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Abstract—In view of the shortcomings of the traditional 

Particle Swarm Optimization (PSO) in robot path planning, such 

as long path planning time, slow convergence speed, insufficient 

search ability in the middle and late stages, and easy to fall into 

local optimum. Inspired by the Tabu Search (TS) algorithm and 

Cauchy Mutation Perturbation, this paper proposes a Tabu 

Particle Swarm Optimization (PSOTS) based on Cauchy 

Mutation. Firstly, the beta distribution random number strategy 

is used to adaptively adjust the inertia weight to improve the 

search accuracy of the algorithm in the middle and late stages. 

Secondly, the Cauchy mutation perturbation is introduced in the 

particle swarm optimization (PSO) stage to update the position of 

particles, so as to reduce the possibility of particles falling into the 

local optimum. Finally, in the middle and late stages of the search, 

the roulette method was used to select some particles and adopt 

the Tabu Search (TS) algorithm, so as to enhance the local search 

ability of the particles in the middle and late stages. Through the 

test of CEC benchmark function, compared with the traditional 

particle swarm optimization (PSO) algorithm, it is proved that it 

has excellent performance with fewer iterations and running time, 

and compared with the test results of specific obstacle 

environments, PSOTS can effectively generate the optimal path 

with high smoothness and shorter length, and improve the 

convergence speed and stability of PSO, which proves its 

superiority in solving robot path planning problems. 

Keywords—particle swarm optimization, adaptive, cauchy 

mutation, tabu search 

I. INTRODUCTION 

The path planning of mobile robots is a very hot research 
topic at present, and it is widely used in the fields of deep-sea 
mining vehicle navigation [1], robotic arm operation [2], laser 
cutting [3], unmanned aerial vehicles (UAVs) [4], and 
unmanned vehicles [5]. Path planning refers to the robot's ability 
to find a collision-free optimal or suboptimal path from the 
current position to the target location under the constraints of 
mechanical conditions and complex environments [6]. 
Considering the type and number of robots, environmental 
complexity, static or dynamic obstacles, etc. It is a challenging 
task to plan a path with a short path and a high degree of 

smoothness without colliding with obstacles and other robots. 
To solve such problems, scholars have established 
environmental models to simulate the actual engineering 
environment, relied on path search algorithms to find feasible 
paths that meet the constraints, and obtained the optimal path 
through fitness function screening [7].  

Path planning algorithms can be broadly divided into two 
categories, namely traditional methods and intelligent 
optimization algorithms. Traditional path planning algorithms 
include A-star algorithm [8], Dijkstra algorithm [9], D-star 
algorithm [10], and Fast Search Random Tree Algorithm (RRT). 
[11] and Artificial Potential Fields (APF) [12]. Among them, A-
star, Dijkstra, and D-star are path planning algorithms based on 
graph theory. For this type of approach, a suitable mesh model 
needs to be built. However, in the grid method, the mesh size is 
susceptible to environmental constraints. In addition, for 
complex environments, graph-theoretic algorithms are 
computationally expensive and inefficient [13]. The RRT 
algorithm can quickly generate barrier-free paths, but it cannot 
guarantee the optimal solution of paths, and the path smoothness 
is insufficient. The advantage of the APF algorithm is that the 
planning speed is fast, but when the attraction and repulsion are 
equal, it will fall into a situation where the target is unreachable, 
making it impossible for the robot to move towards the target 
position. Traditional methods are based on mathematical models 
and can be applied to any environment, but they tend to fall into 
local minima.  

