
EduQate: Generating Adaptive Curricula through
RMABs in Education Settings

Anonymous Author(s)
Affiliation
Address
email

Abstract

There has been significant interest in the development of personalized and adaptive1

educational tools that cater to a student’s individual learning progress. A crucial2

aspect in developing such tools is in exploring how mastery can be achieved across3

a diverse yet related range of content in an efficient manner. While Reinforcement4

Learning and Multi-armed Bandits have shown promise in educational settings,5

existing works often assume the independence of learning content, neglecting6

the prevalent interdependencies between such content. In response, we introduce7

Education Network Restless Multi-armed Bandits (EdNetRMABs), utilizing a8

network to represent the relationships between interdependent arms. Subsequently,9

we propose EduQate, a method employing interdependency-aware Q-learning to10

make informed decisions on arm selection at each time step. We establish the11

optimality guarantee of EduQate and demonstrate its efficacy compared to baseline12

policies, using students modeled from both synthetic and real-world data.13

1 Introduction14

The COVID-19 pandemic has accelerated the adoption of educational technologies, especially15

on eLearning platforms. Despite abundant data and advancements in modeling student learning,16

effectively capturing the learning process with interdependent content remains a significant challenge17

[9]. The conventional rules-based approach to creating personalized learning curricula is impractical18

due to its labor-intensive nature and need for expert knowledge. Machine learning-based systems offer19

a scalable alternative, automatically generating personalized content to optimize learning [22, 24].20

One possible approach to model the learning process is the Restless Multi-Armed Bandits (RMAB,21

[26]), where a teacher agent selects a subset of arms (concepts) to teach each round. However,22

RMAB’s assumption that arms are independent is unrealistic in educational settings. For example,23

solving a math question on the area of a triangle requires knowledge of algebra, arithmetic, and24

geometry. Practicing this question should enhance proficiency in all three areas. Models that ignore25

such interdependencies may inaccurately predict knowledge levels by assuming each exercise impacts26

only a single area.27

In response to this challenge, we introduce an interdependency-aware RMAB model to the education28

setting. We posit that by acknowledging and modeling the learning dynamics of interdependent29

content, both teachers and algorithms can strategically leverage overlapping utility to foster mastery30

over a broader range of topics within a curriculum. We advocate for RMABs as a fitting model for31

this context, as the inherent dynamics of such a model align closely with the learning process.32

In this study, our objective is to derive a teacher policy that effectively recommends educational33

content to students, accounting for interdependencies among the content to enhance overall utility34

(that characterizes understanding and retention of content). Our contributions are as follows:35
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1. We introduce Restless Multi-armed Bandits for Education (EdNetRMABs), enabling the36

modeling of learning processes with interdependent educational content.37

2. We propose EduQate, a Whittle index-based heuristic algorithm that uses Q-learning to38

compute an inter-dependency-aware teacher policy. Unlike previous methods, EduQate does39

not require knowledge of the transition matrix to compute an optimal policy.40

3. We provide a theoretical analysis of EduQate, demonstrating guarantees of optimality.41

4. We present empirical results on simulated students and real-world datasets, showing the42

effectiveness of EduQate over other teacher policies.43

2 Related Work and Preliminaries44

2.1 Restless Multi-Armed Bandits45

The selection of the right time and manner for limited interventions is a problem of great practical im-46

portance across various domains, including health intervention [17, 5], anti-poaching operations [20],47

education [13, 6, 2], etc. These problems share a common characteristic of having multiple arms48

in a Multi-armed Bandit (MAB) problem, representing entities such as patients, regions of a forest,49

or students’ mastery of concepts. These arms evolve in an uncertain manner, and interventions are50

required to guide them from "bad" states to "good" states. The inherent challenge lies in the limited51

number of interventions, dictated by the limited resources (e.g., public health workers, the number of52

student interactions). RMAB, a generalization of MAB, offers an ideal model for representing the53

aforementioned problems of interest. RMAB allows non-active bandits to also undergo the Markovian54

state transition, effectively capturing uncertainty in arm state transitions (reflecting uncertain state55

evolution), actions (representing interventions), and budget constraints (illustrating limited resources).56

RMABs and the associated Markov Decision Processes (MDP) for each arm offer a valuable model for57

representing the learning process. Firstly, leveraging the MDPs associated with each arm provides the58

flexibility to adopt nuanced modeling of learning content, accommodating different learning curves59

for various content based on students’ strengths and weaknesses. Secondly, the transition probabilities60

serve as a useful mechanism to model forgetting (through state decay due to passivity or negligence)61

and learning (through state transitions to the positive state from repeated practice). Considering62

these aspects, RMABs prove to be a beneficial framework for personalizing and generating adaptive63

curricula across a diverse range of students.64

In general, computing the optimal policy for a given set of restless arms in RMABs is recognized as a65

PSPACE-hard problem [18]. The Whittle index [26] provides an approach with a tractable solution66

that is provably optimal, especially when each arm is indexable. However, proving indexability can67

be challenging and often requires specification of the problem’s structure, such as the optimality of68

threshold policies [17, 16]. Moreover, much of the research on Whittle Index policies has focused69

on two-action settings or requires prior knowledge of the transition matrix of the RMABs. Meeting70

these conditions proves challenging in the educational context, where diverse students interact with71

educational systems, each possessing different prior knowledge and distinct learning curves for72

various topics.73

WIQL [5], on the other hand, employs a Q-learning-based method to estimate the Whittle Index and74

has demonstrated provable optimality without requiring prior knowledge of the transition matrix. We75

utilize WIQL as a baseline method in our subsequent experiments.76

In a recent investigation by [12], RMABs were explored within a network framework, requiring the77

agent to manage a budget while allocating a high-cost, high-benefit resource to one arm to “unlock"78

potential lower-cost, intermediate-benefit resources for the arm’s neighbors. The network effects79

emphasized in their work are triggered by an intentional, active action, enabling the agent to choose80

to propagate positive externalities to a selected arm’s neighbors within budget constraints. In contrast,81

our study delves into scenarios where network effects are indirect results of an active action, and the82

agent lacks direct control over such effects. Thus, the challenge lies in accurately modeling these83

network effects and leveraging them when beneficial.84
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2.2 Reinforcement Learning in Education85

In the realm of education, numerous researchers have explored optimizing the sequencing of in-86

structional activities and content, assuming that optimal sequencing can significantly impact student87

learning. RL is a natural approach for making sequential decisions under uncertainty [1]. While RL88

has seen success in various educational applications, effectively sequencing interdependent content in89

a personalized and adaptive manner has yielded mixed or insignificant results compared to baseline90

teacher policies [11, 21, 8]. In general, these RL works focus on data-driven methods using student91

activity logs to estimate students’ knowledge states and progress, assuming that the interdependencies92

between learning content are encapsulated in students’ learning histories [9, 3, 19]. In contrast, our93

work focuses on modelling these interdependencies directly.94

Of particular relevance are factored MDPs applied to skill acquisition introduced by [11]. While fac-95

tored MDPs account for interdependencies amongst skills, decentralized policy learning is infeasible96

as policies must consider the joint state space. Our work leverages the advantage of decentralized97

policy learning provided by RMABs and introduces a novel decentralized learning approach that98

exploits interdependencies between arms.99

Complementary to RL methods in education is the utilization of knowledge graphs to uncover100

relationships between learning content [9]. Existing research primarily focuses on establishing these101

relationships through data-driven methods (e.g. [7, 23]) often leveraging student-activity logs. In this102

work, we complement such research by presenting an approach where bandit methods can effectively103

operate with knowledge graphs derived by such methods.104

3 Model105

In this section, we introduce the Restless Multi-Armed Bandits for Education (EdNetRMABs). It106

is important to note that while we specifically apply EdNetRMABs to the education setting, the107

framework can be seamlessly translated to other scenarios where modeling the effects of active108

actions within a network is critical. For ease of access, a table of notations is provided in Table 2.109

