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ABSTRACT

Computer vision systems can employ multiple vision models to complete a sin-
gle task or an array of tasks. Reasons may span from no single model being
available that meets user requirements, hosting devices lacking the compute to ex-
ecute a single model that contains the full required functionality, or training a new
model requires extensive resources or expertise. Without intelligent input discrim-
ination, these systems risk inefficient processing, leading to increased inference
times and energy consumption. This paper investigates the impact of intelligent
model activation regulation on energy efficiency and inference speed. We propose
BICEC (Branched Image Classification Evaluative Controller), a lightweight so-
lution based on a branched EfficientNetv2 architecture. BICEC can be integrated
with existing vision systems with minimal tuning, requiring no retraining of the
original system, by creating model-specific branches optimized for minimal size
and near-optimal performance. Results show good performance for identifying
when a model is relevant and significant reductions in system inference time and
energy cost. While the scope of this work focuses on vision systems, we hope
to exemplify how tighter control of AI systems can enhance sustainability and
computational efficiency.

1 INTRODUCTION

Intelligent control involves algorithms that optimize system regulation (Åström & McAvoy, 1992).
It has proven effective in reducing resource overuse in non-AI systems, examples being optimized
thermostat control for heating systems (Nägele et al., 2017) and task scheduling in cloud comput-
ing (Rjoub et al., 2021). When we build AI systems composed of multiple models, for a single
task or diverse set of tasks, lack of regulation can cause inefficient processing when inputs are pro-
cessed by irrelevant models. This results in increased energy consumption and computational waste,
contributing to the growing concerns over AI’s sustainability (Van Wynsberghe, 2021; Thompson
et al., 2020). Optimizing model activation can help mitigate these issues and reduce accumulative
inference energy costs in AI systems.

Motivation for employing multiple AI models varies by domain, whether to extend system function-
ality (Yang et al., 2023; Phung et al., 2021), enhance performance (Qayyum et al., 2021; Mogan
et al., 2023), or accommodate hardware constraints (Xu et al., 2019; Hu et al., 2019). BICEC
(Branched Image Classification Evaluative Controller) proposes input-conscious activation control
for vision systems, minimizing unnecessary processing to reduce inference times and energy con-
sumption. This reduction of waste processing can contribute to the development of more sustainable
AI systems. BICEC’s design aims to be attachable and adaptable. Attachable, meaning it can be
trained independently and integrated without requiring retraining or modification of existing system
models. Adaptable meaning it reduces tuning requirements when the attached system changes.

2 METHODOLOGY

BICEC is an attachable classification-based intelligent controller designed to optimize model acti-
vation in computer vision systems. It reduces computational costs and energy consumption by se-
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lectively activating relevant models based on input characteristics. BICEC processes inputs through
a set of shared layers that learn a common representation for all branches. Each branch corresponds
to a specific model and is trained to output a binary classification indicating whether its associ-
ated model should be activated. Activation conditions (Table 1) define the features that determine
a model’s relevance to an input. BICEC undergoes a two-phase training process. Phase 1: A base
model is established with shared layers and branches derived from a pretrained EfficientNetV2-B0
network (Figure 1a). Phase 2: Branches are scaled and optimized to minimize size while maintain-
ing activation accuracy (Figure 1b). During training BICEC is initialized with an input layer per
branch, however, after training the input layers for the final model (Figure 1c) are cut to one.

(a) Phase 1: Base Creation. (b) Phase 2: Branch Adaptation. (c) Final Model.

Figure 1: Visualization of BICEC during and after training where P1 denotes phase 1, P2 phase 2,
Br branch, BT binary threshold, i input, and BLK denotes an EfficientNetV2 block.

2.1 TRAINING PHASE 1: BASE CREATION Table 1: BICEC functions.

Ref Function Activation Condition

M1 Object Detection Animates
M2 Segmentation People
M3 Face Detection Faces
M4 Pose Detection 3+ People
M5 Action Recognition Call, Text, Eat, Drink
M6 Segmentation Clothing Accessories

Figure 2: Example BICEC classifications.