The path planning problem of mobile robots is an NP-Hard 
problem. To solve this problem, many scholars have adopted 
heuristic algorithms combined with intelligent optimization, 
including gray wolf algorithm (GWO) [14], ant colony 
algorithm(ACO)[15],particle swarm optimization (PSO) [16], 
differential evolution algorithm (DE) [17], reinforcement 
learning (RL) [18], genetic algorithm (GA) [19], etc. For most 
of the path planning literature, only single-objective 
optimization is carried out on the path length factor, and the path 
smoothness and safety factors are not considered, resulting in 
the problems of unsatisfactory planning path, insufficient energy, 
and long search time [20].  
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For the research of particle swarm optimization, many 
scholars have innovated in two aspects. On the one hand, it is an 
improvement of the particle swarm optimization itself, including 
the parameter adaptive strategy, the redefinition of the velocity 
function, the perturbation strategy, etc., the purpose of which is 
to make the particles jump out of the local optimum, improve 
the search ability and convergence speed. Focus on the early and 
middle stages of particle search for improvements; On the other 
hand, it is the combination of particle swarm optimization and 
other algorithms, which can be combined with genetic algorithm 
(GA), differential evolution (DE), reinforcement learning (RL), 
etc. using the advantages of other algorithms to make up for the 
lack of search ability of particle swarm algorithm. 

In order to solve the above problems, this paper proposes a 
Tabu Particle Swarm Optimization algorithm (PSOTS) 
Integrating Cauchy Mutation, which is applied to the two-
dimensional environment. The algorithm improves the adaptive 
strategy of inertia weight 𝜔, and adopts the Cauchy mutation 
strategy in the particle update stage to reduce the probability of 
particles falling into the local optimum. In order to improve the 
mid-to-late search ability of the algorithm, the Tabu Search (TS) 
algorithm was applied to the mid-to-late stage of particle search. 
In addition, the corresponding fitness functions are designed for 
the two factors of path length and angle change.  

The major contributions of this paper are summarized as 
follows: 

• An adaptive strategy is adopted for the inertia weights to 
improve the global search ability of particles. 

• The Cauchy Mutation is applied to the particle position 
update stage to reduce the probability of particles falling 
into the local optimum. 

• The Tabu Search Algorithm (TS) and Particle Swarm 
Optimization (PSO) were combined to improve the 
convergence speed and mid-to-late search ability of the 
traditional particle swarm algorithm. 

• The simulation tool is used to verify the effectiveness of 
the algorithm in different environments, and compared 
with the traditional particle swarm optimization to prove 
its superiority. 

The remaining sections of this paper are  organized as 
follows. Section 2 describes the related work of particle swarm 
optimization. Section 3 is the global modeling of the obstacle 
environment and the formulation of the fitness function. Section 
4 briefly introduces the traditional particle swarm optimization 
and tabu search algorithm. Section 5 presents the improved 
algorithm in detail. Section 6 is the simulation experiment part. 
Finally, section 7 deals with conclusion and future work. 

 

 

 

II. RELATE WORK 

A. Improvements to the Algorithm Itself 

Li et al. [21] proposed a Fermat-based Grouped Particle 
Swarm Optimization (FP-GPSO) algorithm to simultaneously 
determine the aerial launch position and optimize the generated 
multi-segment path for the path planning problem of composite 
UAV paths. Zhao et al. [22] proposed an unmanned vehicle path 
planning method based on Adaptive Particle Swarm 
Optimization (APSO). Firstly, the map simplification strategy 
(MSS) is adopted to simplify the search space, and then the 
search of particles is coordinated by three adaptive factors and 
the Levy flight strategy, and the safety check strategy and 
dynamic obstacle avoidance strategy are proposed to ensure the 
safety of the global path. Tao et al. [23] proposed a two-
population PSO algorithm (BPPSO) with a stochastic 
perturbation strategy, which divides particles into two 
subpopulations. The first population enhances the global search 
capability by taking into account the mass of the particles and 
the optimal solution of the randomly selected particles when 
updating the speed. The second population uses a linear 
cognitive coefficient adjustment strategy to enhance the local 
search. Xu et al. [24] proposed a nonlinear dissipative particle 
swarm algorithm. The algorithm dissipates particles in a 
nonlinear increment way, which avoids a large amount of 
unnecessary dissipation at the beginning of the iteration, and 
invests more effort in dissipation at the end of the iteration, 
which improves the operation efficiency and global search 
ability of the algorithm. Wang et al. [25] proposed an improved 
immune particle swarm algorithm. Among them, the adaptive 
information dynamic adjustment strategy is introduced to 
dynamically adjust the main link index, which improves the 
global searchability and convergence of particles, and is 
conducive to the robot to quickly identify the optimal path. 