In education, a teacher recommends learning content, or items, to maximize student education, often110

with content from online platforms. Items are grouped by topics, such as “Geometry," where exposure111

to one piece of content can enhance knowledge across others in the same group. This cumulative112

learning effect which we refer to as “network effects", implies that exposure to an item is likely113

to positively impact the student’s success on items within the same group. A successful teacher114

accurately estimates a student’s knowledge state over repeated interactions, leveraging these network115

effects to promote both breadth and depth of understanding through recommendations.116

3.1 EdNetRMABs117

The RMAB model tasks an agent with selecting k arms from N arms, constrained by a limit on the118

number of arms that can be pulled at each time step. The objective is to find a policy that maximizes119

the total expected discounted reward, assuming that the state of each arm evolves independently120

according to an underlying MDP.121

The EdNetRMABs model extends RMABs by allowing for active actions to propagate to other arms122

dependent on the current arm when it is being pulled, thus relaxing the assumption of independent123

arms. This is operationalized by organising the arms in a network, and pulling of an arm results in124

changes for its neighbors, or members in the same group.125

When applied to education setting, the EdNetRMABs is formalized as follows:126

Arms Each arm, denoted as i ∈ 1, ..., N , signifies an item. In the context of this networked127

environment, each arm belongs to a group ϕ ∈ {1, ..., L} representing the overarching topic that128

encompasses related items. It’s important to note that arm membership is not mutually exclusive,129

allowing arms to be part of multiple groups. This flexibility enables a more nuanced modeling of130

interdependencies among educational content. For instance, a question involving the calculation of131

the area of a triangle may span both arithmetic and geometry groups.132
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State space In this framework, each arm possesses a binary latent state, denoted as si ∈ {0, 1},133

where “0" represents an “unlearned" state, and “1" indicates a “learned" state. Considering all arms134

collectively, these states serve as a representation of the student’s overall knowledge state. In the135

current work, it is assumed that the states of all arms are fully observable, providing a comprehensive136

model of the student’s understanding of the various educational concepts.137

Action space To capture the network effects associated with arm pulls, we depart from the conven-138

tional RMAB framework with a binary action space A = {0, 1} by introducing a pseudo-action. In139

this modified setup, the action space is extended to A = {0, 1, 2}, where actions 0 and 2 represent140

“no-pull" and “pull", as commonly used in bandit literature. Notably, in EdNetRMABs, a third action141

1 is introduced to simulate the network effects resulting from pulling another arm within the same142

group. It is important to clarify that agents do not directly engage with action 1 but we employ it143

solely for modeling network effects, hence the term “pseudo-action".144

Transition function For a given arm i, let P a,i
s,s′ represent the probability of the arm transitioning145

from state s to s′ under action a. It’s noteworthy that, in typical real-world educational settings, the146

actual transition functions governing the states of the arms are often unknown and, even for the same147

concept, may vary among students due to differences in prior knowledge. To address this challenge,148

we adopt model-free approaches in this study, devising methods to compute the teacher policy without149

relying on explicit knowledge of these transition functions. In the following experiments, we maintain150

the assumption of non-zero transition probabilities, and enforce constraints that are aligned with the151

current domain [17]: (i) The arms are more likely to stay in the positive state than change to the152

negative state: P 0
0,1 < P 0

1,1, P 1
0,1 < P 1

1,1 and P 2
0,1 < P 2

1,1; (ii) The arm tends to improve the latent153

state if more efforts is spent on that arm, i.e., it is active or semi-active: P 0
0,1 < P 1

0,1 < P 2
0,1 and154

P 0
1,1 < P 1

1,1 < P 2
1,1.155

With the formalization of the EdNetRMABs model provided, we now apply it to an educational156

context. In this scenario, the agent assumes the role of a teacher and takes actions during each time157

step t ∈ {1, ..., T}. Specifically, at each time step, the teacher recommends an item for the student to158

study. We represent the vector of actions taken by the teacher at time step t as at ∈ {0, 1, 2}N . Here,159

arm i is considered to be active at time t if at(i) = 2 and passive when at(i) = 0. When arm i is160

pulled, the set of arms that share the same group membership as arm i, denoted as ϕ−
i under goes161

the pseudo-action, represented as at(j) = 1 for all j ∈ ϕ−. In our framework, the teacher agent162

acts on exactly one arm per time step to simulate the real-world constraint that the teacher can only163

recommend one concept to students (
∑

i Iat(i)=2 = 1,∀t ). Subsequent to taking action, the teacher164

receives st ∈ {0, 1}N , a vector reflecting the state of all arms, and reward rt =
∑N

i=1 s
t(i). The165

vector st represents the overall knowledge state of the student. The teacher agent’s goal, therefore, is166

to maximize the long term rewards, either discounted or averaged.167

4 EduQate168

Q-learning [25] is a popular reinforcement learning method that enables an agent to learn optimal169

actions in an environment by iteratively updating its estimate of state-action value, Q(s, a), based on170

the rewards it receives. At each time step t, the agent takes an action a using its current estimate of Q171

values and current state s, thus received a reward of r(s) and new state s′. We provide an abridged172

introduction to Q-learning in the Appendix F.173

Expanding upon Q-learning, we introduce EduQate, a tailored Q-learning approach designed for174

learning Whittle-index policies in EdNetRMABs. In the interaction with the environment, the agent175

chooses a single item, represented by arm i, to recommend to the student. In this context, the agent176

possesses knowledge of the group membership ϕi of the selected arm and observes the rewards177

generated by activating arm i and semi-activating arms in ϕ−
i . EduQate utilizes this interaction to178

learn the Q-values for all arms and actions.179

To adapt Q-learning to EdNetRMABs, we propose leveraging the learned Q-values to select the arm180

with the highest estimate of the Whittle index, defined as:181
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Algorithm 1 Q-Learning for EdNetRMABs (EduQate)
Input: Number of arms N
Initialize Qi(s, a)← 0 and λi(s)← 0 for each state s ∈ S and each action a ∈ {0, 1, 2}, for each
arm i ∈ 1, ..., N .
Initialize replay buffer D with capacity C.
for t in 1, ..., T do
ϵ← N

N+t
With probability ϵ, select one arm uniformly at random. Otherwise, select arm with highest
Whittle Index, i = argmaxi λi.
for arm n in 1, ..., N do

if n ̸= i then
Set arm n to passive, atn = 0

else
Set arm n to active, atn = 2
for j ∈ ϕ−

i do
Set arms in same group as i to semi-active, atj = 1

end for
end if

end for
Execute actions at and observe reward rt and next state st+1 for all arms
Store experience (st,at, rt, st+1)in replay buffer D.
Sample minibatch B of Experience from replay buffer D.
for Experience in minibatch B do

Update Qn(s, a) using Q-learning update in Equation 11.
Compute λn using Equation 1

end for
end for

λi = Q(si, ai = 2)−Q(si, ai = 0) +
∑
j∈ϕ−

i

(Q(sj , aj = 1)−Q(sj , aj = 0)) (1)

Here, λi is the Whittle Index estimate for arm i. In essence, the Whittle Index of arm i is computed as182

the linear combination of the value associated with taking action on arm i over passivity and the value183

of associated with semi-actively engaging with members from same group, compared to passivity.184