Design. BICEC is a branched neural network built
on shared layers derived from the first five blocks
of EfficientNetV2-B0 (Tan & Le, 2021), compris-
ing only 1.39M parameters. Each branch extends
from these layers, incorporating the sixth block of
EfficientNetV2-B0. To enhance efficiency, BICEC
is initialized with EfficientNetV2-B0 weights pre-
trained on ImageNet (Deng et al., 2009), enabling
faster convergence. Since standard transfer learn-
ing requires matching architectures, BICEC Phase
1 (P1) ensures each branch (Br) plus shared layers
(S) mirrors the pretrained EfficientNetV2-B0 net-
work, allowing partitioning of pretrained weights
(Pw) across shared (Pw0, . . . , PwS) and branch-
specific layers (PwS , . . . , Pwn).

Training. P1 optimizes shared layers for subsequent
branch scaling in Phase 2 (P2). Each branch is ini-
tialized with EfficientNetV2-B0 weights pre-trained
on ImageNet and with its own input layer, output layer, and unique dataset (See Appendix A.1).
The combined loss (

∑n
i=1 Li) updates shared layers, mitigating conflicting updates. Each branch

updates its own layers independently. Training continues until branch accuracy plateaus, selecting
the configuration with the highest average branch accuracy. Final weights are saved for P2.

2.2 TRAINING PHASE 2: BRANCH SCALING

Design. In P2, BICEC retains its structure but reduces branch sizes to decrease parameters and
FLOPs while maintaining close-to P1 performance. We re-scale each branch to a fraction of its P1
width and depth until a minimal P2 branch scale is found that achieves close-to it’s P1 counterpart.
This process, supported by Uniform Element Selection (UES) proposed by Xu et al. (2023), involves
uniformly selecting weights from the source branch at each layer by sampling evenly spaced indices
along each dimension of the weight tensor. Given a source tensor Wt of shape (t1, t2, . . . , tn) and a
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target tensor Ws of shape (s1, s2, . . . , sn), with si ≤ ti, the selection extracts si evenly spaced slices
from ti at each layer. These weights are then initialized in the target layers, preserving structural
consistency and enabling partial knowledge transfer.

Training. The complexity of features learned by each branch varies due to several factors, including
the number of objects associated with a single activation condition, object sizes, the abstractness
of activation conditions, and feature variation. These complexities make it challenging to predict
optimal branch scales. BICEC refines scales iteratively. A set of scales R is defined from manually
specified minimum (L) to maximum (U ) thresholds:

Scales =
{
L+

U − L

s− 1
· (n− 1) | n ∈ {1, 2, . . . , s}

}
. (1)

Shared layers, frozen with P1 weights, support branches initialized at scale L with weights gained
from UES. An allowable accuracy drop a is set, iterating through R until BrR = min(BrP1),
subject to AR + a ≥ AP1, where AR and AP1 denote reduced and full-sized branch accuracies. If
no scale meets this criterion, the best-performing AR is selected. By P2 completion, the network
satisfies #(Lb + S) ≤ TP ≤ #(Ub + S), where #(·) is number of parameters, TP is total
parameters, b is branch count, and S denotes shared layers.

Branches are scaled using the same unique datasets mentioned in P1. Weights for all tested s are
stored, retaining the top-performing epoch’s weights to ensure re-achieving P2 branch performance
is not challenging. Freezing shared layers ensures consistent feature extraction across branches and
reduces the complexity of the P2 training scenario leading to faster convergence.

2.3 ADDITIONAL FEATURES

Branch Removal. BICEC allows branch removal without retraining, reducing computational cost
while preserving shared layers and remaining branches. Removed branches can be stored and re-
integrated as needed.

