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ABSTRACT

Test-time scaling improves the reasoning capabilities of large language models
(LLMs) by allocating extra compute to generate longer Chains-of-Thoughts (CoTs).
This enables models to tackle more complex problem by breaking them down
into additional steps, backtracking, and correcting mistakes. Despite its strong
performance–demonstrated by OpenAI’s o1 and DeepSeek R1, the conditions
in the training data under which long CoTs emerge, and when such long CoTs
improve the performance, remain unclear. In this paper, we study the performance
of test-time scaling for transformers trained on an in-context weight prediction
task for linear regression. Our analysis provides a theoretical explanation for
several intriguing observations: First, at any fixed test error, increasing test-time
compute allows us to reduce the number of in-context examples (context length)
in training prompts. Second, if the skills required to solve a downstream task are
not sufficiently present in the training data, increasing test-time compute can harm
performance. Finally, we characterize task hardness via the smallest eigenvalue
of its feature covariance matrix and show that training on a diverse, relevant, and
hard set of tasks results in best performance for test-time scaling. We confirm our
findings with experiments on large, nonlinear transformer architectures.

1 INTRODUCTION

Scaling test-time compute enhances inference in large language models (LLMs), by enabling reason-
ing with long chains-of-thought (CoTs). This allows models to generate more intermediate reasoning
steps for complex problems, evaluate multiple options, and backtrack to find more accurate answers,
all without changing the model’s parameters. There has been a recent body of work on this idea
(Snell et al., 2024; Welleck et al., 2024; Muennighoff et al., 2025; Yeo et al., 2025), with OpenAI’s
o1 (OpenAI, 2024) and DeepSeek R1 (Guo et al., 2025) demonstrating strong reasoning performance
with consistent gains from scaling test-time compute. However, our understanding of the training
data properties that support test-time scaling remains limited.

Training on diverse and difficult data has shown to be beneficial to enable test-time scaling on complex
reasoning tasks, such as mathematical competitions (Muennighoff et al., 2025), medical reasoning
(Huang et al., 2025b), and code (Yu et al., 2025). Difficult examples are often identified as those that
cannot be answered by the model being trained or other more powerful proxy models. However, the
precise notion of difficulty and the relation between the amount of compute at training and test time
remains unclear. In particular,

(i) Does increasing the test-time compute always improve the downstream reasoning perfor-
mance?

(ii) Can increasing the test-time compute lower the requirement on training-time compute?

(iii) What are difficult training examples and why are they beneficial for test-time scaling?
Addressing this question requires a rigorous understanding of the effect of training data and
its properties on the performance of test-time scaling.

In this paper, we theoretically study the performance of test-time scaling for transformers trained on
an in-context weight prediction task for linear regression, where the goal is to predict the linear weight
vector from the sequence of input prompts. This framework has been used previously for analyzing
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the mechanism underlying training CoT (Huang et al., 2025a). During training, the model performs
direct in-context-learning and outputs its prediction of the weight vector. At test time, the transformer
performs CoT and generates multiple intermediate steps before arriving at its final prediction of the
weight vector. Our analysis yields several intriguing findings: First, fixing the test error, by increasing
the test-time compute we can decrease the number of in-context examples (context length) in training
prompts. Second, if the skills needed to solve the downstream task (corresponding to directions in
the data covariance matrix) are not sufficiently represented in the training data, increasing test-time
compute can harm performance, effectively causing the model to overthink. Finally, we characterize
hardness of a task based on the smallest eigenvalue of its feature covariance matrix and show that
training on a diverse, relevant and hard set of tasks during training yields the best performance for
test-time scaling.

Our main contributions and the organization of the paper are discussed below:

(a) In Section 3, We study in-context learning in transformers with a single linear self-attention
(LSA) layer trained via gradient descent. Despite the problem’s non-convexity, we show that
gradient descent, when initialized randomly but suitably, converges to a global minimum, which
we explicitly characterize. Our analysis allows for general feature covariance. During training, the
model engages in direct in-context learning, but at test time we employ chain-of-thought (CoT)
prompting to let the model generate intermediate reasoning steps before producing its final output.
We demonstrate that, with CoT prompting at test time, the transformer effectively implements a
multi-step (pseudo-) Newton’s method for loss optimization. Notably, this part of our contribution
extends the results of Zhang et al. (2024) by incorporating CoT dynamics at test time, and of Huang
et al. (2025a) by accommodating general feature covariance.

(b) By analyzing the expected estimation error of in-context weights for test prompts, in Section 3.4 we
introduce a measure of task hardness defined by the ratio of the smallest eigenvalue of the feature
covariance matrix to its trace. We interpret the eigenvectors as representing different skills relevant
to the task, with the corresponding eigenvalues indicating the strength of those skills. Under this
interpretation, hard tasks are characterized by a long-tailed spectrum of skills, while easy tasks
correspond to having only a few well-balanced skills.
This analysis leads to two key consequences: (1) For a fixed test error, increasing test-time compute
allows us to reduce the required number of in-context examples (i.e., the context length) in training
prompts. (2) We derive test-time scaling laws for our ICL setting, capturing how test error depends
on test-time compute and highlighting the role of factors such as context length, feature dimension,
and task covariance structure in shaping the overall trend.

(c) In Section 5.1, we study a setting with T tasks, where each task is specified by its feature covariance
matrix (interpreted, as discussed in part (b), as the set of skills required for the task together
with their relative strengths). We extend the analysis of Section 3 to this multi-task setting and
characterize the estimation error of the final CoT output. Based on this characterization, we
formulate a quadratic optimization problem to determine the optimal task selection probabilities,
demonstrating that training on a diverse, relevant, and sufficiently hard set of tasks yields the best
performance under test-time scaling. We validate our theoretical results with experiments on both
Linear Self-Attention (LSA) models and the more complex nonlinear transformer architecture
GPT-2.

2 RELATED WORK

Recent work has highlighted several phenomena relevant to our study. First, it has been observed that
simply increasing test-time compute and reasoning depth can, counterintuitively, harm performance,
a phenomenon termed overthinking. The empirical study of Su et al. (2025) suggests that LLMs
tend to overthink simple problems by generating unnecessarily long outputs, and underthink harder
ones, by providing shallow or incomplete reasoning that overlooks critical steps. In Wang et al.
(2025), it is argued that exploring more reasoning branches may degrade system efficiency as many
branches may be trapped in overthinking. Second, Recent work has explored the test-time scaling
paradigm (Snell et al., 2024; Welleck et al., 2024), with OpenAI’s o1 (OpenAI, 2024) and DeepSeek
R1 (Guo et al., 2025) demonstrating strong performance through reinforcement learning on millions
of samples and multiple training stages. Muennighoff et al. (2025) proposes a simple framework,
which involves training on only 1,000 samples with next-token prediction and controlling thinking
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duration via a simple test-time technique, and show that it achieves test-time scaling and strong
reasoning performance. Finally, prior studies on data mixtures emphasize the importance of balancing
training corpora with sufficient coverage of topics matched to downstream tasks, as imbalanced data
composition can impair generalization (Xie et al., 2023; Nguyen et al., 2024). However, prior work
has been largely empirical, whereas we develop a theoretical framework that rigorously analyzes
test-time scaling and Chain-of-Thought effectiveness, overthinking, and principled strategies for task
selection during training.

3 IN-CONTEXT LEARNING

In an in-context learning (ICL) scenario, a model is presented with instances of prompts of the form
Pτ = (x1, hτ (x1), . . . , xn, hτ (xn)), with xi drawn i.i.d from a distribution Dx, and hτ sampled inde-
pendently from a distribution over functions in a given function class. The goal of in-context learning
is to train a model so that when given a test prompt Pτ ′ = (x1, hτ ′(x1), . . . , xm, hτ ′(xm), xm+1)
with an independently sampled hτ ′ , it is able to make a prediction on xm+1 that is close to hτ ′(xm+1).
Therefore, a key distinction from traditional supervised learning is that in ICL, each prompt has its
own distribution. For example, in linear regression, hτ (x) = ⟨wτ , x⟩, where each prompt has its
own ground truth wτ . Thus, in ICL the model must generalize not just across data points but across
distributions, and be able to infer the correct predictive rule on the fly for each new prompt without
modifying its parameters.

