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Abstract
Preference-based Reinforcement Learning
(PbRL) with binary preference feedbacks over
trajectory pairs has proved to be quite effective
in learning complex preferences of a human
in the loop in domains with high dimensional
state spaces and action spaces. While the human
preference is primarily inferred from the feedback
provided, we propose that, in situations where
the human preferences are goal-oriented, the
policy being learned (jointly with the reward
model) during training can also provide valuable
learning signal about the probable goal based on
the human preference. To utilize this information,
we introduce an action distance measure based
on the policy and use it as an auxiliary prediction
task for reward learning. This measure not only
provides insight into the transition dynamics
of the environment but also informs about the
reachability of states under the policy by giving a
distance to goal measure. We choose six tasks
with goal-oriented preferences in the Meta-World
domains to evaluate the performance and sample
efficiency of our approach. We show that
our approach outperforms methods leveraging
auxiliary tasks of learning environment dynamics
or a non-temporal distance measure adapted by
PbRL baselines. Additionally, we show that
action distance measure can also accelerate policy
learning which is reaffirmed by our experimental
results.

1. Introduction
Preference-based Reinforcement learning (PbRL) is a
promising paradigm for training agents to learn from hu-
man preferences (Leike et al., 2018; Akrour et al., 2011;
Ibarz et al., 2018b; Bakker et al., 2022; Köster et al., 2020).
While human feedback can be obtained and incorporated
in several ways, the primary objective of PbRL is to distill
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Figure 1. Overview of the proposed approach. Typical to PbRL
setups, we have our agent acting in the world & saving state, action,
and reward data into its buffer. Every few episodes, the human in
the loop is queried for their preference over the agent’s behavior
trajectory. The aim of the agent is to learn a reward model (reward
learning) along with obtaining a good policy (policy learning).
We are proposing a method for preference-based reinforcement
learning (PbRL) that uses an action distance measure based on
the policy being learned as an auxiliary prediction task for reward
learning.

information from binary preference feedbacks on queried
agent behavior trace pairs into the reward function (Wilson
et al., 2012; Christiano et al., 2017). Recent advances in
PbRL have led to algorithms that are capable of success-
fully learning human preferences on simpler discrete tasks
(Verma & Metcalf, 2022; Soni et al., 2022) to more complex
continuous control tasks (Lee et al., 2021a; Park et al., 2022).
A key challenge in PbRL has been to reduce human sam-
ple feedback complexity and increase agent performance
based on the given preference. Typically, prior works have
investigated research directions like improving the query
sampling strategy (Lee et al., 2021a), performing state or
trajectory augmentation in the queries (Park et al., 2022;
Guan et al., 2021), unsupervised policy pre-training (Lee
et al., 2021a) and learning world models as reward priors
(Verma & Metcalf, 2022). However, exploiting the agent
policy being learned along with the reward model has not
been explored before.

We posit that human preferences can either be behavior-
oriented, goal-oriented, or both. Behavior-oriented pref-
erences include a preference, say, towards a certain style
of walking or a way to swim, and these preferences could
themselves be decomposed into tacit and symbolic compo-
nents (Guan et al., 2022). In this work, we are interested
in goal-oriented preferences which could be preferences
on walking towards a door or reaching for an object. Con-
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cretely, goal-oriented preferences contain an absorbing state
where the agent execution would halt by virtue of success-
ful completion or failure (and not necessarily because of
time limit constraints of the environment). Several bench-
mark domains popularly used by the PbRL community are
in fact goal-oriented. These include the robotic manipu-
lation tasks of Meta-World like Button-Press, Door-Open,
and Window-Open, to name a few. The oracular approach
typically taken by PbRL works for consistent trajectory feed-
backs and scalable experimentation over these domains uses
the underlying task reward as the human reward function.
A closer inspection of these rewards clearly shows their
goal-oriented nature (see Appendix F.6).

In the context of goal-oriented preferences, we propose that
the learned policy function could very well be utilized to
improve the reward learning process since it can inform
about the probable goal state indicated by the human pref-
erence (or more generally the state space organization and
reachability among states). In the existing line of research
(Park et al., 2022; Lee et al., 2021a; Christiano et al., 2017),
the reward learning process can only distinguish between
the states based on the given state representation as tem-
poral features are not provided to the agent. However, for
goal-oriented preferences, a more suitable feature would be
a distance measure that can not only distinguish between
the states based on the organization of the state space but is
also in correspondence with the distance-to-goal property.

A policy trained on the reward model (which itself is non-
stationary and is updated iteratively), would encapsulate
both of our sought-after attributes. For example, a bank
of sampled trajectories using the said policy contains in-
formation about which states could be reached from which
other states, i.e., reachability, which actions would lead the
agent to be in a certain part of the Markov Decision Process
(MDP), i.e., environment dynamics. And, finally, since
the policy was trained to maximize returns predicted by the
reward model, a good policy starting from any state would
sample trajectories where successor states, in expectation,
progress towards the intended goal, i.e., distance to goal.
We intend to extract these key pieces of information avail-
able to the agent via policy learning to improve the reward
learning in PbRL as shown in Figure 1.

We propose a self-supervised method for learning the tempo-
ral distance (action distance) between states using a jointly
trained policy function, which captures weak learning sig-
nals of the intermediate policy function trained on the re-
ward model. To improve PbRL using this action distance
measure, we propose that the reward model being learned
(particularly an embedding space in the reward model) must
be predictive of this action distance. We operationalize this
by treating the action distance prediction objective as an ad-
ditional auxiliary task for the reward model, thus forcing the

embedding space to preserve the action distance between
any pair of states. Our experiments on six (goal-oriented)
continuous control robotic manipulation tasks (Meta-World),
commonly used in recent PbRL works (Park et al., 2022;
Lee et al., 2021a), show that the use of action distance based
auxiliary task in the reward learning process is an effective
means of boosting the agent’s performance when learning
from goal-oriented preferences.

