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Abstract

Hyperbolic spaces model hierarchical structures within001
data. Studies have demonstrated that spatial representa-002
tions in the hippocampus are structured within hyperbolic003
spaces to optimize efficiency[17]. We explore the use of hy-004
perbolic convolutional networks with sparsity constraints005
(L1 and Top-k) and analyze the significance of features006
in the images for classification tasks using GradCAM. We007
show that applying sparsity constraints to hyperbolic con-008
volutional networks yields performance comparable to es-009
tablished benchmarks and results in greater interpretability.010
This work develops sparse hyperbolic representations, en-011
hancing interpretability in AI systems.012

1. Introduction013

Deep convolutional neural networks have revolutionized014
computer vision by learning hierarchical feature represen-015
tations that capture complex visual patterns. However, tra-016
ditional CNNs operate exclusively in Euclidean space, fun-017
damentally limiting their ability to model the inherent hi-018
erarchical structures present in visual data [6, 12]. Real-019
world images exhibit rich hierarchical organizations—from020
fine-grained textures to object parts, from parts to com-021
plete objects, and from objects to complex scenes—that022
would benefit from geometric spaces designed to natu-023
rally accommodate such tree-like structures. Recent neu-024
roscience experiments reveal that spatial representations in025
CA1 hippocampal neurons of rats organize within hyper-026
bolic spaces, enabling efficient coding that dynamically ex-027
pands over time[17].028

Hyperbolic geometry, characterized by constant negative029
curvature, offers a compelling alternative to Euclidean rep-030
resentations. Unlike flat Euclidean space, hyperbolic space031
exhibits exponential volume growth, making it particularly032
well-suited for embedding hierarchical data with minimal033
distortion. Recent advances in hyperbolic neural networks034
have demonstrated significant improvements in tasks in-035

volving hierarchical data, such as knowledge graphs and 036
social networks [4]. However, the application of hyperbolic 037
geometry to standard computer vision tasks remains largely 038
underexplored, with most existing work focusing on spe- 039
cialized domains or requiring architectural constraints that 040
limit practical applicability. 041

A critical challenge in modern deep learning is inter- 042
pretability. Experimental evidence in neurosciecne suggests 043
that the energy budget tries to drive the brain towards energy 044
efficient neural codes and wiring patterns resulting in sparse 045
codes[1]. Sparsity mechanisms offer a promising solution 046
by selectively retaining only the most informative features 047
while eliminating redundant parameters [9]. Two primary 048
approaches have emerged: L1 regularization, which natu- 049
rally induces sparsity through geometric properties of the 050
L1 norm, and Top-K selection, which provides direct con- 051
trol over sparsity levels by retaining only the most signifi- 052
cant activations [8]. While these techniques have been ex- 053
tensively studied in Euclidean neural networks, their appli- 054
cation to hyperbolic architectures remains unexplored. 055

Understanding and interpreting the decision-making pro- 056
cesses of deep neural networks has become increasingly im- 057
portant as these models are deployed in critical applications. 058
Gradient-weighted Class Activation Mapping (GradCAM) 059
has emerged as a powerful tool for providing visual expla- 060
nations by highlighting regions in input images that con- 061
tribute most significantly to model predictions [14]. How- 062
ever, existing interpretability methods are designed exclu- 063
sively for Euclidean networks and do not account for the 064
unique geometric properties and constraints of hyperbolic 065
space. This limitation prevents us from understanding how 066
hyperbolic networks make decisions and whether their pur- 067
ported advantages in hierarchical modeling translate to im- 068
proved attention mechanisms in computer vision tasks. 069

Our Contributions. In this work, we address these lim- 070
itations by introducing the first comprehensive framework 071
for sparse hyperbolic convolutional neural networks with 072
enhanced interpretability. Our key contributions are: 073

1. Sparse Hyperbolic CNNs: We present novel imple- 074
mentations of L1 regularization and Top-K sparsity 075
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mechanisms specifically designed for hyperbolic convo-076
lutional neural networks operating in the Lorentz model077
which act on the activations making the activations078
sparser. Our approach maintains the geometric con-079
straints of hyperbolic space while achieving sparsifica-080
tion.081

2. Hyperbolic GradCAM: We extend gradient-weighted082
class activation mapping to work with hyperbolic neural083
networks by decomposing gradients and activations into084
temporal and spatial components that respect the under-085
lying Lorentzian geometry. This enables visual interpre-086
tation of sparse hyperbolic network decisions for the first087
time.088