3.1 IN-CONTEXT WEIGHT PREDICTION AND LINEAR SELF-ATTENTION

We focus on ICL for linear regression task, where each prompt Pτ = (xτ,1, yτ,1, . . . , xτ,n, yτ,n) with
yτ = ⟨wτ , xτ,i⟩, where xτ,i ∼ N(0,Λ), wτ ∼ N(0, Id). Most previous works on this setting focus
on prediction without directly estimating the weight vector of the test prompt (Ahn et al., 2023a;
Zhang et al., 2024; Mahankali et al., 2023). Here, we take a similar approach to Huang et al. (2025a)
and consider in-context weight prediction where we require the model to directly estimate the wight
vector of test prompts. To this end, we adopt the embedding used by Bai et al. (2023); Huang et al.
(2025a) which includes the weight-estimation:

Eτ =

xτ,1 · · · xτ,n 0
yτ,1 · · · yτ,n 0
0 · · · 0 ŵ0

0 · · · 0 1

 :=

 Xτ 0
yτ 0

0d×n ŵ0

01×n 1

 (3.1)

where ŵ0 ∈ Rd is an initialization for the weight estimate.

We next proceed by describing the transformer architecture. We consider a one layer self-attention
with residual connection. Let E be an embedding formed from the prompt. A self-attention module
takes as input an embedding matrix and outputs a matrix of the same size,

fAttn(E;WK ,WQ,WV ,WP ) = E +WPWV E · ψ
(
(WKE)⊤WQE

ρ

)
where ψ is an activation (e.g. softmax) that is applied column-wise. Following Gatmiry et al. (2024);
Huang et al. (2025a); Zhang et al. (2024); Ahn et al. (2023b), we consider Linear-Self-Attention
(LSA) where the activation ψ is the identity mapping. By defining W :=W⊤

KWQ, V =WPWV and
θ = (W,V ) we arrive at

fLSA(E; θ) = E + V E · E
⊤WE

ρ
. (3.2)

The estimation of the transformer for wτ is given by the last token of the output sequence, namely
ŵτ = fLSA(Eτ ; θ)[d+2:2d+1,−1], which is obtained by restricting the last column of fLSA(Eτ ; θ) to
entries [d+ 2 : 2d+ 1]. We assume ŵ0 = 0 for simplicity.

We learn the parameters of the transformer by minimizing the following empirical loss over B
independent prompts:

L̂(θ) =
1

2B

B∑
τ=1

∥∥fLSA(Eτ ; θ)[:,−1] − (0d, 0, wτ , 1)
∥∥2
ℓ2

(3.3)
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We consider the behavior of gradient descent-trained networks over the population loss induced by
the limit of infinite training prompts:

L(θ) = lim
B→∞

L̂(θ) =
1

2
Ewτ ,xτ,1,...,xτ,n

(∥∥fLSA(E0; θ)[:,−1] − (0d, 0, wτ , 1)
∥∥2
ℓ2

)
(3.4)

Our first result shows that with suitable initialization and step size, gradient descent converges to a
global minimum of L(θ), which we explicitly characterize.

Theorem 3.1 Consider the linear self-attention network over the population loss (3.4) with initial-
ization

V (0) =

 0 0 0 0
0 0 0 0

V31(0) 0 0 0
0 0 0 0

 , W (0) =

0 0 cI 0
0 0 0 −c
0 0 0 0
0 0 0 0


for some real-valued c. Also define

Γ :=

(
1 +

1

n

)
Λ +

1

n
tr(Λ)Id ∈ Rd×d. (3.5)

We run gradient descent on the population loss with constant step size η ≤ 1/(c2 ∥Γ∥op). We also fix
W24(t) = −c . The gradient descent converges to a global minimum of the loss given by

V∗ =


0 0 0 0
0 0 0 0

−Γ−1

c 0 0 0
0 0 0 0

 , W∗ =

0 0 cI 0
0 0 0 −c
0 0 0 0
0 0 0 0

 . (3.6)

Note that chain-of-thought reasoning is not employed during training; however, as we discuss in
the following section, the model engages in chain-of-thought reasoning at test time. In contrast,
(Huang et al., 2025a, Theorem 3.1) consider the setting of isotropic Gaussian features (Λ = I) and
incorporate chain-of-thought reasoning during training by generating intermediate steps through
gradient updates on the linear regression objective. Also, the result of (Zhang et al., 2024, Theorem
4.1) does not apply to our setting, since it works with a different embedding and trains the model by
minimizing the expected prediction loss function.

3.2 TEST TIME CHAIN-OF-THOUGHT

During test time, we observe a test prompt of the form P = (x1, ⟨wtest, x1⟩, . . . , xm, ⟨wtest, xm⟩)
of possibly different length than the training prompts, and wtest may be never seen before. We
let the transformer to generate k steps before it outputs the final prediction wk of the ground
truth wtest. Specifically, we let Ei be the embedding at the i-th step of generation, and have
fLSA(Ei)[d+ 2 : 2d+ 1,−1] as the prediction of the next link in the chain. We then append it to the
current embedding, as follows:

Ei =

x1 · · · xm 0 0 . . . 0
y1 · · · ym 0 0 . . . 0
0 · · · 0 w0 w1 . . . wi

0 · · · 0 1 1 . . . 1

 :=

Xtest 0 0 . . . 0
ytest 0 0 . . . 0
0d×n w0 w1 . . . wi

01×n 1 1 . . . 1 ,

 (3.7)

with wi := fLSA(Ei−1)[d+2:2d+1,−1]. The final prediction is given by wk+1. In our next proposition,
we give an explicit characterization of the recursive updates of wi.

Proposition 3.2 Consider the LSA model with parameters V∗ and W∗ given by (3.6) and assume
a test prompt of the form P = (x1, ⟨wtest, x1⟩, . . . , xm, ⟨wtest, xm⟩). Initializing the test time CoT
with w0 = 0, we have

wi+1 = wi −
1

m
Γ−1XtestX

⊤
test(wi − wtest) , (3.8)

where Xtest = [x1| . . . |xm] ∈ Rd×m. Therefore, the final output (after k step of generation) is given
by

wk+1 =

(
I −

(
I − 1

m
Γ−1XtestX

⊤
test

)k
)
wtest . (3.9)
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Remark 3.3 Consider the quadratic loss ℓ(w) := 1
2m

∥∥ytest −XT
testw

∥∥2
ℓ2

, with ytest = XT
testwtest.

The gradient of the loss is given by ∇ℓ(w) = − 1
mXtest(ytest−XT

testw) =
1
mXtestX

T
test(w−wtest),

and the expected Hessian is given by E[∇2ℓ(w)] = E[ 1mXtestX
T
test] = Λ. Treating Γ, given by (3.5),

as a regularized form of Λ, the update (3.8) is (pseudo-) Newton’s method for optimizing the loss.

3.4 HARDNESS OF A TASK

We define a task by the covariance matrix of its features (Λ), so different tasks have different features
covariances and for each task, we have many prompts with features generated from N(0,Λ), but each
with its own wτ . Now suppose we perform direct in-context learning on a task and then use it to
predict labels on queries from the same task (without CoT). Our next result will bound the expected
estimation error and we use that to define a measure of task hardness.

Theorem 3.3 Consider the LSA model with parameters V∗ andW∗ and assume a test prompt is of the
form P = (x1, ⟨wtest, x1⟩, . . . , xm, ⟨wtest, xm⟩). Initializing the in-context learning with w0 = 0,
the estimate of w will be given by ŵ = 1

nΓ
−1XtestX

⊤
testw with Xtest = [x1| . . . |xm] ∈ Rd×m. We

have

EXtest(∥ŵ − wtest∥2) ≤ w⊤
test

(
1

n2
(I + tr(Λ)Λ−1)2 +

1

m
(I + tr(Λ−1)Λ)

)
wtest

where the expectation is with respect to Xtest. Taking expectation with respect to wtest ∼ N(0, I),
we obtain

E(∥ŵ − wtest∥2) ≤
d

n2

(
1 +

tr(Λ)

λmin(Λ)

)2

+
d

m

(
1 +

tr(Λ)

λmin(Λ)

)
. (3.10)

Based on the above result, we define the hardness of a task, with features covariance Λ, via the
following measure:

Hard(Λ) :=
tr(Λ)

λmin(Λ)
. (3.11)

Note that it is invariant to scaling of Λ and would be higher if Λ has some small eigenvalue as more
data is needed to learn these directions. Our next results bound the expected estimation error under
CoT during test time.

Theorem 3.4 Consider the setting of Theorem 3.3 and let wk+1 be the model estimate for the target
task after generating k steps during test time. Also suppose that m = Ω(k2d) and that eigenvalues of
Λ are upper and lower bounded by positive constants. We have

E(∥wk+1 − wtest∥2ℓ2) ≤ tr((I − Γ−1Λ)2k)(1 +O(k
√
d/m))

where the expectation is with respect to Xtest = [x1| . . . |xm] and wtest ∼ N(0, I).

