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ABSTRACT

Classical chest X-ray analysis has designed radiomic features to indicate the
characteristics of abnormality of the chest X-rays. However, extracting reliable
radiomic features heavily hinges on pathology localization, which is often absent
in real-world image data. Although the past decade has witnessed the promising
performance of convolutional neural networks (CNNs) in analyzing chest X-rays,
most of them ignored domain knowledge such as radiomics. Recently, the surge of
Transformers in computer vision has suggested a promising substitute for CNNs.
It can encode highly expressive and generalizable representations and avoid costly
manual annotations via a unique implementation of the self-attention mechanism.
Moreover, Transformers naturally suit the feature extraction and fusion from
different input modalities. Inspired by its recent success, this paper proposes
CheXT, the first Transformer-based chest X-ray model. CheXT targets (semi-
supervised) abnormality classification and localization from chest X-rays, enhanced
by baked-in auxiliary knowledge guidance using radiomics. Specifically, CheXT
consists of an image branch and a radiomics branch, interacted by cross-attention
layers. During training, the image branch leverages its learned attention to estimate
pathology localization, which is then utilized to extract radiomic features from
images in the radiomics branch. Therefore, the two branches in CheXT are deeply
fused and constitute an end-to-end optimization loop that can bootstrap accurate
pathology localization from image data without any bounding box used for training.
Extensive experiments on the NIH chest X-ray dataset demonstrate that CheXT
significantly outperforms existing baselines in disease classification (by 1.1% in
average AUCs) and localization (by a significant average margin of 3.6% over
different IoU thresholds). Codes and models will be publicly released.

1 INTRODUCTION

In medical study, handcrafted radiomics (Zwanenburg et al., 2016) refers to the process of extracting
several quantitative and semiquantitative features from medical images for improved decision support.
It has the potential to uncover disease characteristics that are difficult to identify by viewing raw
images alone. Given their advantages, researchers have explored the performance of radiomic features
for chest X-ray analysis. For example, (Shi et al.; Saygılı, 2021) extracted a set of radiomic features
to diagnose different types of pneumonia. (Bai et al., 2020) proposed a hybrid model to encode the
combination of radiomic features and clinical information. (Ghosh et al., 2020) presented a new
handcrafted feature to distinguish between severe and nonsevere patients. However, all the above
methods rely on accurate pathology localization annotations to extract radiomic features from the
correct “region of interest” (aka bounding boxes) but not other irrelevant parts(Van Griethuysen et al.,
2017). Such bounding boxes are usually expensive and time-consuming to acquire by humans and, if
inaccurate, will tremendously degrade the reliability of radiomic features. There is thus an unmet
need to automatically localize pathologies on chest X-rays to facilitate radiomic features extraction.

Under the rapid development of deep learning, many researchers have made their efforts to utilize the
Convolutional Neural Networks (CNNs) in building automated systems of chest X-ray abnormality
classification and localization (Rajpurkar et al., 2017; Wang et al., 2017; Li et al., 2018; Liu et al.,
2019b; Rozenberg et al., 2020; Wang et al., 2021). However, CNN methods witness several limitations.
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Figure 1: General overview of our CheXT frame-
work for Cardiopulmonary Disease Classification
and Localization from chest X-rays. CheXT takes
the chest X-ray image as the input and outputs
a heatmap for pathology localization, based on
which the bounding box could be obtained. Ra-
diomic features are further extracted from the
bounded region and are fed to predict the disease.

First, chest X-rays own valuable domain knowl-
edge and domain-specific features, such as ra-
diomic features. Thus, they could have blessed
better recognition but are unfortunately over-
looked by most CNNs. Second, chest X-rays
have more subtle discriminative features com-
pared to natural images, making their recogni-
tion more challenging. Finally, CNNs are often
criticized for being non-transparent and their
predictions not traceable by humans, hence hin-
ders their acceptance and adoption by clinicians.

