

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAI: CAPTION-SENSITIVE ATTENTION INTERVENTION FOR MITIGATING OBJECT HALLUCINATION IN LARGE VISION-LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Although Large Vision-Language Models (LVLMs) have demonstrated remarkable performance on downstream tasks, they frequently produce contents that deviate from visual information, leading to object hallucination. To tackle this, recent works mostly depend on expensive manual annotations and training cost, or decoding strategies which significantly increase inference time. In this work, we observe that LVLMs' attention to visual information is significantly enhanced when answering caption queries compared to non-caption queries. Inspired by this phenomenon, we propose **Caption-sensitive Attention Intervention (CAI)**, a training-free, plug-and-play hallucination mitigation method that leverages the attention activation pattern corresponding to caption queries to enhance LVLMs' visual perception capability. Specifically, we use probing techniques to identify attention heads that are highly sensitive to caption queries and accurately estimate optimized intervention directions for their outputs. This intervention strengthens LVLM's fine-grained visual perception capabilities, thereby effectively mitigating object hallucination. CAI reduced object hallucination by an average of 6.03% across five widely used LVLMs and five benchmarks including both discriminative and generative tasks, demonstrating state-of-the-art (SOTA) performance while incurring little additional inference cost and preserving other foundational capabilities.

1 INTRODUCTION

Despite the remarkable performance of Large Vision-Language Models (LVLMs) on downstream tasks, it is widely observed that LVLMs frequently generate content that conflicts with the corresponding visual information, leading to object hallucination (Sahoo et al., 2024; Huang et al., 2023). To tackle this, recent works for mitigating hallucination mostly use contrastive decoding strategies (Leng et al., 2024; Zhong et al., 2024) which arise high inference latencies, or training LVLMs using carefully designed data (You et al., 2023; Yu et al., 2024a) which incurs expensive manual annotation and computation cost. Furthermore, interpretability studies (Arif et al., 2025; Bi et al., 2024a) have identified insufficient attention to visual information as an underlying cause of hallucination. To address the aforementioned limitations and the underlying cause, we focus on exploring how to enhance LVLMs' perception capability by providing sufficient attention to visual information, without modifying model parameters or introducing significant inference cost.

In this work, we observe that caption query (e.g. "Please describe this image in detail.") is a special type of instruction that plays a critical role in LVLM's pre-training stage for text-image alignment, endowing the model with fine-grained visual perception capability. Furthermore, as shown in Figure 1 (a) and (b), we reveal a critical phenomenon: visual attention across particular attention heads is significantly enhanced when fed caption queries versus non-caption queries. We term these attention heads as *caption-sensitive attention heads*. As an enhancement of their visual attention is accompanied by a reduction in object hallucination, it may indicate that these heads are responsible for the fine-grained perception capabilities. Inspired by this phenomenon, we propose **Caption-sensitive Attention Intervention (CAI)**, a training-free, plug-and-play method, which probes and refines caption-sensitive attention heads outputs during inference to enhance LVLM's fine-grained visual perception capability and mitigate object hallucination. Specifically, our method unfolds in

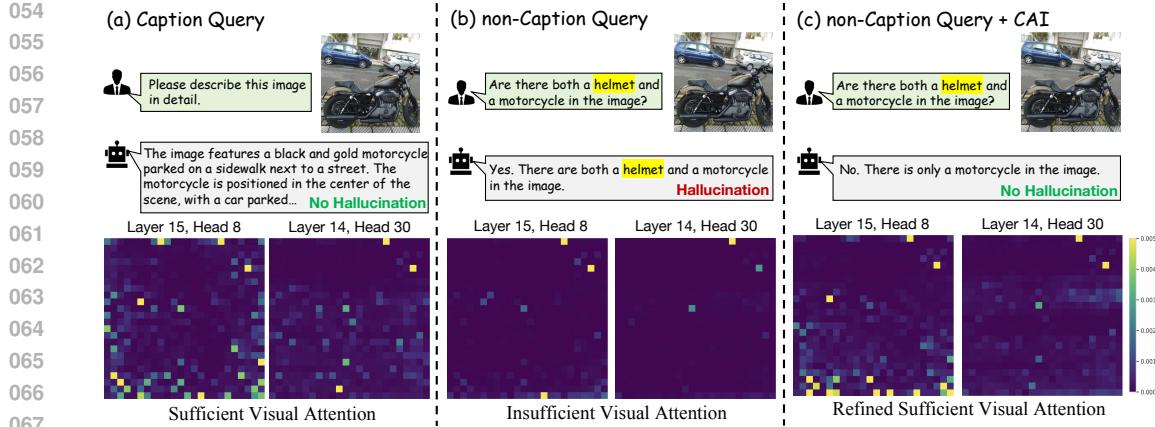


Figure 1: The visualization of attention weights at image patch level across different conversation settings. LLaVA-1.5-7b correctly generates the detailed content of the image in response to the caption query, but exhibits hallucination (e.g., "helmet") when answering the non-caption query. CAI refines LVLM’s visual attention patterns from insufficient to sufficient, effectively enhancing visual perception capability and mitigating object hallucination.

three steps. First, following prior work (Li et al., 2024), we use probing techniques to identify these caption-sensitive attention heads. Furthermore, we compute attention output shift vectors for these attention heads, which quantify the output differences from non-caption to caption queries and serve as a fine-grained perception optimization direction. Finally, we apply the precomputed shift vectors to intervene caption-sensitive attention heads during inference, steering their outputs toward a state optimized for fine-grained visual perception and effectively mitigating object hallucinations. As shown in Figure 1 (b) and (c), CAI leads to a notable enhancement in visual attention and effectively mitigates object hallucination.

Consistent improvement across five widely used LVLMs and five benchmarks demonstrates that CAI achieves state-of-the-art (SOTA) performance. On the POPE (Li et al., 2023b) benchmark, the accuracy and the F1 score improve by 5.14% and 5.50% on average. Furthermore, hallucination rates decrease by 7.8% on the MMHalBench (Sun et al., 2023), while the informativeness of the responses improves.

In summary, our main contributions are three-fold:

- Our work is the first to explicitly reveal the impact of caption queries versus non-caption queries on the attention activation patterns of LVLMs, providing novel insights for the optimization of visual attention.
- We propose **CAI**, a training-free method that effectively mitigates object hallucination by refining caption-sensitive attention head outputs during inference with little additional inference cost.
- Comprehensive experimental results demonstrate that CAI not only mitigates hallucination effectively but also shows strong generalization, preserving LVLM’s other foundational capabilities.

2 ANALYSIS OF CAPTION QUERIES’ EFFECT ON VISUAL ATTENTION

We performed a quantitative analysis to validate the primary motivation for CAI: caption queries uniquely refine visual attention patterns in LVLMs in a way that other queries do not. Using a sample of 1,000 images from the MS-COCO dataset (Lin et al., 2014), we designed three distinct queries for each image to analyze the effect of query type: one caption query and two vision-oriented non-caption queries with distinct meanings (non-caption-1 & non-caption-2). To quantify the effect on visual attention for caption and non-caption queries, we compute the **Change Rate** of attention weights across all layers and attention heads. Further details on this computation and the experimental setup are available in Appendix A.

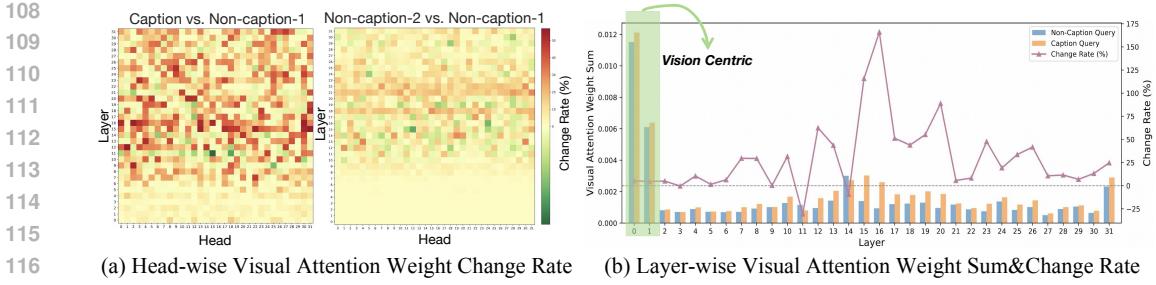


Figure 2: A quantitative analysis from head-wise (a) and layer-wise (b) perspective on visual attention weights, which demonstrates that caption queries significantly enhance visual attention of LLaVA-1.5-7b.

Experimental results in Figure 2 indicate that caption queries demonstrate significant enhancements on LVLM’s visual attention weights compared with non-caption queries, especially in the mid layers. As shown in Figure 2 (a), 65.92% of attention heads, which are concentrated primarily in middle layers, exhibit increased visual attention weights when fed caption queries. As shown in Figure 2 (b), 30 out of 32 layers exhibit a consistent enhancement in visual attention. Notably, the mid-layer attention heads demonstrate the most substantial improvements, which indicates their critical role in enabling LVLMs’ fine-grained perception capability. Our analysis provides clear feasibility and insights for locating and refining attention heads by leveraging the visual attention enhancement induced by caption queries to mitigate object hallucinations.

3 METHODS

3.1 PRELIMINARIES: THE TRANSFORMER RESIDUAL STREAM

We consider a LVLM parametrized by θ . The model receives as input a visual input $\mathbf{V} = \{v_1, v_2, \dots, v_m\}$ and a textual query $\mathbf{T} = \{t_1, t_2, \dots, t_n\}$, where m and n denote the sequence lengths of the visual input and textual inputs. The textual and visual inputs are concatenated together to form the first layer input $\mathbf{H}^1 = \text{concat}(\mathbf{V}, \mathbf{T}) \in \mathbb{R}^{(m+n) \times d}$ for the L layers $\times H$ heads language decoder.

