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ABSTRACT

Understanding the loss surface of neural networks is essential to the understanding
of deep learning. However, the existence of a bad local minimum has not yet been
fully identified. We investigate the existence of a bad local minimum of the 2-
layer and 3-layer neural networks with general smooth activation functions. We
provide constructive proof using the algebraic nature of the activation functions.
We show this for realistic settings where the data (X,Y ) have a positive measure.
We hope that such results give theoretical foundations for studies related to local
minima and loss surfaces.

1 INTRODUCTION

Modern machine learning with neural networks has shown remarkable results in many real-world
applications. However, little is known about the theoretical foundation of how the neural network
works. In particular, most modern machine learning models rely on gradient descent-based
optimization algorithms which minimize the difference between the output of the neural network
and the target function. In this context, understanding the loss surface of neural networks is of
fundamental importance.
The question of the existence of a bad local minimum is also very important because it provides
whether the gradient descent-based algorithms can stably reach the global minimum without falling
into the local minimum (in this context, a bad local minimum means it is not a global minimum).
Moreover, because various optimization-based studies on loss surfaces are based on the premise
of the existence of a bad local minimum, investigating its existence will support these studies as a
theoretical background. (Jastrzebski et al., 2017; Kleinberg et al., 2018; Zhu et al., 2018; Xie et al.,
2020; Ziyin et al., 2021; Mori et al., 2022).
For convex loss function, it is widely known that the loss surface has a unique global minimum.
For a general neural network, it is not easy to investigate the loss surface because of its strong
non-convexity. Several works suggest that there exists no bad local minimum in a deep linear
network. Kawaguchi (2016) and Lu & Kawaguchi (2017) show that there are only global minima
and saddle points in a deep linear network with squared error. Laurent & Brecht (2018) show that
every local minimum of the deep linear network is global under any differentiable convex loss
function.
On the other hand, the existence of a bad local minimum is reported in the deep non-linear network.
Yun et al. (2018) and He et al. (2020) show that a bad local minimum exists in the neural network
with piece-wise linear activations. If the activations have partial linearity like piece-wise linear
functions, a local minimum can be constructed by borrowing some weights from a linear minimizer.
For general smooth activation functions, the problem is more difficult. Petzka & Sminchisescu
(2021) show that a bad local minimum exists in the deep neural network with sigmoid activation
functions using the local minimum embedding. Ding et al. (2022) also construct a bad local
minimum in the 2-layer network with sigmoid activations. Although these two studies succeed in
finding a bad local minimum, they only show a single example of the sigmoid function, rather than
the general smooth activations. This is because properties that should be verified experimentally
for each activation are required in the proof. Therefore, the existence of a bad local minimum for
general smooth activations remains unclear. The summary of the studies of the existence of a bad
local minimum, as well as our own results, is presented in Table 1.
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Reference Depth Activation Bad local minima Condition
Baldi & Hornik (1989) 2 linear Not exist

Lu & Kawaguchi (2017) L linear Not exist almost all (X,Y )
Yun et al. (2018) 2 2-piece linear Exist almost all (X,Y )
He et al. (2020) L piece-wise linear Exist almost all (X,Y )

Ding et al. (2022) L almost all smooth1 Exist zero measure
Ding et al. (2022) 2 sigmoid Exist positive measure

Petzka & Sminchisescu (2021) L sigmoid Exist zero measure
Ours 2 almost all analytic2 Exist N ≥ 7 , positive measure
Ours 3 some analytic3 Exist N ≥ 34 , positive measure

Table 1: A summary of the studies on the existence of a bad local minimum. N denotes the number of
samples.
1 For some a ∈ R, σ(x) is twice differentiable on [a− δ, a+ δ] and σ(a), σ′(a), σ′′(a) ̸= 0.
2 Assumption 1.
3 Assumption 2.

In this context, we first present a pure mathematical proof of the existence of a bad local minimum
for the general smooth activations and for data of positive measure (Theorem 3, 4). In this proof,
we use the differential Galois theory, and no computational experiments are required. We find
the mild conditions of the smooth activations, which allow the neural network to have a bad local
minimum (Assumption 1, 2). Fortunately, despite the existence of a bad local minimum, it is not
very bad because it is non-attracting (there is a non-increasing path to the global minimum). The
existence of a really bad local minimum in the training (it is an attracting local minimum) needs to
be investigated in the future. We hope that this approach of finding a local minimum will inspire
future studies on loss surfaces.

