
Sparse Hyperbolic Convolutional Networks with Enhanced Object Localization
via GradCAM Analysis

Vijayavallabh Jayamanikandan Jithamanyu Settur
be23b041@smail.iitm.ac.in sjithamanyu@gmail.com

Lokesh Rajulapati Raghunathan Rengaswamy
lokesh.rajulapati@gmail.com raghur@dsai.iitm.ac.in

Indian Institute of Technology Madras, India

Abstract

Hyperbolic spaces model hierarchical structures within
data. Studies have demonstrated that spatial representa-
tions in the hippocampus are structured within hyperbolic
spaces to optimize efficiency[26]. We explore the use of hy-
perbolic convolutional networks with sparsity constraints
(L1 and Top-k) and analyze the significance of features
in the images for classification tasks using GradCAM. We
show that applying sparsity constraints to hyperbolic con-
volutional networks yields performance comparable to es-
tablished benchmarks and results in greater interpretability.
This work develops sparse hyperbolic representations, en-
hancing interpretability in AI systems. Link to our code

1. Introduction
Deep convolutional neural networks have revolutionised
computer vision by learning hierarchical feature represen-
tations that capture complex visual patterns. However, tra-
ditional CNNs operate exclusively in Euclidean space, fun-
damentally limiting their ability to model the inherent hi-
erarchical structures present in visual data [7, 20]. Real-
world images exhibit rich hierarchical organizations, from
fine-grained textures to object parts, from parts to complete
objects that would benefit from geometric spaces designed
to naturally accommodate such tree-like structures. Recent
neuroscience experiments reveal that spatial representations
in CA1 hippocampal neurons in rats are organized within
hyperbolic spaces, allowing efficient coding that expands
dynamically over time[26].

Hyperbolic geometry, characterized by constant negative
curvature, offers a compelling alternative to Euclidean rep-
resentations. Unlike flat Euclidean space, hyperbolic space
exhibits exponential volume growth, making it particularly

well suited for embedding hierarchical data with minimal
distortion. Recent advances in hyperbolic neural networks
have demonstrated significant improvements in tasks that
involve hierarchical data, such as knowledge graphs and so-
cial networks [4]. However, the application of hyperbolic
geometry to standard computer vision tasks remains largely
underexplored, with most existing work focusing on spe-
cialized domains or requiring architectural constraints that
limit practical applicability.

A critical challenge in modern deep learning is inter-
pretability. Experimental evidence in neuroscience suggests
that the constraints on the energy budget tries to drive the
brain towards energy-efficient neural codes and wiring pat-
terns, resulting in sparse codes[1]. Sparsity mechanisms of-
fer a promising solution by selectively retaining only the
most informative features while eliminating redundant pa-
rameters [13]. Two primary approaches have emerged: L1
regularization, which naturally induces sparsity through ge-
ometric properties of the L1 norm, and Top-K selection,
which provides direct control over sparsity levels by retain-
ing only the most significant activations [9]. Although these
techniques have been extensively studied in Euclidean neu-
ral networks, their application to hyperbolic architectures
remains unexplored.

Understanding and interpreting the decision-making pro-
cesses of deep neural networks has become increasingly im-
portant as these models are deployed in critical applications.
Gradient-weighted Class Activation Mapping (GradCAM)
has emerged as a powerful tool to provide visual explana-
tions by highlighting regions in input images that contribute
the most significantly to model predictions [22]. However,
existing interpretability methods are designed exclusively
for Euclidean networks and do not account for the unique
geometric properties and constraints of hyperbolic space.
This limitation prevents us from understanding how hyper-
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bolic networks make decisions and whether their purported
advantages in hierarchical modeling translate to improved
attention mechanisms in computer vision tasks.

Our Contributions. In this work, we address these lim-
itations by introducing the first comprehensive framework
for sparse hyperbolic convolutional neural networks with
enhanced interpretability. Our key contributions are as fol-
lows.
1. Sparse Hyperbolic CNNs: We present novel imple-

mentations of L1 regularization and Top-K sparsity
mechanisms specifically designed for hyperbolic convo-
lutional neural networks operating in the Lorentz model,
which act on the activations making the activations
sparser. Our approach maintains the geometric con-
straints of hyperbolic space while achieving sparsifica-
tion.