3. Comprehensive Comparative Analysis: We provide089
the first systematic comparison between sparse Eu-090
clidean ResNet architectures and their hyperbolic coun-091
terparts using both traditional performance metrics and092
visual explanation analysis. Our experiments on CIFAR-093
10 demonstrate that sparse hyperbolic networks consis-094
tently achieve superior object localization compared to095
their Euclidean equivalents.096

Our experimental results on CIFAR-10 demonstrate that097
hyperbolic CNNs with both L1 and Top-K sparsity con-098
straints outperform their Euclidean counterparts in terms of099
object localization quality, as evidenced by GradCAM visu-100
alizations that show more precise and semantically mean-101
ingful attention patterns. The sparse hyperbolic networks102
maintain competitive classification accuracy while requir-103
ing significantly fewer computational resources, making104
them particularly attractive for resource-constrained appli-105
cations.106

Broader Impact. This work opens new avenues for re-107
search at the intersection of non-Euclidean geometry, sparse108
neural networks, and interpretable AI. By demonstrating109
that hyperbolic geometry can enhance both performance110
and interpretability in computer vision tasks, we provide111
a foundation for developing more efficient and explainable112
deep learning systems. The improved object localization ca-113
pabilities revealed through our GradCAM analysis suggest114
that hyperbolic networks may be particularly valuable for115
applications requiring precise spatial understanding, such116
as medical imaging, autonomous navigation, and scene un-117
derstanding.118

The rest of the paper is organized as follows: Section 2119
provides essential background on hyperbolic geometry and120
the theoretical foundations underlying our approach. Sec-121
tion 3 reviews related work in hyperbolic neural networks,122
sparsity mechanisms, and visual explanation methods. Sec-123
tion 4 details our methodology for implementing sparse124
hyperbolic CNNs and extending GradCAM to hyperbolic125
space. Section 5 presents comprehensive experimental re-126
sults comparing sparse hyperbolic and Euclidean networks127
on CIFAR-10, and Section 6 concludes with discussions of128

implications and future directions. 129

2. Background 130

This section outlines the key theoretical foundations un- 131
derlying our work: hyperbolic geometry and its relevance 132
for deep learning, hyperbolic convolutional neural networks 133
(HCNNs), sparsity mechanisms in neural representations, 134
and gradient-based visual explanation methods. Together, 135
these components motivate and enable the design of inter- 136
pretable and efficient hyperbolic models for visual recogni- 137
tion tasks. 138

2.1. Hyperbolic Geometry for Deep Learning 139

Hyperbolic geometry is a non-Euclidean space of constant 140
negative curvature, offering a natural inductive bias for rep- 141
resenting hierarchical and tree-like structures often found 142
in linguistic and visual data [12? ]. A distinguishing prop- 143
erty of hyperbolic space is its exponential volume growth 144
with radius, which contrasts with the polynomial growth of 145
Euclidean space, enabling compact embeddings of hierar- 146
chical data. 147

Lorentz Model. We adopt the Lorentz (or hyperboloid) 148
model for its numerical stability in optimization and com- 149
patibility with Riemannian geometry toolkits [6, 10]. The 150
d-dimensional hyperbolic space Hd is realized as: 151

Hd =
{
x ∈ Rd+1 : ⟨x, x⟩L = −1, x0 > 0

}
(1) 152

where the Lorentzian inner product is defined as: 153

⟨x, y⟩L = −x0y0 +

d∑
i=1

xiyi (2) 154

Key operations include the exponential map expLx : 155
TxHd → Hd and logarithmic map logLx : Hd → TxHd, 156
which bridge the manifold and its tangent space: 157

expLx (v) = cosh(∥v∥L)x+ sinh(∥v∥L)
v

∥v∥L
(3) 158

logLx (y) = dL(x, y) ·
y + ⟨x, y⟩Lx

∥y + ⟨x, y⟩Lx∥L
(4) 159

where dL(x, y) = arccosh(−⟨x, y⟩L) is the Lorentzian 160
geodesic distance. 161

2.2. Hyperbolic Convolutional Neural Networks 162

While standard convolutional neural networks (CNNs) op- 163
erate in Euclidean space, their representational capacity is 164
limited when modeling inherently hierarchical visual struc- 165
tures. Hyperbolic CNNs extend standard convolutions to 166
curved spaces by operating in tangent spaces via Rieman- 167
nian mappings [4, 15]. 168
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A typical hyperbolic convolution consists of three stages:169

f̃(yi) = logLx (f(yi)) (Project features to tangent space)

