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ABSTRACT

Although deep reinforcement learning (DRL) has achieved great success across
various domains, the presence of random delays in real-world scenarios (e.g., re-
mote control) poses a significant challenge to its practicality. Existing delay-aware
DRLs mainly focus on state augmentation with historical memory, ensuring that
the actions taken are aligned with the true state. However, these approaches still
rely on the conventional expected Q value. In contrast, to model delay uncertainty,
we aim to go beyond the expected value and propose a distributional DRL to rep-
resent the distribution of this Q value. Based on the delay distribution, we fur-
ther propose a correction mechanism for the distributional Q value, enabling the
agent to learn accurate returns in delayed environments. Finally, we apply these
techniques to design the delay-aware distributional actor-critic (DADAC) DRL
framework, in which the critic is the corrected distributional value function. Ex-
perimental results demonstrate that compared to the state-of-the-art delay-aware
DRL methods, the proposed DADAC exhibits substantial performance advantages
in handling random delays in the MuJoCo continuous control tasks. The corre-
sponding source code is available at https://anonymous.4open.science/r/DADAC.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has demonstrated substantial success across diverse domains
and has become a prominent focus in AI research. Its capacity to learn optimal policies in dynamic
environments has catalyzed breakthroughs in areas such as gaming, robotics, autonomous systems,
and finance. Noteworthy accomplishments include surpassing human expertise in games like Go
and Atari, enhancing robotic control, and improving decision-making processes across industries.

However, applying reinforcement learning to real-world scenarios presents numerous challenges,
with delay being one of the most significant issues (Dulac-Arnold et al., 2021). Conventional re-
inforcement learning follows Markov Decision Process (MDP) and assumes that the interaction
between the agent and the environment is instantaneous; that is, the action taken by the agent im-
mediately affects the environment, and the agent receives prompt feedback from the environment
(e.g., observations, rewards, etc.). In practical systems, however, this ideal is often compromised
by real-world delays, due to the limited communication bandwidths or constrained computational
resources. For instance, self-driving cars experience computational and perceptual delays when
sensing the environment through various cameras and sensors (Strobel et al., 2020). Teleoperation
tasks are affected by network delays, while robot control tasks encounter execution delays in power
and mechanical systems (Kebria et al., 2019). In real-world scenarios, delay always exists and thus
the assumption of immediate interaction between the agent and environment does not hold, as the
feedback that the agent receives at any given time may correspond to a prior timestep due to de-
lays. This discrepancy renders conventional DRL less efficacious in environments characterized by
delays. The challenge is even more severe when these delays are random and unpredictable.

To address this issue, the most common approach is state augmentation, which incorporates histori-
cal action information into the original state to ensure that the MDP framework remains applicable
in delayed environments (Chen et al., 2021; Nath et al., 2021). However, the augmented state space
grows exponentially with the number of delayed timesteps, making this approach unsuitable for
applications involving large delays. To alleviate the curse of dimensionality associated with state
augmentation methods, state prediction methods have been proposed. These methods typically take
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historical observations and action information as inputs, and then output predicted observations of
the real environment or representations of observations in the form of embeddings (Yu et al., 2023;
Liotet et al., 2021). However, in complex dynamic environments, the prediction error of these meth-
ods can increase significantly, further complicating the training process. More importantly, most
of the aforementioned existing studies (Kim et al., 2023; Yu et al., 2023; Chen et al., 2021) mainly
focused on environments with fixed delays, which are known in advance, but overlooked the fact
that, in real-world applications, delays are often random and unpredictable.

More recently, a few approaches were proposed to handle the random delays. Bouteiller et al. (2021)
proposed the Delay-Correcting Actor-Critic algorithm by designing the partial trajectory resampling
method, which converts off-policy sampled trajectories into on-policy ones in random delay envi-
ronments. However, this method relies on the observation and action delay values at each timestep
and suffers from training inefficiency due to the recursive nature of the partial trajectory resampling
process. Wang et al. (2024) recovered delay-free trajectories by time-calibrating historical data and
designed a series of state augmentation and prediction-based methods to address the signal delay
problem. However, these methods suffer from significant performance degradation in non-fixed de-
lay environments, despite knowing the maximum of delay, due to limitations in the accuracy of the
oracle state representation.

