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ABSTRACT

Adaptations have enabled efficient training for large backbone models such as
diffusion models for image generation and transformer-based language models.
While various adaptation techniques aim to maximize performance with minimal
computational resources, limited data often leads to challenges like overfitting,
mode collapse, or hallucinations. Recently, a promising solution has emerged in
the form of augmenting adapter datasets using data originally employed to train
backbone models. While this approach has shown potential as a breakthrough, it
often lacks a solid theoretical foundation or well-defined standards for control-
lability. To address these limitations, we establish a comprehensive theoretical
framework for Backbone Augmented Training (BAT). Furthermore, we provide
both theoretical and experimental evidence demonstrating that BAT achieves a
faster convergence rate to optimal adaptation parameters compared to conven-
tional adaptation methods. Our results underscore the potential of backbone aug-
mentation to significantly improve performance, especially when coupled with an
effective and well-designed data selection schema.

1 INTRODUCTION

Recently, large foundation models (Brown et al., 2020; Rombach et al., 2022; Meta, 2024; Peebles
& Xie, 2023; Sauer et al., 2024) have demonstrated exceptional performance across various tasks.
To adapt these models for specific downstream tasks, researchers have introduced a variety of adap-
tation techniques. These approaches typically involve updating only a small portion of the model
parameters—some leveraging rank decomposition (Hu et al., 2021; Dettmers et al., 2023; Liu et al.,
2024) of the backbone weights, while others employing fixed text embeddings (Ruiz et al., 2023a;
Gal et al., 2022) to maintain identity consistency in image generation.

Despite the success of large models in various downstream tasks, acquiring data for certain tasks
remains highly challenging (Lee et al., 2023; Sainz et al., 2023; Gholami & Omar, 2023). The
scarcity of data leads to various complications, such as model overfitting (Ruiz et al., 2023b; Pascual
et al., 2024; Salman & Liu, 2019), model collapse (Thanh-Tung & Tran, 2020), or hallucination (Luo
et al., 2021b). These challenges highlight the critical importance of obtaining sufficient amount of
data.

To this end, researchers came up with leveraging the data used to train backbone models. For in-
stance, DreamBooth (Ruiz et al., 2023a) incorporates regularization images generated from the back-
bone model’s distribution. Additionally, datasets commonly used for training diffusion models (Lin
et al., 2015; Schuhmann et al., 2022; Bai et al., 2023) and fine-tuned language models (Taori et al.,
2023a; Wang et al., 2023; Zhou et al., 2023; Chaudhary, 2023) are often publicly accessible, prompt-
ing communities such as jiwenji (2024) and StabilityAI (2024) to heuristically augment adaptation
data using backbone data, occasionally yielding positive results.

However, these heuristic methods often lack a clear understanding of how backbone data augmen-
tation enhances model performance. As a result, improving adapter performance using backbone
data has largely relied on chance. To address this, in this paper, we first establish the mathematical
foundation of Backbone Augmented Training (BAT) and demonstrate the potential of backbone data
in adapter training. Beyond theoretical validation, we aim to show through extensive experiments
that BAT consistently outperforms non-augmented training under various conditions.
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Figure 1: Personalization Metric Comparison between BAT and Random Augmented Training.
This figure displays the trend of various personalization metrics measured each 100 steps using
DreamBooth. As fluctuation of metrics is common in adaptation training, we show the trend line of
over all scores. One can observe that all metrics favor BAT in standard personalization metrics.

To support BAT with a solid mathematical foundations, we first adopt reasonable mathematical
assumptions proposed in (Kolossov et al., 2023). Based on these assumptions, we formulate two key
propositions. The first proposition demonstrates that a BAT-trained adapter converges to an adapater
with optimal parameters, justifying the use of backbone data in adaptations. The second proposition
offers a fundamental condition that controls the convergence rate of BAT-trained adapters. This
proposition highlights the potential of BAT, when combined with effective data selection methods,
to surpass accustomed adaptations such as DreamBooth (Ruiz et al., 2023a), LoCon (Yeh et al.,
2023), LoRA (Hu et al., 2021), and DoRA (Liu et al., 2024).

Beyond theoretical arguments, we explore the practicality of BAT through experiments across di-
verse base models, adapters, datasets, and evaluation metrics. Including Fig. 1, the results indi-
cate that with effective data selection, BAT consistently outperforms both random augmentations
and standard adaptation methods. Furthermore, our experiments implies that even in scenarios
where backbone data is unavailable, performing augmentation using data that follows the backbone
model’s output distribution still achieves significant performance improvements.

To sum up, the contributions of our paper are as follows:

• We introduce and mathematically define Backbone Augmented Training for adaptations and pro-
pose Proposition 1 and Proposition 2 to analytically prove that Backbone Augmented Training
converges toward the optimal adaptation parameters faster than conventional adaptation training.

• Through experiments, we demonstrate that Backbone Augmented Training consistently outper-
forms conventional adaptation training across various real-world scenarios. Furthermore, we show
that it can still achieve superior performance even in the absence of backbone data or an effective
data selection scheme.

2 PRELIMINARIES

In this section, we briefly discuss the details of the adaptations used in this study. Also, we define a
few notations and concepts behind our experimental approaches.

Adaptations. Fine-tuning a large-scale model to solve a downstream task is extremely expensive.
To mitigate this challenge, researchers came up with methods that train a small portion of param-
eters, also known as adaptations. Adaptation methods are widely distinguished as additive fine-
tuning (Houlsby et al., 2019; Li & Liang, 2021), selective fine-tuning (Zaken et al., 2021; Guo
et al., 2020), reparameterized fune-tuning (Aghajanyan et al., 2020; Karimi Mahabadi et al., 2021).
In the following part, we introduce eminent types of adaptations.

LoRA. Low-Rank Adaptation (Hu et al., 2021) has gained significant attention among early adapta-
tions for its ability to efficiently train a small portion of parameters through weight decomposition,
without any additional inference burden. Specifically, given a pretrained weight matrix W0 ∈ Rd×k,
LoRA decomposes the weight update ∆W ∈ Rd×k into the product BA to get the adapted matrix

2
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W = W0 +∆W . Here, B ∈ Rd×r and A ∈ Rr×k with r ≪ min{d, k}. Despite utilizing only a
small set of parameters, LoRA achieves performance comparable to full fine-tuning, and in certain
benchmarks, even surpasses it. Based on the strong performance of LoRA, several variants emerged
including DoRA (Liu et al., 2024; Dettmers et al., 2023) for language models. Others applied this
decomposition method in generative models such as diffusion models (Rombach et al., 2022; Song
et al., 2022; Ho et al., 2020) like LoCon, LoHA and LoKr (Yeh et al., 2023). However, lack of data
can cause overfitting and hallucinations even with this adaptation.