Branch Addition. BICEC is designed to accommodate the addition of new vision system models
by extending a new branch from its shared layers. The process for initializing the new branch and
adapting the shared layers follows a two-phase alternating strategy: (1) Step (St) – the new branch
is trained for N epochs while the shared layers remain frozen; (2) Pull (Pu) – the new branch is
frozen, and shared layers update for N epoches using accumulated losses from all branches. This
alternation continues as St1,2 → Pu1,2 → St3,4 → Pu3,4 → . . . with a reduced learning rate
in Pu to prevent instability. The new branch then enters Phase 2 (P2, Section 2.2). The updated
network size follows TPnew = TPold+#(L) ≥ Brnew ≤ #(U), where TPnew is total parameters
with the added branch, TPold is total parameters before the branch was added, and #(L),#(U) is
the parameter count of the lower and upper branch scale.

During branch addition, BICEC restricts prior branches to processing inputs only during the pull
phase to accumulate losses for shared layer adaptation. In contrast, during the step phase and scaling
of the new branch, prior branches remain computationally inactive and receive no inputs. This design
ensures efficient adaptation without incurring the expense of full network re-training.

Binary Threshold Adjustment. Each branch produces a binary score between 0 and 1, with a
default classification threshold of 0.5. If the branch outputs a score exceeding this threshold, the
model associated with the branch is activated. We can lower the threshold for each branch increasing
relevant model activations at the cost of increasing irrelevant model activations.

3 EXPERIMENTS

Training Details. We use EfficientNetV2-B0 as the backbone of BICEC, providing a lightweight
architecture with high throughput and low GFLOPs, reducing both response time bottlenecks and
energy consumption (Tan & Le, 2021). Training and inference are conducted on an RTX 3070
(8GB). The training setup includes a learning rate of 0.0001 for shared layer creation, 0.00005
for shared layer adaptation during branch addition, and 0.0005 for the remaining training. Other
parameters include batch size = 16, clip norm = 0.0001, Binary Crossentropy loss, and the Adam
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optimizer (Kingma & Ba, 2014). Training is conducted for up to 20 epochs for shared layer creation,
8 epochs per scale, and 5 steps with 5 pulls of two epoches for branch addition.

Training Datasets. Each branch in BICEC has its own associated dataset consisting of 3156 pos-
itive (activation required) and negative (no activation required) examples. Input Relevance Tasks
(IRTs) are used to train and evaluate BICEC, containing relevant and irrelevant inputs for each sys-
tem model. We use two IRT versions: IRT-Baseline (IRT-B), a demonstration system for BICEC
experiments, and IRT-Extended (IRT-E), which evaluates the impact of branch addition. Appendix
A.1 details dataset characteristics and activation conditions.

Metrics – Accuracy. We first measure binary accuracy for individual branches and their combined
outputs. Additionally, we reuse Correct Model Activation (CMA) from Burton-Barr et al. (2024),
which quantifies how often BICEC correctly classifies an input as model relevant. Conversely,
Incorrect Model Activation (IMA) measures the frequency of incorrect classifications.

Metrics – Cost. The 5000-image COCO validation set contains less person-oriented data, making
it less relevant to the activation conditions of IRT models outlined in Appendix A.1. The Movies
dataset consists of 3000 temporally ordered frames from three Jason Bourne films in the Movie
Identification Dataset (Kaggle, 2023b). Lastly, the 5658-image Y-VLOG dataset is created by sam-
pling every 24th frame from five YouTube travel video logs. The cost reduction is the sum of the
activation cost of each model, C(mi), multiplied by the number of times the model is activated,
N(mi), divided by the total number of images in the dataset, IS, for all models mi from 1 to M .

Energy and inference time reductions follow the same calculation, with energy reduction requiring
an estimation of per-inference energy consumption. This is approximated by dividing the model’s
total FLOPS by the ratio of the maximum FLOPS per second to the maximum wattage per second.
Given that an RTX 3070 (8GB) has a theoretical performance of 20.31 TFLOPs at a maximum
power draw of 220W, this results in approximately 92.3 GFLOPS per watt. Appendix A.2 provides
model information for IRT-B and IRT-E, including inference and energy cost of each model.

3.1 NETWORK ANALYSIS

Figure 3: Branch accuracy and scaling.