In this paper, we aim to address the challenges of deep reinforcement learning applied to the envi-
ronment with random delays. First, we propose a new value function correction process tailored for
random delay environments from the perspective of value correction. This method determines the
influence range and probability of an observation or action through delay distribution, thereby accu-
rately reconstructing the value representation of a state-action pair in random delay environments,
improving both performance and adaptability of reinforcement learning with random delays. Next,
we use distributions rather than expectations to represent value function, allowing for a more precise
expression of the value function and a more stable training process in complex, dynamical environ-
ments with random delays. Finally, we demonstrate that the proposed method can simultaneously
handle both observation delays and action delays.

It is worth noting that our method does not modify the state space, and the agent only receives
original observations from the delayed environment. This not only enhances the method’s adapt-
ability across different scenarios but also minimizes the introduction of inaccurate information and
reduces the extra computational overhead associated with state space modifications. To the best of
our knowledge, our proposed method is the first to use delayed original observations as state in-
puts without modification and to introduce the concept of distributional reinforcement learning in
research on addressing reinforcement learning with random delays. This combination allows for
more accurate modeling of uncertainty in delayed environments, offering a novel perspective on
effectively addressing random delays.

2 RELATED WORK

Delay-aware Reinforcement Learning. Due to the presence of delays in the environment, the
Markov decision process (MDP) becomes inapplicable, leading to the development of variants such
as delay-aware MDP and constant delayed MDP for delayed environments. To treat these variants as
standard MDP, the state augmentation method is proposed and widely used for fixed delay environ-
ments, constructed by concatenating the last observed state with the actions taken since the last visit
to that observed state (Chen et al., 2021; Derman et al., 2021). While some research has proposed
state augmentation-based approaches for use in random-delay environments, this potential repre-
sentation of real-time states still faces accuracy limitations (Wang et al., 2024; Nath et al., 2021).
Furthermore, the size of the augmented state typically correlates with the delayed steps, causing the
size of augmented state space to grow exponentially with the number of delayed steps.

To address this issue, several state prediction-based methods have been proposed to predict the true
state in the current real-time environment by utilizing historical state and action information (Wang
et al., 2024; Yu et al., 2023; Liotet et al., 2021). However, in complex stochastic delay environments,
the accuracy and generality of these prediction methods significantly limit their broader application.
Additionally, Kim et al. (2023) proposed a novel belief projection method that tackles the state-space
explosion problem by projecting the augmented state space into a smaller one. However, this method
is only applicable to fixed-delay environments, which do not reflect real-world practical features.
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Distributional Reinforcement Learning. Conventional reinforcement learning generally optimises
the expectation of the return, but the presence of randomness between the agent and the environment
results in the return obeying a distribution given a policy π. Building on this insight, Bellemare et al.
(2017) first introduced the distributional DQN, which represents a return as a discrete distribution
of length 51, known as C51. Subsequently, several approaches have been proposed to describe
distributions more accurately, providing a solid theoretical and practical foundation for the field of
distributional reinforcement learning (Dabney et al., 2018b;a; Rowland et al., 2019; Zhou et al.,
2020). Recently, the distributional perspective has also been applied to the actor-critic framework.
Nam et al. (2021) proposed the Gaussian Mixture Actor-Critic (GMAC), which models the return as
a mixture Gaussian distributions. Specific algorithms, such as the Distributed Distributional Deep
Deterministic Policy Gradient algorithm(D4PG) (Barth-Maron et al., 2018) and Distributed Soft
Actor-Critic (DSAC) (Duan et al., 2021), have been introduced to address value estimation errors,
enhancing the algorithms’ value estimation capabilities in complex scenarios. In this work, we intro-
duce the concept of distributional reinforcement learning to enhance the modeling of uncertainty in
random delay environments. In contrast to the existing methods, we make further steps in addressing
the issue of inaccurate return estimation in environments with random delays.