DreamBooth. DreamBooth (Ruiz et al., 2023a) is also an adapter for diffusion model which sug-
gests rare-token identifiers to regenerate objects with identical features. Diffusion models before this
adaptation had weak capacity in generating same identity repeatedly. For example, generating a fa-
mous movie character, a certain cat, over and over again ended up with bunch of cats with different
colors and kinds with former methods. Preventing this and achieving the task is called personaliza-
tion. Some attempted to shift the text token in embedding space (Gal et al., 2022), and from this,
DreamBooth continues to inject identities in the generation weights with newly defined prior preser-
vation loss. To utilize this loss function, a regularization dataset must be synthesized often much
greater in size than the adaptation dataset which can be demanding in practical usage.

Data Selection. Recent adaptation users have selected data from the backbone models to mitigate the
insufficiency in adaptation data. (jiwenji, 2024; StabilityAI, 2024). However, this method does not
show consistent results since they select the backbone data with heuristic and random manner. We
name this method as random augmented training in this study. However, data selection is an active
research topic as it still remains as a crucial part of training models (Zhao et al., 2024; Qin et al.,
2024; Wang et al., 2024). The study Kolossov et al. (2023) introduces schemes to select unlabeled
data for weakly supervised learning. They use perfect surrogate models that follow the distribution
of the full sample whereas imperfect ones do not. The authors develop these schemes from influence
functions (Ting & Brochu, 2017; Wang et al., 2021) and leveraging score methods (Ma et al., 2014),
and it is notable that the scheme application gives better results than full sample training. Former
methods directly applied their score to the loss function to eliminate the impact of unwanted data,
but random augmented method simply adds backbone data from their training batch. See Sec. C for
further details.

3 BACKGROUND

Challenges in adaptation training are often related to acquiring adaptation data. Even though adap-
tations work well with smaller datasets, the main purpose of adaptation in facilitating a downstream
task is often more specific than fine-tuning tasks. Furthermore, some of them aim to personalize the
latest identities (Ruiz et al., 2023a; Gal et al., 2022), which make adaptation data extremely rare.

So, we suggest Backbone Augmented Training (BAT), which enhances the adaptation dataset with
backbone model training data with theory-based conditions to affirm its benefits.

Within this part, we introduce the notations that will be used consistently throughout the following
sections. Then, we demonstrate the mathematical background of adaptation that is newly established.
Finally, we show the definitions regarding our method.

3.1 BASIC NOTATIONS

For standard notations, we denote the consistency of random variables as Xn
P→ X . Using the nota-

tion p−lim which also implies the consistency of random variables, we define probabilistic asymp-
totic as:

Xn = oP (an) ⇐⇒ p−lim
n→∞

|Xn|
an

= 0. (1)

The notation for almost sure convergence will be noted as:

Xn
a.s.−−→ X ⇐⇒ lim

n→∞
P (Xn = X) = 1. (2)

Lastly, for some matrices X and Y , we denote X ⪰ Y if X − Y is positive semi-definite, and
X ≻ Y if it is positive definite.

3
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Now, for a parameter space Θ and an estimator θn ∈ Θ, we define an empirical risk function
Rn : Θ → R as:

Rn(θn) :=
1

n

n∑
i=1

Lθ
i ⇐⇒ Rθ

n = Rn(θn), (3)

where Lθ
i := L(Yi, f(Xi;θi)). L represents the loss function of the parameters and i reflects the

training steps where f is the model. Here, X and Y represent the sampled input and label in model
training. We presume the sampling is deterministic as we denote them x and y.

After this, by the law of large numbers, we can define some R for Rn
P−→ R. We set θ̂n to be the

nearly minimizing estimator that satisfies the following condition:

Rn(θ̂n) ≤ inf
θ∈Θ

Rn(θn) + oP (1). (4)

Recall that every risk in this study uses sampled sets to optimize their corresponding models. We
need to define the total risk to discuss the convergence throughout the whole sample. We can achieve
this with a simple expectation to continue this argument:

R(θ) := EL(y, f(x;θ)), (5)

respect to (x,y) ∼ P (·) which makes DB and DA i.i.d. subsamples from their own distributions.
P (·) denotes some given distribution for (x,y).

3.2 MATHEMATICS ON ADAPTATIONS

Every adaptation method begins with initialization from its backbone model. Using B and A as
abbreviations for the backbone and adaptation, we denote the backbone model parameters as θB ∈
ΘB and the combined backbone and adapter parameters as θA ∈ ΘA, respectively. Then, loading
an initialized adapter over the backbone model can be expressed using a continuous function g,
that is, θA := g(θB) ∈ ΘA. Denoting θA\θB as the parameters exclusive to the adapter, note that
0 < dim(θA\θB) < dim(θB) holds. Typically, while adaptations may introduce more parameters
than the backbone model, the backbone model itself is frozen, allowing only a small subset of
parameters to be updated. Thus, as the training step n progresses and the θ̂A

n are updated toward their
optimal values θA∗

, the parameter update is described as: (θ̂A\θB)n+1 = (θ̂A\θB)n+∆(θA\θB)n.

Let the backbone model be pre-trained with the dataset DB via empirical risk minimization. Suppose
the dataset DA be a training set for the adaptation, usually constructed by the trainer. The size of
the datasets is noted as N := |DB| and n := |DA|, respectively, and n ≪ N again by adaptations’
nature. We denote the model as f(· ;θ) : Rp → Rd and the loss function as L : Rd × Rd → R.
Recall that backbones and adaptations commonly share the loss function. Now, set the backbone risk
RB

N as below, utilizing the regularizer function Ω : Θ → R and constant λ to balance the training:

RB
N :=

1

N

∑
x,y∈DB

L(y, fB(x;θB)) + λΩ(θB), θB∗
:= argmin

ΘB
RB

N . (6)

On the other hand, adaptation risk RA
n is defined as:

RA
n :=

1

n

∑
x,y∈DA

L(y, fA(x;θA)) + λΩ(θA), θA∗
:= argmin

ΘA
RA

n. (7)

For the adaptation risk, one should understand that DB ∩ DA = ∅. This shows that some data in DB

will make the adaptation risk diverge from the optimal point θA∗
while some have the possibility to

make the risk converge to it. Consequently, the adaptation risk possesses independent characteristics
from the backbone risk, meaning that not all composite functions between two risks always reflect
the actual performance of adaptations.

4
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3.3 DEFINITIONS

Now, we construct the definitions for Backbone Augmented Training. We start this by introducing
a composite empirical risk. Then, the limit value of the proportion of backbone data and adaptation
data follows before the asymptotic coefficient of our method.

Definition 1. Backbone augmented training risk on an adaptation is defined as

R
bat|A
k :=

1

k

∑
x,y∈Dbat

L(y, fA(x;θbat)) + λΩ(θbat), (8)

for some Dbat = DB′
∪ DA where ∅ ̸= DB′ ⊂ DB. Also, k = |Dbat| and θ̂bat

1 = θ̂A
1 .