To improve the convergence of Q-learning, we incorporate Experience Replay [15]. This involves185

saving the teacher algorithm’s previous experiences in a replay buffer and drawing mini-batches186

of samples from this buffer during updates to enhance convergence. In Section 4.1, we prove that187

EduQate will converge to the optimal policy. However, in practice, we may not have enough episodes188

to fully train EduQate. Therefore, we propose Experience Replay to mitigate the cold-start problem189

common in RL applications, a common problem where initial student interactions with sub-optimal190

teachers can lead to poor learning experiences [3].191

The pseudo-code is provided in Algorithm 1. Similar to WIQL [5], we employ a ϵ-decay policy that192

facilitates exploration and learning in the early steps, and proceeds to exploit the learned Q-values in193

later stages.194

4.1 Analysis of EduQate195

In this section, we analyze EduQate closely, and show that EduQate does not alter the optimality196

guarantees of Q-learning under the constraint that k = 1 (Theorem 1). Our method relies on the197

assumption that teachers are limited to assign 1 item to the student at each time step. Theorem 2198

analyzes EduQate under the conditions that k > 1. Since our setting involves the semi-active actions,199

we should compute Equation 1. To reiterate, ϕi here refers to the group that arm i belongs to, and200

ϕ−
i is the same group but does not include arm i. If arm i is selected, then all the remaining arms in201

group ϕ−
i should be semi-active.202
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Theorem 1 Choosing the top arm with the largest λ value in Equation 1 is equivalent to maximizing203

the cumulative long-term reward.204

Proof. According to the approach, we select the arm according to the λ value. Assume arm i has205

the highest λ value, then for any arm j where j ̸= i, we have206

λi ≥ λj (2)
According to the definition of λ in Equation 1, we move the negative part to the other side, and the207

left side becomes:208

Q(si, ai = 1) +
∑
i∈ϕ−

i

(Q(si, ai = 1)) +Q(sj , aj = 0) +
∑
j∈ϕ−

j

(Q(sj , aj = 0))

and the right side is similar. There are three cases:209

• arm i and arm j are not connected, and group ϕi and ϕj has no overlap, i.e., ϕi ∩ ϕj = ∅. We add210 ∑
z/∈ϕi∧z/∈ϕj

Q(sz, az = 0) on both sides. This denotes the addition of Q(sz, az = 0) for all arm z211

that are not included in the set of ϕi or ϕj . We have the left side:212

Q(si, ai = 1) +
∑
i∈ϕ−

i

(Q(si, ai = 1)) +Q(sj , aj = 0) +
∑
j∈ϕ−

j

(Q(sj , aj = 0)) +
∑

z/∈ϕi∧z/∈ϕj

Q(sz, az = 0)

=Q(si, ai = 1) +
∑
i∈ϕ−

i

(Q(si, ai = 1)) +
∑
j /∈ϕi

(Q(sj , aj = 0))

=Q(s, a = Ii)
(3)

Similarly, we do the same for the right side and thus, the equation 2 becomes213

Q(s, a = Ii) ≥ Q(s, a = Ij)
• arm i and arm j are not connected, but group ϕi and ϕj has overlap, i.e., ϕi ∩ ϕj ̸= ∅. In this case,214

we add
∑

z/∈ϕi∧z/∈ϕj

Q(sz, az = 0)−
∑

z∈ϕi∩ϕj

Q(sz, az = 0) on both sides.215

• arm i and arm j are connected, and group ϕi and ϕj has overlap, i.e., ϕi∩ϕj ̸= ∅, and {i, j} ⊂ ϕi∩216

ϕj . This case is similar to the previous one, we add
∑

z/∈ϕi∧z/∈ϕj

Q(sz, az = 0)−
∑

z∈ϕi∩ϕj

Q(sz, az =217

0) on both sides.218

The detailed proof is provided in Appendix B. □219

Thus when k = 1, selecting the top arm according to the λ value is equivalent to maximizing the220

cumulative long-term reward, and is guaranteed to be optimal.221

Theorem 2 When k > 1, selecting the k arms is a NP-hard problem. The non-asymptotic tight222

upper bound and non-asymptotic tight lower bound for getting the optimal solution are o(C(n, k))223

and ω(N), respectively.224

Proof Sketch. This problem can be considered as a variant of the knapsack problem. If we disregard225

the influence of the shared neighbor nodes for two selected arms, then selecting arm i will not226

influence the future selection of arm j. In such instances, the problem of selecting the k arms is227

simplified to the traditional 0/1 knapsack problem, a classic NP-hard problem. Therefore, when228

considering the effect of shared neighbor nodes for two selected arms, this problem is at least as229

challenging as the 0/1 knapsack problem. □230

When k > 1, it is difficult to compute the optimal solution, we provide a heuristic greedy algorithm231

with the complexity of O( (2N−k)∗k
2 ) in Section C in the appendix.232

5 Experiment233

In this section, we demonstrate the effectiveness of EduQate against benchmark algorithms on234

synthetic students and students derived from a real-world dataset, the Junyi Dataset and the OLI235

Statics dataset. All experiments are run on CPU only. In our experiments, we compare EduQate with236

the following policies:237
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Figure 1: Average rewards for the respective algorithms on 3 datasets, averaged across 30 runs.
Shaded regions represent standard error.

• Threshold Whittle (TW): This algorithm, proposed by [17], utilizes an efficient closed-form238

approach to compute the Whittle index, considering only the pull action as active. It operates under239

the assumption that transition probabilities are known and stands as the state-of-the-art in RMABs.240

• WIQL: This algorithm employs a Q-learning-based Whittle Index approach [5]. It learns Q-values241

using the pull action as the only active strategy and calculates the Whittle Index based on the242

acquired Q-values.243

• Myopic: This strategy disregards the impact of the current action on future rewards, concentrating244

solely on predicted immediate rewards. It selects the arm that maximizes the expected reward at245

the immediate time step.246

• Random: This strategy randomly selects arms with uniform probability, irrespective of the under-247

lying state.248

Inspired by work in healthcare settings [12, 14], we compare the policies by the Intervention Benefit249

(IB), as shown in the following equation:250

IBRandom,EQ(π) =
Eπ(R(.))− ERandom(R(.))

EEQ(R(.))− ERandom(R(.))
(4)

where EQ represents EduQate, and Random represents a policy where the arms are selected at random.251

Prior work in educational settings has demonstrated that random policies can yield robust learning252

outcomes through spaced repetition [9, 10]. Therefore, to establish efficacy, successful algorithms253

must demonstrate superiority over random policies. Our chosen metric, IB, effectively compares254

the extent to which a challenger algorithm π outperforms a random policy in comparison to our255

algorithm.256

5.1 Experiment setup257

In all experiments, we commence by initializing all arms in state 0 and permit the teacher algorithms258

to engage with the student for a total of 50 actions, pulling exactly 1 arm (i.e. k = 1) at each time step.259

Following the completion of these actions, the episode concludes, and the student state is reset. This260

process is iterated across 800 episodes, for a total of 30 seeds. The datasets used in our experiment261

are described below:262

Synthetic dataset. Given the domain-motivated constraints on the transition functions highlighted263

in Section 3.1, we create a simulator based on N = 50, S ∈ {0, 1}, Ntopics = 20. We randomly264

assign arms to topic groups, and allow arms to be assigned to be more than one topic. Under this265

method, number of arms under each group may not be equal. For each trial, a new transition matrix266

is generated to simulate distinct student scenarios.267

Junyi dataset. The Junyi dataset [7] is an extensive dataset collected from the Junyi Academy 1,268

an eLearning platform established in 2012 on the basis of the open-source code released by Khan269

1http://www.Junyiacademy.org/
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Table 1: Comparison of policies on synthetic, Junyi, and OLI datasets. E[R] represents the average
reward obtained in the final episode of training. Statistic after ± represents standard error across 30
trials.