We highlight the main contributions of the work as follows :
1. This is the first work that leverages valuable learning sig-
nals from the joint policy being learned to improve reward
learning in the context of goal-oriented human preferences
and PbRL. 2. We propose an action distance based auxiliary
task for the reward model that can be easily incorporated
into any PbRL algorithm. 3. We benchmark the proposed
work against state-of-the-art PbRL algorithms, as well as
adapted PbRL algorithms that share certain characteristics
of action distance based auxiliary task.

2. Related Work
Readers are encouraged to read Appendix A.1, A.2 as pre-
liminaries for PbRL and multi-dimensional scaling.

Preference-based Reinforcement Learning. There are
several works in the RL literature (Liu et al., 2023; Bew-
ley & Lecue, 2021; Zhang & Kashima, 2023; Liu & Chen,
2022; Wirth et al., 2017) that focus on acquiring ratings or
feedback from the human-in-the-loop (Knox & Stone, 2009;
Christiano et al., 2017; Ibarz et al., 2018a; Stiennon et al.,
2020). (Knox & Stone, 2009) was one of the foremost works
to incorporate human-in-the-loop binary feedback to aid the
agent’s learning for solving the problem of sparse environ-
ment reward. However, the framework presented in (Knox
& Stone, 2009) and further extensions of it were restricted
to querying the user over state preferences. (Christiano
et al., 2017) proposed a deep RL framework that queried
the human user for trajectory preferences instead, by asking
the user to choose the preferred trajectory over the other
based on the Bradley-Terry model (Bradley & Terry, 1952),
which has further been incorporated in several works that
followed (Lee et al., 2021a; Park et al., 2022; Guan et al.,
2022; Liu et al., 2023; Liang et al., 2022). While (Lee et al.,
2021a) proposed to use unsupervised pre-training to query
diverse behaviors to the teacher, (Park et al., 2022) utilized
data augmentation techniques to learn the reward model
combined with a semi-supervised learning approach to uti-
lize the unlabeled trajectories. Both of these works jointly
learn the reward and the policy model for the agent. (Ibarz
et al., 2018a) combined using trajectory preferences with
expert demonstrations. We extend the PbRL literature in
two key ways. In line with (Guan et al., 2022)’s view that
preferences contain both tacit and symbolic components
(Kambhampati et al., 2022), we rather distinguish between
behavior-oriented and goal-oriented preferences. Second,
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we show that action distance is a good measure encapsulat-
ing the weak learning signal from the jointly trained policy
function and use it to improve the reward learning for goal-
oriented preferences.

Representation learning using distance measures. Sev-
eral works within and outside the field of reinforcement
learning have focused on learning distance-guided repre-
sentations that allow for learning structured representations
(Florensa et al., 2019; 2018; Pong et al., 2019; Nair et al.,
2018; Li et al., 2020; Shen et al., 2018; Roh et al., 2021)
which prove to be useful for the downstream tasks.

It is known that guidance or heuristics informing about
the goal, or distance-to-goal can help with both known
(Hart et al., 1968; Browne et al., 2012; Zhong et al., 2013;
Hoeller et al., 2020; Bejjani et al., 2018) and unknown
MDPs (Cheng et al., 2021; Wagener et al., 2021; Guan
et al., 2021; Garcıa & Fernández, 2015). While several
prior works have utilized the notion of action distances or
commute times, closest to our work would be research in
goal-conditioned RL (Hartikainen et al., 2019) and (Venkat-
taramanujam et al., 2019). This first work proposes to use
action distances for skill learning while the second uses
it for learning goal conditioned policies. Although (Har-
tikainen et al., 2019) does discuss ways of incorporating
human preferences to obtain the reward model there are
several key distinctions. First, neither of the works pro-
vide a clear distinction between behavior-oriented and goal-
oriented preferences. Second, both (Hartikainen et al., 2019)
and (Venkattaramanujam et al., 2019) require goal propos-
als, that is they explicitly set states as goals either by using
their learned distance measure or by asking humans to label
possible goals. In contrast our method does not require ex-
plicit goals even though we attempt to learn a goal-oriented
preference. Third, both the works learn an explicit distance
function to approximate action distance. Our proposed so-
lution instead shows that we can utlize the reward model’s
embedding space to compute the action distance. Fourth,
(Hartikainen et al., 2019) uses the computed action distance
directly as the reward value which makes it incompatible to
use with other PbRL techniques like reward priors (Verma
& Metcalf, 2022) etc. Finally, while (Venkattaramanujam
et al., 2019) is interested in learning goal-conditioned poli-
cies, in this work, we explore the use of action distances on
trajectory based binary preferences.

3. Methodology
In this section, we present our main contribution and discuss
the key reasons why action distance measure is helpful for
both reward learning and policy learning. Our main idea
is to make the reward model being learned aware of the
intended absorbing state or the probable goal according to
the human preference (distance-to-goal) and the state space

structure (i.e. reachability and environment dynamics). We
do so by making the reward model solve the auxiliary task
of predicting action distances between two states. We will
first ground the action distance measure and propose the
methodology for incorporating it with any existing PbRL
framework that learns the reward model via function approx-
imation and any underlying RL algorithm (both online and
offline).

3.1. Action Distances
Definition 3.1. Average passage distance mπ(sj , aj |si, ai)
is given by the expected number of actions required to go
from si to sj by taking ai as the first action and choosing
aj as the final action upon reaching sj .

mπ(sj , aj |si, ai) = E
τ∼π
|τ[(si,ai)···(sj ,aj)]| (1)

Definition 3.2. Action distance, or commute distance, dπ

between two states (si, sj) and an initial action ai, and final
action aj under some policy πϕ(s) and transition dynamics
T (s, a, s′) is given by the expected number of action steps
taken to reach a state sj from si with the first executed
action as ai and final chosen action aj .

dπ(si, ai, sj , aj) =
1

2
(mπ(sj , aj |si, ai)

+mπ(si, ai|sj , aj))
(2)

For shorthand, in the context of distances between states,
we abuse the notations for states si to mean (si, ai) tu-
ple, since we always compute distances in the embedding
space for which the input was state-action tuple. Action
distances (commute distance) have been largely used in
developing theory for time-reversible Markov chains (Al-
dous & Fill, 1995). A variant of it was proposed in (Fouss
et al., 2005) and more recently (Venkattaramanujam et al.,
2019) used action distances to generate goals for learning
goal-conditioned policies faster. Action distances have been
used in variety of applications, but (Fouss et al., 2005) first
showed that an embedding space that preserves commute
distance must exist, however (Venkattaramanujam et al.,
2019) admits obtaining action distance based ground truth
targets can be challenging.