Corollary 3.5 Under the setting of Theorem 3.4, and letting λmin(Λ) > 0 be the minimum eigenvalue
of Λ we have

E(∥wk+1 − wtest∥2ℓ2) ≤ d

(
1 +

n

1 + Hard(Λ)

)−2k

(1 + o(1)) .

The above corollary is also consistent with our measure of hardness: the estimation error of wk+1

increases with Hard(Λ). In addition, if we want to get the estimation error below some target level ε,
harder tasks require longer CoT at test time (larger k).

Note that in Corollary 3.5, it was assumed that Λ is full rank. If Λ is rank deficient (that is the
features are coming from a subspace of lower dimension), then one cannot estimate wtest along those
directions, as we do not see any information about them during the process. This of course is not
an issue if the prompts during test time are coming from the same task, as those directions do not
contribute to the predictions. In these cases, by restricting to the relevant subspace, hardness of the
task can be defined similarly where λmin(Λ) is the minimum “non-zero” eigenvalue of Λ.
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An interpretation of the hardness measure is that each eigenvector of Λ corresponds to a specific
skill needed for solving examples from that task, with the corresponding eigenvalues indicating the
strength of those skills. An easy task is one that relies on a few dominant skills (a small number of
nonzero eigenvalues of similar magnitude), while a hard task draws on many skills, reflected in a
long-tailed spectrum. The proposed measure captures this intuition quantitatively.

Remark 3.5 Test-time scaling. Our result in Corollary 3.5 provides test time scaling for our ICL
setting. Note that the computational complexity during test time increases as we allow for more steps
of thinking; Specifically, it is O(kd2) as the matrix I − 1

mΓ−1XtestX
⊤
test can be computed once, and

each step of thinking involves multiplying it with the current estimate. Our result also captures the
role of λmin, tr(Λ) and the prompts length n during training and the features dimension d in shaping
the test time scaling law. Another observation is that at any fixed test error, by increasing k we can
decrease the length of prompts during training. In Figure 1, we illustrate test-time scaling for several
choices of prompt lengths (n) and task hardness.

0 50 100 150 200 250
0

50

100

150

200
n=10 , H=10
n=10 , H=20
n=10 , H=30
n=20 , H=10
n=20 , H=20
n=20 , H=30

Figure 1: Test-time scaling for the in-context learning. Here, n is the number of in-context examples
(context length) in training prompts, and H is the task hardness.

4 TASK SELECTION FOR TRAINING

We consider a set of T tasks with corresponding covariances Λ1, . . . ,ΛT . Similar to previous sections
we draw infinite prompts (B → ∞) but here each prompt is selected from task i with probability
πi ≥ 0, where

∑
i πi = 1. The goal of this section is to derive optimal choice of {πi}Ti=1 and build

insights about this choice.

Theorem 4.1 Consider the linear self-attention network and the population loss (3.4) under the
multi-task setting, with the same initialization given in Theorem 3.1. Redefine Γ as follows:

Γ :=
n− 1

n

∑
ℓ∈[T ]

Λℓπℓ +
1

n

(
2
∑
ℓ∈[T ]

Λ2
ℓπℓ +

∑
ℓ∈[T ]

tr(Λℓ)Λℓπℓ

)( ∑
ℓ∈[T ]

Λℓπℓ

)−1

. (4.1)

Then a similar statement to Theorem 3.1 holds true.

We next consider a target task with covariance Σ (which can be different from any of the tasks
during training). For a prompt from it, P = (x1, ⟨wtest, x1⟩, . . . , xm, ⟨wtest, xm⟩), we let Xtest =

[x1| . . . |xm] ∈ Rd×m and Σ̂ := 1
mXtestX

⊤
test. Initializing with w0 = 0 and allowing for a chain-of-

thought of length k, the LSA estimate of wtest reads wk+1 = (I − Γ−1Σ̂)kwtest. Therefore,

E(∥wk+1 − wtest∥2) = E(∥(I − Γ−1Σ̂)kwtest∥2) = E[tr((I − Σ̂Γ−1)k)(I − Γ−1Σ̂)k)] , (4.2)

where the second step is by taking expectation with respect to wtest. In the next proposition, we
derive a prompt instance independent upper bound for the estimation error in terms of the population
covariance Σ.

Proposition 4.2 Suppose that m = Ω(k2d). Then,

E[tr((I − Σ̂Γ−1)k)(I − Γ−1Σ̂)k)] ≤ tr(Γ)tr(Γ−1)tr((I − Γ−1/2ΣΓ−1/2)2k)(1 + o(1)) . (4.3)
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The optimal choice of tasks selection probabilities is the one that minimizes the expected estimation
error during test time given by (4.2). We instead use the upper bound given by Proposition 4.2 and
focus on the term tr((I − Γ−1/2ΣΓ−1/2)2k) in (4.3), which captures the effect of thinking and is the
dominant term with an exponential rate. This results in the following optimization for choosing task
selection probabilities:

min
πℓ,ℓ∈[m]

E[tr((I − Γ−1/2ΣΓ−1/2)2k)] (4.4)

subject to
∑
ℓ∈[T ]

πℓ = 1, πℓ ≥ 0, ∀ℓ ∈ [T ]

Remark 4.1 When is the test time thinking useful? We observe that the effect of thinking at
inference time is captured by the term tr((I − Γ−1/2ΣΓ−1/2)2k. Depending on the eigenvalues of
Γ−1/2ΣΓ−1/2, this term may shrink or grow as k increases. Intuitively, if each eigenvector of Σ
(representing the skills required at test time) is sufficiently represented in the training data—so that Γ
is strong along that direction and Γ−1/2ΣΓ−1/2 remains small—then additional thinking improves
performance. In contrast, if some task-relevant directions are underrepresented in the training data,
and thus not well learned by the model, increasing the amount of test-time thinking can degrade
performance, effectively leading to overthinking.

4.2 OPTIMAL CHOICE OF TASK SELECTION PROBABILITIES

We next analyze the optimization (4.4) to argue that choosing a diverse, relevant and hard set of tasks
during training results in best performance for test-time scaling.

Diversity. A key observation is that we must select a diverse set of tasks so that the spectrum of Γ
adequately covers all directions in the target covariance Σ. Failing to do so causes Γ−1/2ΣΓ−1/2

to be large along uncovered directions, resulting in higher test error that may further amplify with
additional reasoning steps.

Relevance. Another important notion is the relevance of the selected tasks to the target task. Recall
the expression of Γ given by (4.1). When d≪ n, and noting that the eigenvalues of Λ areO(1), Γ can
be replaced by Γ̃ :=

∑
ℓ∈[T ] Λℓπℓ, which is a convex combination of {Λℓ}ℓ∈[m]. Hence, minimizing

tr((I − Γ−1/2ΣΓ−1/2)2k) in effect corresponds to approximating Σ with a convex combination of
the task covariance matrices and so tasks which place high weight on directions well represented in
Σ (i.e. relevant ones) are desirable.

Hardness. The other factor in task selection is the hardness of tasks. We argue that when the target
task is hard (as is often the case where models are compared on difficult benchmarks), our proposal
favors selecting hard tasks during training. Without loss of generality, by scaling features we can
assume that tr(Λℓ) = 1,∀ℓ and tr(Σ) = 1. With this normalization the hardness of task is captured
by the minimum eigenvalue of the corresponding covariance matrix. Now, invoking the test error
given by tr((I − Γ−1/2ΣΓ−1/2)), the absolute error along minimum eigenvectors of Σ contribute
more towards the error. Given that the target task is a hard one, σmin(Σ) is small and in the next
proposition we show that to estimate Σ well on this direction by a convex combination of available
tasks, we need to select some hard tasks (those with small minimum eigenvalue).

Proposition 4.3 Suppose that |σmin(Γ) − σmin(Σ)| ≤ ε and define D := {ℓ ∈ [T ], σmin(Λℓ) ≤
4(ε+ σmin(Σ))}. Note that D corresponds to tasks with small minimum eigenvalues (hard tasks),
since both ε and σmin(Σ) are small. Then,

∑
ℓ∈D πℓ ≥ 1/2. In words, at least 1/2 of task selection

probabilities are on hard tasks.

