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ABSTRACT

This paper introduces Network-based Active Inference (NetAIF), a novel robotic
framework that enables real-time learning and adaptability in dynamic, un-
structured environments. NetAIF leverages random attractor dynamics and the
Free Energy Principle (FEP) to simplify trajectory generation through network-
topology-driven attractors that induce controlled instabilities and probabilistic
sampling cycles. This approach allows robots to efficiently adapt to changing
conditions without requiring extensive pre-training or pre-calculated trajectories.
By integrating learning and control mechanisms within a compact model architec-
ture, NetAIF facilitates seamless task execution, such as target tracking and valve
manipulation. Extensive simulations and real-world experiments demonstrate Ne-
tAIF’s capability to perform rapid and precise real-time adjustments, highlight-
ing its suitability for applications requiring high adaptability and efficient control,
such as robotics tasks in the energy and manufacturing sectors.

1 INTRODUCTION

1.1 OVERCOMING AUTOMATION CHALLENGES WITH ADVANCED LEARNING METHODS

The World Energy Employment 2023 report by the IEA highlights a significant shift towards clean
energy jobs, which now surpass fossil fuel employment, driven by a 40% rise in clean energy in-
vestment over the past two years. Despite economic and geopolitical challenges, the energy sector
has seen growth in employment, particularly in solar PV, wind, EVs, and battery manufacturing.
However, a shortage of skilled labor remains a key challenge, underscoring the need for targeted
training and policy support to develop a workforce suited for the energy transition (IEA, 2023).

In response to these labor challenges, automation is playing an increasingly critical role in advancing
the clean energy sector. Robotics, in particular, offers a promising solution to enhance operational
efficiency and safety. However, to maximize the potential of robotics in complex and dynamic en-
vironments, sophisticated learning methods are required. One such approach, Deep Reinforcement
Learning (DRL), has emerged as a leading candidate for enabling autonomous robotic systems in
tasks like control, manipulation, and decision-making. Yet, despite its potential, DRL faces notable
barriers to widespread adoption in the energy sector.

1.2 DEEP REINFORCEMENT LEARNING (DRL)

DRL combines the decision-making power of reinforcement learning (RL) with the pattern recogni-
tion capabilities of deep learning (DL). This allows robots to learn and adapt through trial and error,
improving performance over time. DRL is increasingly explored for enabling autonomy in control
and manipulation tasks in real-world environments by training agents to recognize complex patterns
in data and make informed decisions.

However, DRL requires large amounts of data and time for agent training, as well as expert-designed
reward functions to guide learning. Creating these reward functions demands substantial knowledge
and engineering resources, as they must accurately capture desired outcomes, agent actions, and
constraints. Poorly defined reward functions can lead to suboptimal or unsafe behavior (Sutton &
Barto, 2020). Thus, while powerful, DRL may not always be the most practical or cost-effective
approach for every application.
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1.3 ACTIVE INFERENCE AS A NEXT-GENERATION LEARNING METHOD

Active Inference (AIF) is an advanced framework from neuroscience that is now being applied
in robotics to help agents minimize surprisal—the unexpectedness of observations—without rely-
ing on traditional reward-based approaches like deep reinforcement learning (DRL). The goal of
the agent is to reduce surprisal, mathematically expressed as − log p(o), where p(o) represents the
probability of an observation o.

Since directly minimizing surprisal is often impractical, the agent minimizes variational free energy
F , which serves as an upper bound on surprisal:

F = Eq(st) [log q(st)− log p(ot, st)] ≥ − log p(ot)

In this expression, q(st) is the approximate posterior over states st, and p(ot, st) is the joint likeli-
hood of observing ot given the state st. By minimizing F , the agent balances accuracy (matching
observations) and complexity (keeping the model simple), continuously refining its predictions and
actions to reduce prediction error.