During the forward pass, the input \mathbf{H}^l received by the h -th attention head at l -th layer is linearly transformed using independent weight matrices to generate the Query, Key and Value matrices, denoted as $\mathbf{Q}_{(l,h)} \in \mathbb{R}^{(m+n) \times d}$, $\mathbf{K}_{(l,h)} \in \mathbb{R}^{(m+n) \times d}$ and $\mathbf{V}_{(l,h)} \in \mathbb{R}^{(m+n) \times d}$, where d denotes the head-specific hidden dimension. The generated Query, Key, and Value matrices are then used to compute the attention score, attention weight matrix, and attention output as follows:

$$\dot{\mathbf{A}}_{(l,h)} = \frac{\mathbf{Q}_{(l,h)} \mathbf{K}_{(l,h)}^T}{\sqrt{d}}, \mathbf{A}_{(l,h)} = \text{softmax}(\dot{\mathbf{A}}_{(l,h)} + \mathbf{M}), \mathbf{M}[i, j] = \begin{cases} 0 & \text{if } j \leq i \\ -\infty & \text{if } j > i \end{cases} \quad (1)$$

$$\mathbf{O}_{(l,h)} = \mathbf{A}_{(l,h)} \mathbf{V}_{(l,h)}, \quad (2)$$

where \mathbf{M} is the causal mask matrix. At each layer, the hidden states pass through multi-head attention (MHA), which comprise H independent attention heads, each performing separate linear transformations. Specifically, the MHA mechanism can be formulated as:

$$\mathbf{H}^{l+1} = \mathbf{H}^l + \sum_{h=1}^H \mathbf{O}_{(l,h)} \cdot \mathbf{W}_o^l, \quad (3)$$

where $\mathbf{W}_o^l \in \mathbb{R}^{Hd \times d}$ is the learnable weight matrix and maps d -dimensional attention outputs of heads into hidden state representations, which are then fed into a standard multilayer perception (MLP) for further processing. Finally, the model predicts the next token in auto-regressive manner.

3.2 CAPTION-SENSITIVE ATTENTION HEADS PROBE

This module aims to identify caption-sensitive attention heads, which are also visually sensitive and exhibit significant differences in attention outputs when responding to caption and non-caption

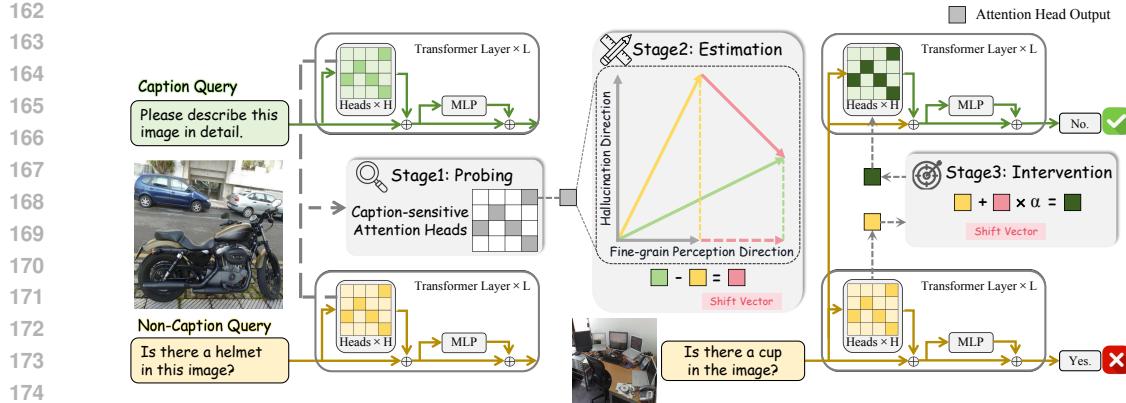


Figure 3: An overview of the CAI method. Each square in the matrix represents the attention head output. Squares with dark green color indicate refined caption-sensitive attention head outputs. CAI consists of three stages: (1) **Caption-Sensitive Attention Heads Probe** §3.2: We use probing techniques to identify caption-sensitive attention heads, which exhibit enhanced visual attention when fed caption queries versus non-caption queries. (2) **Estimation of Perception Refined Vectors** §3.3: We estimate the perception refined vectors by computing the attention output shift vectors from feeding non-caption queries to caption queries. (3) **Intervention at Inference Time** §3.4: We apply the precomputed attention refined vectors to the Top- K caption-sensitive attention heads during inference, thereby enhancing visual attention and activating the model’s inherent fine-grained visual perception capability and effectively mitigate object hallucination.

queries. Since LVLMs generate tokens in an auto-regressive manner, CAI focuses on the attention matrices of the last input token, $\hat{\mathbf{A}}_{(l,h)}[m+n]$, which aggregates the most comprehensive visual and textual information. Furthermore, we aim to capture the differences in attention activation patterns when fed caption queries versus non-caption queries, as well as minimize the influence of textual semantic information during probing. To achieve this, we mask $\hat{\mathbf{A}}_{(l,h)}[m+n]$ to exclude attention towards all textual tokens during the forward pass, and compute the modified attention output:

$$\hat{\mathbf{M}}[i,j] = \begin{cases} 0 & \text{if } j \leq i \\ -\infty & \text{if } j > i \text{ or } (i = m+n \text{ and } j > n) \end{cases} \quad (4)$$

$$\hat{\mathbf{O}}_{(l,h)} = \text{softmax}(\hat{\mathbf{A}}_{(l,h)} + \hat{\mathbf{M}})\mathbf{V}_{(l,h)}, \tilde{\mathbf{O}}_{(l,h)} = \hat{\mathbf{O}}_{(l,h)}[m+n]. \quad (5)$$

For a dataset with a batchsize of B , the last token’s modified attention output of b -th VQA problem when answering caption query and non-caption query are denoted as $\tilde{\mathbf{O}}_{(l,h)}^b$ and $\tilde{\mathbf{O}}'_{(l,h)}^b$. For each attention head $\text{Head}_{(l,h)}$, we use B pairs of modified attention output to train a binary classifier $f_{l,h}(\cdot)$ that predicts whether the input sentence is a caption query. Finally, we select the attention heads with the Top- K highest classification accuracy as the caption-sensitive attention heads. The formulas are summarized as:

$$f_{l,h}^* = \arg \min_{f_{l,h}(\cdot)} \sum_{b=1}^B \mathcal{L}(f_{l,h}(x_b), y_b), \quad (6)$$

$$\text{Heads} = \{\text{Head}_{(l,h)} \mid \text{Head}_{(l,h)} \in \text{TopK}(\text{Acc}(f_{l,h}^*))\} \quad (7)$$

where $f_{l,h}^*$ denotes the final probe, \mathcal{L} denotes the loss function of the probes, $x_b \in \{\tilde{\mathbf{O}}_{(l,h)}^b, \tilde{\mathbf{O}}'_{(l,h)}^b\}$ denotes the input of the classifier, $y_b \in \{0, 1\}$ denotes the category of query (0 for caption query, 1 for non-caption query, respectively), and K denotes the number of selected heads.

3.3 ESTIMATION OF PERCEPTION REFINED VECTORS

This module aims to use caption-sensitive attention heads to accurately estimate the perception refined vectors. For a dataset with a batchsize of B , the last token’s origin attention output of b -th

VQA problem when answering caption query and non-caption query are denoted as $\mathbf{O}_{(l,h)}^b$ and $\mathbf{O}'_{(l,h)}^b$. To estimate the fine-grained perception direction for each attention head, attention output shift vector is computed as follows:

$$\mathbf{S}_{(l,h)} = \frac{1}{B} \sum_{b=1}^B \left(\mathbf{O}_{(l,h)}^b - \mathbf{O}'_{(l,h)}^b \right). \quad (8)$$

These shift vectors estimate the visual attention difference between caption queries and non-caption queries, which serve as the fine-grained perception directions. In particular, the modified attention outputs $\tilde{\mathbf{O}}_{(l,h)}^b$, $\tilde{\mathbf{O}}'_{(l,h)}^b$ are not used to estimate the refined vectors, as these values are not directly derived from the original inference process. In contrast, using the original attention outputs leads to more robust refined vectors.

3.4 INTERVENTION AT INFERENCE TIME

This module aims to refine caption-sensitive attention heads at inference time. We leverage the precomputed refined vectors to steer these heads from insufficient visual attention states to sufficient states, thereby enhancing the model’s fine-grained visual perception capability and mitigate hallucination. At each layer, the updated hidden state after intervention is computed as:

$$\mathbf{H}^{l+1} = \mathbf{H}^l + \sum_{h=1}^H \left(\mathbf{O}_{(l,h)} + \mathbb{I}_{(l,h)} \alpha \mathbf{S}_{(l,h)} \right) \cdot \mathbf{W}_o^l, \quad (9)$$

where $\mathbb{I}_{(l,h)}$ is a gating function, assigning a value of 1 to caption-sensitive attention heads, and 0 to the others. α represents the intensity of the intervention.

In conclusion, CAI significantly enhances LVLM’s fine-grained perception capability, which is attributed to the unique role of caption queries during the pre-training stage for text-image alignment, and their sufficient visual attention patterns. Furthermore, CAI benefits from the inference-time intervention paradigm, which provides an inherent advantage in inference latency.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate our proposed CAI method across five benchmarks, including discriminative and generative tasks to measure its effectiveness and robustness. See Appendix B.1 for details of benchmarks.

Baselines. We adopt LLaVA-1.5-7b, Qwen-VL-Chat, LLaVA-NeXT (Liu et al., 2024a) as baseline LVLMs, compared with several SOTA training-free methods. See Appendix C for results on more advanced LVLMs, and Appendix D for results compared with other SOTA training-free methods.

(1) Baselines tailored for decoding: VCD (Leng et al., 2024) contrasts model logits derived from original and distorted visual input to reduce the over-reliance on statistical bias. OPERA (Huang et al., 2024) introduces a penalty term on the logits during the beam-search decoding to mitigate the over-trust issue.

(2) Baselines utilizing inference-time intervention (ITI): PAI (Liu et al., 2024c) intervenes on attention heads by leveraging their original direction and optimizes the output distribution during decoding to mitigate language bias. VTI (Liu et al., 2024b) mitigates hallucination by steering hidden states at inference time to enhance the stability of visual features.

Despite prior findings (Bi et al., 2024b) indicating the significant role of attention heads in visual perception, there is a lack of approaches that analyze at head level and do not rely on specific decoding strategies (which increase inference time). The idea of using the attention differential between caption and non-caption inputs to guide inference interventions distinguishes CAI from earlier ITI works.

Implementation Details. In our experiments, we utilize 1000 task-diverse VQAs from LLaVA-1.5-7b pretraining dataset, each paired with a specific caption query, to identify caption-sensitive

attention heads and compute the attention shift vectors. For each attention head, SVM (Cortes, 1995) is used as the classifier and two-fold cross-validation is performed to evaluate its accuracy. More details are provided in Appendix B.

4.2 MAIN RESULTS

As shown in Figure 4 and Table 1-3, we summarize our main findings as follows:

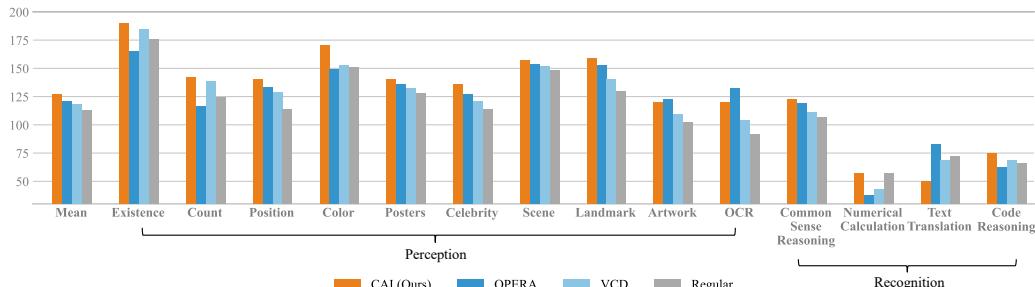


Figure 4: Main results of LLaVA-1.5-7b on the MME.