Scaling. Scaling significantly reduced BICEC’s size
while revealing varying branch size requirements.
The reduction depended on a, where larger values
allowed greater compression. A small a maintained
performance with moderate reductions (Table 2); for
instance, a = 0.005 reduced model size by 33.12%.
Increasing a to 0.020 reduced the model by 87.84%
while incurring only a 1.8% accuracy drop. Addi-
tionally, FLOPs decreased by 54.42%. Figure 3 vi-
sualizes accuracy changes per branch at a = 0.020.
With similar performance at a fraction of the size,
we selected BICEC at a = 0.020 for remaining ex-
perimentation. Examples of BICEC’s classifications
are in Figure 2.

Table 2: Scaling results for U = 9. (*) indicates the maximum scale did not reach the target.

a Br1 Br2 Br3 Br4 Model Size GFLOPs Acc (%)

Orig. 1.0 1.0 1.0 1.0 19.50M 2.591 91.50
0.005 0.9* 0.9 0.9* 0.3 13.03M 2.055 90.90
0.010 0.9 0.7 0.7 0.2 8.39M 1.706 90.54
0.015 0.9 0.6 0.3 0.3 6.55M 1.520 90.02
0.020 0.4 0.4 0.3 0.2 2.47M 1.181 89.70

Binary Threshold Adjustment. We see the impact of binary threshold adjustment in Table 4.
As the binary threshold decreases from 0.5 to 0.0625, CMA increases from 86.43% to 94.55%,
indicating improved model activation for relevant inputs. However, this comes at the cost of higher
IMA, which rises from 8.16% to 27.42%. Model accuracy correspondingly declines from 89.70%
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to 84.01%, illustrating a trade-off between activation sensitivity and prediction reliability. Lower
thresholds enhance CMA but increase false activations and reduce accuracy.

Figure 4: Binary Threshold (BT) Ad-
justment for IRT-B

BT CMA IMA Accuracy

0.5 86.43% 8.16% 89.70%
0.25 90.98% 15.15% 88.45%
0.125 93.26% 21.06% 86.60%

0.0625 94.55% 27.42% 84.01%

Branch Addition. Contrary to expectations, Table 3
shows that adding branches improved accuracy, poten-
tially due to careful adaptation. A lower learning rate may
help shared layers generalize better, mitigating overfitting
(Ruder, 2017). Scaling reduced branch parameters from
4.60M to 99.2K (Br5) and 10.2K (Br6) while preserving
accuracy within a = 0.020, minimizing the increase in
total BICEC GFLOPs. New branches performed well in
both accuracy and CMA, though performance will vary
based on dataset and activation conditions. In regards to training, no re-tuning of prior branches was
required during the shared layer adaption and subsequent new branch scaling phase.

Table 3: Extending the network to create the IRT-E version of BICEC. Accuracy (A), Network (Net),
Branch (Br), Branch Post-Scaling (Br-S).

Scale ∆Params ∆GFLOPs Net A Br A Br-S A Net CMA Br CMA

IRT-E T5 0.2 +99.2K +0.01 +0.12% 90.76% 89.55% -0.22% 90.00%
IRT-E T6 0.1 +10.2K +0.003 +0.66% 99.39% 99.09% +0.79% 99.39%

3.2 COST ANALYSIS

Table 4 highlights the average inference time and energy cost reductions across models in IRT-B
and IRT-E. On average, total energy consumption dropped by 52.1% (from 4.34W to 2.08W), while
total inference time decreased by 54.7% (from 141.0ms to 63.8ms). Variability across datasets
(COCO-Val, Movie, and Y-VLOG) is linked to task characteristics and differing relevance of models
to parsed data. For example, we can observe how COCO-Val’s less person-oriented distribution
reduced model applicability compared to Movie and Y-VLOG.

Table 4: Energy and inference costs for each model associated with IRT-B and IRT-E. See Appendix
A.1 or Appendix A.2 for more information on model costs and model functions.