Policy Synthetic Junyi OLI
E[IB](%)± E[R]± E[IB](%)± E[R]± E[IB](%)± E[R]±

Random - 26.84± 0.46 - 15.82± 0.34 - 18.46± 0.35
WIQL −49.03± 15.07 24.60± 0.43 −26.77± 7.39 14.01± 0.97 −60.20± 19.38 14.33± 0.42
Myopic −3.44± 5.81 27.07± 0.52 10.74± 3.13 16.86± 0.356 39.92± 12.00 20.51± 0.48
TW 37.21± 17.02 28.50± 0.47 31.284± 2.65 15.819± 0.34 0.20± 9.27 18.07± 0.21
EduQate 100.0 34.33± 0.49 100.0 24.53± 0.31 100.0 25.47± 0.47

Academy. In this dataset, there are nearly 26 million student-exercise interactions across 250 000270

students in its mathematics curriculum. For this experiment, we selected the top 100 exercises with271

the most student interactions to create our student models. Using our method to generate groups, the272

resultant EdNetRMAB has N = 100 and Ntopics = 21.273

OLI Statics dataset. The OLI Statics dataset [4] comprises student interactions with an online274

Engineering Statics course2. In this dataset, each item is assigned one or more Knowledge Compo-275

nents (KCs) based on the related topics. After filtering for the top 100 items with the most student276

interactions, the resultant EdNetRMAB includes N = 100 items and Ntopics = 76 distinct topics.277

5.2 Creating student models278

In this section, we outline the procedure for generating student models aimed at simulating the279

learning process. To clarify, a student model in this context is defined as a set of transition matrices280

for all items. These matrices are employed with EdNetRMABs to simulate the learning dynamics.281

We employ various strategies to model transitions within the RMAB framework. Active transitions282

are determined by assessing the average success rate on a question before and after a learning283

intervention. Passive transitions are influenced by difficulty ratings, with more challenging questions284

more prone to rapid forgetting. Semi-active transitions, on the other hand, are computed as proportion285

of active transition, guided by similarity scores. Here, we provide an outline and the full details can286

be found in Appendix D.287

Active Transitions. We use data on students’ correct response rate after interacting with an item to288

create the transition matrix for action 2, based on the change in correctness rates before and after a289

learning intervention.290

Passive Transitions. To construct passive transitions for items, we use relative difficulty scores to291

determine transitions based on difficulty levels. We assume that higher difficulty correlates with a292

greater likelihood of forgetting, resulting in higher failure rates. Specifically, higher difficulty values293

correspond to higher P 0
1,0 values, indicating a greater likelihood of forgetting. The transition matrix294

for the passive action a = 0 is then randomly generated, with values influenced by difficulty levels.295

Semi-active Transitions. To derive semi-active transitions, we use similarity scores between exercises296

from the Junyi dataset. We first normalize these scores to the range [0, 1]. Then, for any chosen arm,297

we compute its transition matrix under the semi-active action a = 1 as a proportion of its active298

action transitions, P 1
0,1 = σ(P 2

0,1), where σ signifies the similarity proportion.299

The arm’s transition matrix for the semi-active action varies due to different similarity scores between300

pairs in the same group. To address this, we use the average similarity score to determine the301

proportion. Since the OLI dataset does not contain similarity ratings, we assume a constant similarity302

rating of σ = 0.8 for all pairs.303

6 Results304

The experimental results for the synthetic, Junyi, and OLI datasets are shown in Table 1. We report305

the average intervention benefit IB and final episode rewards from thirty independent runs for five306

algorithms: EduQate, TW, WIQL, Myopic, and Random. EduQate consistently outperforms the other307

policies across all datasets, demonstrating higher intervention benefits and average rewards.308

2https://oli.cmu.edu/courses/engineering-statics-open-free/
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Synthetic Network N = 100,
Ntopics = 20

Junyi network, abridged to Ntopics = 7
for brevity. OLI network, N = 100, Ntopics = 76.

Figure 2: This visualization compares network complexities from our experiments. The synthetic
dataset (left) shows simpler, isolated groups, while the real-world datasets (Junyi, middle; OLI,right)
displays more intricate and interconnected relationships amongst items.

In terms of IB, we note that all challenger policies do not exceed 50%, indicating two key points.309

First, as noted in prior works [9], our results confirm that random policies in educational settings are310

robust and difficult to surpass, even when algorithms are equipped with knowledge of the learning311

dynamics. Second, our interdependency-aware EduQate performs well over random policies and312

other algorithms, highlighting the importance of considering network effects and interdependencies313

in EdNetRMABs.314

Notably, WIQL, which relies solely on Q-learning for active and passive actions, performs worse315

than a random policy, likely due to misattributing positive network effects to passive actions. Despite316

having access to the transition matrix, TW does not perform as well as the interdependency-aware317

EduQate. While it has demonstrated effectiveness in traditional RMABs, TW weaknesses become318

evident in the current setting, where pulling an arm has wider implications to other arms. Overall,319

EduQate has demonstrated robust and effective performance in maximizing rewards across different320

datasets. Figure 1 shows the average rewards obtained in the final episode for each algorithm.321

Figure 2 provides visualizations of the networks generated from synthetic students and mined from322

real-world datasets. The synthetic dataset produces networks with distinct isolated groups, contrasting323

with the more intricate and interconnected networks from the Junyi and OLI datasets, reflecting324

real-world complexities. Despite these differing topologies and levels of interdependency, EduQate325

performs well under all network setups. In Appendix E.1, we explore the effects of different network326

topologies by varying the number of topics while limiting the membership of each item. We find that327

as network interdependencies are reduced, the network effects diminish, and such EdNetRMABs328

can be approximated to traditional RMABs with independent arms. Under these conditions, our329

algorithm does not perform as well as other baseline policies.330

Finally, an ablation study detailed in Appendix E.2 examines the effectiveness of the replay buffer in331

EduQate. The study shows that the replay buffer helps overcome the cold-start problem, where initial332

learning episodes provide sub-optimal experiences for students [3].333

7 Conclusion and Limitations334

In this paper, we introduced EdNetRMABs to the education setting, a variant of MAB designed to335

model interdependencies in educational content. We also proposed EduQate, a novel Whittle-based336

learning algorithm tailored for EdNetRMABs. Unlike other Whittle-based algorithms, EduQate com-337

putes an optimal policy without requiring knowledge of the transition matrix, while still accounting338

for the network effects of pulling an arm. We demonstrated the guaranteed optimality of a policy339

trained under EduQate and showcased its effectiveness on synthetic and real-world datasets, each340

with its own characteristic.341

Our work assumes that student knowledge states are fully observable and available at all times, which342

is a limitation. Despite this, we believe our work is significant and can inspire further research to343

improve efficiencies in education. For future work, we aim to extend EduQate to handle partially344

observable states and address the cold-start problem in education systems by minimizing the initial345

exploratory phase.346
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Appendix/Supplementary Materials416

A Table of Notations417

Table 2: Notations

Notation Description
N,Ntopics N : number of arms in EdNetRMABs; Ntopics: number of topic groups

sti sti: state of arm i at time step t. 1: learned, 0: unlearned.

ati ati: action of arm i at time step t. 0: passive action, 1: semi-active action, 2: active action.

s,a s,a: joint state vector and joint action vector of EdNetRMABs.

ϕi, ϕ
−
i ϕi: the set of arms that includes the arm i and its connected neighbors, ϕ−

i : ϕi that exclude arm i.