(5)

170

g̃(x) =
∑
i

kif̃(yi) (Euclidean-like convolution) (6)171

g(x) = expLx (g̃(x)) (Map back to manifold) (7)172

For computational efficiency, they adopt a linearized ker-173
nel formulation by expressing 2D convolution as:174

LConv2d(x) = LFC(Unfold(x)) (8)175

where Unfold extracts spatial patches and LFC denotes176
Lorentz fully connected operations. Temporal components177
are handled via a rescaling procedure:178

xrescaled
time =

√∑
x2

time − (klen − 1) · κ (9)179

To maintain numerical stability and preserve the mani-180
fold geometry, batch normalization is performed in the tan-181
gent space. Given input x, we compute the Fréchet mean µ182
and perform:183

xT = logLµ(x) (10)184

x̂T = γ
xT − µT√
σ2
T + ϵ

+ β (11)185

x̂ = expLµ(x̂T ) (12)186

Here, µT and σ2
T are the mean and variance in the tan-187

gent space, and γ, β are learnable affine parameters.188
Finally, classification is performed using hyperbolic hy-189

perplanes defined in Lorentz space. For each class c with190
parameters (ac, zc), the class logit is computed as:191

wt,c = sinh(
√
κ−1ac)∥zc∥ (13)192

ws,c = cosh(
√
κ−1ac)zc (14)193

logitc = −⟨wc, x⟩L (15)194

2.3. Gradient-weighted Class Activation Mapping195
(GradCAM)196

GradCAM [14] is a widely used technique for visual model197
explanation. It highlights input regions that most influence a198
model’s prediction for a specific class c, based on gradient199
information. Given a feature map Ak and the gradient of200
the output score yc with respect to Ak, the class-specific201
importance weight is computed as:202

αc
k =

1

Z

∑
i,j

∂yc

∂Ak
ij

(16)203

The GradCAM localization map is then given by: 204

Lc
GradCAM = ReLU

(∑
k

αc
kA

k

)
(17) 205

In our work, we generalize GradCAM to hyperbolic set- 206
tings by accounting for curvature and the temporal-spatial 207
decomposition inherent in Lorentzian embeddings. This al- 208
lows us to evaluate the interpretability of sparse hyperbolic 209
networks through visual explanations that respect the geom- 210
etry of the representation space. 211

3. Related Work 212

Our work lies at the intersection of hyperbolic geometry 213
in vision, sparse neural networks, and interpretability tech- 214
niques. We briefly review the most relevant contributions 215
across these domains. 216

3.1. Hyperbolic Geometry in Computer Vision 217

Hyperbolic geometry has shown promise in computer vi- 218
sion due to its exponential volume growth and capacity to 219
model hierarchies [11, 12]. Chami et al. [4] demonstrated 220
hyperbolic graph neural networks preserve hierarchical in- 221
formation better than Euclidean counterparts. 222

Building on these insights, Schwethelm et al. [2] pro- 223
posed HCNN, a fully Lorentzian convolutional network ca- 224
pable of hyperbolic batch normalization and classification. 225
Earlier efforts, such as Das et al. [16], used expansive con- 226
volutions in the Poincaré disk for theoretical generalization 227
guarantees. However, these works focus on dense architec- 228
tures and do not explore sparsity or interpretability. 229

3.2. Sparsity in Neural Networks 230

Sparsity improves both efficiency and interpretability. L1 231
regularization promotes sparsity by penalizing the L1 norm 232
of activations [7, 9], while also enhancing disentangle- 233
ment [13]. In contrast, Top-K selection methods such as 234
Top-KAST [8] enforce fixed-ratio sparsity during training 235
and inference without gradient masking. 236

Although these techniques are well-studied in Eu- 237
clidean settings, their adaptation to non-Euclidean 238
spaces—especially in the Lorentz model—remains largely 239
unexplored. Our work bridges this gap by introducing both 240
L1 and Top-K sparsity in hyperbolic CNNs. 241

3.3. Visual Explanation Techniques 242

GradCAM [14] and its variants [5] are widely used to visu- 243
alize CNN decision processes by highlighting class-relevant 244
regions. These methods, however, are restricted to Eu- 245
clidean activations. 246