Inference (ms) Energy (W)

M1 M2 M3 M4 M5(E) M6(E) M1 M2 M3 M4 M5(E) M6(E)

Standard 17 33 13 12 46 20 1.18 0.86 0.45 0.88 0.38 0.67
COCO-Val 9.1 17.1 3.6 4.1 8.5 6.0 0.63 0.45 0.13 0.30 0.07 0.20

Movie 10.5 20.0 9.1 2.3 24.6 7.4 0.73 0.52 0.32 0.17 0.20 0.25
Y-VLOG 10.9 22.6 7.5 4.3 17.9 5.9 0.76 0.59 0.26 0.31 0.15 0.20

Cost reductions also varied between system models with some activation conditions having higher
frequency (e.g. M1 and M2) than others (e.g, M3 and M4). For IRT-B, BICEC contributed an energy
cost of just 0.0127W per inference, 0.74% of the system’s average wattage. In IRT-E, the energy
cost rose marginally to 0.0129W (0.62% of system wattage). Notably, BICEC’s impact on inference
time was more pronounced, accounting for 10.1ms (25.0% of inference time) for IRT-B and 11.2ms
(17.6%) for IRT-E. IRT-E particularly shows how BICEC’s relative costs can reduce for larger AI
systems with a greater roster of models.

3.3 COMPARISON WITH SICEC

BICEC showed advantages over a previously existing attachable vision system controller named
SICEC (Burton-Barr et al., 2024). Developing on SICEC’s single-label activation controller, BICEC
achieves higher accuracy with a smaller model size for IRT-B. Despite initial under-performance in
CMA, threshold adjustments resolved this issue (Appendix A.3). A key improvement is decision
space growth: BICEC scales linearly, as SICEC can grow exponentially as independent models
are added (Appendix A.4). Although SICEC can reduce this growth through model dependencies,
where some models are dependent on the activation of other models, such conditions are not always

5



Accepted as a workshop paper at MCDC ICLR 2025

guaranteed. SICEC’s decision space growth creates difficulties in dataset curation where each com-
bination of activations need to be represented. Additionally, SICEC did not cover scenarios where
models are added or removed from the attached system. We argue that BICEC better accommodates
computer vision systems, adapting to system changes and attaining improved accuracy and CMA.

4 RELATED WORK

Dynamic Vision Systems. While dynamic inference control is well-established for single-model
applications (Wang et al., 2020; Laskaridis et al., 2021; Ahn et al., 2019; Zhang et al., 2021), control
across multiple models remains relatively less explored and often requires system re-training to in-
corporate the proposed method. For example, AdaMTL (Neseem et al., 2023) co-trains task-aware
policy networks to determine block activation within sub-networks for each input alongside multi-
task networks. Additionally, AdaMV-MoE (Chen et al., 2023) achieves dynamic input adaptiveness
through sparse mixture of expert selection via a task-dependent router networks; however, expert
creation and selection is tightly integrated with the training of the multi-task network. In contrast,
SICEC (Burton-Barr et al., 2024) provides attachable activation control for vision system models
by using single-label image classification to declare input-relevant models for activation. Unfortu-
nately, SICEC’s single-label architecture is the primary cause of issues discussed in Section 3.3. In
extension aforementioned methods overlook changes to a system’s models during its lifetime, where
incorporating adaptiveness could reduce retraining costs and maintain performance.

Methodological Inspirations. EfficientNetv2 (Tan & Le, 2019; 2021) employs a range of optimiza-
tion techniques including fused MBConv layers and compound scaling to produce computationally
efficient models that can help reduce system bottlenecks for resource-conscious applications. B-
CNN (Zhu & Bain, 2017) demonstrated that branching can enhance performance in cases where
class difficulty is inconsistent, resulting in an accuracy improvement of 1.50–6.59% compared to
baseline models on CIFAR-100. Similarly, BRNet (Gupta et al., 2022) highlighted that branching
can increase the diversity of features learned from the input. Transfer learning (Weiss et al., 2016;
Zhuang et al., 2020) and UES (Xu et al., 2023) were particularly important for more efficient training
in this work, accelerating convergence by recycling previously learned feature representations.