P i,a
s,s′ P i,a

s,s′ is the probability of transition from state s to s′ when arm i is taking action a.

Qi(si, ai) Qi(si, ai) is the state-action value function for the arm i when taking action ai with state si.

Vi(si) The value function for arm i at the state si.

B Proof for the theorem418

We rewrite the theorem here for ease of explanation.419

Theorem 3 Choose top arms according to the λ value in Equation 1 is equivalent to maximize the420

cumulative long-term reward.421

Proof. According to the approach, we select the arm according to the λ value. Assume arm i has422

the highest λ value, then for any arm j, where i ̸= j, we have423

λi ≥ λj

Q(si, ai = 1)−Q(si, ai = 0) +
∑
i∈ϕ−

i

(Q(si, ai = 1)−Q(si, ai = 0)) ≥ Q(sj , aj = 1)−Q(sj , aj = 0) +
∑
j∈ϕ−

j

(Q(sj , aj = 1)−Q(sj , aj = 0))

Q(si, ai = 1) +
∑
i∈ϕ−

i

(Q(si, ai = 1)) +Q(sj , aj = 0) +
∑
j∈ϕ−

j

(Q(sj , aj = 0)) ≥ Q(sj , aj = 1) +
∑
j∈ϕ−

j

(Q(sj , aj = 1)) +Q(si, ai = 0) +
∑
i∈ϕ−

i

(Q(si, ai = 0))

(5)
There are two cases:424

• arm i and arm j are not connected, and group ϕi and ϕj has no overlap, i.e., ϕi ∩ ϕj = ∅. We425

add
∑

z/∈ϕi∧z/∈ϕj

Q(sz, az = 0) on both sides, we can have the left side:426

Q(si, ai = 1) +
∑
i∈ϕ−

i

(Q(si, ai = 1)) +Q(sj , aj = 0) +
∑
j∈ϕ−

j

(Q(sj , aj = 0)) +
∑

z/∈ϕi∧z/∈ϕj

Q(sz, az = 0)

=Q(si, ai = 1) +
∑
i∈ϕ−

i

(Q(si, ai = 1)) +
∑
j /∈ϕ−

i

(Q(sj , aj = 0))

=Q(s, a = Ii)
(6)

Similarly, the right side becomes427

Q(sj , aj = 1) +
∑
j∈ϕ−

j

(Q(sj , aj = 1)) +
∑
i/∈ϕj

(Q(si, ai = 0)) = Q(s, a = Ij) (7)

Thus, the equation 2 becomes428

Q(s, a = Ii) ≥ Q(s, a = Ij) (8)

• arm i and arm j are not connected, but group ϕi and ϕj has overlap, i.e., ϕi ∩ ϕj ̸= ∅. In this429

case, we add
∑

z/∈ϕi∧z/∈ϕj

Q(sz, az = 0)−
∑

z∈ϕi∩ϕj
Q(sz, az = 0) on both sides, we can have the430
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left side:431

Q(si, ai = 1) +
∑
i∈ϕ−

i

(Q(si, ai = 1)) +Q(sj , aj = 0) +
∑
j∈ϕ−

j

(Q(sj , aj = 0)) +
∑

z/∈ϕi∧z/∈ϕj

Q(sz, az = 0)−
∑

z∈ϕi∩ϕj

Q(sz, az = 0)

=Q(si, ai = 1) +
∑
i∈ϕ−

i

(Q(si, ai = 1)) +
∑
j∈ϕj

(Q(sj , aj = 0)) +
∑

z/∈ϕi∧z/∈ϕj

Q(sz, az = 0)−
∑

z∈ϕi∩ϕj

Q(sz, az = 0)

=Q(si, ai = 1) +
∑
i∈ϕ−

i

(Q(si, ai = 1)) +
∑
j /∈ϕ−

i

(Q(sj , aj = 0))

=Q(s, a = Ii)
(9)

Similarly, the right side becomes432

Q(sj , aj = 1) +
∑
j∈ϕ−

j

(Q(sj , aj = 1)) +
∑
i/∈ϕj

(Q(si, ai = 0)) = Q(s, a = Ij) (10)

• arm i and arm j are connected, and group ϕi and ϕj has overlap, i.e., ϕi ∩ ϕj ̸= ∅, and433

{i, j} ⊂ ϕi ∩ ϕj . This case is similar to the previous one, we add
∑

z/∈ϕi∧z/∈ϕj

Q(sz, az = 0) −434 ∑
z∈ϕi∩ϕj

Q(sz, az = 0) on both sides, we can have the left side: Q(s, a = Ii) and the right side435

Q(s, a = Ij).436

□437

We show that, using Theorem 1, selecting the top arms according to the λ value is guaranteed to438

maximize the cumulative long-term reward, thus proving it to be optimal.439

However when it comes to the case where k > 1, selecting the top k arms according to the λ value440

is not guaranteed to be optimal. Let the Φ denote the set of arms that are selected, i.e., ai = 2 if441

i ∈ Φ. Because once the arm i is added to the selected arm set Φ, the benefit of selecting arm j will442

also be influenced if the arm j has the shared connected neighbor arms with arm i, i.e., ϕi ∩ ϕj ̸= ∅.443

To this end, finding the optimal solution is difficult, as we need to list all the possible solution sets.444

The non-asymptotic tight upper bound and non-asymptotic tight lower bound for getting the optimal445

solution are o(C(n, k)) and ω(N), respectively.446

We provide the proof for Theorem 2: Proof. When considering the influence of the shared neighbor447

nodes for two selected arms, then selecting arm i will influence the future benefit of selecting arm448

j if arm i and arm j have the overlapped neighbor nodes, i.e., ϕi ∩ ϕj ̸= ∅. This is because the449

calculation of λj , as some arms z ∈ ϕi ∩ ϕj already receive the semi-active action a = 1 due to the450

selection of arm i, the subsequent selection of arm j would not double introduce the benefit from451

those arms z who already included in ϕi. However, if the top k arms ranked according to their λ452

value do not have any overlaps in their connected neighbor nodes, i.e, ϕi ∩ ϕj = ∅ for ∀i, j, where453

arm i and arm j are top k arms according to λ value. We can directly add those top k arms to the454

action set Φ, and the solution is guaranteed to be optimal. Then we have the non-asymptotic tight455

lower bound for getting the optimal solution which is ω(N). Otherwise, if the top k arms ranked456

according to their λ value have any overlaps in their connected neighbor nodes, to get the optimal457

solutions, we need to list all possible combinations of the k arms, which have the C(n, k) cases, and458

computing the corresponding sum of the λ value. In this case, we can derive that the non-asymptotic459

tight upper bound for getting the optimal solution is o(C(n, k)). □460

C Greedy algorithm when k > 1461

When k > 1, it is difficult to compute the optimal solution as we might list all possible solutions, and462

the complexity is O(C(n, k)), Thus we provide a heuristic greedy algorithm to find the near-optimal463

solutions. The process to decide the selected arm set Φ is as follows:464

1. We first compute the independent λ value for each arm i, where i ∈ {1, . . . , N}, where465

λi = Q(si, ai = 1)−Q(si, ai = 0) +
∑

j∈ϕ−
i
(Q(si, ai = 2)−Q(si, ai = 0));466

2. We add the arm with the top λ value to the set Φ;467

3. We recompute the λ value for the each arm, note that we will remove Q(sj , aj) in the λ468

equation if j ∈ Φ or j ∈ ϕj for ∀i ∈ Φ;469
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4. we add the arm with the top λ value to the set Φ, and repeat the step 3 and 4 until we add k470

arms to set Φ.471

The intuition of such a heuristic greedy algorithm is to add the arm that maximizes the marginal gain472

to the action. And the complexity for the greedy algorithm is O( (2N−k)∗k
2 ).473