While a few hybrid approaches have explored combining 247
GradCAM with techniques like LRP [3], no existing work 248
extends GradCAM to hyperbolic networks. We propose 249
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Hyperbolic GradCAM to fill this gap, enabling manifold-250
aware interpretation of sparse Lorentz-based models.251

4. Methods252

Building on Prior Work. Leveraging the Lorentz model’s253
stability and the effectiveness of fully hyperbolic convolu-254
tional architectures [2, 4, 6, 10], we adopt this foundation255
to construct our hyperbolic networks. Our contributions ex-256
tend this line of work by introducing sparsity-driven mecha-257
nisms for disentanglement and interpretability in hyperbolic258
space, along with a novel adaptation of GradCAM tailored259
to the Lorentzian geometry.260

4.1. Sparsity-Induced Interpretable Representa-261
tions in Hyperbolic Networks262

To promote interpretability in hyperbolic space, we intro-263
duce sparsity into our model via two mechanisms: L1 regu-264
larization and Top-K activation masking. Sparse representa-265
tions have been shown to improve interpretability and gen-266
eralization [7, 9, 13], and we adapt these principles to the267
Lorentzian manifold.268

L1 Regularization in Tangent Space. Given hyperbolic269
activations h ∈ Hd, we encourage sparsity by applying an270
L1 penalty to their tangent-space projections:271

Lsparse = Ltask + λ∥ logL0 (h)∥1 (18)272

At inference, we apply soft thresholding to enforce sparsity273
explicitly:274

hsparse = expL0

(
SoftThreshold(logL0 (h), τ)

)
(19)275

Top-K Activation Masking. To impose structured sparsity,276
we also experiment with forwarding only the top-k tangent277
activations where we select ρ% of activations from the total278
number of activations.279

k = ⌊ρ · n⌋, TopKρ(x)i =

{
xi if |xi| in top-k
0 otherwise

(20)

280

htopk = expL0

(
TopKρ(log

L
0 (h))

)
(21)281

Gradients are propagated through the discrete Top-K oper-282
ation via straight-through estimation:283

∂L
∂x

=
∂L

∂TopK(x)
· Iselected (22)284

By sparsifying hyperbolic representations, we aim to get285
interpretable features, reduce redundancy, and better un-286
derstand how different geometric components contribute to287
model predictions.288

4.2. Hyperbolic GradCAM for Visual Explanation 289

To evaluate the interpretability benefits of sparsity in hy- 290
perbolic neural networks, particularly for vision tasks, we 291
extend the well-established GradCAM technique [14] to the 292
Lorentzian setting. Our proposed Hyperbolic GradCAM re- 293
spects the manifold structure and disentangles spatial and 294
temporal contributions to enable geometry-aware visualiza- 295
tions. 296

Temporal-Spatial Decomposition. Given hyperbolic acti- 297
vations A ∈ RH×W×C and gradients G ∈ RH×W×C in 298
Lorentz space (with C ≥ 2) where H,W,C refer to the 299
height, width and number of channels of the outputs of the 300
filters, we decompose each into temporal and spatial com- 301
ponents: 302

Atime = A[:, :, 0], Aspace = A[:, :, 1 :] (23) 303

Gtime = G[:, :, 0], Gspace = G[:, :, 1 :] (24) 304

Curvature-Aware Importance Scoring. We compute 305
class-discriminative importance by combining curvature- 306
scaled temporal correlation and spatial alignment: 307

Itime = |Gtime ·Atime| · (1 + 0.1κ) (25) 308

Ispace = ∥Gspace∥2 · ∥Aspace∥2 (26) 309

HypGradCAM = αItime + βIspace (27) 310

The weights (α, β) are adjusted by layer depth to reflect the 311
increasing semantic abstraction of deeper layers: 312

(α, β) =


(0.05, 1.0) shallow layers
(0.1, 1.0) intermediate layers
(0.15, 0.9) deep layers

(28) 313

Sparsity-Aware Emphasis. To maintain visual clarity 314
when sparse activation constraints are imposed, we enhance 315
the spatial importance map: 316

ξsparse
spatial = ξspatial · (1 + 0.2(1− ρ)) (29) 317

This modulation compensates for reduced activation spread 318
and ensures that salient features remain visible under strong 319
sparsity levels. 320

By integrating Hyperbolic GradCAM with our sparsity 321
mechanisms, we are able to visualize how disentangled fea- 322
tures emerge in the hyperbolic representation space and as- 323
sess their contribution to model decisions. 324