3 PRELIMINARIES

Figure 1: An example of remotely
controlled UAV navigation. The red
mark represents the UAV’s state and
action in the real-world, i.e. en-
vironment with delays, while the
blue mark indicates the correspond-
ing state and action in the ideal en-
vironment without delays.

In practical environment, observations and actions can face
significant delay due to the constrained communication chan-
nel or un-negligible computation time. When the environment
provides the feedback of state, the agent may not be able to
observe it immediately. The observation may delay for mul-
tiple timesteps. Similarly, when the agent makes an action,
it may not immediately interact with the environment. The
action might be implemented after multiple timesteps, as il-
lustrated in Figure 1. For the environment with random de-
lays, this issue becomes even more critical, as the agent may
receive observations from multiple or zero previous timesteps
at the current time. This leads to rounding or duplication of
observations and actions in the process.

Conventional reinforcement learning is generally modeled
as a Markov decision process represented by a 5-tuple
(S,A,R, P, γ), where S is the state space, A is the action
space, R : S ×A 7→ R is the reward function, P : S ×A×S
is the transition probability, and γ ∈ (0, 1) is the discount
factor. The Bellman equation is utilized to describe the value
function as shown below:

Q(s, a) = r(s, a) + γ ·Q(S′, A′), (1)
where S′ ∼ P (·|s, a) and A′ ∼ π(·|S′). However, in the
environment with random delays, the agent receives reward rt
from the environment that does not correspond to the current
state-action pair (st, at), but rather relates to some earlier state-action pair. Therefore, the return
corresponding to (st, at) should be calculated from the time when the agent receives the feedback
from the environment. Thus, reusing the Bellman equation in delayed environment for calculating
value function would significantly mislead the update of the value function and affect reinforcement
learning performance.

To address this challenge, most existing methods implicitly describe the true state in the environ-
ment through state augmentation techniques, which usually assume that the maximum value of the
delay (Wang et al., 2024; Nath et al., 2021) is known in random delay environments, or the true value
of the delay is known in either the random delay environments (Bouteiller et al., 2021), or the fixed
delay environments (Chen et al., 2021). However, such approaches face two main issues. Firstly,
they experience a computational burden that scales exponentially with increasing delay. Secondly,
due to the limited representation of the true state, they fail to adequately capture the nuances of
random delays, which negatively impacts the training efficacy. So how to accurately and adaptively
implement value function learning in environment with random delays remains an open problem.
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In this study, we gain novel insights into the nature of random delays as shown below. By stepping
outside the local horizon of policy updates based on sampled sequential trajectories, we observe
that, due to random delays, when the environment feeds back an observation, the agent may receive
it with a certain probability at various future timesteps. Similarly, when an agent takes an action,
it may interact with the environment at various future timesteps with a certain probability. Consid-
ering the probabilistic distribution of delays, it becomes evident that both observations and actions
have the potential to influence a spectrum of future time steps with varying degrees of probability.
Consequently, the accurate computation of returns should encompass all the timesteps that might
be impacted by these actions and observations, rather than being confined to the immediate time
step. This broader temporal consideration is crucial for a more precise and robust learning process
in environments characterized by random delays.

Based on the above insights, in this paper, we assume we are given the probability distributions of
delays1, and derive the delay-aware distributional actor-critic (DADAC), a Soft Actor-Critic-based
algorithm to maintain excellent performance in environments with random delays.

4 DELAY-AWARE DISTRIBUTIONAL VALUE FUNCTION AND VALUE
CORRECTION

In this section, we first introduce the distributional value function that will lead to more stable learn-
ing in delayed environments. We then present a value correction mechanism for this distributional
value, which can correctly represent the state-action returns in all timesteps that might be impacted
due to the random delays.