2. Hyperbolic GradCAM: We extend gradient-weighted
class activation mapping to work with hyperbolic neural
networks by decomposing gradients and activations into
temporal and spatial components that respect the under-
lying Lorentzian geometry. This enables visual interpre-
tation of sparse hyperbolic network decisions for the first
time.

3. Comprehensive Comparative Analysis: We provide
the first systematic comparison between sparse Eu-
clidean ResNet architectures and their hyperbolic coun-
terparts using both traditional performance metrics and
visual explanation analysis. Our experiments on CIFAR-
10 and CIFAR-100 demonstrate that sparse hyperbolic
networks consistently achieve superior object localiza-
tion compared to their Euclidean equivalents.
Our experimental results on CIFAR-10 and CIFAR-100

demonstrate that hyperbolic CNNs with both L1 and Top-
K sparsity constraints outperform their Euclidean counter-
parts in terms of object localization quality, as evidenced
by GradCAM visualizations that show more precise and se-
mantically meaningful attention patterns.

2. Background
This section outlines the key theoretical foundations un-
derlying our work: hyperbolic geometry and its relevance
for deep learning, hyperbolic convolutional neural networks
(HCNNs), sparsity mechanisms in neural representations,
and gradient-based visual explanation methods. Together,
these components motivate and enable the design of inter-
pretable and efficient hyperbolic models for visual recogni-
tion tasks.

2.1. Hyperbolic Geometry for Deep Learning
Hyperbolic geometry is a non-Euclidean space of constant
negative curvature, offering a natural inductive bias for rep-
resenting hierarchical and tree-like structures often found in
linguistic and visual data [6, 20].

Lorentz Model. We adopt the Lorentz (or hyperboloid)
model for its numerical stability in optimization and com-
patibility with Riemannian geometry toolkits [15]. The d-
dimensional hyperbolic space Hd is realized as:

Hd =
{
x ∈ Rd+1 : ⟨x, x⟩L = −1, x0 > 0

}
(1)

where the Lorentzian inner product is defined as:

⟨x, y⟩L = −x0y0 +

d∑
i=1

xiyi (2)

Key operations include the exponential map expLx :
TxHd → Hd and logarithmic map logLx : Hd → TxHd,
which bridge the manifold and its tangent space:

expLx (v) = cosh(∥v∥L)x+ sinh(∥v∥L)
v

∥v∥L
(3)

logLx (y) = dL(x, y) ·
y + ⟨x, y⟩Lx

∥y + ⟨x, y⟩Lx∥L
(4)

where dL(x, y) = arccosh(−⟨x, y⟩L) is the Lorentzian
geodesic distance.

2.2. Hyperbolic Convolutional Neural Networks
While standard convolutional neural networks (CNNs) op-
erate in Euclidean space, their representational capacity is
limited when modeling inherently hierarchical visual struc-
tures. Hyperbolic CNNs extend standard convolutions to
curved spaces by operating in tangent spaces via Rieman-
nian mappings [4, 23].

A typical hyperbolic convolution consists of three stages:

f̃(yi) = logLx (f(yi)) (Map features to tangent space) (5)

g̃(x) =
∑
i

kif̃(yi) (Euclidean-like convolution) (6)

g(x) = expLx (g̃(x)) (Map back to manifold) (7)

For computational efficiency, they adopt a linearized ker-
nel formulation by expressing 2D convolution as:

LConv2d(x) = LFC(Unfold(x)) (8)

where Unfold extracts spatial patches and LFC denotes
Lorentz fully connected operations. Temporal components
are handled via a rescaling procedure:

xrescaled
time =

√∑
x2

time − (klen − 1) · κ (9)

where κ is the curvature of the hyperbolic space and klen is
the number of time like dimensions.