First, the notation bat|A stands for the application of BAT in the adapter A. θ̂bat
1 = θ̂A

1 means
that both our method and adaptations are initialized from the same weights. This definition denotes
the our method’s risk built on the entire adaptation data and some of the backbone data. We will
demonstrate in the following section that this risk always increases the performance of adaptations
with the application of the next proposition, unlike common composite risks.

Definition 2. Backbone augmentation ratio is denoted as n/k → γ ∈ (0, 1).

This ratio essentially shows the proportion of adaptation data and backbone data used in our method.
In this definition, we use convergence to derive the ratio and adopt it in our proposition based on
asymptotic.

Lastly, following the format of former studies regarding estimators, we continue our aurgments
by applying asymptotic error coefficients. We first define the coefficients related to the weighted
quadratic error ||θ̂ − θ∗||2S := ⟨θ̂ − θ∗,S(θ̂ − θ∗)⟩, where S ∈ Rdim(Θ)×dim(Θ) being I gives a
simple Euclidean inner product when RN is twice differentiable. Additionally, S = ∇2

θRN would
result the total risk achieved from the iteration of entire epoch of DB. See Kolossov et al. (2023) for
more detailed structure.

Then, we denote an asymptotic error coefficient as ρB(S) := p−limN→∞N ||θ̂B − θB∗
||2S , with the

backbone risk in this case when θ̂B refers to a nearly minimizing estimator for θB∗
.

Definition 3. Backbone augmented coefficient on an adaptation is defined as

ρbat|A(S) := p−limk→∞k||θ̂bat − θA∗
||2S . (9)

This coefficient may or may not converge depending on the limit of the estimator. If the coefficient’s
value remains as a real value, we can ensure that the estimator converges to the optimal parameters.
Also, let HB(x) denote the conditional Hessian matrix E[∇2

θLθB∗

|x] for parameters of the backbone
risk. This matrix is useful in representing the parameter update in optimization with respect to related
variables. If the notation B is replaced, then the matrix is associated with another model and its
empirical risk.

4 BACKBONE AUGMENTED TRAINING FOR ADAPTATIONS

4.1 ASSUMPTIONS

Herein, we propose the four assumptions about the nature of the backbone and adaptation risks
that are basic in asymptotic estimation theories (Kolossov et al., 2023). The fifth one is our novel
assumption as we introduce our method’s risk in this study for the first time.

Assumption 1. RB and RA are minimized uniquely at θB∗
and θA∗

respectively.
Assumption 2. LB and LA are both greater than zero and lower semi-continuous always. More-

over, for every u ∈ Sdim(ΘB)−1 and g(u) ∈ Sdim(ΘA)−1, define LB
∞ and LA

∞
both in R≥0 as:

LB
∞(u;x,y) := lim inf

||θ||→∞
θ/||θ||→u

LB, LA
∞(g(u);x,y) := lim inf

||θ||→∞
θ/||θ||→g(u)

LA, (10)

5
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and suppose inf
u

ELB
∞ > R(θB∗

) and inf
g(u)

ELA
∞ > R(θA∗

).

Assumption 3. Both LθB
and LθA

are differentiable at θB∗
and θA∗

respectively for P-almost
all (y,x). Further, for a neighborhood U of θB∗

or θA∗
, as

E sup
θ1 ̸=θ2∈U

[
|L(θ1)− L(θ2)|
||θ1 − θ2||22

]
< ∞. (11)

Assumption 4. RB and RA ∈ C2 with existing HB(x),HA(x) ⪰ 0.

Assumption 5. For any neighborhood Un of θA∗
where θ̂bat

n ∈ Un, any RA(θ) − Rbat(θ) ̸=
RA(θA∗

)−Rbat(θA∗
) for any θ ∈ ΘA except θ = θA∗

.

Assumption 1 states that the risks have unique minimum values which is a common setting in theo-
retical proofs (Kolossov et al., 2023; Ai et al., 2021). Assumption 2 means that the risks are contin-
uous and their value is finite. The third and forth ones assume both backbone and adaptation risks
are differentiable and convex. These assumptions are weak conditions that are satisfied when we as-
sume that the model is learnable. Finally, the fifth assumption presumes that the our method’s risk is
a smooth function when we map it near the domain that includes the adaptation’s optimal parameter.

4.2 MAIN PROPOSITIONS

Upon the assumptions in Sec. 4.1, we present two propositions regarding our method’s risk. Due to
the page limit, we leave the proofs in Sec. A.4 and Sec. A.5.

Proposition 1 (Validity of Backbone Augmented Training).
Suppose the assumptions in Sec. 4.1 hold. Then, for any S ∈ Rdim(ΘA)×dim(ΘA) that is symmetric,
ρbat|A(S) exists.

Proposition 1 is mainly about the backbone augmentation coefficient. This shows the rate of conver-
gence to the optimal adaptation. The existence of this coefficient ρbat|A implies that the our adaptation
represented by the coefficient will eventually converge to its optimal parameters. Thus, the propo-
sition is named the validity of BAT. By utilizing this proposition, we justify BAT specifically in
DreamBooth (Ruiz et al., 2023a) and LoRA (Hu et al., 2021) in Sec. A.6.

Proposition 2 (Condition for Backbone Augmented Training).

Let Dbat ∩ DB = DB′
, and Hbat = E[∇2

θLbat|A|x] ⇐⇒ (x,y) ∈ DB′
. If

γ||(Hbat|A)−1
∑
Dbat

∇θLbat|A|| ≤ ||(Hbat|A −Hbat)−1
∑
DA

∇θLbat|A||+ oP (1) (12)

holds with respect to any θ ∈ (θA ∩ θB), then ρbat|A ≤ ρA holds with assumptions of Proposition 1
and unless γ → 1, the inequality is strict.

In Proposition 2, we show the basic condition for backbone data that surpass the regular adapta-
tion training. The value on the left side of the inequality is derived from Dbat. This proposition is
particularly showing that if this value is smaller than the value on the right side, our method will
surpass the regular adaptation training. This comparison becomes the key to the data selection of
Dbat. The mathematical model in Fig. 2 depicts that both risks are separated and BAT parameters are
moving in different path in parametric space. Also, the proposition indicates that the brute calcula-
tion for data selection requires much lesser computation than the calculation for backbone training
as the number of parameters for Hessian matrix shrinks. Furthermore, note that in the proposition,
HA disappeared along the proof. This means that Hessian calculation for the original adaptation
is no longer required and tracking Hbat|A will be sufficient. This is useful information as Hessian
calculation demands heavy computations.