Further simplification of task selection procedure. Note that the optimization problem (4.4) is
inherently nonconvex, which motivates us to turn to simplifications that transform it into a convex and
tractable form for large-scale problems. We make two modifications: 1) As discussed before when
d≪ n and since the the eigenvalues of Λ areO(1), Γ can be well approximated by Γ̃ :=

∑
ℓ∈[T ] Λℓπℓ,

which is a convex combination of {Λℓ}ℓ∈[m]. 2) The objective in (4.4) seeks to make Γ−1/2ΣΓ−1/2

close to the identity matrix. Instead, we minimize ∥I−Σ−1Γ∥2F ≈ ∥I−Σ−1Γ̃∥2F , which pursues the
same goal but through a different formulation. With these consideration, we propose the following
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alternative optimization for choosing task selection probabilities {πℓ}ℓ∈[T ]:

min
{πℓ}ℓ∈[T ]

∥∥∥I − Σ−1
∑
ℓ∈[T ]

Λℓπℓ

∥∥∥2
F

(4.5)

subject to
∑
ℓ∈[T ]

πℓ = 1, πℓ ≥ 0, ∀ℓ ∈ [T ]

This is a quadratic optimization problem and can be efficiently solved at scale.

5 EXPERIMENTS

In this section, we conduct experiments to validate our theoretical results.

Setting. We conduct experiments in two settings. First, we consider a transformer with a single
linear self-attention (LSA) to confirm our theory. Then, we consider large, nonlinear transformer
architecture namely GPT2 to validate our conclusions. In both cases, the data distribution follows
our in-context weight prediction task in Sec. 3.1, where xτ,i ∼ N(0,Λ), wτ ∼ N(0, Id). We choose
the token dimensions d = 10. During inference, we let the model to output multiple steps before
returning the final predicted weight vector. At each step i we concatenate the embedding with
[0d, ŵi, 1] as in Eq. (3.7) and input the concatenated embedding matrix to the model. The predicted
wk will be returned after k steps of CoT. We report the average results and error bars over 10 runs.

Transformers with a single linear self-attention (LSA). We train the transformer architecture in Eq.
(3.2) on the synthetic data generated as described above. We generate 5000 examples, use a batch size
B = 1000 and run Adam with learning rate η = 0.001 for = 1000 epochs. For the results reported in
the main paper we follow our theoretical setting in Sec. 3.1. That is, we initialize transformer weights
(V (0),W (0)) according to Theorem 3.1 where V 31(0) is set randomly with entries independently
and uniformly drawn from [0, 1], and we set c = 1. We also do not perform CoT during training.

We report additional results with random initialization and training with CoT in Appendix B.

Large, nonlinear transformer architectures. We use a decoder-only Transformer architecture
(Vaswani et al., 2017) from the GPT-2 family (Radford et al., 2019), consisting of 12 layers, 8 attention
heads, and a 256-dimensional embedding space. In total the model contains 9.5M parameters.

This architecture takes as input a sequence of vectors in its embedding space and predicts
the weight vector within the same space. We apply this architecture to prompts of form
(xτ,1, yτ,1, · · · , xτ,m, yτ,m, w0, 1) in the following manner. In line with (Garg et al., 2022), we
map each yτ,i to the same dimension as xτ,i by appending zeros, and map xτ,i, yτ,i into the latent
embedding space of the Transformer through a (learnable) linear transformation. We get the predicted
wτ as the model output. Similarly, we map the model output, i.e., wτ from the latent embedding
space of the Transformer to a d-dimensional vector through another (learnable) linear transformation.
Training is performed with a batch size of 64 over 25k total steps. The model is randomly initialized,
and CoT is applied during both training and inference. We used curriculum learning Garg et al. (2022)
to speed up training.

Larger test-time compute reduces the requirement on training-time compute. Fig 2a, 2c show
test error vs length of CoT (k). For the LSA model, we use n = 10, 20, 30 and for GPT-2 we use
n = 20, 30, 40. We see that by increasing the test-time compute (k), we can decrease the length of
prompts n during training to get a similar test error.

When more thinking hurts. For training, we sample prompt inputs from N(0,Λ) where Λ is a skewed
covariance matrix with eigenbasis chosen uniformly at random and i-th eigenvalue proportional to
1/i. For test, we sample prompt inputs from N(0, Id). We normalize the inputs so that their expected
squared norm is equal to that of inputs encountered during training. Fig 2b, 2d show that when some
of the directions of the target task are not sufficiently present in the training data, allowing for more
thinking during test time would hurt the performance. An interesting observation is that when the
model is in overthinking regime (Fig 2b, 2d) larger prompt length n yields a higher test loss, while
when the model is not overthinking, larger n reduces the test loss (Fig 2a, 2c).
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Figure 2: More test-time compute reduces training-time requirements for (a) one-layer transformer
and (c) GPT-2. However, insufficient task coverage in training data makes longer CoTs harmful for
(b) one-layer transformer and (d) GPT-2. For GPT-2, the errorbars are std of 10 runs. For LSA, std is
negligible as we start from the fixed initialization in Eq. (3.6). Same value for n is used in training
and test.

5.1 TASK SELECTION

We design an experiment to illustrate that our method prioritizes diverse and hard tasks. We consider
a multi-task setup with four task types, where each type is defined by two parameters α and B. These
parameters respectively control the decay rate and the support size of the eigenvalues. Specifically,
eigenvalues are proportional to i−α for i ∈ [B] and zero elsewhere. The positions of nonzero
eigenvalues are uniformly shuffled within [d], and the eigenvalues are scaled to have unit sum. Here,
B captures task diversity, while α captures the task hardness (with larger α producing smaller nonzero
eigenvalues, corresponding to harder tasks according to measure (3.11)).

The four training task types are: Easy-Short (α = 0.2, B = 20), Hard-Short (α = 0.8, B = 20),
Easy-Long (α = 0.2, B = 100), and Hard-Long (α = 0.8, B = 100). The target task is set with
α = 0.8 and B = d = 1000. We generate 50 tasks of each type by randomizing the eigenbases
and the support of eigenvalues. We then solve the quadratic optimization problem (4.5) to obtain
task selection probabilities πℓ, for ℓ = 1, . . . , 200. Fig 3a displays these probabilities, colored by
task type, with solid lines indicating their average per type. As shown, harder and more diverse
tasks receive higher selection probabilities, while easier, more concentrated tasks are weighted lower.
Fig 3b further plots selection probability versus task hardness, confirming that harder tasks are indeed
favored, consistent with our theoretical analysis in Section 5.1.

50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03 Easy-Short
Easy-Long
Hard-Short
Hard-Long

(a) Selection probabilities for different
task types

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

(b) Selection probabilities vs. task hard-
ness

Figure 3: Task selection in a multi-task setup (a) Each color corresponds to a task type with solid lines
indicating the average selection probability per type. As we observe harder and more diverse tasks
receive higher selection probabilities, while easier, more concentrated tasks are weighted lower (b)
Task selection probabilities versus task hardness. As we see harder task are favored in the selection.

6 CONCLUSION

In this work, we provided a theoretical and empirical framework for understanding in-context learning
in transformers, showing that chain-of-thought prompting at test time enables models to emulate
multi step (pseudo)-Newton’s method. By introducing a principled notion of task hardness based on
features covariance spectrum, we derived scaling laws that clarify how test-time compute, context
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length, and task diversity interact. We proposed an optimal strategy for task selection in a multi-task
training that shows training on a diverse, relevant and hard set of tasks during training results in best
performance for test-time scaling. We also validated our findings on both linear self-attention models
and GPT-2. We will conclude by discussing some limitations of our work which pave the way for
future directions of work. Our theoretical analysis in this work is limited to linear regression tasks
and single-layer linear self-attention, and an important direction for future work is extending these
results to nonlinear data generation settings and transformers with nonlinear activations.
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A PROOFS OF THEOREMS AND TECHNICAL LEMMAS

A.1 PROOF OF THEOREM 3.1

Lemma A.1 Assume an initialization of the form

V (0) =

 0 0 0 0
0 0 0 0

V31(0) 0 0 0
0 0 0 0

 , W (0) =

0 0 cI 0
0 0 0 −c
0 0 0 0
0 0 0 0

 .
When the linear transformer is trained under gradient descent. Then V (t) and W (t) have the
following form:

V (t) =

 0 0 0 0
0 0 0 0

V31(t) 0 0 0
0 0 0 0

 , W (t) =

0 0 cI 0
0 0 0 W24(t)
0 0 0 0
0 0 0 0

 .
with V31(t) ∈ Rd×d and W24(t) ∈ R.

Lemma A.1 is very similar to (Huang et al., 2025a, Lemma C.2). The difference is that here the
features covariance is non-identity, while we do not do CoT during training.