B. Combination between Algorithms 

Lin et al. [26] combined the cultural algorithm with the 
particle swarm optimization and introduced a probabilistic 
method based on improved metropolitan rules to update the 
inertia weights, which solved the path planning problem of 
multiple AGVs. Zhao et al. [27] proposed a new multi-objective 
Cauchy Mutant Cat Population Optimization (MOCMCSO) and 
Artificial Potential Field Method (APFM) to solve the multi-
objective optimization problem of the shortest global path length 
and the smallest total rotation angle change. Wu et al. [28] 
proposed a new path planning algorithm combining ant colony 
optimization and particle swarm optimization. First, the 
simulated annealing algorithm is combined with the particle 
swarm for global search. The ant colony algorithm is used for 
local searches at a later stage. Mohammed et al. [29] combined 
Informed Rapid Exploration Random Tree (RRT*) and particle 
swarm optimization (PSO) algorithms. The informed RRT* 
algorithm can quickly construct the optimal path, which, 
combined with the particle swarm algorithm, increases the speed 
of algorithm convergence. Huang et al. [30] proposed an APSO 
algorithm combining A* and PSO to calculate the optimal path, 
and used the redundant point removal strategy to preliminarily 
optimize the path planned by the A* algorithm to obtain the key 
node set. After that, the improved PSO optimization key node 
set is used to obtain the global path. 



III. ENVIRONMENT MODELING AND FITNESS FUNCTION 

A. Environment Modeling 

In this paper, the grid method is used to describe the working 
environment of a mobile robot. As shown in Figure 1, the white 
grid represents the feasible node, the purple grid represents the 
obstacle node, the green grid represents the starting point, and 
the yellow grid represents the end point. The raster method can 
represent the complex working environment of the robot in a 
concise two-dimensional vector. Therefore, this paper creates a  
20×20 mesh model with random obstacle nodes. All grids are 
arranged in left-to-right, bottom-to-top order, and each grid has 
a unique ordinal number. The starting node is the 0th grid, and 
the number 0 represents the starting point. The terminating node 
is the 399th raster, and the number 399 indicates the end point. 

 

Fig.1.Grid Environment Diagram of  Mobile Robot. 

B. Fitness Function 

In the path planning problem, to find the optimal path, it is 
necessary to meet the constraints such as path length, safe 
obstacle avoidance, and turning angle limitations. The fitness 
function combines these constraints to transform the path 
planning problem into an optimization problem. The fitness 
function is used as the basis for evaluating the quality of 
particles, which determines the speed and direction of particle 
update iteration. With reference to Ref. [31], the fitness function 
is designed in the following form: 
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where fitness is the fitness function, ( )f x  is the objective 

function, lengthf is the fitness function of the path length, smoothf  
is the fitness function of the path smoothness, and  ,    are the 

weights of the two fitness functions. It should be noted that the 
fitness function is the reciprocal of the objective function, so the 

smaller the objective function, the higher the particle fitness. 

lengthf  and smoothf  are defined as follows: 
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where length is the path length, smooth is the path 

smoothness, and  1  , 2   are the accuracy factors. By adjusting   

1  , 2  , it can be guaranteed that 
lengthf  ,  smoothf   in the same 

order of magnitude. 
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Its smoothness can be calculated using Eq. (4): 
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where ismooth  indicates the degree of smoothness between 

adjacent segments, and this value is designed based on the angle  

i   between two segments. The following equation (5) is given: 
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The angles between adjacent segments are obtained by the 

inverse cosine function, as follows equation (6)-(8): 
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IV. TRADITIONAL ALGORITHMS 