6
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Figure 2: Visualization of Empirical Risk according to Training Steps. By Proposition 2, BAT,
with a smaller asymptotic error coefficient, reduces risk faster than regular adaptation as training
progresses. Therefore, using a risk function with additional backbone data serves as a shortcut to
optimize adaptation.

4.3 TRAINING AN ADAPTER REGARDING THE PROPOSITIONS

According to Proposition 2, if we successfully select data from the backbone dataset that satisfies
the proposition, a BAT-trained adapter will outperform non-augmented adapters. However, as the
primary focus of this paper is to demonstrate the potential of the backbone dataset, we conduct our
experiments under the assumption that data selection is performed effectively.

First, we train an adapter on DA with sufficient amount of training steps and assume the final pa-
rameters obtained be the optimal parameters θA∗

. Next, to train the adapter using the BAT approach,
we identify data samples from the backbone dataset that satisfy Proposition 2 at each training step.
These selected samples are added in the adapter’s data batch, and training proceeds accordingly.
The detailed training algorithm is elaborated in Sec. C. Since our study focuses on demonstrating
the potential of leveraging the backbone dataset for adapter training, the assumption of obtaining
optimal parameters precedes the experiments. Developing an advanced data selection algorithm that
does not rely on prior knowledge of the optimal parameters remains as our future work.

5 EXPERIMENTS

To validate our propositions, we demonstrate that models trained with Backbone Augmented Train-
ing (BAT) outperform their counterparts. Specifically, we compare the performance of the BAT-
trained model with two alternatives: a model trained exclusively on the DA dataset only, and a model
trained Dbat but with randomly sampled backbone data, that is, the random augmented training. First
we present results of weight difference, a metric suitable for verifying our propositions (Sec. 5.1).
Subsequently, we provide benchmark results to show that BAT is also practically applicable in real-
world scenarios (Sec. 5.2).

Our goal is to demonstrate that BAT can be effectively applied across various tasks and adaptation
methods. To this end, we evaluate its performance on personalization tasks using DreamBooth (Ruiz
et al., 2023a) and LoCon from LyCORIS (Yeh et al., 2023), and present results for commonsense
reasoning tasks with LLaMA 2-7B (Touvron et al., 2023). Since most language models do not dis-
close their pre-training datasets (i.e., DB), we adopted the publicly available model that had under-
gone further fine-tuning as the backbone model. Further details on training features are mentioned
in Sec. B.

5.1 VALIDATING BAT WITH WEIGHT DIFFERENCE

Since the satisfaction of Proposition 2 requires Proposition 1 to be satisfied, we focus on validating
Proposition 2, which is ρbat|A ≤ ρA. Note that in Proposition 2, the notation in equation 9 regarding
ρbat|A is converted to a Hessian expression as both of them involve measuring the difference be-
tween the parameters of BAT-trained model and those of the optimal model. We refer to this metric
||H−1

∑
D ∇θL|| as the weight difference, and show that it decreases progressively as the training

steps increase.

7
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5.1.1 BAT VERSUS RANDOM AUGMENTATION

We show that BAT with Proposition 2 is better than random augmented training. First, we divide DA

into two portions, with one portion being larger than the other. Then, we train a DreamBooth adapter
with a the larger portion with a sufficient amount of training iteration, and assume the resulting model
parameters as the optimal parameters θ∗. Subsequently, we start training two other adaptations, one
using BAT and one with random augmentation. During training, we measured the weight different
to assess how close the model parameters θ were to the optimal parameters θ∗. Note that the small
and large datasets do not share any data samples.

Training steps

W
ei

gh
t d

iff
er

en
ce

 (n
or

m
al

iz
ed

)

Figure 3: Full Step Comparison of Weight Difference between BAT and Random Augmented
Training. The graph shows that when BAT meets the condition of Proposition 2, the weight differ-
ence is smaller than random augmented training throughout the entire training. We intentionally use
limited size of adaptation datasets to reproduce the lack of data that is common among the end users.

Results. As shown in Fig. 3, we repeatedly observe many cases that the random augmented training
results in a slower convergence rate than our scheme until the same optimal iteration steps. This
supports our propositions, implying that along with the optimal steps our scheme surpasses the
random selection method in convergence to optimal parameters.

5.1.2 BAT VERSUS NON-AUGMENTED TRAININGS

In this experiment, we assert that BAT outperforms non-augmented adapter training. Recall that,
as mentioned earlier, it has been discovered that expanding datasets demonstrate a certain level of
effectiveness. Therefore, for this experiment, we impose a more challenging setup. We first train an
adapter on DA, assuming that the resulting model possesses the optimal parameters θA∗

. Then, we
train another adapter with a same initial parameters, but applying backbone augmentation on DA.
We again measure how far the parameters of the adapter from θA∗

, at each step n. This setting is
more challenging than the experiment in Sec. 5.1.1, as θA → θA∗

is guaranteed while θ̂bat → θA∗

is not.

(a) Weight differences across datasets (b) Consistent performance comparison
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Figure 4: Initial Step Comparisons Between BAT with DreamBooth. Blue and red represent
the convergence rates of BAT and the regular adapter, respectively. (a) and (b) depict results across
different datasets and random seeds.
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Figure 5: Initial Step Comparison with Other Adaptations. This figure shows the results of the
experiment from Sec. 5.1.2 using LoCon (Yeh et al., 2023), LoRA (Hu et al., 2021), and DoRA (Liu
et al., 2024), exhibiting a similar pattern to Fig. 4. The weight differences were calculated with in
certain interval steps across the 200 and 1400 total steps correspondingly.

Results. Fig. 4 illustrates that BAT achieves a higher convergence rate compared to DreamBooth
across different datasets and various seeds, respectively. Moreover, Fig. 5 indicates that BAT out-
performs other various adaptations without incorporating any backbone data. These results suggest
that, despite the rigor of the setting, our concept surpassed regular training under varying conditions
at certain steps. However, in the final stage of training, our scheme fails to find backbone data that
meets the condition of Proposition 2. This is because, in our setting, θA is guaranteed to converge
to θA∗

, making it increasingly difficult for θ̂bat to approach θA∗
more closely than θA after a certain

point.

5.2 EVALUATING BAT WITH BENCHMARKS

5.2.1 BENCHMARK TEST

In Sec. 5.1, we validated our propositions with carefully designed settings suitable for the valida-
tion. Now, we demonstrate that our method improves the capacity of adaptations in more practical
scenarios. To show that BAT achieves a faster convergence rate compared to regular adaptations,
we evaluate benchmark scores for BAT and standard adaptations at earlier training steps. Specifi-
cally, we evaluate 8 benchmark (Clark et al., 2019; Bisk et al., 2019; Lu et al., 2022; Zellers et al.,
2019; Sakaguchi et al., 2021; Clark et al., 2018; Luo et al., 2021a) scores for LLaMA 2-7B with
LoRA adaptations at the first epoch. Additionally, standard metric scores for diffusion adaptations
are assessed at 300 to 700 steps.