D Generating Student Models from Junyi and OLI Dataset474

In this section, we describe the features in Junyi and OLI dataset which we use in developing the475

transition matrices.476

The datasets contain the following features which we use in various aspects to generate the student477

models and the network:478

• Topic & Knowledge Component Classification: Items are classified into topics (Junyi) or479

KCs (OLI). This classification is employed to group items and establish the initial network.480

• Similarity: The Junyi dataset offers expert ratings for exercise similarity, enabling a nuanced481

approach to form richer group memberships. High similarity scores group exercises together,482

irrespective of topic tags.483

• Difficulty: The Junyi dataset provides expert ratings to determine the relative difficulty of484

exercise pairs. In the OLI dataset, we use the overall correct response rate as a measure of485

difficulty.486

• Rate of Correctness: By analyzing student-exercise interactions, we calculate the frequency487

of correct answers for each question, offering insights into the improvement of knowledge488

over time.489

D.1 Active Transitions490

Junyi Dataset The Junyi dataset contains earned_proficiency feature which indicates if the491

student has achieved mastery of the topic based on Khan Academy’s algorithm3. Thus, we take the492

number of attempts before earned_proficiency=1 as P 2
0,1, and the errors made during mastery as493

P 2
1,0.494

OLI Dataset We possess records of students’ accuracy on quiz questions after studying specific495

topics. To derive the transition matrix for the student with the corresponding action 2, we utilize the496

change in correctness rate before and after a learning intervention.497

Given that proportion of correct attempts at time t as at, then at+1 = P 2
0,1(1− at) + P 2

1,1(a
t). We498

use a linear regressor to estimate the respective P 2, constraining it to produce positive values and499

clipping the values to 0.99 when required.500

D.2 Passive Transitions501

To construct passive transitions for exercises, we utilize relative difficulty scores to determine502

transitions based on difficulty levels. We operate under the assumption that the difficulty of an503

exercise is linked to its likelihood of being forgotten, thereby resulting in a higher failure rate. More504

precisely, higher difficulty values of an exercise correspond to higher P 0
1,0 values, indicating a greater505

likelihood of forgetting. The transition matrix for the passive action a = 0 is then randomly generated,506

with the values influenced by the difficulty levels.507

D.3 Semi-active Transitions508

To derive semi-active transitions, the Junyi dataset contains similarity scores between two distinct509

exercises, quantifying their similarity on a 9-point Likert scale. Once the transition matrices are510

computed under the active action a = 2 for all arms, we proceed to calculate the transition matrix511

3http://david-hu.com/2011/11/02/how-khan-academy-is-using-machine-learning-to-assess-student-
mastery.html
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for the semi-active action a = 1. This involves normalizing the similarity scores to the range [0, 1],512

denoted as σ. For any chosen arm/topic, we can then compute its neighbor’s transition matrix under513

the semi-active action a = 1 with P 1
0,1 = σ(P 2

0,1), where σ signifies the similarity proportion. It is514

worth noting that an arm’s transition matrix for the semi-active action varies due to different neighbors515

being selected — different neighbors correspond to different similarity scores.516

To address this, we can store the transition matrix of semi-active actions for different neighbor517

selection scenarios, preserving the flexibility of our algorithm. In this work, for simplicity, we opt518

not to distinguish the impact of different neighbors being selected. Instead, we calculate the average519

similarity for all arms in a group average them, and use the resultant average as σ.520

For the OLI Statics dataset, we use a constant value of σ = 0.8 since there are no similarity scores521

available.522

E Additional Experiment Results and Discussion523

E.1 Comparing Different Network Setups524

Figure 3: Average rewards for the respective algorithms, on the last episode of training. Note that as
Ntopics increase, the network effects are reduced, and most algorithms are not better than a random
policy.
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Table 3: Comparison of policies on synthetic dataset, with different network setups. Note that that as
Ntopics increase, the reliability of any algorithms decreases, as seen by the standard deviations of
their average IB. EduQate- here refers to the EduQate algorithm without replay buffer.

Ntopics POLICY E[IB] (%) (±)

20

WIQL -57.9 ± 13.1
MYOPIC 0.24 ± 8.2

TW 32.6 ± 7.0
EDUQATE- 100.0

30

WIQL -292 ± 1162
MYOPIC 180 ± 600

TW 122 ± 277
EDUQATE- 100

40

WIQL 307 ± 1069
MYOPIC 212 ± 526

TW 4.34 ± 1124
EDUQATE- 100

We present the results for different network setups in Table 3. We note that as the number of topics525

approach the number of arms (i.e. Ntopics = {30, 40}, all algorithms perform in a highly unstable526

manner, as reflected in the standard deviations presented. We emphasizes here that the performance527

of EduQate is dependent on the quality of the network it is working on, and tends to thrive in more528

complex, yet realistic scenarios, such as the Junyi dataset presented in Figure 2. We present an529

example of a graph generated when Ntopics = 40 in Figure 4, where we notice that many arms do530

not belong to a group. Under this network, the EdNetRMAB can be approximated to a traditional531

RMAB, where the arms are independent of each other.

Figure 4: Synthetic network when Ntopics = 40. Note that some arms are without group members,
and do not receive benefits from networks. Node colors represent topic groups.

532
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Figure 5: Average rewards across 800 episodes of training, across 30 seeds. EduQate- (orange) refers
to the EduQate algorithm without replay buffer.

E.2 Ablation of Replay Buffer533

Table 4: Comparison of EduQate with and without (EduQate-) Experience Replay Buffer policies
across different datasets. Results reported are of the final episode of training.

POLICY
E[IB] (%) ±

SYNTHETIC JUNYI OLI

EDUQATE- 104.74 ± 32.56 76.90 ± 4.72 107.30 ± 11.77
EDUQATE 100.0 100.0 100.0

POLICY
E[R] ±

SYNTHETIC JUNYI OLI

EDUQATE- 32.032 ± 0.469 22.133 ± 0.544 25.16 ± 0.432
EDUQATE 34.331 ± 0.489 24.527 ± 0.314 25.468 ± 0.469

We investigate the importance of the Experience Replay buffer in EduQate, as shown in Figure 5 and534

Table 4. For the Simulated and Junyi datasets, EduQate without Experience Replay (EduQate-) does535

not achieve the performance levels of the full EduQate algorithm within 800 episodes, highlighting the536

importance of methods that aid Q-learning convergence. In real-world applications, slow convergence537

can result in students experiencing a curriculum similar to a random policy, leading to sub-optimal538

learning experiences during the early stages. This issue is known as the cold-start problem [3].539

Future work in EdNetRMABs should explore methods to overcome cold-start problems and improve540

convergence in Q-learning-based methods.541

F Q-Learning542

Q-learning [25] is a popular reinforcement learning method that enables an agent to learn optimal543

actions in an environment by iteratively updating its estimate of state-action value, Q(s, a), based on544

the rewards it receives. The objective, therefore, to learn Q∗(s, a) for each state-action pair of an545

MDP, given by:546

Q∗(s, a) = r(s) +
∑
s′∈S

P (s, a, s′) · V ∗(s′)

where V ∗(s′) is the optimal expected value of a state, is given by:547

V ∗(s) = maxa∈A(Q(s, a))
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Q-learning estimates Q∗ through repeated interactions with the environment. At each time step t,548

the agent takes an action a using its current estimate of Q values and current state s, thus received a549

reward of r(s) and new state s′. Q-learning then updates the current estimate using the following:550