To maintain numerical stability and preserve the mani-
fold geometry, batch normalization is performed in the tan-
gent space. Given input x, we compute the Fréchet mean µ
and perform:



xT = logLµ(x) (10)

x̂T = γ
xT − µT√
σ2
T + ϵ

+ β (11)

x̂ = expLµ(x̂T ) (12)

Here, µT and σ2
T are the mean and variance in the tan-

gent space, and γ, β are learnable affine parameters.
Finally, classification is performed using hyperbolic hy-

perplanes defined in Lorentz space. For each class c, the hy-
perplane is parameterized by a scalar offset ac ∈ R (which
controls the hyperplane’s distance from the origin, analo-
gous to a bias term) and a direction vector zc ∈ Rd (which
determines the orientation of the hyperplane in Euclidean
coordinates). From these parameters, the Lorentzian weight
vector and the logit is computed as:

wt,c = sinh(
√
κ−1 ac) ∥zc∥, (13)

ws,c = cosh(
√
κ−1 ac) zc, (14)

logitc = −⟨wc, x⟩L. (15)

2.3. Gradient-weighted Class Activation Mapping
(GradCAM)

GradCAM [22] is a widely used technique for visual model
explanation. It highlights input regions that most influence a
model’s prediction for a specific class c, based on gradient
information. Given a feature map Ak and the gradient of
the output score yc with respect to Ak, the class-specific
importance weight is computed as:

αc
k =

1

Z

∑
i,j

∂yc

∂Ak
ij

(16)

The GradCAM localization map is then given by:

Lc
GradCAM = ReLU

(∑
k

αc
kA

k

)
(17)

In our work, we generalize GradCAM to hyperbolic set-
tings by accounting for curvature and the temporal-spatial
decomposition inherent in Lorentzian embeddings. This al-
lows us to evaluate the interpretability of sparse hyperbolic
networks through visual explanations that respect the geom-
etry of the representation space.

3. Related Work
Our work lies at the intersection of hyperbolic geometry
in vision, sparse neural networks, and interpretability tech-
niques. We provide a comprehensive review of the most
relevant contributions across these domains.

3.1. Hyperbolic Geometry in Computer Vision
Hyperbolic geometry has gained significant traction in com-
puter vision due to its exponential volume growth and nat-
ural capacity to model hierarchical structures [16, 20]. The
field has seen substantial progress in recent years, with com-
prehensive surveys highlighting the potential of hyperbolic
embeddings for various vision tasks [17]. Chami et al. [4]
demonstrated that hyperbolic graph neural networks pre-
serve hierarchical information more effectively than their
Euclidean counterparts, establishing fundamental theoreti-
cal foundations.

Building upon these insights, Bdeir et al. [2] introduced
HCNN, the first fully hyperbolic convolutional neural net-
work capable of performing hyperbolic batch normalization
and classification directly in the Lorentz model. This work
addressed limitations of earlier approaches, such as Van
Spengler et al. [24], which used expansive convolutions in
the Poincaré disk but relied on architectural constraints lim-
iting practical applicability.

The theoretical understanding has also advanced signif-
icantly. Li et al. [10] conducted a comprehensive analysis
of why hyperbolic neural networks are effective, propos-
ing benchmarks for evaluating hierarchical representation
capability and demonstrating that current methods cannot
achieve optimal embeddings. This work reveals that hierar-
chical representation capability is significantly affected by
optimization objectives and hierarchical structures.

Specialized applications have emerged across diverse
domains in 2024. Zhang et al. [27] applied fully hyper-
bolic neural networks to study ageing trajectories in brain
networks using magnetoencephalography data from 587 in-
dividuals, revealing that hyperbolic features outperform tra-
ditional graph-theoretic measures in capturing age-related
information.

3.2. Sparsity in Neural Networks
Sparsity in neural networks can be imposed not only on
parameters, but also on activations, which has proven es-
pecially important for representation learning. Activation
sparsity encourages only a small fraction of neurons to be
active for any given input, leading to more efficient, robust,
and interpretable models. A classic example is the sparse
autoencoder [19], where a sparsity penalty drives hidden
units toward low average activation, forcing the network to
learn more discriminative features. Extensions such as k-
sparse autoencoders [14] instead enforce sparsity by keep-
ing only the top-k activations while suppressing the rest.

Activation sparsity has been shown to improve general-
ization under limited data, reduce redundancy, and enhance
feature selectivity [8, 25]. Practical implementations of-
ten use L1 penalties on hidden activations or top-K mask-
ing functions to enforce controlled sparsity. Despite these
advances in Euclidean settings, activation sparsity mecha-



nisms remain largely unexplored in hyperbolic neural net-
works. In this work, we introduce L1 and Top-K activa-
tion sparsity specifically adapted for hyperbolic CNNs in
the Lorentz model, ensuring that sparsity is imposed while
preserving the underlying geometric constraints.