Cosine Sim ↑ Centroid Distance ↓ CLIP ↑ Vendi ↓

DreamBooth (Ruiz et al., 2023a) 0.386 797.78 0.267 4.812
+ BAT 0.418 695.67 0.315 2.191
LoCon (Yeh et al., 2023) 0.5427 82.35 0.4884 1.8471
+ BAT 0.5502 82.48 0.4952 1.8391

BoolQ PIQA SIQA HellaSwag WinoGrande ARC-c ARC-e OBQA

LoRA 62.17 76.28 74.51 24.61 48.86 48.70 74.07 32.70
+ BAT 65.17 80.25 77.02 73.01 51.38 53.20 71.93 42.83

DoRA 62.17 76.50 72.36 24.41 50.28 37.54 74.96 60.80
+ BAT 63.96 78.84 74.36 90.77 73.88 42.66 71.89 57.00

Table 1: Comparison of Benchmarks between BAT and Various Adaptations. For more detailed
explanation regarding metrics refer to Sec. D.
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Result. Fig. 1 shows that our method beats random augmented training throughout the whole train-
ing steps in DreamBooth adaptation. Also, Tab. 5.2.1 demonstrates that our method surpasses regular
adaptation scores in most of the language model benchmarks and image generation measurements.
Particularly, the benchmarks, Hellaswag and WinoGrande (Zellers et al., 2019; Sakaguchi et al.,
2021), are more responsive to the adaptation’s rank decomposition, but BAT mitigates this effect
and achieve far better results. On the other hand, for ARC-e and OBQA (Clark et al., 2018; Luo
et al., 2021a), as these benchmarks require more task specific knowledge, BAT decreases the down-
stream performance slightly. These results coincide with the results of Sec. 5.1.2 as the final stage of
the former experiment and these benchmarks impose the model to be trained with a more uniform
data.

5.2.2 INACCESSIBLE BACKBONE DATA

Many large models do not release their training data currently (Brown et al., 2020; Sauer et al., 2024).
However, we can always explore their input and output features. With the feature information, we
may select open-source data that has similar distributional features in both the data point and dataset
perspective. This study does not propose theoretically modified propositions regarding this case, but
we investigate this matter by applying similar datasets that are not a part of the backbone dataset.
We have executed this experiment with DreamBooth by attaining similar data used in the successful
case of BAT training, online.

Results. The result shows that similar data still retains our method’s effect even when they are not
in the backbone data. Our method has selected data from online that satisfies Proposition 2. The
result in Tab. 5.2.2 shows better scores than regular adaptation in most cases, but not as favorable as
original BAT.

Cosine Sim ↑ Centroid Distance ↓ CLIP ↑ Vendi ↓

DreamBooth (Ruiz et al., 2023a) 0.386 797.78 0.267 4.812
+ BAT 0.365 795.78 0.291 4.722

Table 2: Comparison of Personalization Scores with DreamBooth Using Data Out of Backbone.
This figure depicts using similar data that is not in the backbone dataset may have similar effect with
BAT. However, the result is not as consistent as BAT.

6 CONCLUSION

Our study introduces and defines Backbone Augmented Training (BAT) in most rigorous way possi-
ble. We also conduct experiments to prove our propositions and demonstrate the real world outcomes
which shows their alignment and promising results.

Limitations. However, the readers must understand that our study is less focused on achieving better
performance in adaptations, but suggesting that this idea is very much worthy to investigate for the
development of adaptations. In mathematical terms, the convexity and continuity assumptions in the
propositions may not be applied to some adaptation architectures. Also, our experimental setting
adopts random data sampling before conditional selection which is proven to be inferior to proper
selection methods such like Kolossov et al. (2023).
Future Work. Many future works are present as our study comprehends broad domains and tech-
niques. First, we propose mathematical improvements on Proposition 2. Like many other optimiza-
tion problems (Hinton & Salakhutdinov, 2006; Song et al., 2020; Kingma & Welling, 2022), we
speculate that the condition to choose helpful backbone data can be more implicit and swift. Also,
the development in entire data selection scheme would make the idea more practical and influen-
tial. Finally, analysis of the favorable and unsuitable backbone data will provide a more profound
understanding of the relationship between adaptations and backbone models.
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A MATHEMATICAL SUPPLEMENTS

A.1 THEOREM 1

Assume that the map Lθ(x) : Θ → R is lower semi-continuous for almost all x which is any input
data of the estimator. Then, for any θ ∈ Θ,

Lθ(x) ≤ lim inf
θn→θ

Lθn(x), almost surely. (13)

Proof of Theorem 1. We begin by recalling the definition of lower semi-continuity. A function
f : Θ → R is lower semi-continuous at θ if:

lim inf
θn→θ

f(θn) ≥ f(θ).

This property ensures that the function does not suddenly drop in value near θ. Formally, for any
sequence θn → θ, we have:

lim inf
n→∞

f(θn) ≥ f(θ).

Given that Lθ(x) is lower semi-continuous for almost all x, we can apply the definition of lower
semi-continuity. Specifically, for any θ ∈ Θ and any sequence θn → θ, it follows that:

Lθ(x) ≤ lim inf
θn→θ

Lθn(x).

This inequality holds because Lθ(x) is assumed to be lower semi-continuous.

The term almost surely in this context means that the inequality holds for almost all values of x (in a
probabilistic or measure-theoretic sense). In other words, there may be a set of measure zero where
the inequality does not hold, but this set is negligible.

Thus, for almost every x (except on a set of measure zero), the following inequality holds:

Lθ(x) ≤ lim inf
θn→θ

Lθn(x). almost surely

By combining these observations, we conclude that since Lθ(x) is lower semi-continuous for almost
all x, for any sequence θn → θ, the theorem is proven. □

A.2 THEOREM 2

For any sufficiently small neighborhood U ⊂ Θ around θ, if the map infθ∈ULθ(x) : Rp → R
satisfies the condition of Theorem 1, then the map is measurable and R(θ) > −∞ for θ that
satisfies infθ∈ULθ.

Proof of Theorem 2. Using Theorem 1 (Sec. A.1), we know that if Lθ(x) is lower semi-continuous,
then for any θ ∈ Θ:

Lθ(x) ≤ lim inf
θn→θ

Lθn(x) almost surely.

This property guarantees that the function does not suddenly drop in value and behaves well under
limits of sequences.

Now, let us analyze the map infθ∈U Lθ(x), which is the infimum of Lθ(x) over a neighborhood
U ⊂ Θ around θ. The function Lθ(x) is assumed to satisfy the lower semi-continuity condition of
Theorem 1 (Sec. A.1).