Why Transformers for Chest X-rays? The
latest surge of transformers provides a promis-
ing alternative to model chest X-rays. Trans-
former was first prevailing to Natural Language
Processing (Vaswani et al., 2017; Devlin et al.,
2018; Brown et al., 2020), followed by its recent
success in computer vision (Dosovitskiy et al.,
2020; Carion et al., 2020; Zhu et al., 2020) and
multi-modal learning (Ying et al., 2021). It is an
“universal modeling tool” that can unify the fea-
ture extraction and fusion from different input
modalities within one model, without domain-
specific model tweaks. For example, (Akbari
et al., 2021) demonstrated to learn powerful multi-modal representations from unlabeled video, audio,
and text data, using one Transformer architecture.

Bringing that into the context of chest X-rays, we see the tantalizing potential that a Transformer
could organically and jointly learn from two views of chest X-rays: (i) raw X-ray images that contain
the richest details, hence benefiting from the data-driven learning capacity; and (ii) radiomic features
that encode critical domain prior knowledge, hence effectively guiding and regularizing the learning
process. The appeal of Transformers is, however, blocked by a “chicken-and-egg” problem: as
aforementioned, the extraction of reliable radiomic features hinge on the pathology localization, but
then the pathology localization is often absent in images and also needs to be learned first.

This paper presents a holistic framework of Knowledge-Guided Cross-Attention Transformer for
Chest X-ray analysis, named CheXT (Figure 1). CheXT consists of two Transformer-based branches
that learn from two data formats characterizing the same patient: the image and radiomics branches.
Both are deeply fused and interacted by cross-attention layers (Chen et al., 2021a). Notably, the
radiomic features need be extracted from the learned pathology localizations, which are not readily
available. The key enabling technology to resolve this hurdle, is to construct a “feedback loop” during
training: the image branch leverages its learned attention to estimating pathology localization, which
is then utilized to extract radiomic features from images in the radiomics branch. Training under
a unified contrastive loss, such an end-to-end optimization loop can bootstrap accurate pathology
localization from image data, with no bounding boxes used for training. Our contributions are
outlined as follows:

• We leverage the radiomic feature as an “auxiliary input modality” correlated with the raw
image modality and encoded with domain knowledge. We then propose a novel knowledge-
guided cross-attention Transformer, CheXT, to jointly extract and fuse image and radiomic
feature representations for chest X-ray analysis.

• To resolve the key “chicken-and-egg” problem of extracting radiomic features without
available pathology localization, we construct an innovative optimization loop with the
image and radiomic branches deeply interacting via attention. Such end-to-end loop can
bootstrap accurate pathology localization from images without using human-annotated
bounding boxes.

• Our approach achieve superior classification and localization results against several com-
petitive baselines, on the NIH chest X-ray benchmark. Notably, compared to existing
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approaches, CheXT generates more accurate disease localization for extracting radiomic
features, by a significant average margin of 3.6% over different IoU thresholds.

2 RELATED WORK

Radiomics in Medical Diagnosis. The design of radiomics involves biological and medical data
and prior knowledge. Thus, radiomics vastly enriches images and expands the horizons of the image
toward in-vivo biologic information extraction (Gillies et al., 2016). In image-based biomarkers
for cancer staging and prognostication, radiomics had shown promising power (Nasief et al., 2019).
Radiomics extracts quantitative data from medical images to represent tumor phenotypes, such as
spatial heterogeneity of a tumor and spatial response variations. (Eilaghi et al., 2017) demonstrated
that radiomic of CT texture features are associated with the overall survival rate of pancreatic cancer.
(Chen et al., 2017) revealed that the first-order radiomic features (e.g., mean, skewness, and kurtosis)
are correlated with pathological responses to cancer treatment. (Huang et al., 2018) showed that
radiomics could increase the positive predictive value and reduce the false-positive rate in lung
cancer screening for small nodules compared with radiologists. (Zhang et al., 2018) found that
multiparametric MRI-based radiomics nomograms provided improved prognostic ability in advanced
nasopharyngeal carcinoma.