Given that several blocks of V (t) and W (t) remain zero across the gradient updates, we can reduce
the loss function in a simpler form. Define the shorthand Ṽ (t) := V31(t) ∈ Rd×d and w(t) :=
W24(t) ∈ R. Invoking (A.3) we can rewrite the loss as follows:

L(θ(t)) =
1

2
E
(∥∥fLSA(Eτ ; θ(t))[:,−1] − (0d, 0, wτ , 1)

∥∥2
ℓ2

)

=
1

2
E


∥∥∥∥∥∥∥
 0
0
ŵ0

1

+
1

n

 0d
0

V31(t)XX
⊤(cŵ0 +W24(t)wτ )

0

−

 0
0
wτ

1


∥∥∥∥∥∥∥
2

ℓ2


=

1

2
E
(∥∥∥(Ṽ (t)w(t)Λ̂− I)wτ

∥∥∥2
ℓ2

)
, (A.1)

with Λ̂ := XX⊤/n. As we see w(t) does not provide additional degree of freedom in minimizing
the loss since it appears as the term Ṽ (t)w(t). This clarifies fixing w(t) = −c along the gradient
updates.

We then have
L(θ) =

1

2
E
[
tr(c2Ṽ Λ̂2Ṽ ⊤ + I + 2cṼ Λ̂)

]
Lemma A.2 Let X ∈ Rd×n with columns drawn i.i.d from N(0,Λ). For any deterministic matrix A
we have

E
(
XX⊤

n
A
XX⊤

n

)
=
n− 1

n
ΛAΛ +

1

n

(
Λ(A+A⊤)Λ + tr(ΛA)Λ

)
.

Using Lemma A.2 we have

E(Λ̂2) =
n+ 1

n
Λ2 +

1

n
tr(Λ)Λ := ΓΛ .

Therefore,

L(θ) =
c2

2
tr
(
Ṽ ΓΛṼ ⊤

)
+
d

2
+ c tr(Ṽ Λ) (A.2)

This is convex in Ṽ and so gradient descent with a fixed step size η ≤ 1/L converges to its minimizer,
if ∇2

V L ⪯ LI . We have
∇2

Ṽ
L = c2ΓΛ ,
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so we can take L = c2 ∥ΓΛ∥op. To find the minimizer of L(θ), we set its gradient to zero,

c2

2
(ΓΛṼ ⊤ + Ṽ ΓΛ) + cΛ = 0 ,

which is a continuous-time Lyapunov equation (Note that Γ and Λ commute and both are symmetric).
Hence, it has a unique solution given by Ṽ = −Γ−1

c .

As the final step, we show that V∗ and W∗ are also a global optimum for the population loss, even
without making the specific structure imposed by gradient descent as described in Lemma A.1.

We continue by computing the output of LSA, and recall that ŵ0 = 0.

V Eτ · E
⊤
τ WEτ [:,−1]

n

=
1

n
V

 X 0
y 0

0d×n 0
01×n 1

E⊤
τ W

000
1



=
1

n
V

XX
⊤ Xy⊤ 0 0

yX⊤ yy⊤ 0 0
0d×n 0d×1 0d×1 0d×1

01×n 01×n 0 1


⊤ W14

W24

W34

W44



=
1

n
V

XX
⊤W14 +Xy⊤W24

yX⊤W14 + yy⊤W24

0
W44(t)


Therefore,

fLSA(Eτ , θ)[:,−1]− (0d, 0, wτ , 1)
⊤

=

000
1

+
1

n
V

XX
⊤W14 +Xy⊤W24

yX⊤W14 + yy⊤W24

0
W44

−

 0
0
wτ

1



=
1

n
V

 XX⊤W14 +XX⊤wτW24

w⊤
τ XX

⊤W14 + w⊤
τ XX

⊤wτW24

0
W44

−

 0
0
wτ

0


The loss function is the expected squared norm of this object. To minimize it, we can make its first,
second and last entries zero by setting the corresponding rows in V to zero. This gives us

L(θ)

≥ 1

2
E

(∥∥∥∥ 1n (V31 + V32w
⊤
τ )XX

⊤(W14 +W24wτ )− wτ +
1

n
V34W44

∥∥∥∥2
ℓ2

)

=
1

2
E

(∥∥∥∥V31Λ̂W14 +
1

n
V34W44 + (V31Λ̂W24 − I)wτ + V32w

⊤
τ Λ̂W14 + V32w

⊤
τ Λ̂W24wτ

∥∥∥∥2
ℓ2

)

≥ 1

2
E
(∥∥∥(V31Λ̂W24 − I)wτ + V32w

⊤
τ Λ̂W14

∥∥∥2
ℓ2

)
=

1

2
E
(∥∥∥(V31W24Λ̂ + V32W

⊤
14Λ̂− I)wτ

∥∥∥2
ℓ2

)
,

where the penultimate step holds since the cross term is an odd function of wτ and so its expectation
is zero. The other eliminated term is squared and so non-negative. In the last step we used that
w⊤

τ Λ̂W14 is scalar and so can be replaced by its transpose. In addition W24 is also scalar and can
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commute with Λ̂. now observe that V32 and W14 do not offer any flexibility in minimizing the loss
function as their effect can be absorbed in V31W24. Therefore, we can set them to zero. Hence,

min
V,W

L(θ) ≥ min
V31,W24

1

2
E
(∥∥∥(V31W24Λ̂− I)wτ

∥∥∥2
ℓ2

)
.

Observe that the right-hand side is of the form (A.1) and hence its global optimum (reached by
gradient descent) serves as the global minimum of the loss.

A.1.1 PROOF OF LEMMA A.1

To prove this lemma, we prove that when the irrelevant blocks are 0, the gradients of the loss remain
zero on those blocks and they never update the corresponding parameter block.

We do induction on t. Suppose that the claim holds for t. We start by computing the output of LSA.

V Eτ · E
⊤
τ WEτ [:,−1]

n

=
1

n

 0 0 0 0
0 0 0 0

V31(t) 0 0 0
0 0 0 0


 X 0

y 0
0d×n ŵ0

01×n 1

E⊤
τ W

 0
0
ŵ0

1



=
1

n

 0d×n 0d
01×n 0

V31(t)X 0d
01×n 0


 X 0

y 0
0d×n ŵ0

01×n 1


⊤  cŵ0

W24(t)
0
0



=
1

n

 0d×n 0d
01×n 0

V31(t)X 0d
01×n 0

[cX⊤ŵ0 +W24(t)y
⊤

0

]

=
1

n

 0d
0

V31(t)XX
⊤(cŵ0 +W24(t)wτ )

0

 , (A.3)

where we used that y⊤ = X⊤w∗
τ . We proceed with calculating the derivatives of the loss:

∇V L(θ(t)) =
1

2
∇V E

(∥∥fLSA(Eτ ; θ(t))[:,−1] − (0d, 0, wτ , 1)
∥∥2
ℓ2

)
= E

[(
fLSA(Eτ ; θ(t))[:,−1] − (0d, 0, wτ , 1)

)
Eτ [:,−1]⊤W⊤EτE

⊤
τ

n

]
= E

[(
V Eτ · E

⊤
τ WEτ [:,−1]

n
− (0d, 0, wτ − ŵ0, 0)

)
Eτ [:,−1]⊤W⊤EτE

⊤
τ

n

]
(A.4)

We note that

V Eτ · E
⊤
τ WEτ [:,−1]

n
− (0d, 0, wτ − ŵ0, 0)

=
1

n

 0d
0

V31(t)XX
⊤(cŵ0 +W24(t)wτ ) + n(ŵ0 − wτ )

0

 . (A.5)

In addition,

Eτ [:,−1]⊤W⊤EτE
⊤
τ

n
=

1

n
[cŵ0 W24(t) 0 0]


XX⊤ Xy⊤ 0 0
yX⊤ yy⊤ 0 0
0 0 ŵ0ŵ

⊤
0 ŵ0

0 0 ŵ⊤
0 1


=

1

n
[cŵ0XX

⊤ +W24(t)yX
⊤ cŵ0Xy

⊤ +W24(t)yy
⊤ 0 0] . (A.6)
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Plugging in from (A.5) and (A.6) into (A.4) we get the following structure for the gradient of the
loss:

∇L(θ(t)) =

 0 0 0 0
0 0 0 0

∇V31
L(θ(t)) ∇V32

L(θ(t)) 0 0
0 0 0 0

 , (A.7)

where

∇V31L(θ(t))=
1

n2
E
[(
V31(t)XX

⊤(cŵ0 +W24(t)wτ ) + n(ŵ0 − wτ )
)(
cŵ0XX

⊤+W24(t)yX
⊤)]

∇V32
L(θ(t))=

1

n2
E
[(
V31(t)XX

⊤(cŵ0 +W24(t)wτ ) + n(ŵ0 − wτ )
) (
cŵ0Xy

⊤+W24(t)yy
⊤)]

Recall that we set ŵ0 = 0 by which we obtain

∇V32
L(θ(t)) =

1

n2
E
(
(V31(t)W24(t)XX

T − nI)wτW24(t)yy
⊤)

=
W24(t)

n2
E
(
(V31(t)W24(t)XX

T − nI)wτwτ
⊤XX⊤wτ

)
= 0

since it is an odd function of wτ ∼ N(0, I). (Note that the population loss is non-random, due to the
expectation in its definition. Since the initial V (0),W (0) are non-random, the trajectory V (t) and
W (t) are non-random.)