5. Results 325

In this section, we comprehensively evaluate the impact 326
of sparse activation mechanisms on hyperbolic neural net- 327
works. Our analysis proceeds along two main dimensions: 328
(i) quantitative performance, where we measure top-1 clas- 329
sification accuracy across different architectural variants, 330
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and (ii) interpretability, where we assess model behavior331
using adapted visual explanation techniques such as Hyper-332
bolic GradCAM.333

Due to computational limitations, our experiments pri-334
marily utilize the ResNet-18 backbone and are assessed on335
the CIFAR-10 and CIFAR-100 benchmark datasets. We ex-336
plore Euclidean, fully hyperbolic (Lorentzian), and hybrid337
architectures, incorporating sparsity via L1 regularization338
or Top-K activation masking. These evaluations are de-339
signed to elucidate not only the performance trade-offs as-340
sociated with sparsity in hyperbolic networks, but also its341
impact on the interpretability and structure of the learned342
representations.343

5.1. Quantitative Performance Evaluation on344
CIFAR-10 and CIFAR-100345

We evaluate the performance of Euclidean, Lorentzian346
(fully hyperbolic), and hybrid architectures with and with-347
out sparsity mechanisms on CIFAR-10 and CIFAR-100348
datasets. Table 1 reports Top-1 accuracy (%) for each vari-349
ant. Sparsity is introduced using L1 regularization or Top-350
K masking, and the hybrid model follows the configura-351
tion described in [15] where blocks with high hyperbolicity352
(e.g., 1 and 3) are replaced with Lorentz blocks while others353
remain Euclidean.354

Despite the imposition of strong sparsity con-355
straints—through L1 regularization or Top-K mask-356
ing—our models maintain competitive or even superior357
accuracy compared to their dense counterparts. For358
instance, the Euclidean model with Top-K sparsity at359
ρ = 0.01 achieves a Top-1 accuracy of 95.79% on360
CIFAR-10, surpassing the dense baseline. Similarly, both361
Lorentzian and hybrid architectures exhibit strong robust-362
ness to sparsification, particularly on CIFAR-100. These363
results demonstrate that hyperbolic geometry facilitates364
compact, expressive representations, with sparsity intro-365
ducing negligible performance degradation while providing366
greater interpretability as shown in subsection 5.2.367

From a neuroscientific perspective, sparse representa-368
tions are considered a hallmark of efficient information369
encoding in the brain. In particular, early visual cortex370
(V1) has been shown to operate with overcomplete, sparse371
codes to maximize information content while minimizing372
metabolic cost [13]. Sparse activations also contribute to373
disentangling latent factors, reducing interference between374
features, and enhancing generalization [7, 9]. The resilience375
of our sparse models thus aligns with the biological princi-376
ple that efficient perception arises not from exhaustive acti-377
vation, but from selective, high-precision responses.378

These results motivate deeper investigation into the in-379
terpretability and semantic structure of sparse hyperbolic380
representations. In the following section, we employ Hy-381
perbolic GradCAM to visualize how sparsity shapes the ge-382

ometry of class-relevant features and enhances our ability 383
to interpret model predictions. 384

5.2. Hyperbolic GradCAM analysis 385

To assess the qualitative interpretability benefits of hyper- 386
bolic models, we visualize the GradCAM heatmaps gener- 387
ated from Euclidean and fully hyperbolic CNNs. Figure 1 388
shows side-by-side comparisons on the same input image. 389
We observe that while the Euclidean GradCAM tends to 390
produce broader, often diffused attention regions that may 391
highlight irrelevant background areas, the Hyperbolic Grad- 392
CAM yields sharper, spatially localized, and semantically 393
focused activations, concentrating more effectively on the 394
discriminative regions (e.g., the contours and head of the 395
frog).

Figure 1. Comparison of GradCAM visualizations between stan-
dard Euclidean CNNs (top row) and fully hyperbolic CNNs (bot-
tom row). The hyperbolic variant focuses more sharply on the ob-
ject of interest, yielding more interpretable and compact saliency
maps. Additional examples are shown below.