While incorporating action distance measure directly into
the reward learning process by making the reward model
r̂t target to be a scaled linear combination of the existing
reward model r̂t−1 and the action distance measure maybe
possible, it becomes extrememly non-trivial and challenging
for reasons like the scale of the distance measure and the
predicted reward would have to be matched. A simpler ap-
proach would be to incorporate the action distance measure
via mMDS by enforcing the embedding space of the reward
model to be predictive of the action distance measure as
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an auxiliary task. Not only such a method would not suf-
fer from noise due to explicit goal-proposals (Hartikainen
et al., 2019), but it also allows us to use it with other PbRL
algorithms as well.

3.2. Action Distances can Improve Reward Learning

The reward learning and the policy learning happen in an
iterative manner in our PbRL framework. While the key
information regarding the human preference is contained in
the binary feedback preference labels given by the human-in-
the-loop, we posit that the policy trained over these learned
rewards could still provide weak learning signal about the
human preference. The policy function (πϕ) being trained
takes into account the environment dynamics as well as the
reward model (Rh) and can hint at the goal state (or atleast
the set of states which could be potential goals under the re-
ward model at the time). An adaptation of (Venkattaramanu-
jam et al., 2019) would be to sample these potential goal
states based on the action distance measure and try to im-
prove reward model towards these sampled goals, however
this requires strong assumptions like a simulator that can
be reset and started from any given state. Moreover, such
a strategy may be extremely hard to stabilize the learning
as the intended goal state of the human is possibly partially
known to the agent (because of limited preference queries)
followed by setting hypothetical goals (sampled from the
policy) to update the reward. Another direction could be to
perform an Inverse RL or IRL over (Ng et al., 2000; Arora
& Doshi, 2021; Ab Azar et al., 2020) step the learned policy
to get another possible reward function, say, (rIRL) and
combine Rh and rIRL. But such a method could be very
expensive (as PbRL itself is a form of IRL with binary feed-
backs over trajectory pairs) and the obtained rIRL could
be extremely noisy and may not offer any generalization to
exisiting Rh. Another approach could be to learn the full
world model (Hafner et al., 2019) and use the reward model
to infer goal state (or trajectories leading to it). However,
learning the world model may again be very expensive. An
approximation to this approach could be to learn a forward
dynamics model where an additional objective of the reward
model is to predict the next state observation (given the cur-
rent state and action). While this approach is more feasible
than explicitly learning the world model and that such an
auxiliary task has been used in the context of improving the
policy learning (Nguyen et al., 2021; Zhang et al., 2018),
our results demonstrate that this auxiliary task is a research
challenge in itself and does not offer any performance im-
provements.

3.3. Accelerating Policy Learning via Action Distance

Definition 3.3. A Markov Decision Process
{S, T ,A,R,γ} is called strong-reversible if for any
action aij that allows the agent to transition from state si to

sj in a single step, there exists an action aji that allows the
agent to transition from sj to si in one-step.
Proposition 3.4. For any MDP, {S, T ,A,R,γ}, with ∀s ∼
S, R(s) ≤ −1, γ = 1 and an absorbing state sg, the av-
erage passage distance mπ(sg|si) from any state si to the
goal state under a stochastic policy π is a pessimistic heuris-
tic.
Proposition 3.5. For a strong-reversible MDP,
{S, T ,A,R,γ}, γ = 1, ∀s ∼ S, R(s) ≤ −1 and an
absorbing state sg, the action distance dπ(si, sg) between
any state si and the goal state under a stochastic policy π
is a pessimistic heuristic.
(Cheng et al., 2021) proved that pessimistic heuristics used
with reward function are desirable to accelerate policy learn-
ing. This shows that for strong-reversible MDPs with ab-
sorbing states and at-least unit action costs, an action dis-
tance based heuristic is desirable for accelerating policy
learning on the reward model. While we do not directly use
the action distance for shaping the rewards from the reward
model, the auxiliary task that requires the embedding space
to preserve action distance does accelerate policy learning
as confirmed empirically in Section 4.

3.4. Utilizing Action Distances for Reward Learning
The central idea is to create an auxiliary objective for the
reward learning task where the reward model Rh is also
predictive of the action distance between any two states.
Under PbRL, the main reward learning objective is given by
Equation 5. As shown by (Fouss et al., 2005), we know that
an embedding space where the distance between the points
(i.e. the embedding of state, action pair) is proportional to
the action distance exists. Hence, we resort to performing a
metric Multi-dimensional scaling (see Section A.2) using
our action distance measure, i.e. ensure that the embedding
space in the reward model r̂ also reflects action distances.

Therefore, we ensure that the embedding space of the reward
model, Re(s) of the state s, say the penultimate layer if Rh
is a neural network, by ensuring that the Euclidean distance
between the embedding of two states si and sj reflects
the action distance dπ(si, sj). This can be achieved by
minimizing the Mean Squared Error (MSE) between the
computed distance in the embedding space and the action
distance as follows:
Lad = E

si,ai
sj ,aj

dy∼Dad

(||Re(si, ai)−Re(sj , aj)||2 − dy)2 (3)

where, si, ai, sj , aj are state action pairs in the dataset
Dad = ((si, ai), (sj , aj), dy) which consists of the com-
puted ground truth action distances between them as dy .