Setting	Method	LLaVA-1.5-7b		Qwen-VL-Chat		LLaVA-NeXT	
		Accuracy↑	F1-Score↑	Accuracy↑	F1-Score↑	Accuracy↑	F1-Score↑
Random	Regular	83.29	81.33	84.63	82.61	84.78	86.43
	VCD	87.73	87.16	86.93	85.46	88.76	89.57
	OPERA	89.20	88.81	85.71	84.64	90.27	89.71
	PAI	86.33	84.56	85.38	85.54	88.40	87.16
	VTI	89.50	88.89	86.73	85.59	89.23	88.68
	CAI(ours)	89.87 (+6.58)	89.43 (+8.10)	88.17 (+3.54)	87.31 (+4.70)	90.68 (+5.90)	90.42 (+3.99)
Popular	Regular	81.88	80.06	83.63	81.53	83.23	84.77
	VCD	85.38	85.06	85.17	83.68	87.01	87.70
	OPERA	86.64	86.62	84.82	83.99	87.16	87.68
	PAI	85.33	83.62	84.20	83.10	86.65	86.99
	VTI	87.36	86.69	85.67	84.48	87.33	87.16
	CAI(ours)	88.32 (+6.44)	87.95 (+7.89)	87.73 (+4.10)	86.84 (+5.31)	89.53 (+6.30)	89.24 (+4.47)
Adversarial	Regular	78.96	77.57	81.03	79.30	81.19	82.50
	VCD	80.88	81.33	83.10	82.04	84.80	85.23
	OPERA	81.24	81.38	82.67	79.89	85.20	85.54
	PAI	83.17	81.67	82.19	82.06	84.32	83.68
	VTI	82.57	82.11	83.13	82.16	85.35	84.52
	CAI(ours)	84.27 (+5.31)	84.41 (+6.84)	84.33 (+3.30)	83.92 (+4.62)	85.97 (+4.78)	86.07 (+3.57)

Table 1: Main results on POPE tasks. The best performances are bolded.

Method	LLaVA-1.5-7b					Qwen-VL-Chat					Method	LLaVA-1.5-7b					Qwen-VL-Chat				
	$C_S \downarrow C_I \downarrow$	Recall↑	Len	$C_S \downarrow C_I \downarrow$	Recall↑	Len	$Score \uparrow$	$VH.\% \downarrow$	$Hu.\% \downarrow$	$Score \uparrow$		$VH.\% \downarrow$	$Hu.\% \downarrow$	$Score \uparrow$	$VH.\% \downarrow$	$Hu.\% \downarrow$	$Score \uparrow$	$VH.\% \downarrow$	$Hu.\% \downarrow$		
Regular	52.8	15.9	77.3	93.4	2.8	3.0	31.0	5.3			Regular	1.86	63.5	67.1	2.93	41.1	61.0				
VCD	51.0	14.9	77.2	101.9	1.4	1.2	30.8	4.0			VCD	2.12	54.2	66.7	2.77	39.2	61.5				
OPERA	45.6	13.1	78.5	95.3	1.7	1.3	31.9	4.4			OPERA	2.15	54.2	63.0	2.94	38.4	58.2				
PAI	38.3	12.4	76.9	94.4	1.3	1.2	<u>32.2</u>	4.2			PAI	2.27	53.2	<u>62.5</u>	2.87	39.5	<u>56.7</u>				
VTI	36.9	12.1	76.8	93.8	<u>1.1</u>	<u>1.1</u>	31.4	4.2			VTI	<u>2.33</u>	<u>52.2</u>	63.4	<u>2.99</u>	<u>38.4</u>	57.4				
CAI	34.6	11.5	<u>78.2</u>	95.8	1.0	0.9	32.6	4.4			CAI	2.43	51.0	61.5	3.04	38.0	56.0				

Table 2: Results on CHAIR benchmark. Max new tokens are set to be 512.

Table 3: Results on MMHal-Bench and MHumanEval (evaluated by GPT-4 & Human).

324 **(1) SOTA hallucination mitigation performance** Our proposed CAI method achieves SOTA hal-
 325 lucination mitigation performance across both discriminative and generative tasks. On the POPE
 326 benchmark, CAI improves accuracy by an average of +5.64% and F1 Score by +5.50%. On the
 327 CHAIR benchmark, CAI reduces the average hallucination metrics (C_S and C_I) by 6.43 points.
 328 On MMHal-Bench, CAI improves the average Score by +0.16, while reduces the average VH Rate
 329 by 2.95% and the Hu. Rate by 2.25%. [As shown in Appendix L](#), CAI substantially mitigates the
 330 “yes-bias”, providing deeper evidence of CAI’s effectiveness in discriminative settings.

331 **(2) Generalizability across architectures and datasets** CAI exhibits strong generalization capa-
 332 bility across both model architectures and data sources. From the architectural perspective, CAI
 333 remains effective across models with different attention mechanisms, including those with opti-
 334 mized implementations such as Qwen-VL-Chat. This is because CAI stems from the difference in
 335 attention patterns between caption and non-caption queries, rather than the specific implementation
 336 details of the multi-head attention mechanism. From the data perspective, although the probing and
 337 refined vectors are computed using 1,000 samples from the LLaVA-1.5-7b pre-training dataset, they
 338 generalize well to other out-of-domain benchmarks and advanced LVLMs. These results highlight
 339 the generalizability across model architectures and datasets.

340 **(3) Preservation of foundational capabilities** CAI not only mitigates hallucination but also pre-
 341 serves the LVLM’s other foundational capabilities. On the MME benchmark, CAI improves perfor-
 342 mance on 13 out of 14 tasks, preserving most of LVLM’s foundational capabilities. Furthermore,
 343 CAI improves the informativeness score by 0.16 on MMHal-Bench, demonstrating that CAI effec-
 344 tively mitigates object hallucination without compromising informativeness.

345 5 ANALYSIS AND DISCUSSIONS

346 5.1 OPTIMIZATION VIA CAPTION QUERIES’ DIVERSITY

350 Setting	351 VA (%)	352 Parameters		353 Random		354 Popular		355 Adversarial		356 Average		
		357 α	358 K	359 $ACC \uparrow$	360 $F1 \uparrow$	361 $ACC \uparrow$	362 $F1 \uparrow$	363 $ACC \uparrow$	364 $F1 \uparrow$	365 $ACC \uparrow$	366 $F1 \uparrow$	
353 Regular	354 31.4	355 -	356 -	357 83.29	358 81.33	359 81.88	360 80.06	361 78.96	362 77.57	363 81.38	364 79.65	
354 Random1	355 46.8 (+15.4)	356 1.25	357 100	358 88.59	359 88.15	360 86.95	361 86.55	362 83.08	363 83.25	364 86.21	365 85.98	
355 Random2	356 45.6 (+14.2)	357 1.50	358 100	359 88.65	360 88.21	361 87.01	362 86.68	363 83.15	364 83.33	365 86.27	366 86.07	
356 Random3	357 44.7 (+13.3)	358 1.50	359 125	360 89.02	361 88.65	362 87.41	363 87.05	364 83.58	365 83.72	366 86.67	367 86.47	
357 Random4	358 44.2 (+12.8)	359 1.50	360 100	361 89.15	362 88.82	363 87.53	364 87.21	365 83.66	366 83.80	367 86.78	368 86.61	
358 Optimized of N		359 43.4 (+12.0)	360 1.50	361 100	362 89.87	363 89.43	364 88.32	365 87.92	366 84.27	367 84.41	368 87.49	369 87.26
359 Ensemble of N		-	360 1.50	361 100	362 88.93	363 88.68	364 87.46	365 86.91	366 83.78	367 83.56	368 86.72	369 86.38

370 Table 4: We construct a caption query candidate pool ($N=16$), where we derive our test cases as
 371 follows: (1) four queries are randomly selected; (2) one optimal query is chosen using caption query
 372 optimization algorithm; and (3) an ensemble intervention strategy is applied. **VA (%)** indicates the
 373 average percentage of attention weights over visual tokens when fed corresponding query. α and K
 374 denote the intensity and number of the intervention. We select the optimal parameters separately for
 375 each setting.

376 To further enhance the robustness of CAI, we aim to leverage the diversity of caption queries and
 377 introduce two optimization strategies to improve real-world application.

378 **Candidate Caption Query Pool Expansion:** Caption queries refer to prompts with explicit sem-
 379 antics (e.g., “Please describe this image in detail”) and strong cross-model transferability, which
 380 can be easily sourced from open pre-training datasets or generated using large language models.
 381 By expanding the candidate pool, we increase the diversity and generalizability of caption-sensitive
 382 attention heads probing.

383 **Caption Query Optimization Algorithm:** Our experiments reveal that the shift cost—the attention
 384 weights change from a non-caption query to a caption query on a dataset—varies when fed different
 385 caption queries. Caption queries with minimal necessary shift cost yield better hallucination
 386 mitigation performance and we term these queries as optimized queries. This is possibly because
 387 optimized queries require less attention diversion from textual to visual information while still en-

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 abling fine-grained perception capability. As a result, optimized queries preserve the model’s native attention distribution better and strike a balance between visual and textual attention. As shown in Table 4, by expanding the pool of candidate caption queries and applying the proposed caption query optimization algorithm, we can further enhance CAI’s performance.

Multi-query Feature Ensemble Algorithm: Although CAI achieves stable performance across different caption queries, we propose a multi-query ensemble strategy to reduce the influence of sub-optimal or outlier queries. Specifically, we integrate attention features from multiple caption queries to identify consistent caption-sensitive heads and estimate perception refined vectors. Strengthening these heads improves object hallucination mitigating performance and provides robust intervention against individual prompt variability. As shown in Table 4, while this ensemble may be marginally less optimal than using the optimized caption query, it substantially improves the reliability of CAI under various conditions.

5.2 DISTRIBUTION OF CAPTION-SENSITIVE ATTENTION HEADS

As illustrated in Figure 5, we visualize the classification accuracies across 32×32 attention heads during the probing stage of LLaVA-1.5-7B (left) and Qwen-VL-Chat (right). We observe that caption-sensitive attention heads are concentrated primarily between the 7th and 20th layers, which is well aligned with the layers with higher Change Rates presented in Figure 2. These attention heads play a critical role to fine-grained visual perception. By refining the output of these heads, CAI effectively enhances LVLM’s visual perception capability and mitigates object hallucination.