We next proceed with calculating the gradient with respect to W . We have

∇WL(θ(t))

=
1

2
∇W E

(∥∥fLSA(Eτ ; θ(t))[:,−1] − (0d, 0, wτ , 1)
∥∥2
ℓ2

)
=

1

n
E
[
EτE

⊤
τ V

⊤ (fLSA(Eτ ; θ(t))[:,−1] − (0d, 0, wτ , 1)
)
Eτ [:,−1]⊤

]
=

1

n
E
[
EτE

⊤
τ V

⊤
(
V Eτ · E

⊤
τ WEτ [:,−1]

n
− (0d, 0, wτ − ŵ0, 0)

)
Eτ [:,−1]⊤

]

=
1

n2
E


XX

⊤V31(t)
⊤ (V31(t)XX⊤(cŵ0 +W24(t)wτ ) + n(ŵ0 − wτ )

)
yX⊤V31(t)

⊤ (V31(t)XX⊤(cŵ0 +W24(t)wτ ) + n(ŵ0 − wτ )
)

0
0

 [0 0 ŵ0 1]

 ,

where the last step follows from the following equation and simple algebraic calculation:

EτE
⊤
τ =


XX⊤ Xy⊤ 0 0
yX⊤ yy⊤ 0 0
0 0 ŵ0ŵ

⊤
0 ŵ0

0 0 ŵ⊤
0 1

 , Eτ [:,−1]⊤ = [0 0 ŵ0 1] ,

V Eτ · E
⊤
τ WEτ [:,−1]

n
− (0d, 0, wτ − ŵ0, 0) =

 0d
0

V31(t)XX
⊤(cŵ0 +W24(t)wτ )+ n(ŵ0 − wτ )

0


Recalling that ŵ0 = 0 we simplify ∇WL as follows:

∇WL(θ(t)) =
1

n2
E


XX

⊤V31(t)
⊤(V31(t)W24(t)XX

⊤ − nI)wτ

yX⊤V31(t)
⊤ (V31(t)W24(t)XX

⊤ − nI
)
wτ

0
0

 [0 0 0 1]

 . (A.8)

We have E[XX⊤V31(t)
⊤(V31(t)W24(t)XX

⊤ + nI)wτ ] = 0, since V31(t),W24(t) are non-random
and wτ is zero mean and independent of X . Hence, ∇W24L is the only non-zero block.
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A.1.2 PROOF OF LEMMA A.2

1

n2
E
[
XX⊤AXX⊤] = 1

n2

∑
i,j

E
[
xix

⊤
i Axjx

⊤
j

]
There are n(n− 1) terms where i ̸= j and n terms with i = j. Since xi and xj are i.i.d., let x denote
either of them. Thus,

1

n2
E
[
XX⊤AXX⊤] = 1

n2
(
n(n− 1)E[xx⊤]AE[xx⊤] + nE

[
xx⊤Axx⊤

])
The first term is the second moments. For the second term we use Isserlis’s theorem, by which we
have (

E
[
xx⊤Axx⊤

])
ij
=
∑
k,l

E[xixkAklxlxj ]

=
∑
k,l

Akl (E[xixk]E[xlxj ] + E[xixl]E[xkxj ] + E[xixj ]E[xlxk])

Assuming E[xx⊤] = Λ, we get

E[xx⊤Axx⊤] = Λ(A+A⊤)Λ + Λ Tr(AΛ) .

Therefore we obtain
1

n2
E
[
XX⊤AXX⊤] = n− 1

n2
ΛAΛ +

1

n

(
Λ(A+A⊤)Λ + Λ tr(AΛ)

)
.

A.2 PROOF OF PROPOSITION 3.2

Recall V∗ and W∗ given by (3.6), as the estimated blocks of the transformer after training. We next
rewrite the updates for wi is a more explicit form:

fLSA(Ei, θ
∗)[:,−1] =

0d0wi

1

+ V Ei ·
E⊤

i WEi[:,−1]

m

=

0d0wi

1

+
1

m
V EiE

⊤
i

cwi

−c
0
0



=

0d0wi

1

+
1

m
V

XX
⊤ Xy⊤

yX⊤ yy⊤

0d×d 0m×m

0 0


cwi

−c
0
0



=

0d0wi

1

+
1

m

 0 0
0 0

V31XX
⊤ V31Xy

⊤

0 0


cwi

−c
0
0


Recalling that V31 = Γ−1/c we obtain

wi+1 = wi −
1

m
Γ−1XtestX

⊤
testwi −

1

m
Γ−1Xtesty

⊤
test

= wi −
1

m
Γ−1XtestX

⊤
test(wi − wtest) .

Rearranging the terms, wi+1 − wtest = (I − 1
mΓ−1XtestX

⊤
test)(wi − wtest) which results in

wk+1 = wtest + (I − 1

m
Γ−1XtestX

⊤
test)

k(w0 − wtest)

= (I − (I − 1

m
Γ−1XtestX

⊤
test)

k)wtest , (A.9)

which completes the proof.
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A.3 PROOF OF THEOREM 3.3

Define the shorthand Λ̂ = XtestX
⊤
test/m. We have

E(∥ŵ − wtest∥2ℓ2) = E(
∥∥∥(I − Γ−1Λ̂)wtest

∥∥∥2
ℓ2
) = w⊤

test E((I − Λ̂Γ−1)(I − Γ−1Λ̂))wtest

= w⊤
test(I − Γ−1Λ− ΛΓ−1 + E(Λ̂Γ−2Λ̂))wtest

Using Lemma A.2 we have

E(Λ̂Γ−2Λ̂) =
m− 1

m
ΛΓ−2Λ +

1

m
(2ΛΓ−2Λ + tr(ΛΓ−2)Λ)

=
m+ 1

m
ΛΓ−2Λ +

1

m
tr(ΛΓ−2)Λ .

Using that Γ−1 and Λ commute and both are symmetric we obtain

E(∥ŵ − wtest∥2ℓ2) = w⊤
test(I − 2Γ−1Λ +

m+ 1

m
Γ−2Λ2 +

1

m
tr(ΛΓ−2)Λ)wtest

= w⊤
test(I − Γ−1Λ)2wtest +

1

m
w⊤

test(Γ
−2Λ2 + tr(ΛΓ−2)Λ)wtest

Using the definition Γ = (1 + 1
n )Λ + 1

n tr(Λ)I , it is easy to see that

0 ⪯ I − Γ−1Λ ⪯ 1

n
(I + tr(Λ)Λ−1)

Also since Γ−1 ⪯ Λ−1, we have

Γ−2Λ2 + tr(ΛΓ−2)Λ ⪯ I + tr(Λ−1)Λ

Combining the last two equations, we have

EXtest(∥ŵ − wtest∥2ℓ2) ≤ w⊤
test

(
1

n2
(I + tr(Λ)Λ−1)2 +

1

m
(I + tr(Λ−1)Λ)

)
wtest

Taking another expectation with respect to wtest ∼ N(0, I) we get

E(∥ŵ − wtest∥2ℓ2) ≤
1

n2
(d+ tr(Λ)2tr(Λ−2) + 2tr(Λ)tr(Λ−1))) +

1

m
(d+ tr(Λ−1)tr(Λ))

The claim follows by noting

tr(Λ)tr(Λ−1) ≤ d
tr(Λ)

λmin
,

tr(Λ)2tr(Λ−2) ≤ d
( tr(Λ)
λmin

)2
,

where λmin is the minimum eigenvalue of Λ.