In comparison, deep learning is often criticized for being a “black box” and lacks interpretability
despite high predictive accuracy. This limitation has motivated many interpretable learning techniques
including activation maximization (Erhan et al., 2009), network inversion (Mahendran & Vedaldi,
2015), GradCAM (Selvaraju et al., 2016), and network dissection (Bau et al., 2017). We believe that
the joint utilization of radiomics and interpretable learning techniques in our framework can further
advance accurate yet interpretable learning in the medical image domain.

Transformers for Medical Images. Recently, Vision Transformer (ViT) (Dosovitskiy et al., 2020)
achieved state-of-the-art classification on ImageNet by directly applying Transformers with global
self-attention to full-sized images. Inspired by the promising performance of ViT, researchers have
recently applied the idea to medical images. For example, (Oktay et al., 2018; Wang et al., 2019; Chen
et al., 2021b) used the attention mechanism to boost the performance of medical image segmentation.
(Valanarasu et al., 2021) proposed a gated axial-attention model to introduce an additional control
mechanism in the self-attention module. (Park et al., 2021) utilized a hybrid framework of CNN and
Transformer for Covid-19 prediction. However, those methods did not consider any domain prior
knowledge. (Han et al., 2021) applied pre-extracted radiomic features to guide pneumonia detection
from chest X-ray images. However, they adopted a convolutional backbone for image encoder, while
using a another specifically crafted radiomic features encoder. Therefore, the method involves no
joint interaction between image and radiomic features, and need to use accurate bounding boxes
during training in order to extract radiomic features. Hence, their method dramatically limits usability
in clinical practice.

3 METHOD

An overview of CheXT is illustrated in Figure 2. In the following subsections, we will first present
Cross-attention Vision Transformer (CrossViT), a recent two-branch ViT backbone on which CheXT
is built, and then describe our many unique improvements customized for Chest X-ray analysis.

3.1 PRELIMINARY: VIT AND CROSS-ATTENTION

ViT first converts an image into a sequence of patch tokens by dividing the image with certain
patch size and linearly projecting each patch into tokens. A special token (CLS) is added in front
of the sequence, as in the original BERT (Devlin et al., 2018). Then, all tokens are passed through
stacked Transformer encoders. Finally, the hidden state corresponding to the CLS token is used as
the aggregate sequence representation for image classification.

A Transformer encoder is composed of a sequence of blocks where each block contains multiheaded
self-attention with a feed-forward network. Layer normalization and residual shortcuts are applied
before and after every block, respectively. The granularity of the patch size affects the accuracy and
complexity of ViT. Therefore, ViT can perform better with fine-grained patch size but with higher
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Figure 2: Overview of our proposed CheXT. It contains two branches, the Image branch and the
Radiomics branch, to process the image and radiomic features (generated by the BYOA module
shown in Figure 3), respectively. The output tokens are then fused by an efficient module via cross
attention of the CLS tokens. Finally, the output of two CLS tokens (Icls andRcls) are used for disease
classification. We minimize the classification errors via a focal loss. Since we train with both labeled
and unlabeled images, we leverage a contrastive learning strategy. Specifically, we generate the image
view zi = gi(Icls) by a projection head gi. Similarily, we generate the radiomic view zr = gr(Rcls)
by another projection head gr. We maximize the agreement between zi and zr via a contrastive loss
(NT-Xent). Of note, the contrastive loss is only active during the training.

FLOPS and memory consumption (Chen et al., 2021a). To relieve this problem, CrossViT (Chen
et al., 2021a) was proposed with a dual-branch ViT where either branch operates at a different patch
size, as its own “view” of the image. The cross-attention module is then used to fuse information
between the branches to balance the patch sizes and complexity. Similar to ViT, the final hidden
vector of CLS from two branches are used for image classification.