We now show that the map infθ∈U Lθ(x) is measurable. Since lower semi-continuous functions
are measurable in standard measure theory, we conclude that Lθ(x) is measurable. Further, the
infimum of a collection of lower semi-continuous functions over a compact set is itself lower semi-
continuous, and hence measurable.

Next, define R(θ) = infθ∈U Lθ(x). We need to show that R(θ) > −∞. Since Lθ(x) ∈ R is bounded
from below and lower semi-continuous on a compact set, the infimum will also be bounded from
below. Hence, R(θ) > −∞.

Thus, the theorem is proven. □
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A.3 THEOREM 3

Let the map Lθ(x) : Θ → R satisfies the conditions for Theorem 1 (Sec. A.1) and 2 (Sec. A.2).
Then, for any nearly minimizing estimator θ̂n and some globally minimizing parameter θ∗ ∈ Θ∗

for some global minimum space in case there are multiple or continuous set of globally minimizing
parameters, for any ε > 0 and compact set A ⊂ Θ,

P (dist(θ̂n,Θ∗) ≥ ε ∧ θ̂n ∈ A) → 0. (14)

Proof of Theorem 3.

Case 1. For all θ ∈ Θ, assume R(θ) = ∞, then by the assumption of nearly minimum and derivation
with the law of large number like above, Rn(θ̂n) ≤ R(θ∗)+oP (1). This makes all Rn(θ̂n) converge
to ∞ in probability, letting Θ = Θ∗ and dist(θ̂n,Θ∗)

P−→ 0. Now, for the case where for some
θ∗ such that R(θ∗) < ∞, let Um↓θ be a diminishing sequence of open neighborhoods around a
chosen θ as their diameters converge to zero. Then, by the assumption of Theorem 2 (Sec. A.2),
R(θ∗) > −∞ when Lθ∗

= |Lθ∗
| for all X and Y.

Denote LU (x) for infθ∈ULθ(x). The sequence LUm is increasing and lower than Lθ by its defi-
nition. Then, by Theorem 1 (Sec. A.1), regarding θn → θ, as some θ′ ∈ Um → θ, LUm is the
left-hand limit of Lθ almost surely. Recall the monotone convergence theorem (Tao, 2011), then by
the definition of R which involves expectation and integral, RU (θm) where θi satisfies LUi is also
the left-hand limit of R(θ).

Case 2. For θ /∈ Θ∗, R(θ) > R(θ∗) by definitions. Then, from the proceeded arguments, there
exists an open neighborhood Uθ of θ where R(θ) > R(θ∗). This implies that the set B = {θ ∈ A :
dist(θ,Θ∗) ≥ ε} is compact as it is covered by the subset of {Uθ : θ ∈ B}.

Let Uθ1 , Uθ2 , . . . , Uθp be such subcovers. By the law of large numbers and definition of U ,

inf
j=1,...,p

RU
n (θj) ≤ inf

θ∈B
Rn(θ)

a.s.−−→ R(θ∗) < inf
j
RU (θj). (15)

If θ̂n ∈ B, then infθ∈BRn(θ) is less than or equal to Rn(θ̂) by B’s definition. Then by the definition
of θ̂n, infθ∈BRn(θ) is also less than or equal to Rn(θ

∗) and also less than or equal to R(θ∗) as
n → ∞ by the consistency of Rn covered under the definition of it. So,

{θ̂ | θ̂ ∈ B} ⊂ { inf
θ∈B

Rn(θ) ≤ R(θ∗) + oP (1)}. (16)

This means that the probability of the event on the right side, which is the equivalent to the last line
of the theorem, converges to zero, proving this theorem. □

A.4 PROOF OF PROPOSITION 1.

For ||ζ|| < 1, define φ(ζ) = r(||ζ||)ζ with r(c) = 1/(1 − c2) to deal with more concentrated
parameters than unit parameters, then define the loss for batched adaptation,

Lbat|A(ζ;x,y) :=

{
Lbat|A(φ(ζ);x,y) if ||ζ|| < 1,

Lbat|A
∞ (ζ;x,y) if ||ζ|| = 1,

(17)

so that
Rbat|A(ζ) = ELbat|A(ζ,x,y), R

bat|A
k = k−1 ∑k

i Lbat|A(ζ,xi,yi), (18)

for ζ ∈ Bdim(ΘA)(1) which is a unit ball in ΘA and (x,y) ∈ G. Suppose that

ζ̂ := argmin
ζ∈Bdim(ΘA)

(|RA
n(θ

A∗
)−R

bat|A
k (θ̂bat

k )| − |RA
n(θ

A∗
)−R

bat|A
k (θA∗

)|), (19)

ζ∗ := argmin
ζ∈Bdim(ΘA)

(|RA(θA∗
)−Rbat|A(θ̂bat)| − |RA(θA∗

)−Rbat|A(θA∗
)|). (20)

The second term is unique from Assumption 5. Recall that Lbat|A is defined on both DB and DA.

We know that Lbat|A defined on DA is simply LA as θbat ∈ ΘA by definition. Thus, the continuity
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feature is demonstrated. However, for Lbat|A defined on DB, one has to use the nature of adaptation
to depict the lower semi-continuity.

Since L is a compositional function of f , θ, and (x,y), showing f ’s lower semi-continuity will be
enough. Then, we want to show that fA(xB ;θ

A) has lower semi-continuity when (xB ,yB) ∈ DB.
By the nature of adaptation regarding ∆(θA\θB),

fB(x;θB∗
) = fA(xB ,θ

B∗
)− fB\A(xB ,θ

B∗
\θA), (21)

when fB\A is some function that satisfies the nature of adaptation.

Then, by Assumption 2 and the fact about the summation of lower semi-continuous functions,
fA(xB ,θ

B∗
) is continuous. Then, by the definition of g and nature of composition of continu-

ous functions, fA(xB , g(θ
B∗
)) = fA(xB ,θ

A
1 ) also holds lower semi-continuity. Now, by Theo-

rem 2 (Sec. A.2), ζ̂ → ζ∗ almost surely. By Assumption 2, we get ||ζ|| < 1, then almost surely,
θ̂bat → θA∗

= φ(ζ∗). Then by Theorem 3 (Sec. A.3) with Assumption 3, Assumption 4, and the
argument above, the proof is completed. □

A.5 PROOF OF PROPOSITION 2

By Definition 2 (Sec. 3.3), one can derive from the assumption,

1

k
||(Hbat|A)−1

∑
Dbat

∇θLbat|A|| ≤ 1

n
||(Hbat|A −Hbat)−1

∑
DA

∇θLbat|A||+ oP (1), (22)

then, using the fact that Lbat|A → LA∗
by Proposition 1 (Sec. 1) and the nature of adaptation regard-

ing (θA\θB), one can derive that Hbat|A −Hbat = HA. With these facts,

1

k
||(Hbat|A)−1

∑
Dbat

∇θLbat|A|| ≤ 1

n
||(HA)−1

∑
DA

∇θLA||+ oP (1). (23)

is given. Then, by a using Newton’s method, we can define,

θ̂bat
n − θA∗ =

1

k
(Hbat|A)−1

∑
K

∇θLbat|A, (24)