3.3. Visual Explanation Techniques
GradCAM [22] and its variants [5] have become fundamen-
tal tools for visual model explanation, with numerous en-
hancements proposed in recent literature. The field has ex-
panded significantly with hybrid approaches and domain-
specific applications.

The integration of GradCAM with modern architectures
has also progressed. Navarro-Ramirez et al. [18] evaluated
different CAM variants across various CNN architectures,
showing that ConvNext models produce less variable CAM
maps. Layer-wise interpretability studies have gained atten-
tion, with Liu et al. [12] exploring the impact of different
layer types on model interpretability using Grad-CAM for
facial expression recognition.

While these hybrid approaches have explored combining
GradCAM with techniques like LRP [3], no existing work
extends GradCAM to hyperbolic networks. We propose
Hyperbolic GradCAM to fill this gap, enabling manifold-
aware interpretation of sparse Lorentz-based models for the
first time.

4. Methods
Building on Prior Work. Leveraging the Lorentz model’s
stability and the effectiveness of fully hyperbolic convolu-
tional architectures [2, 4, 7, 15], we adopt this foundation
to construct our hyperbolic networks. Our contributions ex-
tend this line of work by introducing sparsity-driven mecha-
nisms for disentanglement and interpretability in hyperbolic
space, along with a novel adaptation of GradCAM tailored
to the Lorentzian geometry.

4.1. Sparsity-Induced Interpretable Representa-
tions in Hyperbolic Networks

To promote interpretability in hyperbolic space, we intro-
duce sparsity into our model via two mechanisms: L1 regu-
larization and Top-K activation masking. Sparse representa-
tions have been shown to improve interpretability and gen-
eralization [8, 13, 21], and we adapt these principles to the
Lorentzian manifold.

L1 Regularization in Hyperbolic Space. Given hy-
perbolic activations h ∈ Hd, we apply L1 regulariza-
tion directly in hyperbolic space. The rationale for direct
hyperbolic L1 sparsity is threefold: (1) Geometric con-
sistency: Operating on the manifold respects exponential
volume growth properties, avoiding tangent space projec-
tion distortions. (2) Hierarchical preservation: Maintains

structural relationships encoded through geodesic distances
during feature selection.

We decompose hyperbolic activations into temporal and
spatial components, computing the L1 penalty on spatial
components:

htime = h[:, :, 0], hspace = h[:, :, 1 :] (18)
Lsparse = Ltask + λ · mean(|hspace|) (19)

This formulation exploits the Lorentz model geometry.
Points satisfy ⟨h, h⟩L = −h2

0 + ∥hspace∥2 = −1 with
h0 > 0. Since h0 =

√
1 + ∥hspace∥2 is determined by

spatial components, these represent the true degrees of free-
dom. Regularizing only spatial components controls intrin-
sic complexity without constraining the temporal compo-
nent required for the hyperboloid constraint.
Top-K Activation Masking. To impose structured spar-
sity, we experiment with forwarding only the top-k activa-
tions. However, unlike conventional Euclidean approaches
that select based on magnitude, we implement Top-K spar-
sity directly in hyperbolic space to respect the underlying
geometry.

The equivalent of performing Top-K selection in hyper-
bolic space is to select activations based on their hyperbolic
geodesic distance from the origin. For a point x ∈ Hd in
hyperbolic space, the geodesic distance from the origin is
given by:

dhyp(x, 0) = arccosh(−⟨x, 0⟩L) (20)

We select ρ% of activations from the total number of ac-
tivations based on this hyperbolic distance metric:

k = ⌊ρ · n⌋ (21)

TopKhyp
ρ (h)i =

{
hi if dhyp(hi, 0) in top-k
0 otherwise

(22)

To validate this approach, we performed an empirical
analysis comparing conventional Top-K selection (based
on activation magnitude) with our hyperbolic geodesic
distance-based selection. Using random point sampling
across the hyperbolic manifold, we computed the correla-
tion between these two selection criteria. Our analysis re-
veals a strong positive correlation > 0.98 between Top-K
selection based on activation magnitude and Top-K selec-
tion based on hyperbolic geodesic distance from the origin,
justifying our approach as a geometrically principled equiv-
alent.