5 DISCUSSION

Benefits to Sustainable AI Systems. BICEC contributes to the development of sustainable AI sys-
tems by addressing critical challenges in resource consumption and computational efficiency. By
intelligently controlling model activation based on input characteristics, BICEC reduces unneces-
sary model activations, leading to significant reductions in inference time and energy consumption.
While BICEC focuses on intelligent activation control of vision systems, we support that modulation
and tighter control of AI models can reduce computation and resulting energy costs. By preventing
unnecessary energy consumption, BICEC contributes to reducing the environmental impact of AI
systems, thereby enhancing their sustainability.

Limitations. While BICEC emphasizes the complete prevention of model activation, other ap-
proaches have explored more granular control strategies. For example, sparse selection of experts
(Chen et al., 2023), selective activation of model blocks (Neseem et al., 2023), and input-dependent
model-size selection (Burton-Barr et al., 2024) may offer additional computational efficiencies and
more precise input-model alignment, which remain unexplored in BICEC. Additionally, further test-
ing of activation condition complexity would be ideal, for example a future application might require
BICEC branches to understand a broader range of input features and not just a select few. Finally,
BICEC was designed as an example of vision system control, however, future research should con-
sider multi-modal systems.

Conclusions. BICEC is a non-invasive, attachable solution for vision systems that requires no
fine-tuning of pre-trained models within the system. BICEC uniquely enables adaptation to system
changes by supporting branch removal without training and branch addition with reduced training.
In extension, BICEC’s results show significantly lower average inference time (-54.7%) and energy
consumption (-52.1%) in attached system models. We claim that BICEC demonstrates how tighter
regulation of model activation in AI systems can reduce computational overhead, optimize energy
consumption, and better align the attached system with the goals of sustainable AI.
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A APPENDIX

A.1 DATASET DETAILS

Table 5: Datasets and models for IRT-B and IRT-E.

Task Ref Model Function Activation Condition Origin Train-size Val-size

IRT-B, IRT-E M1 YOLOv5l Object Detection Animates COCO (Lin et al., 2014) 5652 660
IRT-B, IRT-E M2 SegFormer-B3 Segmentation People COCO 5652 660
IRT-B, IRT-E M3 YOLOv5l-Face Face Detection Faces FDDB(Jain & Learned-Miller, 2010) 5652 660
IRT-B, IRT-E M4 YOLOv8m-Pose Pose Detection 3+ People COCO 5652 660

IRT-E M5 ViT-B16 x224 Action Recognition Call, Text, Eat, Drink HAR (Kaggle, 2022) 5652 660
IRT-E M6 SegFormer-B2 Segmentation Accessories FA-Grouped (Kaggle, 2023a) 5652 660

A.2 MODEL DETAILS

Table 6: IRT-B and IRT-E model details. input size, parameters, and flops(G) reported in papers.
Energy (W) is calculated as mentioned in the cost-metrics and Inference (ms) details the time taken
to run a single input through the model on our RTX 3070.

Ref Model Input Size Parameters (M) Inference (ms) Flops(G) Energy (W)

M1 YOLOv5l (Jocher, 2020) 640x640 46.5 17 109.1 1.18
M2 SegFormer-B3 (Xie et al., 2021) 512x512 47.3 33 79.0 0.86
M3 YOLOv5l-face (Qi et al., 2022) 640x640 46.6 13 41.6 0.45
M4 YOLOv8m-Pose(Ultralytics, 2024) 640x640 11.6 12 81.0 0.88
M5 ViT-B16(Dosovitskiy et al., 2020) 224x224 86.9 46 35.2 0.38
M6 SegFormer-B2 (Xie et al., 2021) 512x512 28.0 20 62.0 0.67

A.3 SICEC AND BICEC COMPARISON: PERFORMANCE

Figure 5: SICEC IRT-B compared with BICEC IRT-B.
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A.4 SICEC AND BICEC COMPARISON: DECISION SPACE

Figure 6: SICEC decision space growth compared to BICEC.
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