3.4.1. COLLECTING DATA FOR ACTION DISTANCE LOSS

Proposition 3.6. For a stochastic policy π that induces a
stationary distribution, under a balanced sampling from the
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dataset obtained by from Algorithm 1, a perfect function
approximator can estimate the action distance between the
states si and sj .

We leverage the trajectory bank Dτ (agent’s replay buffer)
to create the dataset with action distance targets, Dad. The
key idea is that since the action distance ground truth that
we want is an expectation over number of actions taken to
reach sj from si, we can approximate this action distance
by sampling a state si, sj ∈ τ where j > i, τ ∈ Dτ and use
the number of action steps taken in the trajectory from si to
sj as the ground truth distance dy = |j − i| as described in
Algorithm 1 (see Appendix B). An important note is that the
distances dy in the dataset Dad should be from the agent’s
current policy πϕ. For off-policy RL algorithms where the
replay buffer,Dτ , would contain trajectories sampled from a
stale policy, we emulate the required behavior of the dataset
Dad by ensuring that only the last k trajectories added to the
dataset Dτ are used to compute Dad. Practically, instead of
picking n samples uniformly within a trajectory, we found
it better to generate all combinations of (i, j) s.t. i < j to
populate the dataset. Refer to D.3 for the proof of 3.6.

3.4.2. ACTION DISTANCE BASED PBRL OBJECTIVE

We perform a linear combination of the proposed action
distance based loss functionLad the cross entropy loss LCE ,
as in equation 5, (see Section A) to get our novel reward
learning objective:

Lreward = λCELCE(Dh) + λadLad(Dad) (4)

where LCE is computed over Dh containing the queried
trajectory pairs with human binary feedbacks (mean over
the samples), and Lad is computed over the dataset of state
pairs with action distance targets Dad created from the k
most recent trajectories added to Dτ .

4. Empirical Evaluation
We design our experiments to investigate the following:

1. How do Action Distances improve the feedback sample
efficiency compared to state of the art PbRL baselines?
What is it’s impact on policy learning?

2. How do Action Distances fare against PbRL baselines
adapted to be aware of environment dynamics, or pre-
serve the Eucledian distance between states?

3. How do the various factors like length of query tra-
jectory, number of feedback queries and weight of the
action distance loss affect the performance of the PbRL
agent?

4. Does combining Action Distances with other Semi-
Supervised approaches affect the overall performance?

To validate our proposed method, we conduct our exper-
iments on six domains of Meta-World, namely, Hammer,
Door-Open, Drawer-Open, Window-Open, Button-Press,

Sweep-Into (Yu et al., 2020). We use the DMControl do-
mains of Walker-Walk to answer the last question posed
above. These domains have also been used in prior PbRL
literature and the oracular reward setup assumes human
preference to be behavior-oriented (that is the tacit task of
walking). Following B-Pref (Lee et al., 2021b), we consider
a scripted human in the loop (HiL) who provides a binary
feedback label of their preference during the agent’s training.
Since the oracle uses the underlying task reward (henceforth,
true reward model) to generate binary feedbacks, it allows
us to evaluate the learned policy on the true reward. Finally,
since the proposed method can be used with any existing
PbRL technique, we use the state-of-the-art approach PEB-
BLE (Lee et al., 2021a) in our experiments as the backbone
algorithm and call the combination of our reward learn-
ing objective in Equation 4 and PEBBLE as ADLoss (see
Appendix E). The result plots show the mean (solid line)
and standard deviation (shaded region) over five random
seeds. Refer to Appendix for more details on domains F.6,
experimental setup F and PEBBLE algorithm E.

State-of-the-art baselines: Since PEBBLE is the backbone
algorithm used in the experiments for showing the benefits
of action distance measure, we use PEBBLE as baseline.
Additionally, we use the state-of-the-art PbRL algorithm
SURF as our baseline. We use the version of SURF without
temporal data augmentation, which helps in comparing the
effects of semi-supervised learning by additional trajectory
samples (SURF) and semi-supervised learning of action dis-
tances (ours). Finally, we use SAC trained on underlying or-
acle rewards as a loose upper-bound of policy performance.
Figure 2 shows the performance of action distance auxiliary
task (red) to be substantially and consistently better than
baselines PEBBLE and SURF. Interestingly, for several do-
mains (Hammer, Door-Open, Button-Press, Drawer-Open,
Window-Open), our algorithm reaches performance very
close to SAC (Haarnoja et al., 2018). As pointed out in 3.3,
we also note that a typical pattern with ADLoss is an early
peak towards higher return (indicative of accelerated policy
learning).

Adapted PbRL Baselines: While we have discussed that ac-
tion distance loss provides the reward model about valuable
information like reachability, environment dynamics and
distance to goal, part of these could also be given by other
auxiliary tasks like forward dynamics prediction (Nguyen
et al., 2021; Zhang et al., 2018) which were proposed in the
context of RL for improved policy learning. We adapt the
task of forward dynamics prediction by updating the reward
model embedding to be predictive of the next state (for the
given state-action pair). We refer to this as “Rdynamics”.

Apart from action distances, Eucledian distances can also
be preserved in the embedding space by the stress loss
in mMDS (Equation 8). Hence, we create a baseline



Exploiting Action Distances for Reward Learning from Human Preferences

Figure 2. Learning curves on robotic manipulation tasks (given as “name / number of feedbacks”) as measured on the success rate
comparing ADLoss with PEBBLE, SURF and SAC.

Figure 3. Learning curves on robotic manipulation tasks (given as ”name / number of feedbacks”) as measured on the success rate
comparing ADLoss with adapted PbRL baselines Rdynamics and L2EmbeddingLoss.

