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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
natural language processing but face challenges in structured tasks such as pre-
dicting the difficulty of competitive programming problems. We compare GPT-
4o against an interpretable LightGBM ensemble on a dataset of 1,825 LeetCode
problems labeled Easy, Medium, or Hard. Our experiments reveal that GPT-4o
achieves only 37.75% accuracy, significantly below the 86% achieved by Light-
GBM. Detailed analyses, including confusion matrices and SHAP-based inter-
pretability, highlight that numeric constraints play a crucial role in classifying
harder problems. By contrast, GPT-4o often overlooks such details and exhibits
a bias toward simpler categories. Additionally, we investigate GPT-4o’s perfor-
mance in generating and classifying synthetic Hard problems. Surprisingly, GPT-
4o labels almost all synthetic Hard problems as Medium, contradicting its be-
havior on real Hard problems. These findings have implications for automated
difficulty assessment, educational platforms, and reinforcement learning pipelines
reliant on LLM-based evaluations.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4o, are at the forefront of many AI-driven applica-
tions, ranging from code generation to educational support. However, certain tasks in competitive
programming require deep numeric and algorithmic reasoning, particularly for problems labeled
“Hard.” These problems often involve advanced data structures, large input sizes, and multi-step
logic, making them challenging even for state-of-the-art models.

In this study, we conduct a systematic comparison of GPT-4o against a LightGBM ensemble that
explicitly leverages numeric features such as input sizes and acceptance rates. Our results show
that GPT-4o systematically underestimates Hard problems, labeling them as Medium or even Easy.
Furthermore, when prompted to generate new Hard problems, GPT-4o exhibits a strong bias toward
Medium labels, even when explicitly instructed to create Hard-level challenges. These findings raise
concerns about the reliability of LLMs in structured domains requiring precise reasoning.

2 RELATED WORK

The application of LLMs in structured domains has garnered significant attention in recent years.
For instance, LLMs have been successfully employed in automated feedback generation for educa-
tional platforms (Zhao & Freedman, 2022), code synthesis, and reinforcement learning from human
feedback (Christiano et al., 2017). Despite their impressive performance in general-purpose tasks,
studies have highlighted notable limitations in numeric or structural reasoning (Narang et al., 2021).

Traditional machine learning models, such as LightGBM, excel in structured prediction tasks by
leveraging explicit numeric features. These features—such as input size limits, time complexity
indicators, and acceptance rates—are highly predictive of problem difficulty. In contrast, LLMs
rely heavily on surface-level text cues, which may not capture the nuances of numeric constraints
or algorithmic complexity. Our investigation explores how GPT-4o fares under these conditions,
focusing on real-world Hard problems and synthetic Hard task generation.
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3 METHODOLOGY

3.1 DATASET AND LABELING

We use a dataset of 1,825 LeetCode problems, each labeled as Easy, Medium, or Hard. GPT-4o
processes only the textual descriptions, without access to numeric metadata. In contrast, the Light-
GBM baseline ingests TF-IDF features derived from the text and numeric indicators such as input
sizes and acceptance rates. Both models are evaluated on a held-out test set, measuring accuracy,
precision, recall, and F1-score.

3.2 LLM LABELING DISTRIBUTIONS

Beyond evaluating overall accuracy, we analyze the raw distribution of GPT-4o’s assigned labels.
Out of 385 real Hard problems in the dataset:

• 321 problems (83.38%) are labeled as Easy,

• 43 problems (11.17%) are labeled as Medium,

• 21 problems (5.45%) are labeled as Hard.

This indicates a substantial bias in downgrading real Hard problems to easier categories.

3.3 SYNTHETIC HARD PROBLEM GENERATION

To further investigate GPT-4o’s behavior, we prompted it to generate 385 synthetic Hard problems
based on 21 real Hard problem titles. Surprisingly, GPT-4o itself labeled:

• 384 problems (99.74%) as Medium,

• 1 problem (0.26%) as Hard.