Distributional Value Function. In contrast to the common approach to RL which models the ex-
pectations of the return, the distributional value function models the distribution of returns (Belle-
mare et al., 2017). Distributional perspective preserves multimodality in value distributions, which
improves learning stability and thus has been subordinated to specific purposes such as implement-
ing risk-aware behaviour Morimura et al. (2010). Being aware of the representation capability of
value distributions, this paper is the first to introduce the distributional value function in delayed
environments. Formally, in DRL, let Q(s, a) denote the expectation of the state-action value, the
distributional value function can be expressed as Z(s, a) whose expectation is the value Q(s, a),
i.e. Q (s, a) = E [Z (s, a)]. This distributional value can be also described by a recursive Bellman
equation, but in a distributional manner.

Z(s, a) =
∑

s′∼P (·|s,a),a′∼π(·|s′)

[
r(s, a, s′) + γ · Z(s′, a′)

]
. (2)

In this work, we choose the Gaussian distribution that is highly expressive to approximate the dis-
tributional Bellman optimality operator Z(s, a). The goal of our optimization is to achieve a more
accurate representation of the Gaussian distribution. The neural network designed to estimate this
distribution outputs both the mean and standard deviation, with the Kullback-Leibler (KL) diver-
gence serving as the loss function to measure the difference between the estimated distribution and
the true distribution.

Delay-Aware Value Correction. In delayed environments, there exists misalignment between the
observed and true state-actions. Let us take the action delay as an example. At time step t, let
(st, at, rt, st+1) denote the observed state st, the action taken at, the subsequent environmental
feedback st+1 as well as the corresponding reward rt. The presence of the action delay implies that
the current state-action (st, at) might not determine the subsequent state st+1. Instead, the agent
receives the feedback of (st, at) after ∆t delayed timesteps, where ∆t follows the action delay
distribution Da. The reward rt does not correspond to the state-action (st, at), and the true reward
of (st, at) is delayed to be obtained at t+∆t, denoted as rt+∆t. Therefore, due to the action delay,
the return for (st, at) should be calculated starting from t + ∆t. To this end, we propose value
correction mechanisms that aim to recover accurate value functions in random delay environments.

As shown in Figure 2, from the delay distribution perspective, an action may affect multiple
timesteps in the future with certain probabilities. Therefore, the estimation of the value function

1The observation and action delays, which are mainly caused by limited communication bandwidths, typi-
cally follow some stochastic patterns (Krasniqi et al., 2020; Wang et al., 2011; Xia & Tse, 2006).
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Figure 2: Examples of the distributions of random delays on observations and actions.

Z(st, at) should account for the probabilistic effect of this delay distribution. Specifically, Z(st, at)
should be associated with the returns between times t + 1 and t + δ, where we consider that when
the probability of a delay falls below a certain threshold, its impact is negligible. We define the
effective delay range as all delays in the distribution that exceed this threshold, with δ representing
the maximum of this range.

Z(st, at) =

δ∑
i=1

pi ·
[
rt+i(st, at, st+i) + γi ·

∑
at+i∼π(·|st+i)

Z(st+i, at+i)
]
. (3)

In Eq. (3), pi denotes the probability that the action delay is i timesteps, (st+i, at+i) denotes the
state received and action taken by the agent at the ith step, and π is the policy network. The following
theorem proves the convergence of Eq. (3).

Theorem 1 (Convergence of Distributional Value Correction Bellman Equation). The value correc-
tion iteration process in Eq. (3), which map the state-action pair (s, a) to a distributional return in
delayed environments, will converge to a unique fixed value as t → ∞. (Proof in Appendix).

Unifying Observation and Action Delays. Real-world scenarios may involve diverse delays, which
can significantly increase the problem’s complexity. For the case where both observation delay and
action delay are considered, we decompose the process based on Eq. (3). As shown in Figure 2,
affected by the observation delay, the true state at the time step t, will be observed at t + i with
the probability of poi . At time step t + i, given the observation st+i, the agent takes an action at+i

and receives the the environmental feedback (e.g., reward) at the (t + i + j)th time step with the
probability of paj . Based on the entire delay probability distribution, we derive the following Eq. (4)
to correct the value function considering both observation delay and action delay.