While AIF holds significant promise for creating adaptive robotic systems, its real-world deployment
faces challenges due to the complexity of model design and high computational demands (Lanillos
et al., 2021). Nonetheless, its potential to enhance flexibility, durability, and adaptability makes it a
powerful alternative to traditional DRL techniques

1.4 NETWORK-BASED ACTIVE INFERENCE (NETAIF)

To overcome the limitations of both DRL and traditional AIF approaches, we propose Network-
based Active Inference (NetAIF), a novel framework that leverages network dynamics to simplify
trajectory calculations and enhance efficiency. Rooted in key AIF principles such as entropy and
surprise minimization, NetAIF builds on the Free Energy Principle (FEP), which posits that systems
self-organize by minimizing surprisal or prediction error. By harnessing the inherent dynamics of a
network, NetAIF computes trajectories more efficiently than traditional AIF methods, reducing the
need for complex mathematical models while enabling agents to adapt to dynamic environments in
real-time. This streamlined approach makes NetAIF highly suitable for real-world robotic applica-
tions, offering significant improvements in both speed and computational cost.

2 NETWORK-BASED ACTIVE INFERENCE

2.1 NOTABLE CHARACTERISTICS

Figure 1: NetAIF network diagram for target-tracking task: parameters that determine the network
structure such as number of layers, strides were determined through hyper parameter search

NetAIF introduces explicit feedback loops between hidden layers, deliberately inducing controlled
instabilities. Through extensive simulations and real-world experiments, we observe that these feed-
back mechanisms enable the network to explore the state space more thoroughly, leading to im-
proved adaptability in dynamic environments. This behavior is evidenced by the robot’s ability
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Figure 2: bidirectional connection in hidden layers: the schematic diagram shows how the instability
is induced within the hidden layer and how such instability is controlled via the external control law
through feedback

Figure 3: AIF brain and world - External states (world) are mirrored by internal states (brain).
The active and sensory states (blanket states) couple external to internal states-rendering the system
open. The (far from equilibrium steady-state) dynamics of each state is described with stochastic
differential equations (w is a stochastic fluctuation). The images were adapted and modified from
Parr et al. (2022)

to rapidly adjust to changing targets without pre-training or pre-calculated trajectories (Brown,
2021)(Refer to Figs. 1 and 2). Unlike Recurrent Neural Networks (RNNs), where feedback is
implicit (Mienye et al., 2024), NetAIF actively manipulates network dynamics to push the system
into unstable regions. These feedback loops enhance oscillatory patterns, similar to neuron firing
sequences, that persist even after training. This random bursts of node activity can be observed in
the supplementary video, further highlighting the parallels with brain function. The introduction of
these instabilities enables the system to maintain dynamic behaviors, known as itinerant (wander-
ing) dynamics (Kaneko & Tsuda, 2003; Friston & Ao, 2012), allowing it to continuously adapt to
changing environments.

This intentional instability serves two purposes. First, it reflects autovitiation, where self-induced
instability maintains dynamic behavior in Active Inference (AIF) systems (Friston & Ao, 2012).
Second, it supports a continuous cycle of hypothesis testing, akin to Bayesian inference, where the
system anticipates and adjusts based on discrepancies between expected and actual sensory data.

Operating within the AIF framework, NetAIF interacts with its environment through blanket
states—sensory states gather information, while active states influence the environment, maintaining
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a Non-Equilibrium Steady State (NESS). This dynamic feedback loop ensures the system remains
stable yet flexible, minimizing prediction errors in real time.

By balancing sensory inputs and active states, NetAIF continuously refines its internal model, op-
timizing performance in complex, uncertain environments, much like Bayesian inference, allowing
for real-time adaptation and trajectory optimization.

NetAIF also replaces traditional activation functions with a discrete weight-assigning mechanism,
designed to reset node weights and maintain NESS. By leveraging the constant interaction between
sensory and active states, NetAIF remains in a state of continuous exploration, avoiding local min-
ima and ensuring that it adapts dynamically to new challenges. This stochastic function enhances
the network’s ability to explore different states, preventing it from being trapped in local optima.