3.2 OUR PROPOSED CHEXT MODEL

CrossViT supplies a graceful framework to simultaneously tackle and fuse two different “views” from
the same input data, e.g., different-size image patches in (Chen et al., 2021a). In CheXT, we extend
their idea by treating image itself as one “view” and the radiomic feature extracted from the same
image as another “view” (Figure 2). The two views are then jointly learned by interacting through
cross-attention. Transformer serves as the modality-agnostic backbone for both.

Specifically, we introduce a dual-branch cross-attention Transformer where the first (primary) branch
operates the image part, while the second (complementary) branch handles the radiomic features. To
resolve the “chicken-and-egg” dilemma in extracting reliable radiomic features without bounding
boxes, we have designed a novel Bootstrap Your Own Attention (BYOA) module, using feedbacks
to learn region localization for extracting radiomic features. A simple yet effective module is also
utilized to fuse information between the branches. In the subsequent sections, we will describe the
two branches, the BOYA module, and the fusion module.

Image Branch. The primary image branch uses a Progress-Sampling ViT (PS-ViT) (Yue et al., 2021)
as its backbone. Unlike the vanilla ViT that splits images into fixed-size tokens, PS-ViT utilizes an
iterative and progressive sampling strategy to locate discriminative regions and avoid over-partition
object structures. We experimentally observed PS-ViT outperforms ViT and other variants in our
framework because it generates higher-quality and more structure-aware attention maps, which are
crucial for estimating the pathology localization during training.

Radiomics Branch. The complementary radiomics branch is for processing radiomic features.
Handcrafted features usually cover a wide range of categories, such as first-order (basic intensity and
shaped-based features), second-order (texture features extracted from various matrices), and more
advanced features including those calculated from Fourier and wavelet transforms. Specifically, the
radiomic features are composed of the following categories:

• First-Order statistics features to measure the distribution of voxel intensities within the bound-
ing boxes. The features include energy (the measurement of the magnitude of voxel values),
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Figure 3: Overview of our BYOA module. For the input chest X-rays, we look at the self-attention
of the CLS token of the Image branch on the heads of the final output of the cross attention module.
Then we apply a threshold (0.1) (which means we only keep the top 10% active pixels in the whole
attention map) to generate the bounding boxes. Then with the generated bounding boxes, we use the
Pyradiomic tool as the radiomic extractor to extract the radiomic features.

entropy (the measurement of uncertainty in the image values), and max/mean/median gray
level intensity within the region of interest.

• Shape-based features, such as Mesh Surface, Pixel Surface, and Perimeter.
• Gray-level features, such as Gray Level Co-occurrence Matrix (GLCM), Gray Level Size

Zone (GLSZM), Gray Level Run Length Matrix (GLRLM), Neighboring Gray Tone Differ-
ence Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM) features.

In short, radiomic features are a set of quantitative features that can describe the characteristics of
medical images. In our framework, we aim to make the hidden features of the CLS similar to the
radiomic features to learn the localization of pathologies in the chest X-rays. For this branch, we
use the vanilla Transformer (Liu et al., 2017) as the radiomic features encoder. Please note that the
only difference is that the positional encoding module is discarded, since there does not exist any
positional relationship between the radiomic features.

Bootstrap Your Own Attention (BYOA): A Feedback Loop Module. Our main roadblock is how
to generate robust radiomic features without pathology localization. On one hand, radiomic features
are dependent on and highly sensitive to the local image regions of interest, for which we have no
bounding box annotation. On the other hand, image features would benefit from the guidance from
radiomic features that encode important domain knowledge. The learning of image and radiomic
features are fully entangled, forming a challenging “chicken-and-egg” loop.

To address this issue, we design BYOA to constitute an end-to-end feedback loop that can bootstrap
accurate pathology localization from image data, without any bounding box used for training (Fig-
ure 3). BYOA contains two components: attention map generation and radiomic feature extraction.