Qnew(s, a)← (1− α) ·Qold(s, a)

+ α · (r(s)
+ γ ·maxa∈AQold(s

′, a))

(11)

where α ∈ [0, 1] is the learning rate that controls updates, and γ is the discount on future rewards551

associated with the MDP.552

G Experiment Details and Hyperparameters553

Category Parameter Value

Replay buffer buffer_size 10000
batch_size 64

WIQL/EduQate γ 0.95
α 0.1

Table 5: Hyperparameters for Replay Buffer and Q-learning
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H NeurIPS Paper Checklist554

1. Claims555

Question: Do the main claims made in the abstract and introduction accurately reflect the556

paper’s contributions and scope?557

Answer: [Yes]558

Justification: We summarize our contributions and provide the scope of the paper in the559

abstract and introduction.560

Guidelines:561

• The answer NA means that the abstract and introduction do not include the claims562

made in the paper.563

• The abstract and/or introduction should clearly state the claims made, including the564

contributions made in the paper and important assumptions and limitations. A No or565

NA answer to this question will not be perceived well by the reviewers.566

• The claims made should match theoretical and experimental results, and reflect how567

much the results can be expected to generalize to other settings.568

• It is fine to include aspirational goals as motivation as long as it is clear that these goals569

are not attained by the paper.570

2. Limitations571

Question: Does the paper discuss the limitations of the work performed by the authors?572

Answer: [Yes]573

Justification: Limitations were discussed in the final section.574

Guidelines:575

• The answer NA means that the paper has no limitation while the answer No means that576

the paper has limitations, but those are not discussed in the paper.577

• The authors are encouraged to create a separate "Limitations" section in their paper.578

• The paper should point out any strong assumptions and how robust the results are to579

violations of these assumptions (e.g., independence assumptions, noiseless settings,580

model well-specification, asymptotic approximations only holding locally). The authors581

should reflect on how these assumptions might be violated in practice and what the582

implications would be.583

• The authors should reflect on the scope of the claims made, e.g., if the approach was584

only tested on a few datasets or with a few runs. In general, empirical results often585

depend on implicit assumptions, which should be articulated.586

• The authors should reflect on the factors that influence the performance of the approach.587

For example, a facial recognition algorithm may perform poorly when image resolution588

is low or images are taken in low lighting. Or a speech-to-text system might not be589

used reliably to provide closed captions for online lectures because it fails to handle590

technical jargon.591

• The authors should discuss the computational efficiency of the proposed algorithms592

and how they scale with dataset size.593

• If applicable, the authors should discuss possible limitations of their approach to594

address problems of privacy and fairness.595

• While the authors might fear that complete honesty about limitations might be used by596

reviewers as grounds for rejection, a worse outcome might be that reviewers discover597

limitations that aren’t acknowledged in the paper. The authors should use their best598

judgment and recognize that individual actions in favor of transparency play an impor-599

tant role in developing norms that preserve the integrity of the community. Reviewers600

will be specifically instructed to not penalize honesty concerning limitations.601

3. Theory Assumptions and Proofs602

Question: For each theoretical result, does the paper provide the full set of assumptions and603

a complete (and correct) proof?604

Answer: [Yes]605
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Justification: Proofs are provided in Appendix 4.1.606

Guidelines:607

• The answer NA means that the paper does not include theoretical results.608

• All the theorems, formulas, and proofs in the paper should be numbered and cross-609

referenced.610

• All assumptions should be clearly stated or referenced in the statement of any theorems.611

• The proofs can either appear in the main paper or the supplemental material, but if612

they appear in the supplemental material, the authors are encouraged to provide a short613

proof sketch to provide intuition.614

• Inversely, any informal proof provided in the core of the paper should be complemented615

by formal proofs provided inappendix or supplemental material.616

• Theorems and Lemmas that the proof relies upon should be properly referenced.617

4. Experimental Result Reproducibility618

Question: Does the paper fully disclose all the information needed to reproduce the main ex-619

perimental results of the paper to the extent that it affects the main claims and/or conclusions620

of the paper (regardless of whether the code and data are provided or not)?621

Answer: [Yes]622

Justification: Experriment details are provided in both the main body and the appendix.623

Guidelines:624

• The answer NA means that the paper does not include experiments.625

• If the paper includes experiments, a No answer to this question will not be perceived626

well by the reviewers: Making the paper reproducible is important, regardless of627

whether the code and data are provided or not.628

• If the contribution is a dataset and/or model, the authors should describe the steps taken629

to make their results reproducible or verifiable.630

• Depending on the contribution, reproducibility can be accomplished in various ways.631

For example, if the contribution is a novel architecture, describing the architecture fully632

might suffice, or if the contribution is a specific model and empirical evaluation, it may633

be necessary to either make it possible for others to replicate the model with the same634

dataset, or provide access to the model. In general. releasing code and data is often635

one good way to accomplish this, but reproducibility can also be provided via detailed636

instructions for how to replicate the results, access to a hosted model (e.g., in the case637

of a large language model), releasing of a model checkpoint, or other means that are638

appropriate to the research performed.639

• While NeurIPS does not require releasing code, the conference does require all submis-640

sions to provide some reasonable avenue for reproducibility, which may depend on the641

nature of the contribution. For example642

(a) If the contribution is primarily a new algorithm, the paper should make it clear how643

to reproduce that algorithm.644

(b) If the contribution is primarily a new model architecture, the paper should describe645

the architecture clearly and fully.646

(c) If the contribution is a new model (e.g., a large language model), then there should647

either be a way to access this model for reproducing the results or a way to reproduce648

the model (e.g., with an open-source dataset or instructions for how to construct649

the dataset).650

(d) We recognize that reproducibility may be tricky in some cases, in which case651

authors are welcome to describe the particular way they provide for reproducibility.652

In the case of closed-source models, it may be that access to the model is limited in653

some way (e.g., to registered users), but it should be possible for other researchers654

to have some path to reproducing or verifying the results.655

5. Open access to data and code656

Question: Does the paper provide open access to the data and code, with sufficient instruc-657

tions to faithfully reproduce the main experimental results, as described in supplemental658

material?659
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Answer: [Yes]660

Justification: Code and the transition matrices are provided as supplementary materials.661

Guidelines:662

• The answer NA means that paper does not include experiments requiring code.663

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/664

public/guides/CodeSubmissionPolicy) for more details.665

• While we encourage the release of code and data, we understand that this might not be666

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not667

including code, unless this is central to the contribution (e.g., for a new open-source668

benchmark).669

• The instructions should contain the exact command and environment needed to run to670

reproduce the results. See the NeurIPS code and data submission guidelines (https:671

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.672

• The authors should provide instructions on data access and preparation, including how673

to access the raw data, preprocessed data, intermediate data, and generated data, etc.674

• The authors should provide scripts to reproduce all experimental results for the new675

proposed method and baselines. If only a subset of experiments are reproducible, they676

should state which ones are omitted from the script and why.677

• At submission time, to preserve anonymity, the authors should release anonymized678

versions (if applicable).679

• Providing as much information as possible in supplemental material (appended to the680

paper) is recommended, but including URLs to data and code is permitted.681

6. Experimental Setting/Details682

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-683

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the684

results?685

Answer: [Yes]686

Justification: Relevant details are provided in the main body, as well as the appendix.687

Guidelines:688

• The answer NA means that the paper does not include experiments.689

• The experimental setting should be presented in the core of the paper to a level of detail690

that is necessary to appreciate the results and make sense of them.691

• The full details can be provided either with the code, in appendix, or as supplemental692

material.693

7. Experiment Statistical Significance694

Question: Does the paper report error bars suitably and correctly defined or other appropriate695

information about the statistical significance of the experiments?696

Answer: [Yes]697

Justification: In our experiments, we report and display the standard error across all seeds.698