θ̂A
n − θA∗

=
1

n
(HA)−1

∑
G

∇θLA, (25)

and with this, we can show that ρ is

ETr(∇θL∇θLTH−1SH−1), (26)

and by combining the facts above, the theorem is proven. Also, recall that γ → 1 will cause Hbat →
0 and

∑
DB′ ∇θLbat|A → 0 by definitions proving the last part of the argument. □

A.6 PROPOSITION 1 FOR SPECIFIC ADAPTATIONS

Proposition 1 for DreamBooth. First, the loss function of DreamBooth is as follows:

Ex,c,ϵ,ϵ′,t

[
wt∥x̂θ(αtx+ σtϵ, c)− x∥22 + λw′

t∥x̂θ(α
′
txpr + σ′

tϵ
′, cpr)− xpr∥22

]
. (27)

x is the latent that is going through the diffusion steps and c is the text guidance. ϵ shows the noise
prediction added in the latent each steps, t. Other variables are hyper-parameters to control the
training (Ruiz et al., 2023a).

We can easily see that DreamBooth satisfies Assumptions 2, 3, and 4 of Proposition 1 (Sec. 4.1) as
DreamBooth and diffusion model are considered to be learnable models. Let θdb and θD represent
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the parameters of DreamBooth and diffusion model correspondingly. Then, we observe that θdb
n is a

nearly minimizing estimator. Also, we see that

g(θD) = θdb
1 ⇒ g = 1identity, (28)

as DreamBooth does not alter diffusion model parameters in the initializing step. Also, note that

g2(θ
D) = g(θD)− ∂E

∂θdb , (29)

for E is equation 27 which is shown to be continuous and by definition of partial derivation g2 is
continuous. We can use the same argument with all gn with n > 2. Thus, we have shown that g is
continuous, and by Proposition 1, DreamBooth can converge faster with backbone augmentation.

Proposition 1 for LoRA. Similar to the case of DreamBooth showing LoRA continuity will be
sufficient to justify Backbone Augmented Training (BAT). To prove that LoRA is continuous, we
need to show that the function g(A,B) = W0 + AB is continuous. A function g : Rd×r ×
Rr×k and Rd×k is continuous at (A0,B0) if for every ε > 0, there exists a δ > 0 such that:

∥(A,B)−A0,B0)∥ < δ implies ∥f(A,B)− f(A0,B0)∥ < ε.

The function g(A,B) = W0 + AB involves matrix multiplication, which is continuous. The
addition of W0 is constant and does not affect continuity. Hence, we need to show that the mapping
(A,B) 7→ AB is continuous. Given small perturbations ∆A and ∆B, we have:

g(A+∆A,B +∆B) = W0 + (A+∆A)(B +∆B).

We expand the expression:

WLoRA +∆WLoRA = W0 +AB +A∆B +∆AB +∆A∆B.

The term A∆B +∆AB +∆A∆B represents the change in WLoRA due to small perturbations in
A and B.

The perturbation ∆WLoRA = A∆B +∆AB +∆A∆B can be bounded as:

∥∆WLoRA∥ ≤ ∥A∥∥∆B∥+ ∥∆A∥∥B∥+ ∥∆A∥∥∆B∥.

As ∥∆A∥ → 0 and ∥∆B∥ → 0, the perturbation ∥∆WLoRA∥ → 0. Therefore, for any ϵ > 0, we
can find a δ > 0 such that if ∥∆A∥ < δ and ∥∆B∥ < δ, then ∥∆WLoRA∥ < ϵ.

B EXPERIMENTAL DETAILS

In this section, we provide detailed explanations of the experimental setups and methodologies used
in our study. Our experiments involve both diffusion model and language model to validate the
propositions and evaluate the performance of various algorithms.
For the diffusion model (DreamBooth and LyCORIS), we used the LAION dataset (Schuhmann
et al., 2022) as the backbone dataset DB, since Stable Diffusion (Rombach et al., 2022) is pre-trained
on it. We gathered adaptation datasets DA from sources like Textual Inversion (Gal et al., 2022) and
Kaggle’s ‘Star Wars’ dataset (Me, 2024). For the language model, we employed LLaMA 2-7B-
alpaca-cleaned as the backbone language model. This model is LLaMA 2-7B (Touvron et al., 2023)
specifically fine-tuned on the Alpaca-cleaned dataset (Taori et al., 2023b). Since most language
models do not disclose their pre-training datasets, we adopted this publicly available model that had
undergone further fine-tuning.

DreamBooth. For DreamBooth, all training was performed using a single NVIDIA RTX4090 GPU
per adaptation. The typical learning rate was 5e-6. We used the AdamW optimizer for the entire
training, with β1 = 0.9 and β2 = 0.999, a weight decay of 1e-2 andepsilon set to 1e-8. All inference
seeds began with 42 and increased by 1 for each loop.
We gathered adaptation datasets from Textual Inversion (Gal et al., 2022), consisting of 5 images
(e.g., red teapot and elephant datasets). DreamBooth’s own dog dataset was also composed of 5
images. To construct the experiments, we generated optimal models with 40,000 to 50,000 denoising
steps per dataset. BAT datasets were created by adding LAION data to the original datasets, and BAT
training was conducted with these datasets.
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LyCORIS. The LoCon algorithm, part of the LyCORIS library, introduces a low-rank adapta-
tion technique specifically designed for convolutional layers in diffusion models like Stable Dif-
fusion. Our experiments were conducted based on Stable Diffusion 1.4 as the backbone diffusion
model (Rombach et al., 2022). Originally developed by (Hu et al., 2021) for attention layers in large
language models, this adaptation for convolutional layers enhances image quality and fidelity dur-
ing fine-tuning. For parameter-efficient fine-tuning (PEFT), we utilized LoCon among the LyCORIS
methods. The learning rate was set to 5× 10−6, and the optimizer used was AdamW with β1 = 0.9
and β2 = 0.999. All training steps were fixed at 200, and a subset of these steps was plotted.

The dataset consists of movie character images sourced from a public dataset available on Kaggle,
specifically the ‘Star Wars’ dataset (Me, 2024). Among the datasets used during the experiments ap-
plying LyCORIS PEFT, we focused on the characters Admiral Piett, Bodhi Rook, and Rose Tico. To
train the optimal model and the BAT algorithm, we used different numbers of images per character.
The optimal models for Admiral Piett and Bodhi Rook were trained on 91 images each, and Rose
Tico’s optimal model utilized 94 images. In contrast, the BAT algorithm used fewer images—10
for Admiral Piett, 43 for Bodhi Rook, and 38 for Rose Tico. When obtaining benchmark scores,
we retrained the models with 300 training steps, keeping other experimental settings the same, and
saved the model every 50 steps to extract the scores.