• Attention Map Generation. Similar to the approach in (Caron et al., 2021), we look at the
self-attention of the CLS token on the heads of the last layer. Here, we have two CLS tokens
from two branches, but the attention maps only come from the Image branch. Then we
apply a threshold on the self-attention maps to generate bounding boxes for the extraction
of radiomic features. The choice of the threshold will influence the quality of the radiomic
features. Specifically, the threshold is designed as how much active pixels to keep in the
generated attention map. The more active pixels we keep, the larger the generated bounding
box is. Please see 4.3.3 for more details.

• Radiomic Features Extraction. Given the original images and generated bounding boxes,
we used the Pyradiomic tool to extract radiomic features (Van Griethuysen et al., 2017).

Cross-Attention Fusion Module. This fusion involves the CLS token of one branch and patch
tokens of the other branch. As the CLS token is the aggregate representation of the branch, this
interaction helps include information at different scale. Please refer to (Chen et al., 2021a) for more
details about the cross-attention mechanism.

3.3 SEMI-SUPERVISED LOSS FUNCTION

As shown in Figure 2, CheXT is trained using the linear combination of the supervised focal
classification and unsupervised contrastive losses. For the supervised classification, considering that
the chest X-ray dataset is usually highly imbalanced, we adopt the focal loss (Pasupa et al., 2020).
For unsupervised contrastive learning, we use the cross-view contrastive loss (Chen et al., 2020).
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Supervised Classification Focal Loss. We feed the output of the CLS tokens of two branches Icls
and Rcls to a simple linear classifier. The supervised classification focal loss Lfl is defined as

Lfl =
{
−α (1− y′)γ log y′, y = 1
−(1− α)y′γ log (1− y′) , y = 0

(1)

α allows us to give different importance to positive and negative examples. γ is used to distinguish
easy and hard samples and force the model to learn more from difficult examples.

Unsupervised Cross-View Contrastive Loss. Our contrastive loss extends the normalized tempera-
ture scaled cross-entropy loss (NT-Xent). The difference is that we maximize agreement between
two feature views extracted from different input formats, one the image and the other radiomics.

Given an anchor chest X-ray in a minibatch, the positive sample will be its radiomic feature view, and
the negative samples will be other chest X-rays (either image or radiomics). Since the CLS could be
regarded as the representation of all other tokens, we only need to maximize the agreement between
them. Suppose Icls,k and Rcls,k are the k−th image features and radiomic features in the minibatch,
respectively, and sim()̇ the cosine similarity, the loss function Lcl is defined as

Lcl = − log
exp(sim(gi(Icls,k), gr(Rcls,k))/τ)∑N
k=1 exp(sim(gi(Icls,k), gr(Rcls,k))/τ)

(2)

where τ is the temperature. The final contrastive loss is summed over all instances in the minibatch.

Overall, we treat CheXT training as a semi-supervised multi-task learning. Since for chest x-rays,
there exists two labels, disease class labels and pathology bounding box annotations. In our case,
we only have access to the disease labels, however, bounding box annotations are more important
than the disease class labels for chest x-rays. Here, when we say “semi-supervised”, we refer to the
bounding box annotations, not disease class labels. For multi-task, one task is supervised disease
classification. The other is unsupervised cross-view contrastive learning. The total loss is:

L = (1− λ)× Lcl + λ× Lfl (3)

4 EXPERIMENTS

4.1 DATASET AND PROTOCOL SETTING

The NIH Chest X-ray dataset (Wang et al., 2017) consists of 112,120 chest X-rays collected from
30,805 patients, and each image is labeled with 8 cardiopulmonary disease labels (Atelectasis,
Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia, and Pneumothorax). The labels are
extracted from the associated radiology report using an automatic labeler (Peng et al., 2018) with
a reported accuracy of 90%. We use the extracted labels as ground-truth for training CheXT. The
NIH dataset also includes high-quality bounding box annotations for 880 images by radiologists.
We separated these 880 images from our entire dataset, and they are used only to evaluate disease
localization. A significant difference between our method and existing baseline methods (Liu et al.,
2019a; Li et al., 2018) is that our method does not require any training data related to the bounding
box while others use some percentage of these images for training.