The final sparse hyperbolic activations are computed as:

htopk = TopKhyp
ρ (h) (23)

Gradients are propagated through the discrete Top-K op-
eration via straight-through estimation:

∂L
∂h

=
∂L

∂TopKhyp(h)
· Iselected (24)



where Iselected ∈ {0, 1}d is an indicator mask with ones
at the indices chosen by Top-K and zeros elsewhere.This
hyperbolic-aware Top-K selection ensures that sparsity con-
straints respect the exponential volume growth properties of
hyperbolic space, leading to more geometrically consistent
sparse representations compared to naive magnitude-based
selection in the tangent space. We have restricted the top-k
sparsity currently to the later layer of the model. We plan to
build on this in coming works.

4.2. Hyperbolic GradCAM for Visual Explanation
To evaluate the interpretability benefits of sparsity in hy-
perbolic neural networks, particularly for vision tasks, we
extend the well-established GradCAM technique [22] to the
Lorentzian setting. Our proposed Hyperbolic GradCAM re-
spects the manifold structure and disentangles spatial and
temporal contributions to enable geometry-aware visualiza-
tions. This extension is crucial because standard GradCAM
is designed for Euclidean spaces, where features are flat and
uniform. In contrast, hyperbolic spaces have constant nega-
tive curvature, as you move away from a centre, much like
how a tree branches out rapidly. This makes them ideal
for capturing hierarchical structures in data, but it requires
adapting explanation methods to account for this curved ge-
ometry.

Intuitively, these methods refine how we ”highlight” im-
portant parts of an image; our hyperbolic version builds
on this by incorporating the space’s curvature to ensure the
highlights respect the hierarchical nature of the features.

4.2.1. Temporal-Spatial Decomposition
Given hyperbolic activations A ∈ RH×W×C and gradients
G ∈ RH×W×C in Lorentz space (with C ≥ 2), where H ,
W , C refer to the height, width, and number of channels
of the filter outputs, we decompose each into temporal and
spatial components:

Atime = A[:, :, 0], Aspace = A[:, :, 1 :] (25)
Gtime = G[:, :, 0], Gspace = G[:, :, 1 :] (26)

In the Lorentz model of hyperbolic space, the ”temporal”
component (index 0) acts like a time dimension in special
relativity, anchoring the position on the hyperboloid, while
the ”spatial” components (indices 1+) capture the actual
features. Separating them allows us to handle the unique
geometry: the temporal part ensures points stay on the man-
ifold, preventing distortions, while the spatial part focuses
on the hierarchical embeddings.

4.2.2. Curvature-Aware Importance Scoring
We compute class-discriminative importance by combin-
ing curvature-scaled temporal correlation and spatial align-
ment, incorporating insights from hybrid approaches that

fuse GradCAM with Layer-wise Relevance Propagation for
enhanced CNN interpretability:

Itime = |Gtime ·Atime| (27)
Ispace = ∥ Gspace ×3 Aspace ∥2,(3) (28)

HypGradCAM = αItime + βIspace (29)

The temporal component captures global hierarchical
context in the hyperbolic embedding, where the timelike
coordinate encodes the scope and generality level of rep-
resentations. The spatial term uses L2 norms to measure
alignment, emphasizing features that are strongly activated
and relevant to the class. This combination provides a bal-
anced view: the temporal score grounds the explanation
in the manifold’s global structure and semantic hierarchy,
while the spatial score highlights local discriminative pat-
terns.

The weights (α, β) are adjusted by layer depth to bal-
ance global contextual information (temporal) with local
discriminative information (spatial):

(α, β) =


(0.05, 1.0) shallow layers
(0.10, 1.0) intermediate layers
(0.15, 0.9) deep layers

(30)

In shallow layers, spatial components dominate as they
capture local edge and texture patterns. In deeper layers,
temporal components become more important as they en-
code the global semantic context and hierarchical relation-
ships that determine class membership, leveraging the expo-
nential capacity of hyperbolic space to represent multi-scale
contextual information.