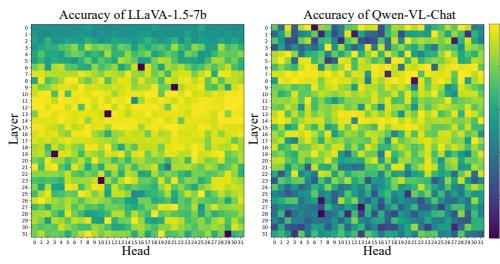


Figure 5: The accuracies of probes.

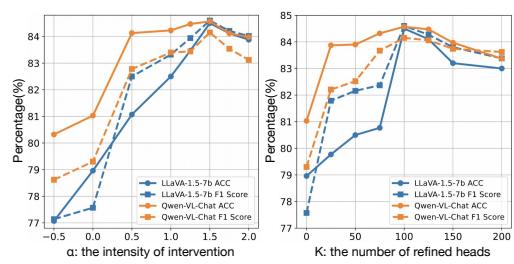


Figure 6: Ablation study of α and K on POPE.

Method	$C_S \downarrow C_I \downarrow$	PPL	Coher.	\uparrow	Fluency \uparrow
LLaVA-1.5-7b	20.80 6.77	3.97	0.998		0.805
+ CAI	17.20 5.50	4.11	0.998		0.791
+ CAI (over)	18.60 6.00	4.23	0.997		0.809

Table 5: Impact of over-intervention on CHAIR benchmark. *Max new tokens* is set to 64.

5.3 IMPACT OF HYPERPARAMETERS AND INFERENCE LATENCY

CAI method primarily relies on two key hyperparameters: the intensity of intervention α and the number of refined attention heads K . We use grid search to find the optimal value for both hyperparameters across benchmarks. See Appendix I for detailed results. As shown in Figure 6, we provide the ablation study results for each hyperparameter when the other is fixed to its optimal value ($K = 100$ on the left and $\alpha = 1.5$). The key implications can be summarized as follows:

- (1) Impact of α : When α is small, the attention intervention is insufficient, leading to marginal improvements. While a large α leads to insufficient attention to textual information, leading to a performance drop.
- (2) Impact of K : Applying intervention to few attention heads fails to influence the full activation pathways of visual information. While intervening in excess heads disrupts attention activation paths that are irrelevant to visual perception and play essential roles in other foundational capabilities, leading to performance drop.

Method	TTFT(ms)	TPOT(ms)	Acc(%)
LLaVA-1.5-7b	99.8 1.0 \times	36.0 1.0 \times	78.96
+ VCD	160.1 1.6 \times	96.8 2.7 \times	80.88
+ PAI	156.3 1.6 \times	93.6 2.6 \times	83.17
+ CAI(ours)	102.2 1.0 \times	36.5 1.0 \times	84.50

Table 6: Inference latency (TTFT, TPOT) and accuracy on POPE adversarial.

432 Moreover, as shown in Table 5, we employ UniEval (Zhong et al., 2022) and perplexity (PPL) com-
 433 putation to evaluate the coherence and fluency of generated responses. We find even when doubling
 434 the optimal intervention parameter, CAI does not compromise the coherence and fluency of outputs.
 435 Furthermore, as shown in Table 6, CAI achieves better hallucination mitigating performance with
 436 less additional inference latency, which benefits from the inference-time intervention paradigm.
 437

438 5.4 CASE STUDY

440 CAI remains effective in caption task, which is attributed to the enhancement in visual attention. As
 441 shown in Figure 7, CAI effectively mitigates object hallucination not only during the regeneration of
 442 new responses, but also when extending hallucinated contexts, highlighting its fine-grained, token-
 443 level object hallucination mitigation capability.
 444

445 6 RELATED WORKS

446 6.1 LARGE VISION-LANGUAGE MODELS

447 Several powerful LVLMs based on open-source LLM backbones combined with visual encoders
 448 have achieved impressive capabilities through vision-language pretraining. Furthermore, recent
 449 searches have further improved model performance by employing high-resolution visual encoders
 450 (Hong et al., 2024) and exploring reinforcement learning methods, such as RLHF (Yu et al., 2024a).
 451 Closed-source models, such as GPT-4o (Hurst et al., 2024) and Gemini 1.5 (Reid et al., 2024) have
 452 demonstrated even more powerful performance. In addition, a growing body of work emphasizes
 453 scaling strategies, cross-modal alignment, and integration of external knowledge sources, which
 454 further enrich the reasoning and generation abilities of LVLMs. However, despite these advances,
 455 recent LVLMs still suffer from hallucination problems, and addressing how to cost-effectively miti-
 456 gate hallucination remains an important open question that demands deeper exploration.
 457

458 6.2 MITIGATING HALLUCINATION IN LVLMs

459 Current methods for mitigating hallucination in LVLMs can be broadly categorized into two types:
 460 data-driven training methods and training-free methods. Training-based methods typically involve
 461 introducing novel training objectives (Chen et al., 2024a) and utilizing carefully curated datasets
 462 (Gunjal et al., 2024; Liu et al., 2023b; Yu et al., 2024b; You et al., 2023). For training-free methods,
 463 the main strategies include designing decoding techniques (Leng et al., 2024; Chen et al., 2024b;
 464 Chuang et al., 2023; Huang et al., 2024; Zhong et al., 2024) during the inference phase and leverag-
 465 ing language or visual prompts (Lee et al., 2023; An et al., 2024). PAI (Liu et al., 2024c) intervenes
 466 in attention heads by leveraging the direction and magnitude of their original outputs, and optimizes
 467 the output distribution during decoding to mitigate hallucinations. VTI (Liu et al., 2024b) reduces
 468 hallucinations by steering hidden states during inference to enhance the stability of vision features.
 469 Beyond these approaches, a number of studies highlight the importance of understanding the under-
 470 lying mechanisms that trigger hallucinations, suggesting that architectural and interpretability-
 471 driven interventions may offer complementary solutions. However, our work is the first to explicitly
 472 reveal the impact of caption queries on the attention activation patterns of LVLMs and mitigate
 473 hallucination by applying caption-sensitive attention head intervention during inference.
 474

475 7 CONCLUSION

476 In this paper, we are the first to explicitly reveal the impact of caption queries versus non-caption
 477 queries on the attention activation patterns of LVLMs, providing novel insights for the optimization
 478 of visual attention. Furthermore, we propose CAI, a training-free method that probes and refines
 479 caption-sensitive attention heads during inference, thereby enhancing LVLM’s fine-grained percep-
 480 tion capabilities and mitigating object hallucination. Comprehensive experimental results across
 481 five widely used benchmarks demonstrate that CAI not only effectively mitigates hallucination with
 482 little inference latency, but also shows strong generalization, preserving foundational capabilities.
 483

486 REPRODUCIBILITY STATEMENT
487488 We are committed to ensuring the reproducibility of our work. All datasets and models used in
489 our work are publicly available, as noted in Appendix B.1. The detailed experimental settings,
490 parameters and more results are provided in Appendix B, C and D.
491492 REFERENCES
493494 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
495 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
496 report. *arXiv preprint arXiv:2303.08774*, 2023.497 Wenbin An, Feng Tian, Sicong Leng, Jiahao Nie, Haonan Lin, QianYing Wang, Guang Dai, Ping
498 Chen, and Shijian Lu. Agla: Mitigating object hallucinations in large vision-language models
499 with assembly of global and local attention. *arXiv preprint arXiv:2406.12718*, 2024.500 Kazi Hasan Ibn Arif, Sajib Acharjee Dip, Khizar Hussain, Lang Zhang, and Chris Thomas. Fixing
501 imbalanced attention to mitigate in-context hallucination of large vision-language model. *arXiv*
502 preprint *arXiv:2501.12206*, 2025.
503504 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
505 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
506 2025.507 Yuntai Bao, Xuhong Zhang, Tianyu Du, Xinkui Zhao, Zhengwen Feng, Hao Peng, and Jianwei Yin.
508 Probing the geometry of truth: Consistency and generalization of truth directions in llms across
509 logical transformations and question answering tasks. *arXiv preprint arXiv:2506.00823*, 2025.510 Jing Bi, Junjia Guo, Yunlong Tang, Lianggong Wen, Zhang Liu, and Chenliang Xu. Unveiling visual
511 perception in language models: An attention head analysis approach. *ArXiv*, abs/2412.18108,
512 2024a. URL <https://api.semanticscholar.org/CorpusID:274992055>.
513514 Jing Bi, Junjia Guo, Yunlong Tang, Lianggong Bruce Wen, Zhang Liu, and Chenliang Xu. Unveil-
515 ing visual perception in language models: An attention head analysis approach. *arXiv preprint*
516 *arXiv:2412.18108*, 2024b.517 Beitao Chen, Xinyu Lyu, Lianli Gao, Jingkuan Song, and Heng Tao Shen. Alleviating hallucina-
518 tions in large vision-language models through hallucination-induced optimization. *arXiv preprint*
519 *arXiv:2405.15356*, 2024a.520 Junzhe Chen, Tianshu Zhang, Shiyu Huang, Yuwei Niu, Linfeng Zhang, Lijie Wen, and Xuming
521 Hu. Ict: Image-object cross-level trusted intervention for mitigating object hallucination in large
522 vision-language models. In *Proceedings of the Computer Vision and Pattern Recognition Confer-
523 ence*, pp. 4209–4221, 2025.524 Zhaorun Chen, Zhuokai Zhao, Hongyin Luo, Huaxiu Yao, Bo Li, and Jiawei Zhou. Halc: Object
525 hallucination reduction via adaptive focal-contrast decoding. *arXiv preprint arXiv:2403.00425*,
526 2024b.
527528 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
529 Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to
530 commercial multimodal models with open-source suites. *Science China Information Sciences*, 67
531 (12):220101, 2024c.532 Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:
533 Decoding by contrasting layers improves factuality in large language models. *arXiv preprint*
534 *arXiv:2309.03883*, 2023.535 Corinna Cortes. Support-vector networks. *Machine Learning*, 1995.536 Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera,
537 Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Multi-modal hallucination con-
538 trol by visual information grounding. In *Proceedings of the IEEE/CVF Conference on Computer
539 Vision and Pattern Recognition*, pp. 14303–14312, 2024.

540 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei
 541 Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. Mme: A comprehensive
 542 evaluation benchmark for multimodal large language models. *ArXiv*, abs/2306.13394, 2023. URL
 543 <https://api.semanticscholar.org/CorpusID:259243928>.

544 Michal Golovanevsky, William Rudman, Vedant Palit, Ritambhara Singh, and Carsten Eickhoff.
 545 What do vlms notice? a mechanistic interpretability pipeline for gaussian-noise-free text-image
 546 corruption and evaluation. *arXiv preprint arXiv:2406.16320*, 2024.