Guidelines:699

• The answer NA means that the paper does not include experiments.700

• The authors should answer "Yes" if the results are accompanied by error bars, confi-701

dence intervals, or statistical significance tests, at least for the experiments that support702

the main claims of the paper.703

• The factors of variability that the error bars are capturing should be clearly stated (for704

example, train/test split, initialization, random drawing of some parameter, or overall705

run with given experimental conditions).706

• The method for calculating the error bars should be explained (closed form formula,707

call to a library function, bootstrap, etc.)708

• The assumptions made should be given (e.g., Normally distributed errors).709

• It should be clear whether the error bar is the standard deviation or the standard error710

of the mean.711
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• It is OK to report 1-sigma error bars, but one should state it. The authors should712

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis713

of Normality of errors is not verified.714

• For asymmetric distributions, the authors should be careful not to show in tables or715

figures symmetric error bars that would yield results that are out of range (e.g. negative716

error rates).717

• If error bars are reported in tables or plots, The authors should explain in the text how718

they were calculated and reference the corresponding figures or tables in the text.719

8. Experiments Compute Resources720

Question: For each experiment, does the paper provide sufficient information on the com-721

puter resources (type of compute workers, memory, time of execution) needed to reproduce722

the experiments?723

Answer: [Yes]724

Justification: The current paper only requires CPU-level of compute and is mentioned in the725

Experiment section.726

Guidelines:727

• The answer NA means that the paper does not include experiments.728

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,729

or cloud provider, including relevant memory and storage.730

• The paper should provide the amount of compute required for each of the individual731

experimental runs as well as estimate the total compute.732

• The paper should disclose whether the full research project required more compute733

than the experiments reported in the paper (e.g., preliminary or failed experiments that734

didn’t make it into the paper).735

9. Code Of Ethics736

Question: Does the research conducted in the paper conform, in every respect, with the737

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?738

Answer: [Yes]739

Justification: All datasets used were anonymized by the respective authors.740

Guidelines:741

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.742

• If the authors answer No, they should explain the special circumstances that require a743

deviation from the Code of Ethics.744

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-745

eration due to laws or regulations in their jurisdiction).746

10. Broader Impacts747

Question: Does the paper discuss both potential positive societal impacts and negative748

societal impacts of the work performed?749

Answer: [Yes]750

Justification: The current work has positive implications for applied machine learning in751

education settings, and is discussed in the Introduction section. As far as we can see, we752

don’t think there are negative impacts for education.753

Guidelines:754

• The answer NA means that there is no societal impact of the work performed.755

• If the authors answer NA or No, they should explain why their work has no societal756

impact or why the paper does not address societal impact.757

• Examples of negative societal impacts include potential malicious or unintended uses758

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations759

(e.g., deployment of technologies that could make decisions that unfairly impact specific760

groups), privacy considerations, and security considerations.761
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• The conference expects that many papers will be foundational research and not tied762

to particular applications, let alone deployments. However, if there is a direct path to763

any negative applications, the authors should point it out. For example, it is legitimate764

to point out that an improvement in the quality of generative models could be used to765

generate deepfakes for disinformation. On the other hand, it is not needed to point out766

that a generic algorithm for optimizing neural networks could enable people to train767

models that generate Deepfakes faster.768

• The authors should consider possible harms that could arise when the technology is769

being used as intended and functioning correctly, harms that could arise when the770

technology is being used as intended but gives incorrect results, and harms following771

from (intentional or unintentional) misuse of the technology.772

• If there are negative societal impacts, the authors could also discuss possible mitigation773

strategies (e.g., gated release of models, providing defenses in addition to attacks,774

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from775

feedback over time, improving the efficiency and accessibility of ML).776

11. Safeguards777

Question: Does the paper describe safeguards that have been put in place for responsible778

release of data or models that have a high risk for misuse (e.g., pretrained language models,779

image generators, or scraped datasets)?780

Answer: [NA]781

Justification: The current paper does not release any new assets.782

Guidelines:783

• The answer NA means that the paper poses no such risks.784

• Released models that have a high risk for misuse or dual-use should be released with785

necessary safeguards to allow for controlled use of the model, for example by requiring786

that users adhere to usage guidelines or restrictions to access the model or implementing787

safety filters.788

• Datasets that have been scraped from the Internet could pose safety risks. The authors789

should describe how they avoided releasing unsafe images.790

• We recognize that providing effective safeguards is challenging, and many papers do791

not require this, but we encourage authors to take this into account and make a best792

faith effort.793

12. Licenses for existing assets794

Question: Are the creators or original owners of assets (e.g., code, data, models), used in795

the paper, properly credited and are the license and terms of use explicitly mentioned and796

properly respected?797

Answer: [Yes]798

Justification: Code [17] and datasets [7, 4] were appropriately cited.799

Guidelines:800

• The answer NA means that the paper does not use existing assets.801

• The authors should cite the original paper that produced the code package or dataset.802

• The authors should state which version of the asset is used and, if possible, include a803

URL.804

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.805

• For scraped data from a particular source (e.g., website), the copyright and terms of806

service of that source should be provided.807

• If assets are released, the license, copyright information, and terms of use in the808

package should be provided. For popular datasets, paperswithcode.com/datasets809

has curated licenses for some datasets. Their licensing guide can help determine the810

license of a dataset.811

• For existing datasets that are re-packaged, both the original license and the license of812

the derived asset (if it has changed) should be provided.813
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• If this information is not available online, the authors are encouraged to reach out to814

the asset’s creators.815

13. New Assets816

Question: Are new assets introduced in the paper well documented and is the documentation817

provided alongside the assets?818

Answer: [NA]819

Justification: [NA]820

Guidelines:821

• The answer NA means that the paper does not release new assets.822

• Researchers should communicate the details of the dataset/code/model as part of their823

submissions via structured templates. This includes details about training, license,824

limitations, etc.825

• The paper should discuss whether and how consent was obtained from people whose826

asset is used.827

• At submission time, remember to anonymize your assets (if applicable). You can either828

create an anonymized URL or include an anonymized zip file.829

14. Crowdsourcing and Research with Human Subjects830

Question: For crowdsourcing experiments and research with human subjects, does the paper831

include the full text of instructions given to participants and screenshots, if applicable, as832

well as details about compensation (if any)?833

Answer: [NA]834

Justification: [NA]835

Guidelines:836

• The answer NA means that the paper does not involve crowdsourcing nor research with837

human subjects.838

• Including this information in the supplemental material is fine, but if the main contribu-839

tion of the paper involves human subjects, then as much detail as possible should be840

included in the main paper.841

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,842

or other labor should be paid at least the minimum wage in the country of the data843

collector.844

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human845

Subjects846

Question: Does the paper describe potential risks incurred by study participants, whether847

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)848

approvals (or an equivalent approval/review based on the requirements of your country or849

institution) were obtained?850

Answer: [NA]851

Justification: [NA]852

Guidelines:853

• The answer NA means that the paper does not involve crowdsourcing nor research with854

human subjects.855

• Depending on the country in which research is conducted, IRB approval (or equivalent)856

may be required for any human subjects research. If you obtained IRB approval, you857

should clearly state this in the paper.858

• We recognize that the procedures for this may vary significantly between institutions859

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the860

guidelines for their institution.861

• For initial submissions, do not include any information that would break anonymity (if862

applicable), such as the institution conducting the review.863
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