4.2.3. Sparsity-Aware Emphasis
To maintain visual clarity when sparse activation constraints
are imposed, we enhance the spatial importance map with a
modulation that compensates for reduced activation spread,
inspired by sparsity-aware techniques in recent works like
NeurRev [11]:

Ispatial
sparse = Ispatial · (1 + 0.2(1− ρ)) (31)

Here, ρ is the sparsity ratio (e.g., fraction of activations
kept). Intuitively, as sparsity increases (lower ρ), fewer neu-
rons fire, which could make heatmaps too faint. This mod-
ulation amplifies the remaining signals, like turning up the
volume on key notes in a sparse melody, ensuring important
features stand out.

By integrating Hyperbolic GradCAM with our spar-
sity mechanisms, we visualize how disentangled features
emerge in the hyperbolic representation space and assess
their contribution to model decisions. This enhanced frame-
work provides more precise, geometry-aware explanations,
advancing interpretability in non-Euclidean deep learning.



Intuitively, it’s like translating the model’s ”thought pro-
cess” from a curved, hierarchical world into flat, under-
standable visuals, making it easier to see why the model
focuses on certain parts of an image.

5. Results
In this section, we comprehensively evaluate the impact
of sparse activation mechanisms on hyperbolic neural net-
works. Our analysis proceeds along two main dimensions:
(i) quantitative performance, where we measure top-1 clas-
sification accuracy across different architectural variants
which is trained on the hyperparameters same as in [2], and
(ii) interpretability, where we assess model behavior using
Hyperbolic GradCAM.

Due to computational limitations, our experiments pri-
marily utilize the ResNet-18 backbone and are assessed on
the CIFAR-10 and CIFAR-100 benchmark datasets. We ex-
plore Euclidean, fully hyperbolic (Lorentzian), and hybrid
architectures, incorporating sparsity via L1 regularization
or Top-K activation masking. These evaluations are de-
signed to elucidate not only the performance trade-offs as-
sociated with sparsity in hyperbolic networks, but also its
impact on the interpretability and structure of the learned
representations.

5.1. Quantitative Performance Evaluation on
CIFAR-10 and CIFAR-100

We evaluate the performance of Euclidean, Lorentzian
(fully hyperbolic), and hybrid architectures with and with-
out sparsity mechanisms on CIFAR-10 and CIFAR-100
datasets. Table 1 reports Top-1 accuracy (%) for each vari-
ant. Sparsity is introduced using L1 regularization or Top-
K masking, and the hybrid model follows the configuration
described in [2] where blocks with high hyperbolicity (e.g.,
1 and 3) are replaced with Lorentz blocks while others re-
main Euclidean.

These results demonstrate that hyperbolic geometry fa-
cilitates compact, expressive representations, with sparsity
introducing negligible performance degradation while pro-
viding greater interpretability as shown in subsection 5.2.

5.2. Hyperbolic GradCAM analysis
To assess the qualitative interpretability benefits of hyper-
bolic models, we visualize the GradCAM heatmaps gen-
erated from Euclidean and fully hyperbolic CNNs. Fig-
ure 2 shows comparisons on the same input image. We
observe that while the Euclidean GradCAM tends to pro-
duce broader, often diffused attention regions that may
highlight irrelevant background areas, the Hyperbolic Grad-
CAM yields sharper, spatially localized, and semantically
focused activations, concentrating more effectively on the
discriminative regions (e.g., the contours and head of the

Figure 1. The Top Filters in the deeper layer of Lorentz CNNs
where the first image is the whole object

frog).
We hypothesize that this difference stems from the hy-

perbolic model’s intrinsic capacity to encode hierarchical
relations. Instead of merely identifying low-level discrimi-
native patterns, the hyperbolic geometry allows the network
to learn global structural cues those that define what makes
an object a “frog” in a taxonomic or conceptual sense, be-
yond superficial texture or contrast differences. This aligns
with the theory that hyperbolic spaces are better suited to
represent hierarchical or tree-like data structures [7, 20].

5.3. Filters level analysis of layers
To understand what individual filters are learning and how
this is aggregated into the whole, we conduct a systematic
analysis of filter–layer relationships at the layer level, as
these relationships constitute fundamental evidence of ob-
ject understanding within neural architectures. Individual
convolutional filters function as part detectors owing to their
localized receptive fields, which exhibit selective responses
to specific visual patterns and structural components. Con-
versely, aggregated layer activations elucidate whole-object
comprehension through the principled integration of dis-
tributed part responses across spatial feature maps.