In our experiments, we followed the same protocol as in the studies of (Wang et al., 2017; Li et al.,
2018), to shuffle our dataset (excluding images with Bounding Boxes annotations) into three subsets:
70% for training, 10% for validation, and 20% for testing. In order to prevent data leakage across
patients, we make sure that there is no patient overlap between our train, validation, and test set.

4.2 IMPLEMENTATION DETAILS

We build our image branch encoder based on PS-ViT (Yue et al., 2021) and apply their default
hyperparameters for training. The only difference is that we use a more shallow PS-ViT with 6 layers.
For the radiomic branch encoder, since the radiomic features are already informative features, we
use a more shallow Transformer (1-layers) to encode the radiomic features. And we add one more
cross-attention layer to fuse these two format features. We set the batch size as 128 and train the
model for 50 epochs (5 warm-up epochs). Other setup includes a cosine linear-rate scheduler with a
linear warm-up, an initial learning rate of 0.004, and a weight decay of 0.05. During the evaluation,
we resize the image to 256×256 and take the center crop 224×224 as the input.
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Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean
CNN

(Wang et al., 2017) 0.72 0.81 0.78 0.61 0.71 0.67 0.63 0.81 0.718
(Wang et al., 2018) 0.73 0.84 0.79 0.67 0.73 0.69 0.72 0.85 0.753
(Yao et al., 2017) 0.77 0.90 0.86 0.70 0.79 0.72 0.71 0.84 0.786
(Rajpurkar et al., 2017) 0.82 0.91 0.88 0.72 0.86 0.78 0.76 0.89 0.828
(Kumar et al., 2018) 0.76 0.91 0.86 0.69 0.75 0.67 0.72 0.86 0.778
(Liu et al., 2019b) 0.79 0.87 0.88 0.69 0.81 0.73 0.75 0.89 0.801
(Seyyed et al., 2020) 0.81 0.92 0.87 0.72 0.83 0.78 0.76 0.88 0.821
(Han et al., 2020) 0.83 0.92 0.87 0.76 0.85 0.76 0.77 0.86 0.828

Transformer
ViT 0.74 0.78 0.81 0.72 0.70 0.66 0.65 0.76 0.728
CrossViT 0.69 0.71 0.72 0.72 0.74 0.79 0.82 0.88 0.759
PS-ViT 0.75 0.81 0.82 0.73 0.79 0.73 0.69 0.81 0.766
CheXT 0.80 0.92 0.78 0.86 0.88 0.88 0.79 0.81 0.839

(±0.02) (±0.00) (±0.01) (±0.01) (±0.02) (±0.00) (±0.01) (±0.02) –

Table 1: Comparison with the baseline models for AUC of each class and average AUC. For each
column, bold values denote the best results.

4.3 ABNORMALITY CLASSIFICATION

Abnormality classification is a multi-label classification problem. It assigns one or more labels
among 8 cardiopulmonary diseases (Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule,
Pneumonia, and Pneumothorax) to each input image at inference time. We conducted 3-fold cross-
validation (Table 1). We compared CheXT with reference models, which have published state-of-the-
art performance of disease classification on the NIH Chest X-ray dataset.

4.3.1 EVALUATION METRIC

We used Area under the Receiver Operating Characteristics (AUC) to estimate the performance of
our model (FawcettTom, 2006). A higher AUC score implies a better classification model. We also
provide mean AUC across all the classes to highlight the overall performance of our model.