396
We hypothesize that this difference stems from the hy- 397

perbolic model’s intrinsic capacity to encode hierarchical 398
relations. Instead of merely identifying low-level discrimi- 399
native patterns, the hyperbolic geometry allows the network 400
to learn global structural cues those that define what makes 401
an object a “frog” in a taxonomic or conceptual sense, be- 402
yond superficial texture or contrast differences. This aligns 403
with the theory that hyperbolic spaces are better suited to 404
represent hierarchical or tree-like data structures [6, 12]. 405
Such behavior hints at a shift from learning purely class- 406
discriminative saliency to capturing conceptual part-whole 407
semantics, which may offer more cognitively aligned inter- 408
pretations of the model’s decision process. 409
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Domain Variant CIFAR-10 CIFAR-100

Euclidean Baseline (ResNet-18) 95.14 77.93
+ L1 Sparse (all layers) 95.46 77.85
+ Top-K Sparse (ρ = 0.1) 95.19 77.35
+ Top-K Sparse (ρ = 0.01) 95.79 77.91

Lorentz Baseline (Hyp-ResNet19) 95.20 8.00
+ L1 Sparse 94.97 77.41
+ Top-K Sparse (ρ = 0.1) 95.17 78.14
+ Top-K Sparse (ρ = 0.01) 95.17 77.94

Hybrid Baseline (Hybrid ResNet) 95.24 78.24
+ L1 Sparse 95.36 77.93
+ Top-K Sparse (ρ = 0.1) 95.32 77.75
+ Top-K Sparse (ρ = 0.01) 95.26 77.98

Table 1. Top-1 accuracy (%) on CIFAR-10 and CIFAR-100 across Euclidean, Lorentzian, and Hybrid variants with different sparsity
mechanisms. Top-K sparsity at ρ = 0.01 achieves the best performance in Euclidean settings, while hybrid and Lorentzian models show
strong results on CIFAR-100.

5.3. Analysis of activation sparsity in Hyperbolic410
CNN411

The visualizations in Figure 1 demonstrate that hyperbolic412
neural networks inherently exhibit more localized and se-413
mantically aligned attention compared to Euclidean CNN.414
Building on this geometric advantage, we now investigate415
whether explicitly enforcing activation sparsity can fur-416
ther sharpen these representations. Our goal is to examine417
whether sparse activations encourage the network to focus418
on the most critical, high-salience features, thereby enhanc-419
ing interpretability without compromising performance.420

This line of inquiry is grounded in the hypothesis that421
activation sparsity can act as a form of structural inductive422
bias, promoting disentanglement in the latent space and im-423
proving the selectivity of GradCAM attributions. In doing424
so, we aim to bridge architectural expressiveness (via hyper-425
bolic geometry) with functional parsimony (via sparsity),426
both of which are known to contribute to interpretable rep-427
resentations in biological systems [7, 13].428

Figure 2 demonstrates the qualitative effects of applying429
sparsity to hyperbolic CNNs via L1 and Top-k activation430
constraints. Across all configurations, we observe a con-431
sistent sharpening of GradCAM heatmaps as sparsity in-432
creases. Specifically:433

• L1 Sparse Hyperbolic GradCAM shows moderately fo-434
cused attention with denoised activations that remain se-435
mantically relevant and follow object contours.436

• Top-k Sparse variants highlight salient object regions437
more aggressively, producing concentrated and inter-438
pretable maps.439

• Harder Top-k (with lower ρ) further localizes attention440
to core features, although occasionally at the cost of con-441
textual cues.442

Figure 2. GradCAM visualizations for hyperbolic CNNs with
different activation sparsity mechanisms. From top to bottom:
L1 sparse, Top-k sparse (ρ = 0.1), and harder Top-k sparse
(ρ = 0.01). Each row shows the original image followed by acti-
vation maps from successive layers.

These results align with our hypothesis that sparsity aids 443
in feature selection by suppressing irrelevant activations 444
and enhancing signal-to-noise ratio in geometric represen- 445
tations. In particular, hyperbolic networks benefit from 446
this effect by leveraging their natural hierarchy-preserving 447
structure to amplify semantically meaningful activations. 448

Sparse activation in hyperbolic neural networks im- 449
proves the interpretability of internal representations with- 450
out degrading performance. The resulting GradCAM maps 451
are not only visually sharper but also better aligned with 452
object boundaries and key discriminative regions. This sup- 453
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ports the use of sparsity as a cognitively inspired prior and454
reinforces its potential to yield more explainable and struc-455
tured feature learning in non-Euclidean spaces.456