A. Particle Swarm Optimization (PSO) 

The particle swarm optimization (PSO) was proposed by 
James Kennedy and Russell Eberhart [1]. In the PSO algorithm, 
the initial particle population is randomly generated, and the 
local and global best particles are selected based on the fitness 
function values of each particle. At each iteration, the PSO 
algorithm updates the particle position based on Equation (9) 
and (10). After the position of each particle is updated, a fitness 
function is calculated based on the results obtained, the global 
optimal particle is determined, and the cycle continues until the 
termination condition is true. 

1 1 2 2( ) ( )d d d d d d

i i i i i iV v c r pbest x c r gbest x= + − + −    （9） 

 

  d d d

i i iX x V= +                           （10） 

Where 1c  , 2c  are the acceleration coefficients;   is the 

inertia weight, which is adaptive in this paper, as shown in 

Equation (11); i  indicates the current number of iterations; d   

represents dimensions; pbest represents the local optimal 

position; gbest  represents the global optimal position. 

B.  Tabu Search Algorithm (TS) 

The Tabu Search Algorithm (TS) simulates the human mind, 
and its core idea is to prohibit the repetition of previous actions. 
Its main advantages include two points: 

1)  The addition of the taboo table and the "amnesty 
criterion" makes the algorithm accept some inferior solutions in 
the search process, so as to jump out of the trap of local 
optimality. 

2) The new solution is not randomly generated from the 
neighborhood of the current solution, but is the best solution 
that is not taboo. 

V. IMPROVED ALGORITHM 

A. Adaptive Inertia Weight    

For the adaptive adjustment of inertia weight 𝜔 , exponential 

function  𝑒− 
𝑡

𝑡𝑚𝑎𝑥   and beta distribution random numbers are 

introduced. The improved inertia weight expression is as 

follows: 
( / )

min max min( ) ( , )t tmaxe betarnd p q    −= + −  +   

 

Where t  is the current number of iterations; maxt  is the 

maximum number of iterations; max  is the initial inertia 

weight, and the value is  0.9; min  is the inertia weight when the 

maximum number of iteration is reached, and the value is  0.4; 
 is the inertia adjustment factor, and the value is 0.1; 

( ),betarnd p q  is a beta distribution, where 2p = , 5q = . 

Where the inertia weight   decreases nonlinearly with the 

increase of the number of iterations. The addition of the random 
number of beta distribution makes the value distribution of 
inertia weight more reasonable, and improves the global search 
ability and later search accuracy in the early stage. 

B. Cauchy Mutation Update Populations 

The classical PSO algorithm does not fully take into account 

the information of other suboptimal solution particles when 

updating the population position, so the population diversity 

cannot be guaranteed. In this paper, the Cauchy mutation 

operator is introduced on the basis of the classical particle 

swarm algorithm. In the stage of updating the position of 

particles, the particles in the population undergo the mutation 

process under the influence of the Cauchy mutation operator.   

ix represents the first generation of particles, the new individual  

ix  produced by Cauchy mutation. The expression is: 

 
* ( ( 0.5))i ix x tan rand = +   −               （12） 

 

Where   is a random number of the standard normal 

distribution, and its probability density function is: 
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The variation value for the current dimension is set to 

standard deviation ( )( )tan 0.5rand   −  , where rand  is  a 

random number between 0 and 1, which conforms to a uniform 
distribution. 

Cauchy mutation can produce a large random number space, 
make the particle distribution more uniform, expand the search 
range of particles, avoid falling into the local optimal solution, 
and improve the global convergence ability. 