A.4 PROOF OF THEOREM 3.4

We define Λ̂ := 1
m

∑k
i=1 xix

⊤
i . After k steps generation, we have wk+1 = (I − (I − Γ−1Λ̂)k)wtest

and so

E(∥wk+1 − wtest∥2ℓ2) = E(
∥∥∥(I − Γ−1Λ̂)kwtest

∥∥∥2
ℓ2
) = E tr((I − Λ̂Γ−1)k(I − Γ−1Λ̂)k) . (A.10)

Note that Γ−1 and Λ commute and both are symmetric. Therefore Γ−1Λ is also symmetric. We denote
by σi the eigenvalues of I − Γ−1Λ. The matrix I − Γ−1Λ̂ however is not symmetric. We denote by
σ̂i the eigenvalues of I − Γ−1Λ̂. By Weyl’s inequality, we have |σi − σ̂i| ≤

∥∥∥Γ−1(Λ− Λ̂)
∥∥∥
op

:= δ.
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We then have

σ̂i
2k ≤ (σi + δ)2k

= σ2k
i

(
1 +

δ

σi

)2k

= σ2k
i

1 +

2k∑
j=1

(
2k

j

)(
δ

σi

)j


≤ σ2k
i

1 +

2k∑
j=1

(2k)j
(
δ

σi

)j
 (A.11)

Define ∆̃i :=
∑2k

j=1(
2kδ
σi

)j . We next proceed by bounding E(∆̃i). Observe that Λ̂ =
1
m

∑
i∈[m] xix

⊤
i , with xi ∼ N(0,Λ). Using concentration bounds on random matrices with in-

dependent sub-gaussian rows (See e.g. (Vershynin, 2010, Eq. 5.26)), we get that with probability at
least 1− 2e−ct2 , ∥∥∥Λ− Λ̂

∥∥∥
op

≤ max(ε, ε2) ∥Λ∥op , ε = C

√
d

m
+

t√
m
.

Since Λ and so Γ have bounded eigenvalues, by adjusting the constants c, C (absorbing ∥Λ∥op and∥∥Γ−1
∥∥
op

into these constants), we also have that with probability at least 1− 2e−ct2 ,

δ :=
∥∥∥Γ−1(Λ− Λ̂)

∥∥∥
op

≤ max(ε, ε2), ε = C

√
d

m
+

t√
m
. (A.12)

We define the probabilistic event E := {∆̃i ≤ Ck2
√
d/m}. Obviously, E(∆̃i1E) ≤ Ck2

√
d/m.

We also have E(∆̃i1Ec) =
∫∞
Ck2

√
d/m

P(∆̃i ≥ s)ds. Note that by definition of ∆̃i, we have

∆̃i =

2k∑
j=1

(2kδ
σi

)j
≤ 2kmax

(
2kδ/σi, (2kδ/σi)

2k
)
≤ C ′kmax(kδ, (kδ)2k) .

Note that since eigenvalues of Λ are upper and lower bounded by constants, so are σi’s. Therefore,
we can work with one constant C ′ that works for all i ∈ [d].

By virtue of the above bound, if ∆̃i ≥ s we have δ ≥ min( s
k2 , (

s
k2k+1 )

1
2k ) ≥ 1

k2 min(s, s
1
2k ). We

next choose t such that for ε = C
√

d
m + t√

m
we have max(ε, ε2) ≤ 1

k2 min(s, s
1
2k ), so that we can

apply the tail bound (A.12).

In addition, for s ≥ Ck2
√
d/m we have 1

k2 min(s, s
1
2k ) ≥ C

√
d/m, and so it suffices to have

max( t√
m
, t

2

m ) ≤ 1
k2 min(s, s

1
2k ). Therefore, we can set t = min(

√
m

k2 s,
√
m

k2 s
1
2k ,

√
m
k

√
s,

√
m
k s

1
4k ).

E(∆̃i1Ec) =

∫ ∞

Ck2
√

d/m

P(∆̃i ≥ s)ds

≤
∫ ∞

Ck2
√

d/m

P
(
δ ≥ 1

k2
min(s, s

1
2k )

)
≤
∫ ∞

Ck2
√

d/m

2 exp(−ct2)ds

By considering each of the four terms in the minimum operator defining t, and following algebraic
manipulation, it can be seen that the right-hand side above is O(k2

√
d/m) and hence,

E(∆̃i) = E(∆̃i1E) + E(∆̃i1Ec) ≤ C(k
√
d/m) , (A.13)
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for a constant C > 0 and for all i ∈ [d]. Combining (A.10) and (A.14) and the bound ∆̃i, we obtain

E(∥wk+1 − wtest∥2ℓ2) ≤ E[
∥∥∥(I − Λ̂Γ−1)k

∥∥∥2
F
]

(a)

≤ E(
d∑

i=1

σ̂2k
i )

(b)

≤
d∑

i=1

σ2k
i (1 + E(∆̃i))

(c)

≤
d∑

i=1

σ2k
i (1 + Ck

√
d
m )

= tr((I − Γ−1Λ)2k)(1 + Ck
√

d
m ) ,

where (b) follows from (A.11) and (c) follows from (A.13). In addition, step (a) follows from the
following lemma from Horn & Johnson (1994).

Lemma A.3 ((Horn & Johnson, 1994, Eq.(3.3.39))) Let A be a given d by d matrix and let m be a
given positive integer. For all p > 0 we have

q∑
i=1

σi(A
m)p ≤

q∑
i=1

σi(A)
mp, for q = 1, . . . , d ,

where for a matrix B, σi(B) denotes the singular values of B.

Step (a) follows by using the above lemma for A = (I − Λ̂Γ−1)k, m = k, p = 2, q = d. This
completes the proof.

A.5 PROOF OF COROLLARY 3.5

Recalling the definition of Γ given by (3.5), we have

I − Γ−1Λ = I −
[
(1 +

1

n
)Λ +

1

n
tr(Λ)I

]−1

Λ

= [(n+ 1)Λ + tr(Λ)I]−1(Λ + tr(Λ)I)

⪯ λmin + tr(Λ)

(n+ 1)λmin + tr(Λ)
I

=
1 + Hard(Λ)

n+ 1 + Hard(Λ)
I

=

(
1 +

n

1 + Hard(Λ)

)−1

I .

Therefore,

tr((I − Γ−1Λ)2k) ≤ d

(
1 +

n

1 + Hard(Λ)

)−2k

,

which completes the proof by invoking the result of Theorem 3.4.

A.6 PROOF OF THEOREM 4.1

The proof follows a long the same lines as in Theorem 3.1. Under the multi-task setting, each feature
x is now coming from a mixture of normal distributions. The main modification needed in the proof
is on statement of Lemma A.2, which is extended as follows.

Lemma A.4 Let X ∈ Rd×n with columns drawn i.i.d from a Gaussian mixture distribution, with
probability πℓ from N(0,Λℓ). Then, for any deterministic matrix A we have

E
(
XX⊤

n
A
XX⊤

n

)
=
n− 1

n
(
∑
ℓ

Λℓπℓ)A(
∑
ℓ

Λℓπℓ) +
1

n

∑
ℓ

(Λℓ(A+A⊤)Λℓ +Λℓtr(AΛℓ))πℓ .
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Using Lemma A.4, we have

S := E
(XX⊤

n

XX⊤

n

)
=
n− 1

n
(
∑
ℓ

Λℓπℓ)
2 +

1

n

∑
ℓ

(2Λ2
ℓ + Λℓtr(Λℓ))πℓ .

Continuing from (A.2), we have

L(θ) =
c2

2
tr
(
Ṽ SṼ ⊤

)
+
d

2
+ c tr(Ṽ (

∑
ℓ

Λℓπℓ)))

Setting the derivative to zero, we obtain

∇L(θ) = c2

2
(Ṽ (S + S⊤)) + c

∑
ℓ

Λℓπℓ .

Solving this equation, using that S is symmetric, we have

Ṽ = −1

c
(
∑
ℓ

Λℓπℓ)S
−1 =

1

c
Γ−1 ,

where the last step follows from the definition of Γ.

A.7 PROOF OF PROPOSITION 4.2

The proof is similar to the proof of Theorem 3.4. Recall Σ̂ := 1
mXtestX

⊤
test = 1

m

∑k
i=1 xix

⊤
i ,

the empirical covariance of the features in the test prompt. A major difference with the proof of
Theorem 3.4, here we have to work with Γ−1Σ̂ and Γ−1Σ, neither of which are symmetric. To relate
the trace of their powers to their singular values, we do a symmetrization step. We write

(I − Γ−1Σ̂)k

= (I − Γ−1Σ̂)(I − Γ−1Σ̂) . . . (I − Γ−1Σ̂)

= Γ−1/2Γ1/2(I − Γ−1Σ̂)Γ−1/2Γ1/2(I − Γ−1Σ̂)Γ−1/2Γ1/2 . . .Γ−1/2Γ1/2(I − Γ−1Σ̂)

= Γ−1/2(I − Γ−1/2Σ̂Γ−1/2)(I − Γ−1/2Σ̂Γ−1/2) . . . (I − Γ−1/2Σ̂Γ−1/2)Γ1/2

= Γ−1/2(I − Γ−1/2Σ̂Γ−1/2)kΓ1/2 .