“L2EmbeddingLoss” that uses L2 distance between the orig-
inal state representations as the target in mMDS. Fig. 3
show that Rdynamics and L2EmbeddingLoss, although are
a slight improvement over PEBBLE, are clearly weaker ap-
proaches than action distance based auxiliary task. Since it
is known that learning world models can be a challenging
(Ha & Schmidhuber, 2018) task in itself, then, even though
Rdynamics captures information about the environment dy-
namics, incorporating it into PbRL is nontrivial. We find
that L2EmbeddingLoss provides no additional useful induc-
tive bias (for example goal-oriented nature of preference in
our case, SSL over trajectories in SURF, etc.) to provide
any basis for improvement, and performs the worst.

Additional Experiments: We conducted additional experi-
ments to get more insignts about the effectiveness of AD-
Loss such as the effect of query segment length, effect of
varying λad the impact of ADLoss when used in conjunction
with other SSL approaches. (see App. C).

5. Discussion
In this work, we present a Preference-based Reinforce-
ment Learning algorithm for goal-oriented preferences like
“reaching for a button to press it” or “reaching for a door to
open it” that have an absorbing state. We note that many
popular PbRL works have used the underlying task reward

in robotic manipulation domains like Meta-World to emu-
late human preferences, and that these preferences are in
fact goal-oriented. In the context of goal-oriented prefer-
ences we propose that the policy being learned along with
the reward model can also provide valuable information like
reachability, environment dynamics and distance-to-goal
measures. We extract this learning signal via action dis-
tances, which is the expected number of actions taken under
a policy to go from one state to another, and incorporate it
into the reward learning objective by proposing an auxiliary
objective for the reward model to be predictive of these
action distances. This auxiliary objective ensures that the
Eucledian distance between the embeddings (in the reward
model) between two (state,action) tuples reflects the action
distance. In addition to aiding the reward learning process,
we show that action distance heuristics are pessimistic, and
thus, can accelerate the policy learning. Our experiments
on six Meta-World robotic manipulation tasks shows the
effectiveness of our approach over several PbRL baselines.

Interesting future work includes combining action distance
based auxiliary task with approaches that maybe specific
to behavior-oriented preferences to create a comprehensive
PbRL solution. Additionally, we believe action distances
could be a key factor in pushing PbRL approaches to work
on long horizon tasks with possible chained goals and would
continue our research in that direction.
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Köster, R., McKee, K. R., Everett, R., Weidinger, L., Isaac,
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A. Preliminaries
A.1. Preference-based Reinforcement Learning

Reinforcement learning allows for agents interacting in an environment E where at each discrete time-step t, the agent
receives an observation ot from the environment and chooses an action at based on its policy π. As in conventional RL
frameworks, we assume that the underlying system is a Markov Decision Process, i.e. the tuple < S, T ,A, R̃h, γ >
describing the state space S, agent’s action space A, the underlying environment transition dynamics T , the discount
factor γ where the agent’s goal is to maximize the return

∑∞
k=0 γ

kR̃h(st+k, at+k) computed over the reward systemRh in
concern. In the PbRL setup that we are interested in, the goal of the agent is twofold: (1) to infer the human’s underlying
reward model R̃h via binary feedback over trajectory pairs, and (2) to further use the learned reward model Rh to compute a
policy πϕ parameterized by ϕ to maximize discounted cumulative return over Rh.

We utilize the formulation presented in (Wilson et al., 2012) for the Preference-based Reinforcement Learn-
ing problem where the agent queries the human in the loop with a trajectory pair (τ0, τ1), where, τi =
{(sk, ak), (sk+1, ak+1 · · · (sk+H , ak+H))}, for a binary feedback y ∈ {0, 1} indicating their preferred trajectory. Such
feedbacks along with the queried trajectories are stored in a dataset Dτ as tuples (τ0, τ1, y). Following the Bradley Terry
model (Bradley & Terry, 1952) to compute the probability of one trajectory being preferred over another, recent line of
works like (Lee et al., 2021a; Christiano et al., 2017) approximates the human reward function as Rh, parameterized by, say,
ψ, by solving a supervised learning problem where the returns computed over the learned reward function are higher for
trajectories that were preferred by the human in the loop than the returns computed on the non-preferred trajectory. This is
done by minimizing the cross-entropy between the predictions and ground truth human labels as follows:

LCE = − E
(τ0,τ1,y)∼D

[y(0)logPψ[τ0 ≻ τ1]

+ y(1)logPψ[τ1 ≻ τ0]]
(5)

where probabilities Pψ are computed using the approximated reward function Rh as:

Pψ[τ0 ≻ τ1] =
exp(

∑
tRh(s

0
t , a

0
t ))∑

i∈{0,1} exp(
∑
tRh(s

i
t, a

i
t))

(6)

A.2. Multi-dimensional Scaling

Multi-dimensional Scaling (MDS) (Borg & Groenen, 2005; Young & Hamer, 2013) is a form of non-linear dimensional
reduction where dissimilarities between pairs of the data in the original space are mapped to distances and are preserved
in the low-dimension space. While MDS has typically been used to visualize similarity or dissimilarity between a set of
objects in a low-dimensional space, it has also been used to construct embedding space for a set of objects by finding a set
of coordinates in the low-dimensional space that minimize the difference between the distances between the objects in the
original high-dimensional space and the distances between the objects in the low-dimensional space.

Classical MDS (or Toegerson-Gower Scaling, or Principal Coordinates Analysis, or cMDS) assumed that the dissimilarities
in the original dimensionality are in the Euclidean space and therefore, algorithms for classical MDS preserve the input
dissimilarities when these dissimilarities are Euclidean distances. Say the dissimilarity for objects i, j is given by δi,j , and
the embedding space is given by E. Then, cMDS would reduce a loss (also called stress), as follows:

σcMDS(E) =
∑
i<j

wij(dij(E)− δij)2 (7)

In this work we use a generalization of classical MDS, called Metric MDS (mMDS) where in the stress Equation 7, the
distance metric and dissimilarity measures are replaced by f(x) to give the following stress objective:

σmMDS(E) =
∑
i<j

wij(f(dij(E))− f(δij))2 (8)

We note that, as pointed out in (Venkattaramanujam et al., 2019) mMDS does not admit an analytical solution, instead it is
solved iteratively and convergence to a global minimum is not guaranteed.
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B. Dataset for Action Distance Loss Update