Thus, for synthetic tasks purported to be Hard, GPT-4o shifts almost entirely toward Medium clas-
sification. This contradicts its behavior on real Hard problems, where it predominantly labels them
as Easy, suggesting an unstable internal boundary for difficulty assessment.

4 RESULTS

4.1 OVERALL PERFORMANCE

Table 1 summarizes the performance of GPT-4o and LightGBM on the original dataset of 1,825
problems. GPT-4o attains a meager 37.75% accuracy, while LightGBM achieves 86%. Most mis-
classifications by GPT-4o involve Hard problems labeled as Medium or Easy, confirming the label
distribution analysis.

Table 1: Performance comparison on the original dataset (1,825 problems).
Model Accuracy Precision Recall F1-Score
GPT-4o 37.75% 40.9% 31.5% 35.6%
LightGBM Ensemble 86.0% 85.2% 82.4% 83.7%

4.2 CONFUSION MATRIX ANALYSIS

Figure 1 shows the confusion matrix for the trained LightGBM ensemble. The model accurately
classifies most Hard problems (bottom-left portion of the matrix), misclassifying only a minor subset
as Medium or Easy. This balanced separation suggests that numeric constraints—often the deciding
factor separating Hard from lower difficulties—are being effectively leveraged.
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Figure 1: Confusion Matrix for LightGBM on the original dataset, illustrating strong discrimination
among Easy, Medium, and Hard.

4.3 FEATURE IMPORTANCE VIA SHAP

LightGBM’s SHAP-based analysis (Figure 2) underscores how numeric constraints dominate Hard-
problem classification. Features such as input size limits and acceptance rates are the most influ-
ential in determining difficulty. By contrast, GPT-4o fails to prioritize such details unless explicitly
emphasized in the text.

Figure 2: SHAP bar plot indicating that “constraints” is the most influential feature in LightGBM’s
classification of Hard tasks.
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5 DISCUSSION

These findings reveal two key issues in GPT-4o’s difficulty assessment. First, it grossly underesti-
mates many real Hard problems, labeling them predominantly as Easy. Second, it shifts almost all
synthetic Hard tasks into Medium. This discrepancy suggests an unstable internal boundary where
numeric or structural clues are not consistently registered. While GPT-4o demonstrates strong se-
mantic understanding, the presence of advanced data structures, large input constraints, or multi-step
logic appears to be lost in a superficial text-based approach.

For practical platforms integrating LLM-based difficulty labels, this misalignment can distort user
perceptions. Learners might feel misled if a “Hard” challenge is portrayed as Easy, or if a newly
generated Hard problem is declared Medium. The same risks extend to AI-driven reward models,
where misjudged complexities could skew the training signal. LightGBM offers a contrastive exam-
ple of how interpretable numeric weighting can yield consistent classification aligned with known
problem constraints.

6 CONCLUSION AND FUTURE WORK

Our results highlight GPT-4o’s inconsistent boundary-setting between Easy, Medium, and Hard
categories, particularly when numeric constraints define the complexity of Hard tasks. In real data,
Hard tasks are downgraded to Easy, whereas synthetic “Hard” tasks collapse into Medium, revealing
that GPT-4o’s notion of “difficulty” is easily swayed by textual cues rather than rigorous constraints.

A promising direction involves prompt engineering that foregrounds numeric details, giving GPT-4o
a clearer impetus to treat problems as Hard when appropriate. Another approach is hybrid model-
ing, combining LLM-generated embeddings with interpretable numeric signals (as in LightGBM)
to preserve GPT-4o’s linguistic strengths while ensuring advanced tasks remain accurately labeled.
Finally, verifying synthetic data quality is essential, given that real Hard problems typically im-
pose more stringent constraints than the LLM’s generated outputs. By bridging the gap between
text-based reasoning and robust numeric analysis, we can develop more trustworthy AI judges for
competitive programming tasks.
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