4.3.2 COMPARISON WITH THE SOTA MODELS

AUC scores for each disease and mean AUC score across 8 diseases are presented in Table 1. Not only
we compared CheXT with previous CNN-based SOTA models, but also several Transformer-based
models. From the table, we can find that CheXT outperformed the baselines in the majority of
diseases. We report the average AUC of 3 runs to show the robustness of our model. Compared to all
baselines, CheXT achieves a mean AUC score of 0.839 using a dual-branch shallow Transformer
across the 8 different diseases, which is 0.011 higher than the SOTA (uses DenseNet-121) (Rajpurkar
et al., 2017) on disease classification. Specifically, our results significantly outperformed the best
baseline models by 0.13, 0.09, and 0.02 in AUC for detecting Infiltration, Nodule, and Mass higher
respectively. Besides, compared to the Transformer-based models, the key difference is that we utilize
the extracted radiomic features for disease prediction, which improves the accuracy and adds the
model’s interpretability due to the utilization of self-designed handcrafted radiomic features.

4.3.3 EFFECT OF DIFFERENT THRESHOLDS OF ATTENTION MAPS

We investigate the impact of the thresholds (T ) in the process of attention map generation, on the
performance of CheXT for disease classification. Figure 4A summarizes the AUC comparison of
CheXT for different values of T . Higher values of T imply smaller bounding boxes to extract
radiomic features. During our experiments, we found that CheXT performs worse when very large
bounding boxes are generated. This observation meets our expectations since radiomic features are
very subtle to bounding boxes. Specifically, the extracted radiomic features are more robust if more
focal and accurate bounding boxes are given.

4.3.4 EFFECT OF CONTRASTIVE LEARNING

We also investigated the impact of contrastive learning. Specifically, we check the performance
of CheXT for disease classification by varying λ of equation (3). Figure 4B summarizes the AUC
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Figure 4: AUC comparison for varying T in (A) attention map generation and (B) λ in Equation 3.

comparison of CheXT for different values of λ. Higher values of λ implies lower weight to contrastive
loss. During our experiments, we found that CheXT performs worse when small weight (1%) is given
to the contrastive loss. CheXT’s performance improves when we increase contrastive loss weight,
but after a certain point, it starts decreasing. This proves our hypothesis that both contrastive and
focal losses are important. In a calculated ratio, they help CheXT to learn both disease-level and
patient-level discriminative visual features.

4.4 ABNORMALITY LOCALIZATION

The NIH Chest X-ray dataset has 880 images labeled by radiologists with the bounding box informa-
tion. We have used this dataset to evaluate the performance of CheXT for abnormality localization.
Many prior works (Li et al., 2018; Liu et al., 2019a) have used a fraction of ground truth (GT) bound-
ing boxes for training and evaluated their system on the remaining. To ensure a robust evaluation,
we do not use any GT for training. Table 2 presents our evaluation results on all 880 images. We
used (Wang et al., 2017) as our baseline to compare our localization results since it has the same
experimental settings.

4.4.1 EVALUATION METRIC

For localization, we evaluated our detected regular rectangular regions against the annotated bounding
boxes, using intersection over union ratio (IoU). Our localization results are only calculated for 880
images which have ground truth annotation for 8 diseases. The localization is defined as correct only
if IoU > T(IoU). We evaluated CheXT for different thresholds ranging from {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7} as shown in Table 2. A higher IoU threshold is preferred for disease localization because
clinical usage requires high accuracy.

4.4.2 COMPARISON WITH THE SOTA MODELS

We compared disease localization accuracy under varying IoU, with baselines having similar settings
as CheXT (Table 2). Unlike other baselines(Li et al., 2018; Liu et al., 2019a) that use a portion
of 880 images for evaluation (because they need the remaining data for training), we used all 880
annotated images for evaluation. Therefore, no k-fold cross-validation for localization was performed.
CheXT average performance across 8 diseases is significantly better than the baseline under all IoU
thresholds. When the thresholds of IoU is set to 0.1, CheXT outperforms the baseline (Wang et al.,
2017) in Cardiomegaly, Infiltration, Mass, and Pneumonia. Even with higher thresholds, our model
performs superior to baseline. For example, when evaluated at T(IoU) = 0.5, our “Cardiomegaly”
accuracy is still 32%, while the reference model achieves only 18%. Our “Pneumonia” accuracy
is 12%, while the reference model has only 3% accuracy. Note that some diseases can appear at
multiple places, but ground truth might have mentioned only one location. This can significantly
impact the accuracy at high thresholds. More importantly, we also add the ViT as our additional
baseline here, the results show that the radiomics branch and BYOA module can help the model
learn more important regions, which also improves the model’s interpretability. Few examples of the
localization results of ViT and CheXT are shown in Figure 5.
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Atlectasis Cardiomegaly Effusion Infiltration