Additionally, NetAIF integrates learning and control, guiding motor outputs with clear task-specific
control laws. These laws break tasks down into sub-goals, such as aligning objects, allowing even
non-experts to define behaviors without deep control theory knowledge. For instance, in a valve
manipulation task, control instructions guide the network to minimize errors by aligning the vector
of the valve’s position with the one of the end effector. This ensures precise orientation and move-
ment, making the system more intuitive and effective for real-world applications. This user-friendly
approach facilitates seamless integration of learning and control.

Algorithm 1 Main loop of the NetAIF model
1: Initialize all model parameters and weights
2: while system is running do
3: Prediction Error = Desired State − Current State
4: Input signals = Prediction Error
5: for each weight w in all weights do
6: if magnitude of associated signal > threshold then
7: Set w = new weight value()
8: end if
9: end for
10: Input to hidden = Input signals × W input hidden
11: Feedback = Hidden signals prev × W hidden hidden
12: Hidden signals = Input to hidden + Feedback
13: Hidden signals prev = Hidden signals
14: Outputs = Hidden signals × W hidden output
15: Motor Commands = Outputs
16: Send motor commands to actuators
17: end while

The core of the NetAIF framework is outlined in Algorithm 1. Each cycle calculates the prediction
error between current and desired states, which updates network weights dynamically. If a signal
exceeds a set threshold, its weight is reset to ensure stability. Feedback loops in the hidden layers
facilitate adaptive behavior and robust trajectory generation. Motor commands are derived from the
hidden layers and sent to the actuators, enabling real-time adjustments. This continuous feedback
allows NetAIF to quickly adapt to changing environments, making it ideal for dynamic tasks like
PV panel inspection.

2.2 THE RANDOM ATTRACTOR

To represent the NESS behavior in NetAIF, Random Dynamical Systems (RDS) are employed,
providing a framework to understand complex systems driven by stochastic processes. In particular,
random pullback attractors (Caraballo & Han, 2016), also known as stochastic basins of attraction,
describe how NetAIF’s state evolves over time in response to environmental uncertainty. Expressed
as φ(t, ω, x), where t is time, ω represents randomness, and x is the state variable, these attractors
characterize regions in the state space where the system tends to settle. The random attractor A(ω)
pulls trajectories towards it, ensuring that NetAIF remains adaptive and stable within its NESS
framework, despite external randomness.

This is formalized by:
lim
t→∞

dist (φ(t, θ−tω,B),A(ω)) = 0

where φ(t, θ−tω,B) represents the state of the system at time t, θ−tω is the time-shifted random
noise, where θ is a shift operator that moves the noise backward in time by t units. This term captures
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the idea that the noise affecting the system at time t is related to the noise that occurred in the past.
B is a bounded set of initial conditions, and dist(X,Y ) denotes the distance between sets X and Y .

Figure 4: Abstract representation of a random pullback attractor, A, and the random set, B. While
the weights of the network are updated randomly (shown in matrix format), a flow from the random
set emerges and gets attracted to the attractor.

This convergence process can be understood as a stochastic diffusion in parameter space, driven by
increasing the amplitude of random fluctuations on parameters (e.g., connection weights) in regions
of high free energy. As the system approaches free energy minima, these random fluctuations are
attenuated, resulting in a more stable and precise arm trajectory. Such system dynamics can be
described by a stochastic differential equation (SDE) in the form of a Langevin equation (Karl,
2019):

dx = −∇F (x) dt+
√
2Γ dW

where x represents the system’s parameters, F (x) is the free energy landscape, Γ is the diffusion
coefficient, and W is a Wiener process. This equation captures the interplay between the determin-
istic drift towards free energy minima and the stochastic exploration of the parameter space, which
ultimately shapes the arm’s trajectory.

It is worth noting that the optimization process in NetAIF is inherently local because free energy is
an extensive quantity, meaning that the system’s total free energy is the sum of the free energies of
its individual components. The variational free energy, which approximates the true free energy, is
calculated using local prediction errors. Some predictions are clamped with high precision, fixed, or
strongly influenced by the desired outcomes, defining the attracting set, which represents the desired
sensor inputs or the target state of the system. Minimizing variational free energy by reducing local
prediction errors guides the network model towards the attracting set.