Z(st, at) = po1 · Z(st+1, at+1) + · · ·+ poδo · Z(st+δo , at+δo)

=

δo∑
i=1

poi · (pa1 · Z(st+i+1, at+i+1) + · · ·+ paδa · Z(st+i+δa , at+i+δa))

=

δo∑
i=1

poi ·
δa∑
j=1

paj · Z(st+i+j , at+i+j)

=

δo∑
i=1

poi ·
δa∑
j=1

paj · (rt+i+j + γi+j ·
∑

at+i+j∼π(·|st+i+j)

Z(st+i+j , at+i+j)),

(4)

where δo and δa denote the maximum values of effective observation delay range and effective action
delay range, respectively, while poi and pai represent the probabilities that the observation delay and
action delay are equal to i, respectively. The following theorem shows that it is legal to deal with
different delays in the same method.

Theorem 2 (Equivalence of different delays). Different variants of delays, including observation
delays and action delays, exert equivalent effects on the value correction method. In other words,

5
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Figure 3: Framework diagram of DADAC.

the agent is capable of perceiving variants of delays in the same manner, as long as the delay
distribution can be accurately characterized. (Proof in Appendix).

Although the proposed method is primarily designed for random delay environments, it is also ap-
plicable to fixed delay environments commonly addressed in the related works. This is because
fixed delay environments can be considered a special case of random delay environments, where the
probability of a specific delay is equal to one.

5 DELAY-AWARE ACTOR-CRITIC

In Section 4, we showed how our method compensates for random delays in a simple and direct
way through the value-correction method and distributional return perspective. In this section, we
apply this method to derive Delay-Aware Distributional Actor-Critic (DADAC), which is designed
based on the framework the Soft Actor-Critic (Haarnoja et al., 2018) and equips it to handle random
delays, as shown in Figure 3.

The distributional value correction variant of the soft Bellman operator Pπ
D : Z → Z with the

maximum entropy can be defined as

T π
DZ (st, at)

D
=

δo∑
i=1

poi ·
δa∑
j=1

paj ·
(
rt+i+j + γi+j (Z (st+i+j+1, at+i+j+1)

−α log π (at+i+j+1|st+i+j+1)) .

(5)

As an off-policy method, our method requires more trajectory data to update once. Therefore, the
proposed method samples multiple sequential trajectory information from the replay buffer concur-
rently, represented as τn = (st, at, rt, st+1, at+1, . . . , sδo+δa , aδo+δa , rδo+δa , sδo+δa+1, aδo+δa+1),
where the length of the sampled trajectory corresponds to the maximum of total delays + 1. To im-
plement Eq. (5), we can update the return distribution using KL divergence as loss function, which
is a common strategy in the field of distributional reinforcement learning (Bellemare et al., 2017;
Duan et al., 2021).

In the policy improvement step, we update the policy towards the exponential of the distributional
value function. The new policy πnew can be expressed as

πnew = arg min
π′∈Π

DKL

π′(·|s)

∥∥∥∥∥∥∥∥
E

Z(s,a)∼Zθ(·|s,a)

[
E

a∼πold
[Zπold

value(s, a)]

]
Zπold

action(s)

 , (6)
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where Zvalue denotes the value correction return distribution proposed in this paper, θ denotes the
parameters of Zvalue, and Zaction denotes the action distribution. The policy can be learned by maxi-
mizing a parameterized variant of the objective as

Jπ(ϕ) = E
s∼B,a∼πϕ

[
E

Z(s,a)∼Zθ(·|s,a)

[
Z(s, a)

]
− α log

(
πϕ(a|s)

)]
, (7)

where B is the replay buffer for the information collected by the agent as it interacts with the envi-
ronment, and ϕ denotes the parameters of policy π.