Figure 2 shows the schematic diagram of Cauchy mutation, 
where the yellow particles represent the local optimal particles 
(𝑝𝑏𝑒𝑠𝑡) and the green particles represent the ordinary search 
particles.
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Fig.2.  Schematic Diagram of Cauchy Mutation

 

C. Tabu Particle Swarm Algorithm Integrating Cauchy 

Mutation（PSOTS） 

This section describes the steps and flowchart for the 

improved algorithm. Figure 3 is a flowchart of the improved 

algorithm, and the steps of the improved algorithm are as 

follows: 

 

Step1: Initialize parameters of PSO algorithm and TS 

algorithm. 

 

Step2: Randomly generate initial population, set velocity and 

position of each particle. 

 

Step3: Update velocity and position of each particle according 

to equations (9) and (10). 

 

Step4: All particles perform particle swarm algorithm. 

 

Step5: Determine whether pbest  and gbest  are updated. If 

not, go to the next step, otherwise go to step 3. 

 

Step6: Update the population by cauchy mutation. 

 

Step7: Roulette pick up particles to compose population 2 and 

the remainder is population 1. 

 

Step8: Population 1 performs particle swarm search. 

 

Step9: Population 2 performs tabu search. 

 

Step10: Compare results of particle swarm search and tabu 

search. Output better result. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Flowchart of the Improved Algorithm 



VI. SIMULATION EXPERIMENTS 

A. Parameter Settings 

TABLE I shows the parameters of the improved algorithm. 

B. Experiment 1: CEC Function Test Experiment 

In order to verify the optimization effect of the improved 
algorithm, two test functions are used to test the algorithm. 

Where the function ( )1F x  is a multimodal function and the 

function ( )2F x  is a unimodal function. The name, formula, 

search space, and theoretical minimum of the test function are 

given in TABLE II. TABLE III shows the parameters of the 
comparison algorithms. 

Each function experiment was performed 50 times, and the 
results obtained were averaged. In terms of the effectiveness of 
the improved algorithm (PSOTS), compared with the ordinary 
particle swarm optimization (PSO), the test results are shown 
in TABLE IV, and the convergence curve of the test function is 
shown in Figure 4. 

 

 
TABLE I.         PARAMETERS OF THE IMPROVED ALGORITHM 

 

Parameter Value 

Particle Population 50 

Particle Dimension 2 

Maximum Iteration 100 

𝛼 1 

𝛽 7 

𝛾1 1 

𝛾2 1 

𝑐1 1.2 

𝑐2 1.2 

𝜔𝑚𝑖𝑛 0.4 

𝜔𝑚𝑎𝑥 0.9 

TABLE II.            TEST FUNCTIONS 

 

Number Function Equation Search Range 𝒇𝒎𝒊𝒏 

𝐹1(𝑥) Schwefel′ 𝑠 problem  
∑ −𝑥𝑖sin (√|𝑥𝑖|)

𝑛

𝑖=1

 
[−500,500] −12569.5 

𝐹2(𝑥) Step Function 
∑(⌊𝑥𝑖 + 0.5⌋)2

𝑛

𝑖=1

 
[−100,100] 0 

 
TABLE III.         PARAMETERS OF THE COMPARISON ALGORITHMS   

 

Algorithm Parameter 

PSO Iteration=300, Population=150，𝜔=0.8，𝑐1=1.2，𝑐2=1.2 

PSOTS Iteration=300, Population=150 

 
TABLE IV.          FUNCTION TEST RESULTS 

 

 

Function 

 

PSO PSOTS 

Global Optimizer Standard 

Deviation 

Convergent 

generation 

Global Optimizer Standard 

Deviation 

Convergent 

generation 

𝐹1(𝑥) -10986.07 0 147 -12666.67 0 62 

𝐹2(𝑥) 1 0 208 1 0 172 



 
 
Fig.4.  Convergence Curve 

 
Analysis of  TABLE IV shows that for test function 𝐹1(𝑥), 

the global optimal solution obtained by the improved method 
(PSOTS) is -12666.67, while the global optimal solution 
obtained by the traditional method (PSO) is -10986.07, and the 
improved algorithm (PSOTS) is closer to the theoretical optimal 
solution of the function, which proves that the improved method 
has higher solution accuracy and is easier to jump out of the local 
optimum. At the same time, compared with the fastest 
convergence algebra, the improved method (PSOTS) requires 
62 generations to complete convergence, while the traditional 
method (PSO) needs 147 generations to complete convergence, 
indicating that the convergence speed of the improved method 
is faster.  