This local optimization process enables the system to efficiently navigate the free energy landscape
without requiring global computations or information propagation across the entire network. By
iteratively updating its local components based on prediction errors and external control laws, the
system converges towards the desired states.

The roots of this learning scheme can be traced back to early formulations of self-organization in
cybernetics (Ashby, 1947) (Ashby, 1956) and are connected to stochastic thermodynamics (Ao,
2008) (Seifert, 2012). These connections highlight the consistency of the design principle with the
fundamental concepts underlying the FEP. This principle drives the network model to minimize pre-
diction errors, guiding the entire network towards a stable regime, resulting in smooth and efficient
arm movements.
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3 REAL-WORLD VALIDATION AND PERFORMANCE EVALUATION

We conducted three key experiments using the Lite6 6-DoF robotic arm from UFactory, operating at
100 Hz: a pose-matching task, a target-tracking task, and a valve-turning task. Each experiment was
designed to evaluate different aspects of the NetAIF framework, including its real-time trajectory
generation and adaptability in dynamic environments.

3.1 POSE-MATCHING TASK

In the pose-matching task, which served as a benchmark, the desired joint pose was directly fed into
the system. The NetAIF model calculated waypoints using attractor dynamics to generate smooth
and efficient trajectories, guiding the robot to the specified pose without explicit path planning algo-
rithms. The control law simply aimed to match the current joint position with the desired one. As a
result, the Lite6 arm smoothly reached the target position, showcasing the effectiveness of NetAIF
for trajectory generation.

Figure 5: Network Output Signal for Pose Matching Task

3.2 TARGET-TRACKING TASK

In the target-tracking task, the robotic arm followed an AprilTag detected by a RealSense D455
camera, with tracking accuracy enhanced by a Kalman filter (Kam et al., 2018). Reference vectors
were used to align the robot’s roll, pitch, and yaw with the moving target. Notably, the arm tracked
the marker in real time without pre-training, demonstrating NetAIF’s capability for adaptive and
flexible motion planning in dynamic environments.

Figure 6: Motion planning process

3.3 VALVE-TURNING TASK

For the valve-turning task, the Lite6 arm was used to manipulate valves of different shapes (triangle,
square, circle) while the Intel RealSense D455 camera provided valve localization. This task further
demonstrated NetAIF’s real-time adaptability. The swift and efficient performance of the NetAIF
model can be attributed to its FEP-guided path generation, combined with random attractor dynam-
ics. As illustrated in Fig. 6, these random attractor dynamics replace conventional motion planning
components. Unlike some of the traditional methods, where the entire trajectory is pre-calculated
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or trained, NetAIF generates the trajectory in real-time by continuously feeding sensor data to the
random attractor, allowing for more flexible and adaptive motion planning.

Figure 7: Valve-turning experiment setup. Left: The Lite6 robotic arm manipulates valves of various
shapes. Right: Examples of valve shapes and bolts used in the experiments.

3.4 EFFICIENT DEPLOYMENT AND ADAPTABILITY OF NETAIF: PERFORMANCE METRICS
AND FLEXIBILITY

Table 1 presents the performance metrics for the NetAIF model, evaluated on an 8-core Intel Core i9
(I9-9880H) 2.4 GHz processor without GPU support. The network’s update cycle ranged from ap-
proximately 5ms to 7ms, as detailed in Table 2, resulting in remarkably short training times—around
7 seconds for the valve-turning task (evaluated using the Lite6 robot from UFactory as shown in Fig.
7) and about 8 seconds for the target tracking task. Once the network is trained, the trajectory values
become smoother with relatively small random fluctuations. This smoothness reflects the efficiency
of the network’s attractor dynamics, which generate real-time adjustments based on sensor data,
allowing for precise tracking without requiring pre-calculated trajectories.