547 Xuan Gong, Tianshi Ming, Xinpeng Wang, and Zhihua Wei. Damro: Dive into the attention mech-
 548 anism of lylm to reduce object hallucination. *arXiv preprint arXiv:2410.04514*, 2024.

549 Anisha Gunjal, Jihan Yin, and Erhan Bas. Detecting and preventing hallucinations in large vision
 550 language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38,
 551 pp. 18135–18143, 2024.

552 Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng,
 553 Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvlm2: Visual language models for image and video
 554 understanding. *arXiv preprint arXiv:2408.16500*, 2024.

555 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 556 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 557 models: Principles, taxonomy, challenges, and open questions. *arXiv preprint arXiv:2311.05232*,
 558 2023.

559 Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
 560 Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
 561 via over-trust penalty and retrospection-allocation. In *Proceedings of the IEEE/CVF Conference
 562 on Computer Vision and Pattern Recognition*, pp. 13418–13427, 2024.

563 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 564 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 565 arXiv:2410.21276*, 2024.

566 Zhehan Kan, Ce Zhang, Zihan Liao, Yapeng Tian, Wenming Yang, Junyuan Xiao, Xu Li, Dongmei
 567 Jiang, Yaowei Wang, and Qingmin Liao. Catch: Complementary adaptive token-level contrastive
 568 decoding to mitigate hallucinations in lylms. *arXiv preprint arXiv:2411.12713*, 2024.

569 Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically
 570 generated visual questions and answers about radiology images. *Scientific data*, 5(1):1–10, 2018.

571 Seongyun Lee, Sue Hyun Park, Yongrae Jo, and Minjoon Seo. Volcano: mitigating multimodal
 572 hallucination through self-feedback guided revision. *arXiv preprint arXiv:2311.07362*, 2023.

573 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
 574 Mitigating object hallucinations in large vision-language models through visual contrastive de-
 575 coding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 576 nition*, pp. 13872–13882, 2024.

577 Jiaming Li, Jiacheng Zhang, Zequn Jie, Lin Ma, and Guanbin Li. Mitigating hallucination for
 578 large vision language model by inter-modality correlation calibration decoding. *arXiv preprint
 579 arXiv:2501.01926*, 2025a.

580 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
 581 intervention: Eliciting truthful answers from a language model. *Advances in Neural Information
 582 Processing Systems*, 36:41451–41530, 2023a.

583 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
 584 intervention: Eliciting truthful answers from a language model. *Advances in Neural Information
 585 Processing Systems*, 36, 2024.

586 Qiming Li, Zekai Ye, Xiaocheng Feng, Weihong Zhong, Weitao Ma, and Xiachong Feng. Causal
 587 tracing of object representations in large vision language models: Mechanistic interpretability and
 588 hallucination mitigation. *arXiv preprint arXiv:2511.05923*, 2025b.

594 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 595 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.
 596

597 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 598 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer
 599 Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014,
 600 Proceedings, Part V 13*, pp. 740–755. Springer, 2014.

601 Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Aligning large
 602 multi-modal model with robust instruction tuning. *arXiv preprint arXiv:2306.14565*, 2023a.
 603

604 Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Mitigating hal-
 605 lucination in large multi-modal models via robust instruction tuning. In *The Twelfth International
 606 Conference on Learning Representations*, 2023b.

607 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 608 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.
 609

610 Sheng Liu, Haotian Ye, and James Zou. Reducing hallucinations in vision-language models via
 611 latent space steering. *arXiv preprint arXiv:2410.15778*, 2024b.

612

613 Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method
 614 for alleviating hallucination in lvlms. *arXiv preprint arXiv:2407.21771*, 2024c.

615

616 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 617 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 618 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024d.

619

620 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 621 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022.

622

623 Clement Neo, Luke Ong, Philip Torr, Mor Geva, David Krueger, and Fazl Barez. Towards interpret-
 624 ing visual information processing in vision-language models. *arXiv preprint arXiv:2410.07149*,
 625 2024.

626

627 Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
 628 baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittweiser, et al. Gem-
 629 ini 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint
 630 arXiv:2403.05530*, 2024.

631

632 Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object
 633 hallucination in image captioning. *arXiv preprint arXiv:1809.02156*, 2018.

634

635 Pranab Sahoo, Prabhash Meharia, Akash Ghosh, Sriparna Saha, Vinija Jain, and Aman Chadha.
 636 A comprehensive survey of hallucination in large language, image, video and audio foundation
 637 models. *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 11709–
 11724, 2024.

638

639 Pritam Sarkar, Sayna Ebrahimi, Ali Etemad, Ahmad Beirami, Sercan Ö Ari, and Tomas Pfis-
 640 ter. Mitigating object hallucination in mllms via data-augmented phrase-level alignment. *arXiv
 641 preprint arXiv:2405.18654*, 2024.

642

643 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
 644 Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
 645 factually augmented rlhf. *arXiv preprint arXiv:2309.14525*, 2023.

646

647 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 648 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 649 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
 650 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

648 Xintong Wang, Jingheng Pan, Liang Ding, and Chris Biemann. Mitigating hallucinations in large
 649 vision-language models with instruction contrastive decoding. *arXiv preprint arXiv:2403.18715*,
 650 2024b.

651

652 Zijian Wang and Chang Xu. Thoughtprobe: Classifier-guided lilm thought space exploration via
 653 probing representations. In *Proceedings of the 2025 Conference on Empirical Methods in Natural
 654 Language Processing*, pp. 6029–6050, 2025.

655 Xiyang Wu, Tianrui Guan, Dianqi Li, Shuaiyi Huang, Xiaoyu Liu, Xijun Wang, Ruiqi Xian, Ab-
 656 hinav Shrivastava, Furong Huang, Jordan Lee Boyd-Graber, Tianyi Zhou, and Dinesh Manocha.
 657 Autohallusion: Automatic generation of hallucination benchmarks for vision-language models,
 658 2024. URL <https://arxiv.org/abs/2406.10900>.

659

660 Shukang Yin, Chaoyou Fu, Sirui Zhao, Tong Xu, Hao Wang, Dianbo Sui, Yunhang Shen, Ke Li,
 661 Xing Sun, and Enhong Chen. Woodpecker: Hallucination correction for multimodal large lan-
 662 guage models. *Science China Information Sciences*, 67(12):220105, 2024.

663 Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
 664 Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
 665 *arXiv preprint arXiv:2310.07704*, 2023.

666 Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu,
 667 Hai-Tao Zheng, Maosong Sun, et al. Rlhf-v: Towards trustworthy mllms via behavior alignment
 668 from fine-grained correctional human feedback. In *Proceedings of the IEEE/CVF Conference on
 669 Computer Vision and Pattern Recognition*, pp. 13807–13816, 2024a.

670

671 Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He,
 672 Zhiyuan Liu, Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-source ai feedback for
 673 super gpt-4v trustworthiness. *arXiv preprint arXiv:2405.17220*, 2024b.

674 Yudong Zhang, Ruobing Xie, Jiansheng Chen, Xingwu Sun, and Yu Wang. Pip: Detecting adversar-
 675 ial examples in large vision-language models via attention patterns of irrelevant probe questions.
 676 In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 11175–11183,
 677 2024.

678 Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong, Jiaqi Wang, and Conghui He. Beyond hal-
 679 luginations: Enhancing lmlms through hallucination-aware direct preference optimization, 2023.

680

681 Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji,
 682 and Jiawei Han. Towards a unified multi-dimensional evaluator for text generation. *arXiv preprint
 683 arXiv:2210.07197*, 2022.

684 Weihong Zhong, Xiaocheng Feng, Liang Zhao, Qiming Li, Lei Huang, Yuxuan Gu, Weitao Ma,
 685 Yuan Xu, and Bing Qin. Investigating and mitigating the multimodal hallucination snowballing
 686 in large vision-language models, 2024. URL <https://arxiv.org/abs/2407.00569>.

687

688 Guanyu Zhou, Yibo Yan, Xin Zou, Kun Wang, Aiwei Liu, and Xuming Hu. Mitigating modal-
 689 ity prior-induced hallucinations in multimodal large language models via deciphering attention
 690 causality. *arXiv preprint arXiv:2410.04780*, 2024.

691 Lanyun Zhu, Deyi Ji, Tianrun Chen, Peng Xu, Jieping Ye, and Jun Liu. Ibd: Alleviating
 692 hallucinations in large vision-language models via image-biased decoding. *arXiv preprint
 693 arXiv:2402.18476*, 2024.

694

695

696

697

698

699

700

701

702 **A EXPERIMENTAL SETUP OF QUANTITATIVE ANALYSIS**
703

704 We sample 1,000 images from the MS-COCO dataset (Lin et al., 2014). For each image, we propose
705 one caption query and two different non-caption queries (non-caption-1 & non-caption-2) to analyze
706 differences attributable to query types.
707

708 We consider a LVLM parametrized by θ . The model receives as input a textual query $\mathbf{T} =$
709 $\{t_1, t_2, \dots, t_n\}$ and a visual input $\mathbf{V} = \{v_1, v_2, \dots, v_m\}$, where n and m denote the sequence
710 lengths of the text and visual inputs. The text and vision inputs are concatenated together to form
711 the first layer input $\mathbf{H}^1 = \text{concat}(\mathbf{V}, \mathbf{T}) \in \mathbb{R}^{(m+n) \times d}$ for the L layers $\times H$ heads decoder. For
712 an image, the last input token’s visual attention weight of H -th head in L -th layer $\mathbf{Sum}_{(l,h)}$ can be
713 computed as:
714

715
$$\mathbf{A}_{(l,h)} = \text{softmax}\left(\frac{\mathbf{Q}_{(l,h)} \mathbf{K}_{(l,h)}^T}{\sqrt{d}}\right), \quad (10)$$

716

717
$$\mathbf{Sum}_{(l,h)} = \sum_{i=1}^m \mathbf{A}_{(l,h)}^{-1}[i], \quad (11)$$

718

719 where the $\mathbf{Q}_{(l,h)}$ and $\mathbf{K}_{(l,h)}$ are the Query and Key matrixs of the k -th head in l -th layer, $\mathbf{A}_{(l,h)}^{-1}[i]$
720 is the last input token’s attention weight of the i -th input token. For a dataset of B samples, the sum
721 of visual attention weight can be computed as:
722

723
$$S_{(l,h)} = \sum_{b=1}^B \mathbf{Sum}_{(l,h)}. \quad (12)$$

724

725 Then we record the sum of visual attention weights from the last input token for three types of
726 queries: $S_{(l,h)}^{cap}$ for caption query, $S_{(l,h)}^{non-1}$ for non-caption query 1 and $S_{(l,h)}^{non-2}$ for non-caption query
727 2. The head-wise Change Rate $Rate_{(l,h)}$ and layer-wise Change Rate $Rate_{(l)}$ can be computed as:
728