For test function 𝐹2(𝑥), the global optimal solution obtained 
by the two algorithms is the same, but the improved algorithm 
(PSOTS) is fully converged in the 172nd generation, and the 
traditional algorithm (PSO) is fully converged in the 208th 
generation, indicating that the convergence speed of the 
improved method is faster when the solution accuracy is the 
same. 

In summary, the improved method has higher solving 
accuracy, faster convergence speed, easier to get rid of local 
optimum, and better global convergence

C. Experiment 2: Specific Obstacle Environment Experiment 

In order to verify the performance of the proposed algorithm, 

a comparative experiment is designed, and eight raster obstacle 

environments are created. According to the number of obstacles 

in the environment, the area of the total environment, and the 

complexity of the shape, the eight environments are divided 

into two categories: simple environment and complex 

environment, and each category contains four environments. 

 The performance of Ordinary Particle Swarm Optimization 

(PSO) and Improved Particle Swarm Optimization (PSOTS) in 

the same obstacle environment is compared. The green line 

represents the path planned by the improved algorithm, and the 

blue line represents the path planned by the traditional particle 

swarm algorithm.

 

 

 

 

 

 

 

 



Fig.5.  Simple Environments Paths 

 

 
 
Fig.6.  Complex Environments Paths 

 
TABLE V.        SIMPLE ENVIRONMENT PATHS RESULTS 

 

Algorithm Mean Path Length Mean Smooth Mean Fitness Mean 𝑭(𝒙) 

PSO 29.3256 5400 0.0354 28.2516 

PSOTS 28.5045 4750 0.0366 27.3554 

 

 
TABLE VI.        COMPLEX ENVIRONMENT PATHS RESULTS 
 

Algorithm Mean Path Length Mean Smooth Mean Fitness Mean 𝑭(𝒙) 

PSO 32.0725 18100 0.0316 31.6796 

PSOTS 30.1938 17613 0.0335 29.8368 

 



TABLE V obtains the average values of the path length, 
smoothness, fitness values and objective functions of the two 
algorithms in the four simple environments mentioned above. 

Analyzing the data in TABLE V, it can be seen that on the 
average path length, Compared with the ordinary particle 
swarm algorithm, the improved algorithm is reduced by 0.8211 
and reduce 2.8%, indicating that the path of the improved 
algorithm is shorter, and in terms of smoothness, the improved 
algorithm is reduced by 650 and reduce 12% compared with the 
ordinary particle swarm algorithm, indicating that the path of 
the improved algorithm is smoother, and in terms of particle 
fitness, the improved algorithm is 0.0012 higher than that of the 
ordinary particle swarm, indicating that the particle fitness of 
the improved algorithm is higher, and it is proved that the 
improved algorithm has a better effect of planning the path in a 
simple environment. 

TABLE VI obtains the average values of path length, 
smoothness, fitness values and objective functions of the two 
algorithms in the above four complex environments. 

Analyzing the data in TABLE VI, it can be seen that the 
average path length of the improved algorithm is 1.8787 and 
reduce 5.9% lower than that of the ordinary particle swarm 
algorithm, indicating that the path planned by the improved 
algorithm is shorter. In terms of smoothness, the improved 
algorithm is reduced by 487 and reduce 2.7% compared with 
the ordinary particle swarm algorithm, indicating that the path 
of the improved algorithm is smoother, and in terms of particle 
fitness, the improved algorithm is 0.0019 higher than that of the 
ordinary particle swarm algorithm, indicating that the particle 
fitness of the improved algorithm is higher, and it is proved that 
the improved algorithm has a good effect on path planning in 
complex environments. 