What sets NetAIF apart is its computational efficiency and rapid adaptability. Designed for swift
deployment with minimal overhead, NetAIF efficiently utilizes stored weight values and attractor
dynamics to reduce the computational footprint, making it highly suitable for resource-constrained
systems. Unlike traditional neural networks that require extensive retraining or significant compu-
tational resources when applied to new tasks or environments, NetAIF facilitates quick adaptation
to different robotic platforms and tasks without substantial retraining. This minimizes deployment
overhead and allows for seamless transitions between tasks and environments, enhancing operational
flexibility in ways that standard neural networks may not readily support.

Table 1: NetAIF Model Metrics
Metric Pose-Matching Target-Tracking Valve-Turning

Network Size (No. of Nodes) 132 176 332
Network Size (No. of Connections) 1212 1616 1872

Network Size (No. of Bytes) 10224 13632 16304
No. of Iterations to Convergence 955 1230 1413

3.5 TIME-LAGGED CROSS-CORRELATION ANALYSIS

Fig. 8 shows a cross-correlation analysis between a marker’s position in the X, Y, and Z directions
and six robot joints, revealing how different joints influence the marker’s movements over time. The
analysis highlights coordinated robot motion driven by the network’s attractor dynamics. Joints 2
and 5 exhibit delayed correlations with the marker’s X position, indicating their role in larger, slower
movements after other joints have initiated motion. In contrast, joint 1 shows a stronger, immediate
influence on the marker’s Y direction, reflecting its control over base-level adjustments. Z-axis
motion involves more complex interactions, with joints 2 and 3 leading, suggesting their importance
in vertical positioning. These leading and lagging behaviors reflect the robot’s kinematics, where
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base joints initiate broader movements and distal joints fine-tune or stabilize them, enabling precise
and coordinated control.

Figure 8: Time-lagged cross-correlations

3.6 MOTION PLANNING AND PERFORMANCE SUMMARY

The total motion planning time for both the target-tracking and valve-turning tasks, involving real-
time visual processing, is summarized in Table2 and Fig. 9. For the target-tracking task, the NetAIF
model achieves an average planning time of 6.7 milliseconds, highlighting its ability to operate effi-
ciently in environments requiring frequent replanning due to dynamic changes and moving targets.
Despite a standard deviation of 16.16 milliseconds, which reflects variability due to factors such as
fluctuating frame rates and environmental dynamics, the model consistently delivers fast, responsive
performance with a median time of 5.23 milliseconds. This balance of speed and adaptability makes
the system well-suited for real-time applications.

Table 2: Summary of time taken to generate values by the network
Statistic Target-tracking (ms) Valve-turning (ms)
Mean time 6.7 4.53
Standard deviation 16.16 2.09
Median time (50th percentile) 5.23 5.38
25th percentile 4.56 2.75
75th percentile 5.80 6.21

Figure 9: Total motion planning time for target-tracking task
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In comparison, the valve-turning task exhibits even greater efficiency, with an average planning time
of 4.53 milliseconds and a much lower standard deviation of 2.09 milliseconds, indicating more
consistent behavior. The median time of 5.38 milliseconds is close to that of the target-tracking
task, but the tighter spread of the data (as seen in the 25th and 75th percentiles) suggests that the
valve-turning task benefits from a more predictable environment, resulting in reduced variability in
planning time.

When compared to other state-of-the-art algorithms, the performance of the NetAIF model stands
out. Traditional methods such as PRM and Hybrid RRT-PRM can take up to 482 milliseconds to
generate plans under similar conditions, due to the significant computational overhead involved in
path updates (Jermyn, 2021). Similarly, UAV-based systems that rely on visual processing report
planning times ranging from 50 to 500 milliseconds in dynamic environments (Cui et al., 2022).
Even with the higher variability in target-tracking, the NetAIF model’s mean planning time of 6.7
milliseconds far surpasses these algorithms, making it an exceptional solution for real-time, dynamic
tasks that require frequent replanning without sacrificing speed or responsiveness.