Hence,

tr((I − Σ̂Γ−1)k(I − Γ−1Σ̂)k) = tr(Γ1/2(I − Γ−1/2Σ̂Γ−1/2)kΓ−1(I − Γ−1/2Σ̂Γ−1/2)kΓ1/2)

= tr((I − Γ−1/2Σ̂Γ−1/2)kΓ−1(I − Γ−1/2Σ̂Γ−1/2)kΓ)

≤ tr((I − Γ−1/2Σ̂Γ−1/2)kΓ−1(I − Γ−1/2Σ̂Γ−1/2)k)tr(Γ)

= tr((I − Γ−1/2Σ̂Γ−1/2)kΓ−1(I − Γ−1/2Σ̂Γ−1/2)k)tr(Γ)

= tr((I − Γ−1/2Σ̂Γ−1/2)2kΓ−1)tr(Γ)

≤ tr((I − Γ−1/2Σ̂Γ−1/2)2k)tr(Γ−1)tr(Γ) . (A.14)

In the equalities above we used the identity tr(AB) = tr(BA). The inequalities follows from the
fact that for positive semidefinite matrices A,B we have tr(AB) ≤ tr(A)tr(B).

We next denote by σ̂i the eigenvalues of I − Γ−1/2Σ̂Γ−1/2, and by σi the eigenvalues of I −
Γ−1/2ΣΓ−1/2. Similar to the proof of Theorem 3.4, we have σ̂2k

i ≤ σ2k
i (1 + ∆̃i) with E(∆̃i) ≤

Ck
√
d/m for all i ∈ [d].
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By continuing from (A.14), we get

E[tr((I − Σ̂Γ−1)k(I − Γ−1Σ̂)k)] ≤ tr(Γ−1)tr(Γ)E[tr((I − Γ−1/2Σ̂Γ−1/2)2k)]

≤ tr(Γ−1)tr(Γ)E[
d∑

i=1

σ̂2k
i ]

≤ tr(Γ−1)tr(Γ)

d∑
i=1

σ2k
i (1 + E(∆̃i))

≤ tr(Γ−1)tr(Γ)

d∑
i=1

σ2k
i (1 + Ck

√
d/m)

= tr(Γ−1)tr(Γ)tr((I − Γ−1/2ΣΓ−1/2)2k)(1 + o(1)) ,

where in the last step we used that k
√
d/m = o(1) by our assumption. This concludes the proof.

A.8 PROOF OF PROPOSITION 4.3

The proof follows from the Markov inequality. Define a discrete random variable X which takes
values σmin(Λℓ) with probability πℓ, for ℓ ∈ [T ]. We then have

P(X ≤ 2(ε+ σmin(Σ))) =
∑
ℓ∈[T ]

πℓ1(σmin(Λℓ)≤2(ε+σmin(Σ))) =
∑
ℓ∈D

πℓ .

In addition,
E[X] =

∑
πℓσmin(Λℓ) ≤ σmin(

∑
πℓΛℓ) = σmin(Γ̃),

by using the convexity of minimum eigenvalue and Jensen’s inequality.

Recalling Γ from (4.1), we have

Γ ⪰ n− 1

n

∑
ℓ∈[T ]

Λℓπℓ =
n− 1

n
Γ̃ ⪰ 1

2
Γ̃ ,

for n ≥ 2. Combining the above two equations, we obtain

E[X] ≤ 2σmin(Γ) ≤ 2(σmin(Σ) + ε) .

Therefore, ∑
ℓ∈D

πℓ = P(X ≤ 4(ε+ σmin(Σ)))

= 1− P(X > 4(ε+ σmin(Σ)))

≥ 1− E[X]

4(ε+ σmin(Σ))

≥ 1− 1

2
=

1

2
,

where we used Markov’s inequality in the third step.

B ADDITIONAL EXPERIMENTS

We report additional experiments on a transformer with a single linear self-attention, when starting
training from random initialization and performing CoT with length k during training. Similar to
the main paper, the data distribution follows our in-context weight prediction task in Sec. 3.1, where
xτ,i ∼ N(0,Λ), wτ ∼ N(0, Id). We choose the token dimensions d = 10. During inference, we
let model to output k steps before outputting the final predicted weight vector. At each step i we
concatenate the embedding with [0d, ŵi, 1] as in Eq. 3.1 and input the concatenated embedding
matrix to the model. The predicted wk will be outputted after k steps of CoT.
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Fig. 4a, 4b show the test loss during training for k = 2, 4. For each k, we train the model with
n = 20, 40, 80. The training and test data are generated from xτ,i ∼ N(0, Id), wτ ∼ N(0, Id). We
see that for a fixed value of k, larger n yields a lower test error, which confirms our theoretical results.

Fig. 4c shows the test loss during training when training distribution is skewed and some directions
of the downstream task are not represented enough in the training data. from N(0,Λ) where Λ
is a skewed covariance matrix with eigenbasis chosen uniformly at random and ith eigenvalue
proportional to 1/i. For test, we sample prompt inputs from N(0, Id). We use n = 20. We see that
larger k yields a higher test error. Thus, larger test-time compute hurts the performance when some
directions of the downstream data are not enough presented during training.
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Figure 4: Transformer with a single linear self-attention. (a), (b) Fixing the test error, by increasing k,
we can decrease the length of prompts n during training. (c) When some directions of test are not
enough represented in training data, more test-time compute hurst the performance.

B.1 EFFECT OF TASK SELECTION ON TEST TIME SCALING

To demonstrate the improvement we get from our task selection procedure, we consider the set up
of Section 5.1, where we generate wtest with i.i.d entries from N(0, 1). During the test time we
initialize with w0 = 0 and let the model generate the final estimate of wtest after k step generation.
We set the prompt length during training to n = 50 and prompt length during the test to m = 500.
In the plot below we show how the error ∥wtest − wk∥ behave for the following task selection
procedures: 1) Optimal task selection: We set the probabilities πℓ by solving the optimization
problem (4.5). 2) Uniform selection: Where we select tasks during training with equal probability. 3)
Easy task selection: Where we select only the easy tasks (Easy-Short or Easy-Long as described
in Section 5.1) with equal probabilities. In Figure 5, the estimation error for different task selection
procedure is plotted versus k, the length of generations during test time before outputting the final
estimate.

As we see under the optimal choice the error goes down with k, while under under the two other
procedures the error goes up with k, indicating that a proper choice of tasks during training can avoid
overthinking, which can occur under other choices of tasks during training.
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Figure 5: Effect of task selection during training on test-time scaling
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B.2 EVALUATION ON REAL REASONING BENCHMARKS

We conducted new experiments to train Qwen 2.5-7B-Instruct on the OMEGA dataset (Sun et al.,
2025). We chose two tasks from the OMEGA dataset, namely GCD and polynomial root reasoning.
These tasks are designed such that training on one does not benefit the performance on the other. We
fine-tuned the base model (Qwen-Base) with RL separately on the training data of GCD and Poly.
We call these models Qwen-GCD and Qwen-Poly. We evaluate both models on the test data of GCD.
As expected, for the harder tasks that require longer reasoning, all models have a lower performance.
However, we see that while shorter test-time thinking (CoT length less than 1k characters) yields a
much better performance (+44.69%) on GCD for Qwen-GCD compared to Qwen-Base, it yields a
slightly lower performance on GCD for Qwen-Poly, compared to Qwen-Base (-1.39%). Interestingly,
when models reason for longer at test-time (between 1k and 2k characters), Qwen-Poly has a much
lower performance (-6.37%) compared to Qwen-Base, while Qwen-GCD outperforms Qwen-Base
by 11.2%. This confirms our theoretical results that when training and test data are aligned, more
thinking helps. But, insufficient task coverage in training data makes longer test-time compute
harmful.

Table 1: Average accuracy on GCD for Qwen2.5-7B Instruct (Base), Base model fine-tuned on CGD
(Qwen-GCD) and Base model fine-tuned on Poly (Qwen-Poly). For all the models, the accuracy on
examples that require longer CoT is lower (compare the second column to the first column). This
confirms that examples that require longer CoT are generally more difficult. The % in () shows
the fraction of test data with the corresponding test-time CoT length. Notably, shorter CoTs (0-1k)
considerably improves the performance of Qwen-GCD (75% versus 30.39%) and slightly harms
the performance of Qwen-Poly (29% versus 30.39%). Longer CoTs improve the performance of
Qwen-GCD (38.4% versus 27.2%) and significantly harm the performance of Qwen-Poly (20.83%
versus 27.2%).

CoT length [0, 1k) [1k, 2k]

Qwen-Base 30.39% (30% data) 27.2% (70% data)
Qwen-GCD 75% (15% data) 38.4% (85% data)
Qwen-Poly 29% (32% data) 20.83% (68% data)
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