6 EXPERIMENTAL RESULTS

We conducted experimental evaluations in the MuJoCo environment within Gymnasium and im-
plemented the random delay settings using Wrappers. To facilitate a comprehensive evaluation of
algorithm performance, we designed two random delay distributions: a gamma distribution with
mean of 2 and a double Gaussian distribution with mean of 5, the details of which is provided in
Appendix. The implementation of the distributional value function in our method draws on the
Distributional Soft Actor-Critic, which assumes that the random returns Z(s, a) obey a Gaussian
distribution (Duan et al., 2021). Given that most related work primarily considers observation de-
lays, the following experimental results are presented in the context of observation delays for the
sake of comparison.

6.1 COMPARATIVE EVALUATION

We compared the performance of the DADAC algorithm with the following two existing delay-aware
DRL methods:

• State Augmentation-MLP is the SOTA method in non-fixed delay environments by state
augmentation and recovery of delay-free trajectories (Wang et al., 2024). This method has
the prior knowledge of the maximum value of the random delays.

• Belief Projection-based Q-learning (BPQL) is proposed to tackle the issue of state-space
explosion caused by state augmentation in fixed delay environments through a novel pro-
jection method (Kim et al., 2023), which assumes a prior knowledge of the value of fixed
delay. In the experiments (i.e. environment with random delays), for fair comparison, we
use the expectation of the delay distribution as the fixed delay known to this method.

For each experiment, we performed eight runs. The results of the experiments in gamma delay distri-
bution and double Gaussian delay distribution are shown in Figure 4 and 5, respectively. Compared
to the other two methods, our proposed DADAC demonstrates significant performance advantages
in the majority of experiments. In particular, the combination of the delay-aware distributional value
function and value correction enables DADAC to achieve not only superior convergence speed but
also reduced performance variance across multiple runs under the same conditions, showcasing
strong adaptability and stability in random delay environments. The other two SOTA methods,
which are impacted by random delays and face challenges in accurately representing oracle states
based on their design, exhibit significant performance gaps compared to DADAC. Notably, BPQL
is almost unable to learn effective policies in certain scenarios.

6.2 ABLATION STUDY

To better evaluate the impact of each component of our proposed algorithm, we designed the fol-
lowing ablation experiments involving the participating algorithms:

• Normal SAC
• SAC+Value Correction. We applied the value correction method to the normal SAC while

maintaining the return as an expectation rather than as a distribution.
• Distributional Soft Actor-Critic (DSAC). A distributional SAC implementation that as-

sumes returns as obeying a Gaussian distribution, proposed by Duan et al. (2021), without
involving value correction.

7
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Figure 4: Comparison results in the gamma delayed environment.
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Figure 5: Comparison results in the double Gaussian delayed environment.

For each experiment, we performed eight runs, and the results of the experiments in gamma de-
lay distribution and double Gaussian delay distribution are shown in Figure 6 and 7, respectively.
Normal SAC fails to learn effective policies across nearly all scenarios due to the ineffectiveness of
MDP in random delay environments, resulting in consistently the lowest rewards. Both SAC+Value
Correction and the DSAC algorithm show adaptability to the delayed environment across differ-
ent scenarios, offering significant performance advantages over normal SAC. However, they still
experience notable performance degradation compared to our proposed DADAC, highlighting the
indispensable role of value correction and the distributional value function in DADAC. It is notewor-
thy that both SAC+Value Correction and DSAC exhibit suboptimal performance in specific scenar-
ios, such as Ant-v4 and Humanoid-v4, which demonstrate heightened sensitivity to delays, leading
to significantly reduced rewards. In contrast, DADAC achieves markedly superior performance in
these same scenarios, effectively alleviating the adverse effects of delays. This finding underscores
the importance of integrating value correction mechanisms with the distributional value function,
which is vital for DADAC’s success and enhances its ability to navigate the complexities inherent in
random delay environments more proficiently than its counterparts.
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Figure 6: Ablation results in the gamma delayed environment.
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Figure 7: Ablation results in the double Gaussian delayed environment.