Our analytical framework decomposes the Lorentz man-
ifold representation for GradCAM into temporal and spa-
tial components, formulating a weighted combination as
CAM = α · Itime + β · Ispace. The temporal components
encapsulate global contextual dependencies leveraging the
manifold’s timelike dimension, whereas spatial components
encode local geometric part relationships through spacelike
dimensions.

Filter significance is rigorously quantified through
gradient-activation products, importance = mean

(
|∇f ×

activationf |
)
, which simultaneously measure classification

sensitivity and feature presence to evaluate each filter’s con-
tribution to global understanding. Through comprehen-
sive visualization demonstrating how individual filters de-



Domain Variant CIFAR-10 CIFAR-100

Euclidean Baseline (ResNet-18) 95.14±0.12 77.72±0.15
+ L1 Sparse (all layers) 95.21±0.11 77.75±0.12
+ Top-K Sparse (ρ = 0.1) 95.19±0.15 77.53±0.12
+ Top-K Sparse (ρ = 0.01) 95.49±0.11 77.81±0.11

Lorentz Baseline (Hyp-ResNet18) 95.14±0.08 78.07±0.17
+ L1 Sparse 95.11±0.13 77.52±0.21
+ Top-K Sparse (ρ = 0.1) 95.14±0.09 78.09±0.11
+ Top-K Sparse (ρ = 0.01) 95.14±0.13 78.02±0.19

Hybrid Baseline (Hybrid ResNet) 95.16±0.11 78.56±0.24
+ L1 Sparse 95.23±0.18 78.01±0.07
+ Top-K Sparse (ρ = 0.1) 95.31±0.02 77.81±0.06
+ Top-K Sparse (ρ = 0.01) 95.25±0.06 78.00±0.12

Table 1. Top-1 accuracy (%) on CIFAR-10 and CIFAR-100 across Euclidean, Lorentzian, and Hybrid variants with different sparsity
mechanisms. Top-K sparsity at ρ = 0.01 achieves the best performance in Euclidean settings, while hybrid and Lorentzian models show
strong results on CIFAR-100.

tect constituent object parts while layer-wise aggregations
capture holistic semantic representations, we show how fil-
ter wise part information is aggregated into the layer out-
put. We also observe a hierarchy emerge when examining
activations across layers (refer supp.), though these are not
interpretable enough to make conclusive comments on the
part-whole hierarchy across layers.

5.4. Analysis of activation sparsity in Hyperbolic
CNN

We investigate whether sparse activations encourage the
network to focus on the most critical, high-salience fea-
tures, thereby enhancing interpretability without compro-
mising performance.

This line of inquiry is grounded in the hypothesis that
activation sparsity can act as a form of structural inductive
bias, promoting disentanglement in the latent space and im-
proving the selectivity of GradCAM attributions. In doing
so, we aim to bridge architectural expressiveness (via hyper-
bolic geometry) with functional parsimony (via sparsity),
both of which are known to contribute to interpretable rep-
resentations in biological systems [8].

Figure 2 demonstrates the qualitative effects of applying
sparsity to hyperbolic CNNs via L1 and Top-k activation
constraints. Across all configurations, we observe a con-
sistent sharpening of GradCAM heatmaps as sparsity in-
creases. Specifically:

L1 Sparse Hyperbolic GradCAM shows moderately
focused attention with denoised activations that remain
semantically relevant and follow object contours.
Top-k Sparse variants highlight salient object regions
more aggressively, producing concentrated and inter-
pretable maps.

Harder Top-k (with lower ρ) further localizes attention
to core features, although occasionally at the cost of
contextual cues.

In hyperbolic space, points near the origin encode more
global, high-level concepts, while those farther from the ori-
gin correspond to fine-grained, leaf-level details. L1 spar-
sity, by penalizing all activations uniformly, tends to shrink
embeddings toward the origin. This implicitly favors the
preservation of global, category-level information, but at
the cost of pruning away peripheral, detail-rich features.
Consequently, GradCAM maps under L1 sparsity appear
smoother and less sharply localized, reflecting an empha-
sis on broader semantic coverage rather than precise spa-
tial delineation. In contrast, Top-k sparsity explicitly re-
tains activations that lie farther from the origin, thereby
preserving the periphery of the hyperbolic space where the
most discriminative and specific features reside. This se-
lection bias maintains the leaf-level distinctions in the hi-
erarchy, producing activation patterns that are both more
selective and more spatially precise. This can actually be
also seen from the accuracies of the model which are higher
for Top-k models 1. As seen in GradCAM, this results
in sharply concentrated heatmaps that tightly follow object
boundaries, enhancing fine-grained interpretability. Harder
Top-k thresholds further accentuate this effect, focusing at-
tention almost exclusively on the most discriminative struc-
tures, though with a potential reduction in contextual aware-
ness.