Algorithm 1 Dataset for Action Distance Loss Update

Input: Dτ , Recent window k, Samples per trajectory n
Dk
τ = Dτ [k · · ·N ] {N is size of Dτ}

Initialize Dad ← ∅
for ix = 0 to N − k do

for iy = 0 to n do
Uniformly choose i, j s.t. i < j ≤ T {T} is length of trajectory τ
x, y = ((sτi , a

τ
i ), (s

τ
j , a

τ
j )), |j − i|

Dad = Dad ∪ (x, y)
end for

end for
return Dad

C. Additional Experiments

Figure 4. Ablation study on Button-Press (2000 feedbacks). (left) Effect of query segment length on the ADLoss agent performance for
lengths {30, 50, 80}. (center) Effect of varying λad in equation 4 in the set {3, 10, 20, 40}. (right) Additional experiment on Sweep-Into
(10000 feedbacks) to evaluate how does combining action distances with other SSL approaches may impact PbRL performance.

To get more insights about the effectiveness of ADLoss, we conducted additional experiments on Meta-World-Button-Press,
Sweep-Into and DMControl Walker-Walk. From Fig. 4 (left), we find that minor change to the length of the query segment
dose not greatly impact the agent’s performance. This is important as although the given query sizes are inconsequential with
respect to compute, these size differences can have a huge cognitive impact on the human in the loop. Fig. 4 (center) tests
ADLoss performance at different λad values in the ADLoss reward learning objective shown in Equation 4. Similar to (Park
et al., 2022), we find that tuning this hyperparameter has the most impact on the performance. Next, we test our ADLoss in
conjuction with a SSL techqniue (proposed in Appendix I) to study how compatible is ADLoss to other PbRL approaches.
As discussed in section 3.3, we find that the SSL approach (TLoss), when used in conjunction with ADLoss benefits from
accelerated policy learning. Finally, we performed experiments with DMControl Walker-Walk to realize whether ADLoss
has any negative impact on behavior-oriented preferences, We find (Appendix H) that ADLoss performance is comparable to
SURF which is a positive indicator for future work for hybrid PbRL algorithms using action distances for behavior-oriented
preferences.

D. Proofs
D.1. Proof for Proposition 3.4

Statement: For any MDP, {S, T ,A,R,γ}, with ∀s ∼ S, R(s) ≤ −1, γ = 1 and an absorbing state sg, the average
passage distance mπ(sg|si) from any state si to the goal state under a stochastic policy π is a pessimistic heuristic.

Proof Sketch: As defined by (Cheng et al., 2021), a pessimistic heuristic is one that overestimates the cost to goal (or
underestimates the reward). Proving Proposition 3.4 is straightforward, since the average passage distance, by definition,
gives an estimate of the number of actions required to reach the goal, which is an overestimate of minimum cost-to-go from
that state to the goal.
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D.2. Proof for Proposition 3.5

Statement: For a strong-reversible MDP, {S, T ,A,R,γ}, γ = 1, ∀s ∼ S, R(s) ≤ −1 and an absorbing state sg, the
action distance dπ(si, sg) between any state si and the goal state under a stochastic policy π is a pessimistic heuristic.

Proof Sketch: To prove, we must show that the commute distance from any state si to any state sj is an overestimate
of the shortest distance from si to sj . Since it is a strong-reversible MDP, the shortest distance from si to sj , say d∗,
is the same as shortest distance from sj to si. From proposition 3.4, mπ(si|sj) ≥ d∗ and mπ(sj |si) ≥ d∗. Hence,
dπ(si, sj) =

1
2 (m

π(si|sj) +mπ(sj |si)) ≥ d∗, is a pessimistic heuristic.

D.3. Proof for Proposition 3.6

Statement: For a stochastic policy π that induces a stationary distribution, under a balanced sampling from the dataset
obtained by from Algorithm 1, a perfect function approximator can estimate the action distance between the states si and sj .

Proof Sketch: Algorithm 1, in the limit, can generate infinitely many samples for action distance targets from a state i to j,
and j to i. This is easy to realize as the dataset is constructed by uniformly picking si, sj pairs from trajectories sampled
via the policy π. As the action distance estimate is the average of the distance from i to j and back. It is possible that the
number of data points sampled from i→ j are considerably more than j → i in which case even a perfect approximator
under MLE (Maximum Likelihood Estimation) assumption would predict the mean of the observed samples as the action
distance. The mean of the observed samples is guaranteed to be equal to the commute distance or the action distance if the
observed samples along each direction i→ j and j → i are balanced (Venkattaramanujam et al., 2019).

E. PbRL Algorithm
We present our PbRL algorithm, as shown in (Lee et al., 2021a), which uses the PEBBLE as a backbone. The integration of
action distance loss into the PbRL algorithm requires no change to the model architectures or the learning paradigm and can
be easily done so by updating the lines in red in Algorithm 2. SURF updates the same parts of the pseudocode as ours where
the SSL (semi-supervised learning) approach in SURF integrates in to the LReward and the SSL step populates the feedback
buffer with pseudo-labels.