7 CONCLUSIONS

In this paper, we have tackled the challenge of random delays in the environment. To effectively
model the uncertainty associated with these delays, we proposed a novel method that represents the
Q value as a distribution. Building on delay distributions, we developed a value correction method to
accurately recover the true return in random delay environments. By integrating these methods into
the actor-critic framework, we introduced the delay-aware distributional actor-critic (DADAC) DRL
method, which provides a new perspective for the field of delay-aware reinforcement learning. Our
experimental results demonstrate that DADAC not only significantly outperforms the state-of-the-art
delay-aware DRL methods, but also offers a robust solution to enhance performance in environments
characterized by random delays.
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A THEOREM PROOF

A.1 THEOREM 1 DERIVATION

Proof. Previous researches has proved that the distributional Bellman operator derived from the
distributional Bellman equation is a contraction in terms of some measure (Bellemare et al., 2017;
Nam et al., 2021).The distributional Bellman operator T π : Z → Z is defined as

T πZ(s, a)
D
:= r(s, a) + γPπZ(s, a).

where Pπ : Z → Z is a state transition operator under policy π, PπZ(s, a)
D
:= Z(S′, A′), where

S′ ∼ P (·|s, a) and A′ ∼ π(·|S′).

Similarly, the distributional value correction variant of Bellman operator derived from the Eq. (4)
can be defined as

T πZ(s, a)
D
:=

δo∑
i=1

poi ·
δa∑
j=1

paj · (r(s, a, si+j) + γi+jPπZ(si+j+1, ai+j+1))

where the (si+j , ai+j) denotes a state-action pair that is i + j timesteps later in the sequence with
respect to (s, a).

In this way, the distributional value correction Bellman operator can be considered equivalent to the
weighted cumulative sum of several distributional Bellman operators at different times. Therefore,
the distributional value correction Bellman operator is a contraction in terms of the same measure
condition as the distributional Bellman operator and the value correction iteration process will con-
verge to a unique fixed point as t → ∞.
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It is worth mentioning that Eq. (4) is applicable to environments where both observation and action
delays are present and can be simplified to Eq. (3) when only one type of delay is present in the
environment. Thus, Eq. (3) exhibits the same convergence.

A.2 THEOREM 2 DERIVATION

Proof. In real-world environments, it is typically assumed that the different variants of delays are in-
dependent of each other. Consequently, for environments where both observation and action delays
are present, Eq. (4) for value correction can be formulated as follows

Z(st, at) =

δo∑
i=1

poi ·
δa∑
j=1

paj · (rt+i+j + γi+jZ(st+i+j+1, at+i+j+1))

=

δo+δa∑
(i+j)=2

pi+j · (rt+(i+j) + γi+jZ(st+(i+j)+1, at+(i+j)+1))

where pi+j denotes the probability that the delay is equal to i + j. From the above, it can be ob-
served that the different variants of delays are equivalent in terms of reinforcement learning value
misassignment. Consequently, the value correction method addresses variants of delays in an equiv-
alent manner. Therefore, we can simplify the model by treating variants of delays as a single type
of delay, represented by the sum of the action delay ∆Ta and the observation delay ∆To, such that
∆T = ∆Ta +∆To, along with its distribution d∆Ta+∆To

.

B EXPERIMENTAL SETUP

B.1 RANDOM DELAY ENVIRONMENTS

To better evaluate the algorithm’s performance, we design two delay distributions to simulate ran-
dom delays in real application scenarios, as shown in Figure 8. The gamma delay distribution has a
range of 1 to 6 with an expectation of 2, while the double Gaussian delay distribution has a range of
1 to 10 with an expectation of 5.

1 2 3 4 5 6
Delay

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

Gama Delay Distribution

(a) Gamma Delay Distribution.

1 2 3 4 5 6 7 8 9 10
Delay

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

Double Gaussian Delay Distribution

(b) Double Gaussian Delay Distribution.

Figure 8: The different distributions of random delays.
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B.2 HYPERPARAMETERS

Table 1: Hyperparameter Settings

Hyperparameter Setting

Network [256, 256, 256]
Batch Size 256

Total Timesteps 1000000
Learning Rate 0.0001

Learning Rate for α 0.0003
Hidden Activation GELU
Output Activation Linear

γ 0.99
Optimizer Adam
Initial α 0.2
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