5.5. Quantitative metrics for GradCAM analysis

To better understand the interpretability benefits of sparse
activation mechanisms, we evaluate GradCAM-based vi-



Table 2. GradCAM evaluation metrics for layer 15 across standard and sparse hyperbolic networks trained on CIFAR-100. Bold values
indicate best performance per metric (excluding complexity, where lower is better).

Model Robustness ↑ Faithfulness ↑ Localization ↑ Complexity ↓ Interpretability ↑
Standard 0.556 ± 0.173 0.148 ± 0.096 0.062 ± 0.046 -16.952 ± 5.278 0.682 ± 0.025
L1 Sparse 0.702 ± 0.134 0.233 ± 0.068 0.063 ± 0.032 -17.807 ± 2.113 0.699 ± 0.023
Top-0.1% Sparse 0.699 ± 0.154 0.140 ± 0.102 0.066 ± 0.037 -16.262 ± 5.344 0.664 ± 0.047
Top-0.01% Sparse 0.694 ± 0.158 0.140 ± 0.102 0.066 ± 0.037 -16.262 ± 5.344 0.664 ± 0.047

Figure 2. GradCAM visualizations for hyperbolic CNNs with
different activation sparsity mechanisms. From top to bottom:
L1 sparse, Top-k sparse (ρ = 0.1), and harder Top-k sparse
(ρ = 0.01). Each row shows the original image followed by acti-
vation maps from successive layers.

sual explanations using five key metrics: Robust-
ness, Faithfulness, Localization, Complexity, and In-
terpretability. Robustness measures the stability of the
saliency maps under perturbations, where higher values im-
ply more consistent explanations. Faithfulness quantifies
how well the saliency map aligns with the model’s true
decision-making process (e.g., via input occlusion). Local-
ization evaluates the sharpness and spatial concentration of
salient regions, indicating how focused the explanations are.
Complexity, in contrast, is minimized; more negative values

denote simpler and less noisy saliency maps. Finally, In-
terpretability is an aggregate score indicating how compre-
hensible the explanations are to humans, combining fidelity
and sparsity-based heuristics.

From Table 2, it is evident that sparse variants, especially
the L1 Sparse model, outperform the standard hyperbolic
network across most metrics. It achieves the highest Ro-
bustness, Faithfulness, and Interpretability, while also
having the lowest (i.e., best) Complexity. Interestingly,
both Top-0.1% and Top-0.01% sparsity levels exhibit su-
perior Localization scores compared to the baseline, sug-
gesting sharper and more spatially focused attention maps.
We have also provided results for all layers across training
regimes for hyperbolic models in the supplementary sec-
tion.

These results provide compelling evidence that sparse
hyperbolic networks not only preserve but often enhance
interpretability across multiple axes. This underscores a
strong case for further investigating sparse activation mech-
anisms as principled methods for improving model trans-
parency and alignment with cognitively relevant priors.

6. Conclusion and discussion
We introduce Hyperbolic GradCAM, an interpretability
framework extending gradient-based visual explanations to
hyperbolic CNNs by incorporating Lorentzian geometry
and separating spatiotemporal components. This enables
principled visualizations of hyperbolic models.

In parallel, we study sparse hyperbolic CNNs using L1

regularization and Top-K activation masking. These mod-
els match the performance of Euclidean and hyperbolic
baselines while producing sharper, more meaningful atten-
tion maps under Hyperbolic GradCAM.

Our results show that combining hyperbolic representa-
tions with sparse activations yields more expressive and in-
terpretable models. Future work will investigate how spar-
sity promotes disentanglement in hyperbolic feature spaces,
paving the way for structured, semantically aligned expla-
nations in non-Euclidean deep learning.
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