LoRA & DoRA. For LLaMA 2 based adaptations, NVIDIA A6000 GPUs are used according to the
required experiments. LoRA’s rank was set to 8. LoRA alpha was 32, and dropout was given by 0.1.
Target model was query and value matrices of each transformer layer. The learning rate was 5e-5,
and normally the batch size was 64. Weight decay was set to 0.01. We took MedQuad (Ben Abacha
& Demner-Fushman, 2019), WinoGrande (Sakaguchi et al., 2021), and XSum (Narayan et al., 2018)
as adaptation datasets DA. To build the BAT set Dbat, we sampled DB at regular intervals and inserted
the samples into DA, also at regular intervals. Here, we set |DA| = 10000 as a default.

C DATA SELECTION ALGORITHM

This is a general algorithm for data selection with Dbat in our experiments. We considered those
Hessian calculations as scores for each data referred in Kolossov et al. (2023). Rejecting data can be
deemed as setting score to 0 like the data selection scheme covered in Sec. 2.

Algorithm 1 Training Procedure for θA∗
and θbat|A

Input:
n← |DA| for the adaptation dataset; k ← |Dbat| for the backbone augmented set
ScoreA

D := ||(Hbat|A −Hbat)−1 ∑
DA ∇θLbat|A|| ; Scorebat

D := ||(Hbat|A)−1 ∑
Dbat ∇θLbat|A||

i← 1
Train θA∗

while Condition of Proposition 2 holds do
Train θ

bat|A
i

i← i+ 1
if i%n == 0 then

Calculate ScoreA
D

end if
if i%k == 0 then

Calculate Scorebat
D

if Scorebat
D ≤ ScoreA

D then
Continue

else
Select Dbat again
Go back to line 3

end if
end if

end while
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D ADDITIONAL EXPERIMENTS

D.1 METRICS

Using DINOv2 (Oquab et al., 2024), cosine similarity is used to measure the similarity between
two feature vectors, often extracted from image representations. Given two vectors v1 and v2, their
cosine similarity is computed as:

Cosine Similarity(v1,v2) =
v1 · v2

∥v1∥∥v2∥
.

The centroid represents the mean vector of a set of feature vectors. The squared centroid is the square
of the distance between the centroid and each data point. Suppose we have N data points vi ∈ Rd.
The centroid c is given by:

c =
1

N

N∑
i=1

vi.

The squared centroid distance for each point vi is:

Squared Centroid Distance =

N∑
i=1

∥vi − c∥2.

Where ∥vi − c∥2 is the squared Euclidean distance between each point and the centroid. Lower
centroid score shows that the output is more consistent with lower variance which infers better
generalization.

CLIP uses cosine similarity to compare text and image embeddings. The model learns to maximize
the similarity between matching text-image pairs while minimizing the similarity between non-
matching pairs. Let t be the text embedding and i be the image embedding. The similarity score
between them is calculated as:

CLIP Similarity(t, i) =
t · i

∥t∥∥i∥
.

As t · i is the dot product between the text and image embedding, and ∥t∥ and ∥i∥ are the norms
of the text and image embeddings. The cosine similarity is maximized for relevant text-image pairs
and minimized for irrelevant pairs.

The Vendi score is a metric used to quantify similarity across multiple domains or datasets. It mea-
sures the overlap between sets of embeddings from different modalities (e.g., vision, text). Mathe-
matically, Vendi score uses the concept of overlapping support across distributions.

Given two distributions of feature vectors P and Q, the Vendi score can be formulated as:

Vendi Score(P,Q) =

∫
min(P (x), Q(x))dx.

This score evaluates how much of the support of one distribution is shared by the other, effec-
tively measuring their similarity. Higher Vendi scores indicate greater overlap between distributions.
Therefore, in the case of adaptations, lower Vendi scores implies the concentration of identity.

D.2 RATIO TEST

In this section, we report the outcomes as we vary the proportion of the backbone data added in the
adapter data DA. We selected γ from 0.16 to 0.862 for DreamBooth adaptations trained with the
same dataset and max iteration. All other settings are identical to those described in Sec. 5.1.2.

Results. The results of the ratio test are shown in Fig. 6. Notice that Proposition 2 mentions the
convergence regarding not only training steps but also γ, the ratio of backbone and adaptation data.
The proposition continues to imply that the convergence rate of γ → 0 must be greater than the
convergence of summation of loss gradient and Hessian matrix which represents the divergence of
weights due to added backbone data. The experiments support this notion and exactly show that the
increase of γ is reducing the convergence rate of backbone augmented training.
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Figure 6: Ablation on Backbone Augmentation Ratio. The figure shows that DreamBooth adap-
tation’s convergence rate is proportional to backbone augmentation ratio.

D.3 OVERFITTING REGULARIZATION TEST

This experiment uses the same settings from Sec. 5.1.1.
Results. Proposition 1 shows the convergence of backbone augmented coefficient (Definition 2 in
Sec. 3.3) which means that the case where backbone augmented training surpassing regular training
is possible. This experiment intentionally induces overfitting as well to see whether the scheme
regulates overfitting. Accordingly, we observe that convergence rate of the scheme is greater than
regular training throughout total steps. Fig. 7 represents the outcome.
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Figure 7: Graph on Overfitting Regulation between BAT and Adaptations. This figure shows
the result of the overfitting experiment with full training steps. In various datasets, one can observe
that BAT regulates overfitting better than regular DreamBooth adaptations.
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D.4 CHANGES IN STOCHASTIC BEHAVIOR
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Figure 8: Ablation Test regarding the Batch Size of BAT. This test shows stochastic features are
important for our method. One can see that that the convergence rate is proportional to the batch
size. As the variety of input data is directly related to the performance of adaptations, we conjecture
the batch size is related to the variety including the augmented backbone data.

D.5 BAT WITH VARIOUS STARTING PARAMETERS
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(a) LoRA (b) DoRA

Figure 9: Robustness in Deterministic Behaviors in Other Adaptations This figure depicts the
difference of convergence rate between our schemes with varying seeds. As language models have
more parameters, the effect of non-deterministic feature reduces more comparing to diffusion adap-
tations.
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D.6 MORE QUALITATIVE ADAPTER RESULTS
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Figure 10: DreamBooth Qualitative Outcomes. These outcomes are gathered in the middle of
DreamBooth training of a regular one and BAT. The purpose of this figure is to show the faster
convergence rate of BAT over regular ones. Every class used the same models and every photo is
simply a output of each model with a different random seed.
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