729
$$Rate_{(l,h)}^{cap} = \frac{S_{(l,h)}^{cap} - S_{(l,h)}^{non-1}}{S_{(l,h)}^{non-1}}, Rate_{(l,h)}^{non-cap} = \frac{S_{(l,h)}^{non-2} - S_{(l,h)}^{non-1}}{S_{(l,h)}^{non-1}}, \quad (13)$$

730

731
$$Rate_{(l)}^{cap} = \frac{\sum_{h=1}^H (S_{(l,h)}^{cap} - S_{(l,h)}^{non-1})}{\sum_{h=1}^H S_{(l,h)}^{non-1}}, Rate_{(l)}^{non-cap} = \frac{\sum_{h=1}^H (S_{(l,h)}^{non-2} - S_{(l,h)}^{non-1})}{\sum_{h=1}^H S_{(l,h)}^{non-1}}. \quad (14)$$

732

733 By comparison, we find that visual attention across particular attention heads was significantly
734 enhanced when fed caption compared to non-caption queries. These results provide strong support for
735 our proposed motivation.
736

740 **B ADDITIONAL EXPERIMENTAL DETAILS**
741

742 **B.1 BENCHMARKS**
743

744 We evaluate our proposed CAI method across five benchmarks, including both discriminative and
745 generative tasks to measure its effectiveness and robustness:
746

747 **(1) POPE** (Li et al., 2023b) employs a binary question-answering format, inquiring LVLMs to
748 answer if a special object exists in the given image. We adopt Accuracy and F1 score as the evaluation
749 metrics.
750

751 **(2) MME** (Fu et al., 2023) serves as a comprehensive tool for assessing the capabilities of LVLMs
752 across 10 perception tasks and 4 cognition tasks. Consequently, task scores are reported as the
753 evaluation metrics.
754

756 (3) **CHAIR** (Rohrbach et al., 2018) is a widely used metric to assess object hallucination of LVLMs.
 757 The CHAIR metric comprises two indicators, denoted as C_S and C_I , with the following calculation
 758 formulas:

$$C_S = \frac{|\{\text{Hallucinated objects}\}|}{|\{\text{All mentioned objects}\}|}$$

$$C_I = \frac{|\{\text{Sentences w/ hallucinated objects}\}|}{|\{\text{All sentences}\}|}$$

764 (4) **MMHal-Bench** (Sun et al., 2023) comprises 96 meticulously designed questions, which evaluates
 765 response-level hallucination rate (VH.%) and informativeness (Score). It asks **GPT-4** (Achiam
 766 et al., 2023) to compare model outputs with human responses and object labels for evaluation.

767 (5) **MHumanEval** (Yu et al., 2024b) is designed to evaluate hallucination performance by **human**
 768 **annotators**. The benchmark contains 146 samples collected from Object HalBench and MMHal-
 769 Bench. Given model responses, we ask three human annotators to label the hallucinated segments
 770 and compute the mean response-level hallucination rate (Hu.%) as the evaluation metric.

772 B.2 DATA SOURCE

774 Although our method does not rely on specific data, we separately specify the sources of the data
 775 used in the experiments for the sake of reproducibility.

777 B.2.1 DATA OF BEST QUERY SEARCH

778 In the best caption search algorithm, we use the top 100 VQA samples from the complex reasoning
 779 data in the LLaVA-1.5-7b pre-training dataset. From this, we obtain non-caption queries and their
 780 corresponding images. Additionally, we maintain a list of 16 candidate caption queries, some of
 781 which are manually generated and others are derived from the pre-trained instructions of LLaVA-
 782 1.5-7b. The caption query candidates are listed as follows:

783 *"What do you see happening in this image?", "What do you think is going on in this snapshot?",*
 784 *"Can you elaborate on the elements of the picture provided?", "Describe the following image.",*
 785 *"What's happening in the scene?", "Analyze the image in a comprehensive and detailed manner.",*
 786 *"Write a detailed description of the given image.", "What is this photo about?", "Explain the visual*
 787 *content of the image in great detail.", "What are the key elements in this picture?", "Can you*
 788 *describe the main features of this image for me?", "Please describe this image in detail.", "Generate*
 789 *the caption in English:" "Provide a thorough narrative of what the image depicts." "Offer a detailed*
 790 *explanation of the scene captured in the picture." "Summarize the visual information conveyed by*
 791 *this image."*

792 In the experiments, the best caption query for LLaVA-1.5-7b and LLaVA-NeXT is *"Analyze the*
 793 *image in a comprehensive and detailed manner."* and the best caption query for Qwen-VL-Chat,
 794 [InternVL2-8B](#), [Qwen2-VL-7B](#) and [Qwen2.5-VL-7B](#) is *"Please describe this image in detail."*

796 B.2.2 DATA OF PROBE AND SHIFT COMPUTATION

798 We extracted the first 1,000 samples from the complex reasoning data in the LLaVA-1.5-7b pre-
 799 training dataset. The questions from these samples were treated as non-caption queries.

801 B.3 DETAILED EXPERIMENTAL SETUP

802 In the experiment of POPE, 'regular' refers to the direct sampling setting. We used direct sampling
 803 decoding and set $\alpha = 1.5$ and $K = 100$ in the main experiments.

804
 805
 806
 807
 808
 809

810 C RESULTS ON MORE ADVANCED MODELS 811

812 As shown in Table 7, CAI further exhibits effective hallucination mitigation when applied to more
813 advanced models, providing additional evidence for the generalizability of CAI.
814

816 Model	817 POPE		818 MME		819 CHAIR		820 MMHal-Bench		
	821 Acc(%) \uparrow	822 F1-Score(%) \uparrow	823 Cog. \uparrow	824 Hall.% \uparrow	825 $C_S \downarrow$	826 $C_I \downarrow$	827 Score \uparrow	828 VH.% \downarrow	829 Hu.% \downarrow
828 Qwen2-VL-7B + CAI	88.49 89.85	87.85 89.87	556.4 570.4	630.0 668.3	24.8 15.6	7.2 6.5	2.87 3.09	49.8 40.8	55.4 48.4
828 InternVL2-8B + CAI	86.67 87.98	85.72 87.42	566.4 573.3	663.0 693.7	37.2 31.3	9.4 8.4	2.71 2.91	52.3 44.4	56.7 49.7
828 LLaVA-NeXT + CAI	83.06 88.73	84.57 88.58	533.7 566.7	586.7 657.5	40.0 33.3	10.5 8.9	2.57 3.12	55.8 48.9	65.4 61.0
828 Qwen2.5-VL-7B + CAI	87.35 88.96	87.09 88.70	630.0 655.7	683.3 695.0	37.2 32.6	8.7 8.0	3.05 3.24	34.7 29.9	43.6 40.2

827 Table 7: Results on more advanced LVLMs, including Qwen2-VL-7B (Wang et al., 2024a),
828 InternVL2-8B (Chen et al., 2024c), **LLaVA-NeXT** and **Qwen2.5-VL-7B** (Bai et al., 2025). Cog.
829 and Hall. denote the cognitive and hallucination subset of MME benchmark.

830 D COMPARISON WITH MORE ADVANCED METHODS 831

832 We selected LLaVA-1.5-7b as the baseline model and compared CAI with more advanced models
833 including VCD (Leng et al., 2024), ICD (Wang et al., 2024b), OPERA (Huang et al., 2024), Wood-
834 pecker (Yin et al., 2024), M3ID (Favero et al., 2024), DAMRO (Gong et al., 2024), IMCCD (Li
835 et al., 2025a), CATCH (Kan et al., 2024), IBD (Zhu et al., 2024), CAUSALMM (Zhou et al., 2024)
836 and ICT (Chen et al., 2025). The results of CAI compared with more SOTA methods on MS-COCO
837 POPE are shown in Table 8.
838

840 Method	841 Random		842 Popular		843 Adversarial		844 Average	
	845 Accuracy	846 F1-Score	847 Accuracy	848 F1-Score	849 Accuracy	850 F1-Score	851 Accuracy	852 F1-Score
843 Regular	83.29	81.33	81.88	80.06	78.96	77.57	81.38	79.65
844 ICD (<i>EMNLP'24 findings</i>)	89.56	89.68	86.16	86.76	79.71	81.70	85.14	86.05
845 OPERA (<i>CVPR'24</i>)	89.20	88.81	86.64	86.62	81.24	81.38	85.70	85.60
846 Woodpecker (<i>SCIS'24</i>)	87.67	86.45	80.67	79.72	80.67	80.00	83.00	82.05
847 M3ID (<i>CVPR'24</i>)	86.20	84.51	84.77	83.17	82.53	81.14	84.50	82.94
848 DAMRO (<i>EMNLP'24</i>)	88.20	87.29	85.67	84.98	82.07	81.90	85.31	84.72
849 IMCCD (<i>arXiv'25</i>)	89.23	88.68	86.73	86.13	82.87	82.77	86.27	85.86
850 CATCH (<i>ECCV'24</i>)	90.43	90.13	87.07	86.56	83.17	83.18	86.89	86.62
851 VDD (<i>arXiv'24</i>)	90.00	88.79	85.91	84.40	83.52	82.20	86.48	85.13
852 CAUSALMM (<i>ICLR'25</i>)	88.93	88.10	87.13	87.26	83.70	82.78	86.59	86.05
853 ICT (<i>CVPR'25</i>)	90.11	90.03	87.50	87.60	84.43	83.74	87.35	87.12
854 CAI(ours)	89.87	89.43	88.32	87.95	84.27	84.41	87.49	87.22

855 Table 8: Result compared with more advanced methods on MS-COCO POPE.
856

857 To further demonstrate the superiority of CAI’s performance, we additionally compare CAI with
858 two advanced RL methods, including HADPO (Zhao et al., 2023) and HALVA (Sarkar et al., 2024).
859 As shown in the Table 9 and Table 10, CAI achieves performance comparable to these RL methods
860 and even surpasses them on discriminative tasks.
861

862 E DETAILED EXPERIMENTAL RESULTS OF MME 863

864 Detailed results on MME perception and cognition can be found in Table 11 and Table 12.
865

Method	POPE			CHAIR (↓)		MME			
	Random	Popular	Adver.	CHAIR _I	CHAIR _S	Count	Exist.	Color	Posi.
LLaVA-1.5-7B	83.29	81.88	78.96	15.9	52.8	124.67	175.67	151.00	114.00
+ HADPO	86.00	85.10	82.90	11.0	38.2	133.30	190.00	158.30	136.70
+ HALVA	86.40	85.50	83.20	11.7	41.4	165.00	190.00	175.00	135.00
+ CAI	89.87	88.32	84.27	11.5	34.6	141.67	190.00	170.00	140.00

Table 9: Comparisons between CAI and RL works on POPE, CHAIR, and MME benchmarks.

