, as proposed
by Bengio et al. (2009). This methodology posits that NNs may achieve superior generalization
and accelerated convergence if the training examples are presented in an increasingly complex se-
quence. This strategy resonates with the idea of progressively intensifying noise complexity, which
could potentially improve learning efficiency and model’s ability to generalize.

Another research prospect stemming from this study involve the use of a larger variety of noise di-
versity and how that may impact parameter estimation error, especially by extending AR(1) noise
with more sophisticated long-memory processes representing the rich dynamics of financial volatil-
ity. This could provide further insight into model behavior. Next, particularly for the Poly class
of models, there exists a considerable scope for architectural innovation. Adopting advanced ar-
chitectures like recurrent neural networks (RNNs) or transformers could mitigate the constraints
associated with the fixed size of the input time-series data.

Finally, developing more intricate calibration techniques, potentially by embedding penalties for
specific types of errors, could improve the precision in parameter estimation. Further empirical
validation also emerges as an essential area of further research, necessitating the application of
trained models to real-world datasets to corroborate their efficacy and utility in forecasting finite-
time singularities across diverse domains.

Our research bridges the gap between NN methodologies and the analysis of temporal critical phe-
nomena, offering promising directions for future investigations. The potential to predict finite-time
singularities signalling regime shifts and transitions with improved accuracy has important conse-
quences for both theoretical research and practical applications in natural, engineering and social
sciences.
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A APPENDIX

A.1 STANDARD CALIBRATION OF LPPLS VIA LEVENBERG-MARQUARDT (LM)

The standard calibration method proceeds as follows. First, Eq. 1 is modified so as to reduce the
complexity of the calibration process by reformulating the linear parameter C and non-linear pa-
rameter ϕ in terms of two linear parameters C1 = C cosϕ and C2 = C sinϕ, yielding

O(t) = A+B(f) + C1(g) + C2(h). (4)

where
f = (tc − t)m

g = (tc − t)mcos
(
ω ln (tc − t)

)
h = (tc − t)msin

(
ω ln (tc − t)

) (5)

The 3 nonlinear parameters {tc,m, ω} and 4 linear parameters {A,B,C1, C2} are calibrated by
minimising

F (tc,m, ω,A,B,C1, C2) =
1

n

n∑
i=1

[
O(τi)−A−Bfi − C1gi − C2hi

]2
(6)

where n denotes the length of the input time-series and fi = f(τi), gi = g(τi) and hi = h(τi).
Following (Filimonov & Sornette, 2013), we proceed in two steps. First, at fixed values of tc,m, ω,
the 4 linear parameters are estimated by solving the optimization problem:

{Â, B̂, Ĉ1, Ĉ2} = arg min
A,B,C1,C2

F (tc,m, ω,A,B,C1, C2) (7)

which is done analytically by solving the following matrix equation obtained from the first-order
condition of (7)  N

∑
fi

∑
gi

∑
hi∑

fi
∑

f2
i

∑
figi

∑
fihi∑

gi
∑

figi
∑

g2i
∑

gihi∑
hi

∑
fihi

∑
gihi

∑
h2
i




Â

B̂

Ĉ1

Ĉ2

 =


∑

ln pi∑
fi ln pi∑
gi ln pi∑
hi ln pi

 (8)

Reporting the values Â(tc,m, ω), B̂(tc,m, ω), Ĉ1(tc,m, ω), Ĉ2(tc,m, ω) in expression (6) gives
the reduced loss function for the 3 nonlinear parameters

F1(tc,m, ω) = min
A,B,C1,C2

F (tc,m, ω,A,B,C1, C2) = F (tc,m, ω, Â, B̂, Ĉ1, Ĉ2) (9)

Next, the 3 nonlinear parameters can be determined by solving the following nonlinear optimization
problem:

{t̂c, m̂, ω̂} = arg min
tc,m,ω

F1(tc,m, ω) (10)

The LM algorithm is then used to find the best estimation of the three nonlinear parameters tc,m, ω
as it offers an efficient interplay between gradient descent and Gauss-Newton methods to accelerate
convergence. (Moré, 1978) discusses the algorithm’s efficiency in navigating the parameter space of
nonlinear models in order to calibrate their parameters.
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A.2 PARAMETERS FOR GENERATING NOISY LPPLS SERIES

Table 1: Parameter ranges and values for generating synthetic LPPLS time series for P-LNN Mod-
els. Each synthetic dataset is split into 100,000 training samples and 33,333 validation samples.
Parameter values for tc, m, and ω are randomly chosen within the specified ranges. The noise am-
plitude represents a percentage of the total function range, which is always 1, as the training data is
rescaled to be in the range [0, 1].

Model Noise Type Noise Amplitude

P-LNN-100K White 0.01 to 0.15
P-LNN-100K-AR1 AR1 0.01 to 0.05
P-LNN-100K-BOTH White and AR(1) White: 0.01 to 0.15, AR1: 0.01 to 0.05

Parameters for Generating Synthetic Data:
Parameter Range or Value

tc t2 to t2 + 50 (days)
m 0.1 to 0.9
ω 6 to 13

Autoregressive Coefficient (ϕ) 0.9

A.3 SYNTHETIC TRAINING DATA PLOTS

Figure 7: Random samples of LPPLS training data with white & AR(1) noise augmentation.
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A.4 WALL-CLOCK TIMINGS

Table 2: Average Execution Times and Standard Deviations for Each Calibration Technique. Each
method performed 250 calibration trials conducted on identical hardware configurations to ensure
comparability. Wall-clock times were recorded, averaged, and their standard deviations calculated to
assess the variability of each technique. Notably, the P-LNN-* models demonstrate computational
efficiency that is orders of magnitude faster than the LM method

Method Average Time (s) Standard Deviation (s)

LM 3.5795 8.4000
M-LNN 11.5002 4.7944
P-LNN-100K 0.0052 0.00052
P-LNN-100K-AR1 0.0052 0.0021
P-LNN-100K-BOTH 0.0050 0.00061

A.5 COMPUTE

For model training, we used Google Cloud Platform’s Tesla V100-SXM2 GPUs with 16GB of mem-
ory. Each variation of P-LNN model required approximately 1.5 hours of compute time on these
GPUs. Additionally, we conducted hyperparameter tuning to optimize model performance based on
our loss metric. This involved a grid search across various combinations of epochs, learning rates,
and batch sizes, structured as 125 configurations. Due to the use of a reduced dataset size for these
experiments, the training time for each configuration ranged from 15 to 30 minutes. The combined
compute time for the main model training was approximately 4.5 hours, and the hyperparameter
tuning phase cumulatively required approximately 46 hours.

A.6 P-LNN-* TRAINING

This set of figures illustrates the training and validation loss curves for the Poly models (white,
AR(1), and combined noise) over 20 epochs. Each curve demonstrates a consistent decrease in loss,
indicating effective learning and generalization capabilities of the models.

Figure 8: The loss curve for the P-LNN-100K model trained with white noise.
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Figure 9: The loss curve for the P-LNN-100K model trained with AR(1) noise.

Figure 10: The loss curve for the P-LNN-100K model trained with both white and AR(1) noise.
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