E.1. PEBBLE Algorithm

PEBBLE is a PbRL algorithm that comprises of two key elements: pre-training and relabeling experience buffer. To gather a
wide range of experiences, PEBBLE starts by using intrinsic motivation (Chentanez et al., 2004; Barto, 2013; Abel et al.,
2021; Schmidhuber, 2010) to pre-train the policy, which optimizes the policy to increase the state entropy in order to explore
the environment effectively. Afterwards, PEBBLE uses the SAC algorithm, a state-of-the-art off-policy RL algorithm, to
further train the policy. To ensure stability in the learning process, PEBBLE relabels all experiences in the buffer when the
reward model is updated.
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Algorithm 2 Integrating ADLoss into PEBBLE

Input: feedback frequency K, # queries per feedback session M
Initialize parameters of Qθ and r̂ψ
Initialize a dataset of preferences Dh ← ∅
// EXPLORATION PHASE
Dτ , πϕ ← EXPLORE() in (Lee et al., 2021a)
POLICY LEARNING PHASE
for each iteration do

// REWARD LEARNING PHASE
if iteration % K == 0 then

for m in 1...M do
(σ0, σ1) ∼ SAMPLE() in (Lee et al., 2021a)
Query instructor for y

end for
for each gradient step do

Sample minibatch {(σ0, σ1, y)j}
Dh
j=1 ∼ Dh

Perform Semi-Supervised Learning as in Algorithm 1
Optimize LReward w.r.t. ψ

end for
Relabel entire replay buffer Dτ using r̂ψ

end if
REINFORCEMENT LEARNING PHASE
for each time-step t do

Collect st+1 by taking at ∼ πϕ(at|st)
Store transitions Dτ ← Dτ{(st, at, st+1, r̂ψ(st))}

end for
for each gradient step do

Sample random minibatch {τj}Dτ
j=1 ∼ Dτ

Optimize LSACcritic and LSACactor w.r.t. θ and ϕ, respectively, as in (Lee et al., 2021a)
end for

end for

F. Experiment Details
Unless stated otherwise, we have attempted to keep all the hyperparameters & experiments settings as close to that proposed
in prior works (Park et al., 2022; Lee et al., 2021a).

F.1. State Space and Action Space

We use the available Meta-world package (Yu et al., 2020) to instantiate our environments. We use the default state space
representation given by the package, that contains information about the Cartesian position of the end-effector, positions of
objects of concern etc. The details about the action space and the observation space are given in (Yu et al., 2020).

F.2. Reward Architecture and Embedding Space

Following the implementation of (Lee et al., 2021a; Park et al., 2022) we implement reward model via a neural network and
bound the final output using a tanh activation function : [-1, 1]. For all the Meta-world experiments the reward model has
three hidden layers with 256 neurons each followed by the prediction layer (with one neuron). The embedding space used
for minimizing the metric Multidimensional Scaling stress or the derived ADLoss Mean squared error is the penultimate
layer of the network. We use the ADAM optimizer for training the SAC actor-critic as well as the reward model. The
hyperparameters used for baseline PEBBLE, SURF and ADLoss (our action distance based auxiliary task loss) are given in
tables 3, 4, and 5.

The input to the reward model is (state, action) tuple. As used previously (Park et al., 2022; Lee et al., 2021b), we stack the
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state and action vectors and treat them as a single input for the reward model.

F.3. Oracle

While B-Pref (Lee et al., 2021b) explores various types of scripted humans in the loop like myopic, noisy etc, since our
primary objective in this work is to evaluate the effectiveness of Action Distance measure for PbRL, we assume an oracle
scripted human who uses the underlying reward to correctly provide the binary feedback. The feedback is given as follows :

y(τ0, τ1) =

{
0, if

∑
i R̃h(τ0) >

∑
i R̃h(τ1)

1, if
∑
i R̃h(τ0) <

∑
i R̃h(τ1)

(9)

where, R̃h is the environment reward being used as the human preference reward function and τ0, τ1 are the queried
trajectory pairs. Note that we work under the setting that the preference feedback is binary and therefore if the trajectory
returns are equal we uniformly pick a preferred trajectory. This does not pose any problems with our chosen benchmark
domains as the underlying reward is dense and shaped (Devlin & Kudenko, 2012; Ng et al., 1999).

F.4. Sampling Schemes

We refer the readers to (Lee et al., 2021a; Christiano et al., 2017) for the various sampling schemes that have been proposed
in prior work. In this work, for all the experiments we use the disagreement based sampling for selecting pair of trajectories
to query to the human in the loop.

F.5. Implementation, Code and Compute

We use the publicly available implementation of B-Pref (Lee et al., 2021b) for the implementation of PEBBLE and SAC. We
implement the remaining baselines, SURF, Rdynamics, L2EmbeddingLoss (code in supplementary). All the experiments
were run on an Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz, with Quadro RTX 8000 GPU.

F.6. Evaluation Domains

(a) Hammer (b) Door Open (c) Button Press (d) Sweep Into (e) Drawer Open (f) Window Open

Figure 5. Rendered images of the Meta-world (Yu et al., 2020) evaluation domains.

Figure 6. Rendered image of DMControl Suite (Tunyasuvunakool et al., 2020) - Walker Walk - a benchmark for behavior-oriented
preferences.

We present here in Table 1, the description of the Meta-World domains that we have used to show our empirical evaluations,
along with the respective environment rewards in Table 2 as have been specified in (Yu et al., 2020). Effectively, all the
specified rewards are goal-reaching distance-to-go and therefore an oracle over these rewards has goal-oriented preferences.
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Table 1. Meta-World domain descriptions, as in (Yu et al., 2020).
Task Description
Hammer Hammer a screw on the wall. Randomize the hammer and the screw positions.
Door Open Open a door with a revolving joint. Randomize door positions.
Button Press Press a button. Randomize button positions.
Sweep Into Sweep a puck into a hole. Randomize puck positions.
Drawer Open Open a drawer. Randomize drawer positions.
Window Open Push and open a window. Randomize window positions.
Unlock Door Unlock the door by rotating the lock counter-clockwise. Randomize door positions.
Plate Slide Slide a plate into a cabinet. Randomize the plate and cabinet positions.

Table 2. Meta-World domain rewards, as in (Yu et al., 2020).
Task Description
Hammer − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Door Open − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Button Press − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Sweep Into − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Drawer Open − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Window Open − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Unlock Door − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Plate Slide − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
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G. Hyperparameters

Table 3. Hyperparameters of backbone PEBBLE in our experiments.