4 DISCUSSION

4.1 RANDOM PULLBACK ATTRACTOR—EMPIRICAL EVIDENCE IN NETAIF

Building on the concept of a random pullback attractor previously discussed, our observations of
the NetAIF model provide strong empirical evidence supporting its presence within the network’s
dynamics. Despite stochastic fluctuations and varying initial conditions, the network consistently
converges toward a stable region in its state space over time. This behavior reinforces the idea
that an underlying attractor governs the system’s long-term trajectory, aligning with the theoretical
framework of random pullback attractors in Random Dynamical Systems (RDS) theory (Caraballo
& Han, 2016).

4.1.1 EVIDENCE FROM CONVERGENCE PATTERNS AND OPTIMIZATION PRINCIPLES:

Figure 10 illustrates that the time required for the network to reach equilibrium increases linearly
with the number of nodes, even though the network’s complexity grows nonlinearly as more nodes
are added. In these simulations, we employed fully connected networks without environmental dis-
turbances to isolate the effect of network size on convergence time. The observed linear relationship
across different network sizes suggests that the network dynamics are governed by an attractor that
scales predictably with the network’s architecture.

Figure 10: Iterations to Equilibrium - In this simulation, the network was fully connected without
environment disturbances to see how the complexity of the network affects the convergence time.
5% window size was used to seek local outliers. The plot shows the data are following a linear trend
without any outliers

This consistent convergence pattern implies that, as the network evolves, it effectively minimizes a
potential function—similar to the minimization of free energy in the Free Energy Principle (FEP).
Moreover, this natural tendency aligns with the Least Action Principle (LAP) in classical mechanics
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(Wang, 2006), which states that a system evolves along the path of least action, minimizing the
integral of the Lagrangian over time. Essentially, systems tend to follow the most efficient trajectory
between two states.

In the context of NetAIF, the network dynamics appear to inherently seek the most efficient temporal
path toward stabilization, regardless of initial conditions. This suggests that the network is optimiz-
ing its behavior by minimizing a functional analogous to action, thereby aligning with universal
optimization principles found in physics. Such alignment underscores the robustness and efficiency
of NetAIF’s attractor dynamics, contributing to its ability to adapt and stabilize effectively in dy-
namic environments.

4.1.2 CONSISTENCY ACROSS DIFFERENT RUNS:

Further evidence comes from observing that networks with identical structures but different initial
weight values and stochastic fluctuations converge to similar behaviors. Figure 11 compares the
weight values of identical connections between different simulation runs. Despite variations in
individual weights due to random initializations and updates, the overall network behavior remains
consistent across runs. This robustness indicates that the attractor dynamics are primarily determined
by the network’s topology rather than specific parameter values.

Figure 11: Comparison of Weight Values of Identical Edges between Runs with Analogous Behav-
iors

This phenomenon mirrors the concept of degeneracy in biological systems, where different com-
ponents or pathways produce similar functions or behaviors. In neuroscience, for example, diverse
neural circuits can give rise to the same functional output due to the brain’s highly interconnected
and redundant architecture (Edelman & Gally, 2001). Similarly, in genomics, different genetic
sequences can result in the same phenotypic trait due to alternative genetic pathways.

The NetAIF model’s ability to converge to similar behaviors despite differences in weights reflects
this principle of biotic self-organization. The network’s topology acts as a blueprint that shapes
its functional dynamics, much like how the structure of biological systems determines their emer-
gent properties. This connection to biological concepts underscores the naturalness and potential
robustness of NetAIF’s design.

5 CONCLUSIONS

The Network-based Active Inference (NetAIF) model presents an efficient approach to real-time
adaptive intelligence in robotics, utilizing random attractor dynamics and the Free Energy Prin-
ciple (FEP) to enable rapid adaptation to unpredictable environments without requiring extensive
pre-training or high computational resources. Its real-time feedback ensures precise control and
flexible adaptation, making it ideal for industries like energy, where cost-efficiency and adaptabil-
ity are crucial. Unlike Deep Reinforcement Learning (DRL), which demands significant training
and computational power, NetAIF offers a more streamlined, cost-effective solution for tasks such
as inspections and maintenance. For a comparison with DRL methods, see the companion paper
(Anonymous, 2024).
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