Method	HallusionBench					GAVIE	
	qAcc	fAcc	Easy aAcc	Hard aAcc	aAcc	Relevancy	Accuracy
LLaVA-1.5-7B	10.55	20.86	41.67	29.77	46.04	8.20	6.42
+ HADPO	11.21	19.08	42.86	39.19	47.46	8.84	6.30
+ HALVA	13.85	21.48	42.71	40.81	47.95	8.72	6.46
+ CAI	12.90	20.96	43.34	37.69	46.75	8.76	6.68

Table 10: Comparisons between CAI and RL works on HallusionBench and GAVIE benchmarks.

Method	Artwork	Celebrity	Color	Count	Existence	Landmark	OCR	Position	Posters	Scene	Total
Regular	102.20	113.59	151.00	124.67	175.67	129.95	92.00	114.00	127.82	148.30	1279.20
VCD	109.60	120.94	153.00	138.33	184.66	140.45	104.00	128.67	132.11	152.20	1363.96
OPERA	122.50	126.76	149.00	116.00	165.00	152.75	132.50	133.33	136.05	154.00	1387.89
CAI(ours)	120.25	135.88	170.00	141.67	190.00	158.50	120.00	140.00	140.48	157.00	1473.78

Table 11: Results on all MME perception-related tasks. The best performance of each is **bolded**.

Method	Coding	Reasoning	Commonsense Reasoning	Numerical Calculation	Text Translation	Total
Regular	66.38		106.43		57.00	72.50
VCD	68.50		111.29		42.64	68.50
OPERA	62.50		119.29		37.50	82.50
CAI(ours)	75.00		122.86		57.50	50.00
						305.36

Table 12: Results on all MME recognition-related tasks. The best performance is **bolded**.

F DOMAIN GENERALIZATION PERFORMANCE

In domain-specific tasks, the CAI method demonstrates certain generalization ability to some extent. Although caption queries are general instructions, they are extensively used during model pretraining. Activating the relevant attention patterns facilitates fine-grained visual information capture, thereby enhancing downstream task performance. To evaluate CAI’s effectiveness in specific domains, we selected VQA-RAD (Lau et al., 2018) from the medical domain and the MMBench (Liu et al., 2024d) OCR subset. The experimental results of LLaVA-1.5-7b, as presented in the table 13, show consistent improvements over the baseline, indicating the CAI method’s generalization ability.

Domain	Dataset	Method	Accuracy
Medical	VQA-RAD	Greedy	54.18%
		CAI	58.17%
OCR	MMBench	Greedy	74.31%
		CAI	77.54%

Table 13: Results on VQA-RAD and MMBench OCR subset.

918 **G RESULTS ON MORE ADVANCED BENCHMARKS**
919

920 The five commonly used hallucination evaluation benchmarks included in our paper follow the se-
921 tups adopted in recent works. Using these benchmarks allows us to make fair and comprehensive
922 comparisons with prior training-free methods. Furthermore, we additionally conduct experiments
923 on more advanced hallucination evaluation benchmarks, including HallusionBench (Wu et al., 2024)
924 and GAVIE (Liu et al., 2023a). As shown in Table 14, CAI also achieves improvements on these
925 more critical evaluation.

Method	HallusionBench					GAVIE	
	qAcc	fAcc	Easy aAcc	Hard aAcc	aAcc	Relevancy	Accuracy
LLaVA-1.5-7B	10.55	20.86	41.67	29.77	46.04	8.20	6.42
+ CAI	12.90	20.96	43.34	37.69	46.75	8.76	6.68
Qwen-VL-Chat	8.93	11.56	34.43	28.87	41.12	8.26	6.39
+ CAI	11.47	13.57	35.60	31.87	43.93	8.63	6.60
Qwen2.5-VL-7B	16.43	31.01	59.73	34.93	50.79	9.20	8.09
+ CAI	19.73	32.31	64.56	45.40	53.80	9.33	8.42

936 Table 14: Comparisons on HallusionBench and GAVIE benchmarks across different MLLMs.
937938 **H IMPACTS OF THE CLASSIFIER TYPES AND TRAINING DATA**
939940 **H.1 IMPACTS OF THE CLASSIFIER TYPES**
941

942 Inspired by prior works (Li et al., 2023a; Bao et al., 2025; Zhang et al., 2024), which show that
943 SVM effectively performs binary classification on high-dimensional internal model vectors, we
944 adopt SVM as the classifier in our CAI framework. To further analyze the impacts of the classi-
945 fier types, we implement **Logistic Regression (LR)** as an alternative classifier. The experimental
946 results are shown in the table below. CAI with LR achieves performance nearly identical to CAI with
947 SVM, as 95% of the Top-100 attention heads selected by both classifiers are the same. CAI with
948 SVM exhibits a slight performance advantage, which aligns with findings in related work (Wang &
949 Xu, 2025) and further confirms SVM’s superior capability in classifying high-dimensional vectors.
950

Model	POPE (\uparrow)			CHAIR (\downarrow)		MME (\uparrow)			
	Random	Popular	Adversarial	C_I	C_S	Count	Exist.	Color	Posi.
LLaVA-1.5-7b	83.29	81.88	78.96	15.9	52.8	124.67	175.67	151.00	114.00
+ CAI w/ SVM	89.87	88.32	84.27	11.5	34.6	141.67	190.00	170.00	140.00
+ CAI w/ LR	89.40	88.13	83.87	11.7	34.9	138.33	190.00	170.00	135.00

951 Table 15: Performance comparison between SVM and LR classifiers on POPE, CHAIR, and MME
952 benchmarks. The best results are highlighted in **bold**.
953954 **H.2 IMPACTS OF THE CLASSIFIER TRAINING DATA**
955

956 To further investigate the amount of classifier training data, we randomly select distinct samples
957 from the whole LLaVA-1.5-7B pre-training dataset (77K) and retrain the classifiers. We evaluate the
958 classifying consistency of Top- k heads using the **Overlap Ratio**, defined as $|H_n \cap H_{CAI}|/k$, where
959 n is the number of samples, $n \in \{100, 250, 500, 1500, 2000, 5000\}$; $k \in \{50, 100\}$; H_n denotes
960 heads identified by new classifiers and H_{CAI} denotes heads identified in our primary results. The
961 following table shows that the classifier’s training is robust to data variations and amount, as the top-
962 100 caption-sensitive attention heads which play a critical role in visual perception **predominantly**
963 **coincide with** the CAI identified in the paper.
964

Overlap Ratio	$n = 100$	$n = 250$	$n = 500$	$n = 1000$ (CAI)	$n = 1500$	$n = 2000$	$n = 5000$
$k = 10$	0.90	1.00	1.00	1.00	1.00	1.00	1.00
$k = 50$	0.94	0.96	0.96	1.00	0.98	1.00	0.98
$k = 100$	0.88	0.90	0.93	1.00	0.95	0.94	0.94

Table 16: Robustness analysis of classifier training. The high overlap ratios across varying sample sizes (n) and Top- k attention heads demonstrate that the identified attention heads are consistent and robust to data amount variations compared to the primary setting ($n = 1000$).

I FINE-GRAINED ANALYSIS OF HYPERPARAMETERS

I.1 GRID-SEARCH RESULTS OF LLAVA-1.5-7B ON POPE

In our experiments, we conducted a grid search to identify the optimal values of the hyperparameters α and K . We now provide the full grid-search results of LLava-1.5-7B on the POPE Adversarial benchmark, which gives a more clear and continuous view of how α and K jointly affect CAI’s performance. The best performance is achieved at $\alpha = 1.5$ and $K = 100$.

Accuracy	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1.0$	$\alpha = 1.25$	$\alpha = 1.5$	$\alpha = 1.75$	$\alpha = 2.0$
$K = 0$	78.96	78.96	78.96	78.96	78.96	78.96	78.96
$K = 50$	78.96	79.31	79.86	80.18	80.50	80.32	80.40
$K = 75$	78.96	79.82	80.13	80.44	80.77	80.59	80.31
$K = 100$	78.96	81.07	82.50	83.47	84.27	84.14	84.00
$K = 125$	78.96	80.79	82.16	83.28	84.10	83.82	83.51
$K = 150$	78.96	80.24	81.47	82.53	83.20	82.97	82.68
$K = 200$	78.96	79.91	81.18	82.12	83.00	82.76	82.43

Table 17: Grid-search results on POPE-Adversarial.

I.2 GRID-SEARCH RESULTS OF LLAVA-1.5-7B ON CHAIR

CAI can achieve slightly better performance with task-specific hyperparameters in some generative tasks. As shown in the table, we conducted hyperparameter analysis on the CHAIR benchmark. The optimal parameters are found to be ($\alpha = 1.25$, $K = 125$ and performance = 34.3); nevertheless, the performance difference compared to the POPE-optimal parameters ($\alpha = 1.5$, $K = 100$ and performance = 34.6) is minimal.

$C_S \downarrow$	$\alpha = 0$	$\alpha = 1.0$	$\alpha = 1.25$	$\alpha = 1.5$	$\alpha = 1.75$	$\alpha = 2.0$
$K = 0$	52.8	52.8	52.8	52.8	52.8	52.8
$K = 50$	52.8	44.3	43.1	43.5	44.0	44.8
$K = 75$	52.8	39.6	37.5	37.6	38.6	39.4
$K = 100$	52.8	35.1	34.4	34.6	35.2	35.9
$K = 125$	52.8	34.9	34.3	34.5	35.0	35.7
$K = 150$	52.8	35.3	34.7	35.1	35.8	36.5
$K = 200$	52.8	36.0	34.4	36.1	36.7	37.3

Table 18: Grid-search results on CHAIR.

Nevertheless, we observe that the optimal parameters identified on POPE Adversarial dataset **can generalize well to other discriminative and generative tasks** (e.g., MME, CHAIR, MMHab-Bench). This indicates that the fixed optimal hyperparameters can be effectively applied in real-world scenarios, demonstrating CAI’s **ease of deployment and strong generalization capability**.

J DISCUSSION OF CAI ON THE FLY

CAI’s shift vectors are precomputed for each model in our main experiments. This design is motivated by two key considerations:

1026 (1) Robustness. As described in Section 4.1, each shift vector is obtained by averaging the attention
 1027 differences over 1,000 diverse VQA samples. This averaging process aims to extract a general and
 1028 robust direction for perceptual enhancement while diluting sample-specific semantic noise.

1029 (2) Efficiency. Precomputation allows CAI to function as a plug-and-play module without introducing
 1030 little additional inference-time cost.

1032 To further explore the relationship between the extra computation required at inference time and
 1033 the improvement achieved, we propose additional *on-the-fly* approach. Concretely, we dynamically
 1034 compute each inference sample’s attention difference between the “caption query” and the “non-
 1035 caption query” and employ this sample-specific vector for intervention.