Mass Nodule Pneumonia Pneumothorax

ViT CheXT ViT CheXT ViT CheXT ViT CheXT

Figure 5: Examples of visualization of localization on the test images. The attention maps are
generated from the self-attention maps of the CLS token. The ground-truth bounding boxes are shown
in blue. The left image in each pair is the localization result of ViT (Dosovitskiy et al., 2020). The
right one is our localization results. All examples are positive for corresponding disease labels. Best
viewed in color.

T(IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean
0.1 (Wang et al., 2017) 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.569

ViT 0.58 0.91 0.61 0.77 0.44 0.11 0.75 0.25 0.553
CheXT 0.61 0.95 0.65 0.82 0.50 0.13 0.79 0.28 0.591

0.2 (Wang et al., 2017) 0.47 0.68 0.45 0.48 0.26 0.05 0.35 0.23 0.371
ViT 0.38 0.85 0.39 0.55 0.24 0.01 0.51 0.15 0.385
CheXT 0.41 0.91 0.41 0.59 0.26 0.05 0.57 0.19 0.424

0.3 (Wang et al., 2017) 0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.221
ViT 0.20 0.45 0.19 0.32 0.06 0.00 0.21 0.02 0.181
CheXT 0.28 0.79 0.22 0.38 0.12 0.01 0.41 0.05 0.283

0.4 (Wang et al., 2017) 0.09 0.28 0.20 0.12 0.07 0.01 0.08 0.07 0.115
ViT 0.10 0.21 0.03 0.05 0.02 0.00 0.04 0.00 0.056
CheXT 0.17 0.54 0.13 0.18 0.07 0.01 0.26 0.02 0.173

0.5 (Wang et al., 2017) 0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.061
ViT 0.05 0.15 0.01 0.04 0.02 0.00 0.03 0.00 0.034
CheXT 0.08 0.32 0.05 0.09 0.05 0.00 0.12 0.01 0.090

0.6 (Wang et al., 2017) 0.02 0.08 0.05 0.02 0.00 0.01 0.02 0.03 0.029
ViT 0.01 0.03 0.01 0.01 0.01 0.00 0.01 0.00 0.010
CheXT 0.02 0.15 0.03 0.04 0.03 0.00 0.06 0.00 0.041

0.7 (Wang et al., 2017) 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.011
ViT 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.001
CheXT 0.01 0.04 0.01 0.02 0.01 0.00 0.03 0.00 0.015

Table 2: Disease localization under varying IoU on the NIH Chest X-ray dataset. Please note
that since our model doesn’t use any ground truth bounding box information, to fairly evaluate the
performance of our model, we only consider the previous methods’ results under the same setting,

5 CONCLUSION

In this paper, we propose an end-to-end knowledge-guided cross-attention Transformer, named
CheXT that can jointly model abnormality classification and localization without the supervision
of localization annotation of chest X-rays. Our approach differs from previous studies in the
choice of universal modeling transformer, the use of radiomic features as prior knowledge, and a
feedback loop for image and radiomic features to mutually interact with each other. Additionally,
the project aims to mitigate current gaps in radiology by making prior knowledge more accessible to
image data analytic and diagnostic assisting tools, with the hope that this will increase the model’s
interpretability. Experimental results demonstrate that our method outperforms the state-of-the-art
algorithms, especially for the disease localization task, where our method can generate more accurate
bounding boxes.
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