Hyperparameter Value Hyperparameter Value

Initial temperature 0.1 Hidden units per each layer 1024(DMControl), 256(Meta-world)
Length of segment 50 # of layers 2(DMControl), 3(Meta-world)
Learning rate 0.0003 (Meta-world) Batch Size 1024(DMControl), 512(Meta-world)

0.0005 (Walker) Optimizer Adam (Kingma & Ba, 2014)
0.0001 (Quadruped)

Critic target update freq 2 Critic EMA τ 0.005
β1, β2 (0.9, 0.999) Discount γ 0.99
Frequency of feedback 5000 (Meta-world) Maximum budget / 1000/100, 100/10(DMControl)

20000 (Walker) # of queries per session 10000/50, 4000/20(Meta-world)
30000 (Quadruped) 2000/25, 400/10 (Meta-world)

# of ensemble models Nen 3 # of pre-training steps 10000

Table 4. Hyperparameters of SURF.

Hyperparameter Value

Unlabeled batch ratio µ 4
Threshold τ 0.95
Loss weight λ 1

Table 5. Additional hyperparameters used in our experiments.

Hyperparameter Value

Recent trajectories k 5
Adloss weight 20

H. Additional Experiment Details
H.1. Setup for Rdynamics baseline

The Rdynamics baseline requires modification to the reward model. While imposing assumptions that one can easily modify
the model architecture should be avoided, predicting forward state dynamics has been used in past RL literature and has
been shown to be useful for policy learning. Just as we use the penultimate reward model layer as the embedding space,
we attach another layer that predicts the next state and add a forward state prediction loss. Fig. 7 illustrates the reward
architecture used for Rdynamics baseline and below is the additional loss used for forward state prediction, where y is the
predicted next state. A linear combination of Lforwarddynamics and LCE (similar to ours, in equation 4) gives the reward
learning objective for rdynamics.

Lforwarddynamics =MSE(y, st+1) (10)

H.2. Setup for L2EmbeddingLoss baseline

L2EmbeddingLoss uses the same LReward objective as in Equation 4, except that in Equation 3 the targets dy are set to be,
||sj − si||2, i.e., the L2 norm of the difference between the two states.
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Figure 7. Overview of the reward model architecture for Rdynamics.

H.3. Using ADLoss for Behvaior Oriented tasks

While the use of action distances has been motivated in the context of goal-oriented preferences, we performed an additional
experiment to test whether ADLoss has any adverse effects for preferences on behavior-oriented tasks. We test our proposed
method on Walker-Walk, a popular DMControl benchmark for PbRL, and find that with just 100 feedback queries it is able
to perform similar to SURF (state of the art). Without drawing any scientific conclusions, this experiment atleast motivates
us to continue to analyze the impact of action distance measure in PbRL in behavior-oriented preferences.

Figure 8. Performance of the proposed action distance based auxiliary task (with backbone PEBBLE) on the behavior oriented task of
Walker-Walk in the DMControl suite using 100 feedbacks.
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I. Triplet Loss based Semi-Supervised Learning objective
While we have shown the benefits of ADLoss in section 4, we wanted to test how would ADLoss perform in conjunction
with another SSL approach.

In pursuit of proposing a comprehensive, yet complementary solution for PbRL, we present a novel semi-supervised learning
objective (SSL) that utilizes pseudo-labelling for unlabelled trajectories followed by a triplet loss minimization that can
be used in conjunction with the proposed Action Distance Auxiliary task. The proposed combination is to explore one of
the tasks we mention as the future work, which is to find a more comprehensive solution for PbRL that can boost agent’s
performance for both behavior-oriented and goal-oriented preference. While ADLoss takes care of teh goal-oriented parts of
a specified preference we look for a technique that can not only help with behavior-oriented parts of the preference but also
gels well with ADLoss.

In our limited testing we have found that the combination of ADLoss and the following triplet loss SSL outperforms the
PEBBLE / SURF baselines and is complementary across several domains (for DMControl - capturing behavior preferences
and Metaworld - capturing goal oriented preferences).

This SSL objective is operationalized by a triplet loss that requires a specified anchor data point, and positive and negative
samples. It then ensures that there exists atleast some margin gap between the +sample-anchor distance and -vesample-
anchor distance. We first set the sampled trajectory from the unlabelled dataset as our anchor. The minibatch of trajectory
pairs sampled from the human feedback replay buffer will serve as positive or negative samples. To do so, we make an
Absolute Preference over Minibatch assumption as,

Assumption I.1. In a minibatch of k samples from human feedback buffer as triplets of (τ0, τ1, y)i=ki=1 , the preference label
can be treated as an absolute preference about the trajectory, i.e. if y = 1 then trajectory is a preferred trajectory (not relative
to other trajectories).

Assumption I.1 enables the creation of a bipartite set of trajectories, with set g containing all preferred trajectories and set b
containing all dispreferred trajectories. If the queries are made from far enough regions of the state space, the assumption
holds well, but if the batch size is too large, it is possible to encounter situations where the assumption does not hold.
Because of this, we limit the batch size to be in the set {8, 16, 32}.

We perform a pseudo-labelling step where we identify whether the sampled trajectory τ is closer to the trajectories in set g
or b where the label is:

y =

{
g ; d(R(τ), E

g∼g
[R(τg)]) < d(R(τ), E

b∼b
[R(τb)])

b ; otherwise
(11)

where d is the L2 distance function. We use the set y as the positive set of data points and 1-y as the negative set for our
triplet loss,

Lt(τ) = max(0, ||R(τ)− E
y∼y

[R(τy)])||2

−||R(τ)− E
ỹ∼1-y

[R(τỹ)])||2 +m)
(12)

where m is the margin hyperparameter. We overload the notation for reward to reflect the rewards for the trajectory states as
a vector, i.e.,R(τ) =

[
R(s0) R(s1) · · · R(sT−1) R(sT ))

]T
.

Figure 4 Sweep-Into shows results of using TLoss, ADLoss and Cross Entropy together and ablates against each component.
We find that while the performance of the agent (ADLoss + TLoss) is quite close to the best performer, the addition of action
distance based loss to the triplet loss does accelerate policy learning - a feature which was theoretically motivated for action
distances in Section 3.3.