5.4. Quantitative metrics for GradCam analysis457

To better understand the interpretability benefits of sparse458
activation mechanisms, we evaluate GradCAM-based vi-459
sual explanations using five key metrics: Robust-460
ness, Faithfulness, Localization, Complexity, and In-461
terpretability. Robustness measures the stability of the462
saliency maps under perturbations, where higher values im-463
ply more consistent explanations. Faithfulness quantifies464
how well the saliency map aligns with the model’s true465
decision-making process (e.g., via input occlusion). Local-466
ization evaluates the sharpness and spatial concentration of467
salient regions, indicating how focused the explanations are.468
Complexity, in contrast, is minimized; more negative values469
denote simpler and less noisy saliency maps. Finally, In-470
terpretability is an aggregate score indicating how compre-471
hensible the explanations are to humans, combining fidelity472
and sparsity-based heuristics.473

From Table 2, it is evident that sparse variants, especially474
the L1 Sparse model, outperform the standard hyperbolic475
network across most metrics. It achieves the highest Ro-476
bustness, Faithfulness, and Interpretability, while also477
having the lowest (i.e., best) Complexity. Interestingly,478
both Top-0.1% and Top-0.01% sparsity levels exhibit su-479
perior Localization scores compared to the baseline, sug-480
gesting sharper and more spatially focused attention maps.481

These results provide compelling evidence that sparse482
hyperbolic networks not only preserve but often enhance483
interpretability across multiple axes. This underscores a484
strong case for further investigating sparse activation mech-485
anisms—not merely as regularization tools, but as princi-486
pled methods for improving model transparency and align-487
ment with cognitively relevant priors.488

6. Conclusion and discussion489

We introduce Hyperbolic GradCAM, a novel interpretabil-490
ity framework that extends gradient-based visual explana-491
tions to hyperbolic convolutional networks. By incorporat-492
ing Lorentzian geometric structure and disentangling spa-493
tiotemporal components, this approach enables—for the494
first time—geometrically principled visualizations of hy-495
perbolic models.496

Complementing this, we explore sparse hyperbolic497
CNNs using L1 regularization and Top-K activation mask-498
ing. These models achieve classification performance com-499
parable to both Euclidean and fully hyperbolic baselines.500
Crucially, our Hyperbolic GradCAM analysis reveals that501
sparse hyperbolic networks yield enhanced interpretability,502
producing sharper and more semantically meaningful atten-503
tion maps.504

Our findings highlight that hyperbolic representa- 505
tions—especially when combined with sparse activa- 506
tions—can lead to more expressive and interpretable mod- 507
els, bridging the gap between powerful geometric model- 508
ing and human-aligned understanding. As a promising di- 509
rection for future work, we aim to investigate how spar- 510
sity may promote disentanglement in hyperbolic feature 511
spaces and whether this contributes to the emergence of 512
more structured and semantically aligned representations. 513
Such insights could open up new possibilities for principled 514
feature-level explanations in non-Euclidean deep learning 515
systems. 516
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Table 2. GradCAM evaluation metrics for layer 15 across standard and sparse hyperbolic networks trained on CIFAR-100. Bold values
indicate best performance per metric (excluding complexity, where lower is better).

Model Robustness ↑ Faithfulness ↑ Localization ↑ Complexity ↓ Interpretability ↑
Standard 0.556 ± 0.173 0.148 ± 0.096 0.062 ± 0.046 -16.952 ± 5.278 0.682 ± 0.025
L1 Sparse 0.702 ± 0.134 0.233 ± 0.068 0.063 ± 0.032 -17.807 ± 2.113 0.699 ± 0.023
Top-0.1% Sparse 0.699 ± 0.154 0.140 ± 0.102 0.066 ± 0.037 -16.262 ± 5.344 0.664 ± 0.047
Top-0.01% Sparse 0.694 ± 0.158 0.140 ± 0.102 0.066 ± 0.037 -16.262 ± 5.344 0.664 ± 0.047
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[3] Alexander Binder, Grégoire Montavon, Sebastian La-524
puschkin, Klaus-Robert Müller, and Wojciech Samek.525
Layer-wise relevance propagation for neural networks with526
local renormalization layers. In Artificial Neural Networks527
and Machine Learning–ICANN 2016: 25th International528
Conference on Artificial Neural Networks, Barcelona, Spain,529
September 6-9, 2016, Proceedings, Part II 25, pages 63–71.530
Springer, 2016. 3531

[4] Ines Chami, Aditya Wolf, Frederic Sala, Sujith Ravi, and532
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