1036 As shown in Table 19, the experimental results clearly demonstrate that:

1037 (1) Slight performance drop. The *on-the-fly* variant remains effective, but consistently lower than
 1038 the *precomputed* version. We believe this is because: the *precomputed* shift vector, which averages
 1039 over 1,000 samples, yields a highly robust perception-enhancing direction. In contrast, the *on-the-fly*
 1040 vector may inevitably carry more sample-dependent semantic noise, which limits its effectiveness.

1042 (2) Substantial increase in inference cost. The *on-the-fly* approach requires two forward passes per
 1043 sample, resulting in an 80% increase in inference latency.

1044 In summary, the *precomputed* strategy adopted in our paper not only achieves better hallucination
 1045 mitigation but also higher inference efficiency, making it a more practical choice for real-world
 1046 applications.

Method	Latency	POPE (\uparrow)			CHAIR (\downarrow)	
		Random	Popular	Adver.	C_I	C_S
LLaVA-1.5-7B	1.0 \times	83.29	81.88	78.96	15.9	52.8
+ CAI (<i>precomputed</i>)	1.0 \times	89.87	88.32	84.27	11.5	34.6
+ CAI (<i>on the fly</i>)	1.8 \times	88.19	87.40	83.56	12.6	36.6

1054 Table 19: Latency and performance comparisons between *precomputed* and *on-the-fly* approaches.

1058 K DISCUSSION ON THE CAI INTERVENTION LAYERS

1060 CAI method adds interventions across all model layers rather than targeting in a certain layer, based
 1061 on prior studies on information flow (Li et al., 2025b; Golovanevsky et al., 2024; Neo et al., 2024;
 1062 Meng et al., 2022), we argue that intervening on attention heads in a single layer alone cannot
 1063 effectively enhance visual perception; these important attention heads must be activated or perturbed
 1064 across layers to fully reinforce the visual information flow (Neo et al., 2024; Meng et al., 2022).
 1065 Intervening only in shallow layers without affecting higher layers may impair perception, while
 1066 intervening only in higher layers cannot fully strengthen the visual processing information flow (Li
 1067 et al., 2025b), limiting CAI’s ability to achieve optimal hallucination mitigation. As shown in Table
 1068 20, our experiments further confirm this: intervening on top-100 caption-sensitive heads in layers
 1069 0–10, 11–20 and 21–31 alone does not achieve optimal CAI performance and may even degrade
 1070 model capability.

1072 L DEEPER EVIDENCE OF CAI’S EFFECTIVENESS IN DISCRIMINATIVE 1073 SETTINGS

1075 Previous works (Sarkar et al., 2024; Liu et al., 2023b) observed that the “yes-bias” in discriminative
 1076 tasks arises because “models are finetuned on unbalanced datasets containing predominantly positive
 1077 instructions” (Liu et al., 2023b), and thus represents the main form of LLaVA’s object hallucination.
 1078 Furthermore, we computed the confusion matrices of LLaVA-1.5-7B on the POPE popular and
 1079 random subsets. As shown in the Table, CAI substantially mitigates the “yes-bias,” providing deeper
 1080 evidence of CAI’s effectiveness in discriminative settings.

Method	POPE (\uparrow)			CHAIR (\downarrow)	
	Random	Popular	Adver.	C_I	C_S
LLaVA-1.5-7B	83.29	81.88	78.96	15.9	52.8
+ CAI w/ 0-10	82.07	80.65	77.41	16.4	54.0
+ CAI w/ 11-20	87.16	85.83	82.52	13.0	38.2
+ CAI w/ 21-31	86.78	84.22	80.87	15.4	44.3
+ CAI (<i>Ours</i>)	89.87	88.32	84.27	11.5	34.6

Table 20: **Ablation study on intervention layers.** We apply CAI to different blocks of layers to identify the most critical stages. The results show that intervening in the middle layers (11-20) yields more significant improvements than early or late layers, while the full CAI method achieves the best performance by coordinating across all identified heads.

	Baseline		CAI	
	Pred: yes	Pred: no	Pred: yes	Pred: no
Golden: yes	1360	140	1277	223
Golden: no	274	1226	120	1380

Table 21: **Confusion matrix on POPE-Popular.** Compared to the baseline, CAI significantly reduces the number of “No” samples incorrectly predicted as “Yes” (from 274 to 120), effectively mitigating the “Yes Bias”.

	Baseline		CAI	
	Pred: yes	Pred: no	Pred: yes	Pred: no
Golden: yes	1340	160	1290	210
Golden: no	197	1303	83	1417

Table 22: **Confusion matrix on POPE-Random.** Similarly, on the random split, CAI drops the false positive rate drastically (from 197 to 83), effectively mitigating the “Yes Bias”.

M CASE STUDY FOR CAPTION QUERIES

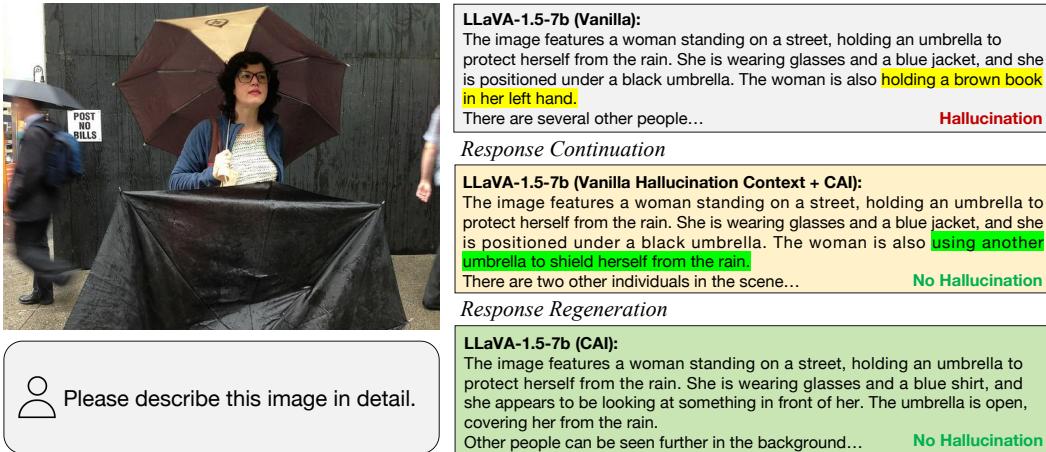


Figure 7: Case study of caption task on CHAIR.

CAI remains effective in caption task, which is attributed to the enhancement in visual attention. As shown in Figure 7, CAI effectively mitigates object hallucination not only during the regeneration of new responses, but also when extending hallucinated contexts, highlighting its fine-grained, token-level object hallucination mitigation capability.

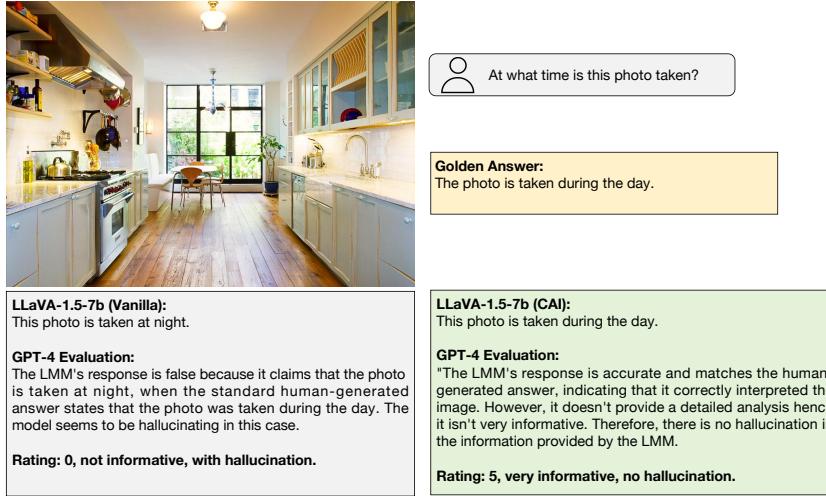
1134 **N CASE STUDIES FOR NON-CAPTION QUERIES**
11351136 More case studies when fed non-caption queries are shown as follows.
1137

Figure 8: Non-caption query case of LLaVA-1.5-7b on MMHal-Bench.

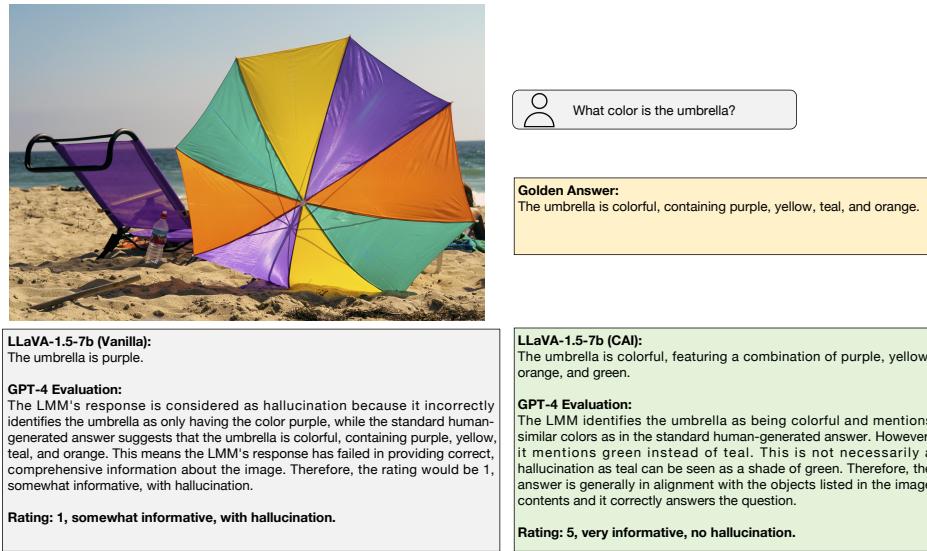


Figure 9: Non-caption query case of LLaVA-1.5-7b on MMHal-Bench.

1180 **O USAGE OF LARGE LANGUAGE MODELS**
11811182 **O.1 ASSISTANCE FOR WRITING POLISHING**
11831184 During the writing process, we employed GPT-4o (Hurst et al., 2024) for writing polishing. In par-
1185 ticular, we utilized LLM assistance in the method section to articulate more clearly the motivation,
1186 implementation, and corresponding mathematical formulations of the CAI approach. In addition,
1187 we applied moderate polishing to the abstract and introduction to further enhance the readability
and academic rigor of the paper.

1188 O.2 ASSISTANCE FOR BENCHMARK EVALUATION
11891190 In conducting experiments with MMHal-Bench, we employed GPT-4 (Achiam et al., 2023) as an
1191 evaluation tool to assess hallucination capabilities.
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241