    Compare the results of the path planned by the improved 
algorithm in the complex environments and simple 
environments. It can be found that with the increase of 
environmental complexity, the reduction rate of the path length 
planned by the improved algorithm is greater, and the particle 
fitness is also higher. The results show that the higher the 
complexity of the environment, the stronger the path planning 
ability of the improved algorithm.

D. Experiment 3: Iterative Comparative Experiment 

In this experiment, we create an obstacle environment which 

the Common Particle Swarm Optimization (PSO) and the 

Improved Particle Swarm Optimization (PSOTS) obtain the 

same path. The path is shown in Figure 7. Figure 8 shows the 

iterative curve of the two algorithms under environment 9.

Comparing the iteration curve Figure 8, it can be seen that 
the ordinary particle swarm optimization (PSO) is fully 
converged in the 80th generation iteration, while the improved 
algorithm (PSOTS) is completely converged in the 68th 
generation iteration, which proves that the improved method is 
better than the particle swarm optimization in terms of 
convergence speed. 

At the 0th iteration, the objective function value of the 
ordinary particle swarm algorithm is 32.6661, and the fitness is 
0.0306. The objective function value of the improved algorithm 
is 30.8687, and the fitness is 0.0324. The results show that the 
initialized particles obtained by the improved algorithm have 
better effects and higher fitness values. 

The longest horizontal segment of the iteration curves of the 
two algorithms is compared, that is, the fitness remains 
unchanged temporarily. The longest time of ordinary particle 

swarm is from the 10th generation iteration to the 44th 
generation iteration, which lasts for 34 generations, while the 
improved algorithm lasts only 30 generations from the 19th 
generation to the 49th generation, which proves that the 
improved algorithm is superior to the ordinary particle swarm 
in the ability to jump out of the local optimum. 

Comparing the iterative curves of the two algorithms from 
the 40th generation to the 60th generation, the objective 
function value of the ordinary particle swarm algorithm 
decreased from 27.1493 in the 40th generation to 26.5252 in the 
60th generation, a decrease of 0.6241, while the improved 
algorithm decreased from 27.598 in the 40th generation to 
26.6493 in the 60th generation, a decrease of 0.9487, which 
proves that the improved algorithm has stronger search ability 
in the middle and late stages. 



This experiment is designed to further demonstrate the 
superiority of the improved algorithm in convergence speed and 
solution speed on the basis of test function experiments. 

VII. CONCLUSION AND FUTURE WORK 

A. Conclusion 

In this paper, we propose a tabu particle swarm optimization 

based on cauchy mutation to improve the search ability of 

particle swarm optimization. Firstly, the adaptive strategy is 

used to balance the global and local search capabilities for the 

inertia weights ω  , and improve the search accuracy in the 

middle and late stages. In addition, the cauchy mutation is 

introduced in the stage of particle update position, which 

reduces the possibility of particles falling into local optimum. 

Finally, the tabu search algorithm was used in the middle and 

late stages of the search, which enhanced the local search ability 

in the middle and late stages. Through the CEC test function 

experiment and the same path experiment, it is proved that the 

improved algorithm is better than the ordinary particle swarm 

optimization in terms of convergence speed and calculation 

accuracy. In different obstacle experiments, the path length and 

smoothness of the improved algorithm are shorter, which 

proves the superiority of the improved algorithm PSOTS in the 

path planning problem. 

 

B. Future Work 

In more complex raster environments such as 30×30 and 

40×40, etc. the adaptability of the improved algorithm is worth 

exploring. At the same time, the obstacle avoidance of dynamic 

obstacles is also one of the future issues. 
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