We summarize our key contributions below:

• For almost all analytic functions σ(x), we show that the 2-layer network 1 − d1 − 1 (d1
≥ 2) with σ(x) activation function has a bad local minimum for a positive measure of data
(X,Y ) ∈ (R1×N ,R1×N ) with N ≥ 7.

• For some analytic functions σ(x) satisfying Assumption 2, including famous activation
functions such as sigmoid, GELU , and Swish, we show that the 3-layer network
1− d1 − d2 − 1 (d1, d2 ≥ 2) with σ(x) activation function has a bad local minimum for a
positive measure of data (X,Y ) ∈ (R1×N ,R1×N ) with N ≥ 34.

The paper is organized as follows. We first show that we construct a local minimum in a deep neural
network with partially linear activation by borrowing parameters from the linear model. Then for
N ≥ 7 and L2 loss, we find that there exists a strict local minimum in the 2-layer network of width
1 with smooth activations which satisfy some mild assumptions. We show that most of widely-used
activation functions satisfy this assumption. We extend these results for data of positive measure.
Using the local minimum embedding, we show that a bad local minimum exists in the 2-layer
network of width ≥ 2 . Furthermore, for N ≥ 34, in the 3-layer network of width ≥ 2 with
smooth activations, we also find a bad local minimum for data of positive measure.

2 RELATED WORKS

2.1 EXISTENCE AND NON-EXISTENCE OF A LOCAL MINIMUM

There is considerable literature to study the loss surface in the neural network. First, Goodfellow
et al. (2016) remark that Baldi & Hornik (1989) show that every local minimum is a global minimum
for shallow linear networks. Kawaguchi (2016) extends this result by showing that every local
minimum is a global minimum in the deep linear network. Lu & Kawaguchi (2017) advance the
result by relaxing the assumption. Zhou & Liang (2018) provides an analytic formulation of critical
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points in a deep linear network. Laurent & Brecht (2018) show that every local minimum is global
even for any convex loss function. Soltanolkotabi et al. (2018) shows every local minimum is global
for the quadratic activations.
For the piece-wise linear activations, Yun et al. (2018) show that bad local minima exist in the deep
neural network with two-piece linear activation. Goldblum et al. (2019) show a local minimum
exists in L-layer network with Affine activations. He et al. (2020) generalize the results of Yun et al.
(2018) by improving the two-piece linear to the piece-wise linear activation function, and the 2-layer
to the general L-layer neural network.
For smooth activation functions, Petzka & Sminchisescu (2021) and Ding et al. (2022) show that a
bad local minimum exists in the deep neural network with sigmoid activation functions.
For population loss, Safran & Shamir (2018) empirically show the existence of local minima in the
2-layer ReLU network. Wu et al. (2018) shows that there is no bad local minimum on the manifold
∥w1∥ = ∥w2∥ = 1.

2.2 EXISTENCE OF LOCAL VALLEY

From another perspective, there are several studies on local valleys (i.e. sub-level sets of loss sur-
face). The absence of a bad local valley guarantees that there is a non-increasing path to a global
minimum. Poston et al. (1991) show the existence of a non-increasing path to the global minimum
for an extremely wide 2-layer network with sigmoid activations in probability. Venturi et al. (2019)
show the existence of a non-increasing path to the global minimum for a 2-layer network with non-
polynomial activations and d1 ≥ N . Nguyen (2019; 2021) show the existence of non-increasing
path to the global minimum for general L-layer network if d1 ≥ N and d1 > d2 > ... > dL, and
every sub-level set is connected if d1 ≥ N + 1.

3 NOTATION AND SETUP

We begin by defining the notation. Let L be the number of layers. Let (X,Y ) be the training dataset
with X ∈ RdX×N , and Y ∈ RdY ×N , where N is the number of samples. dX and dY denote the
dimension of the inputs and outputs, respectively. d1, d2, ...dL−1 denote the width of the i-th layer.
B(x0, r) denotes a ball with a center at x0 and a radius of r.

Consider the N -layer neural network and the weights W = [W1, b1, ...,WN , bN ] ∈
[Rd1×dX ,Rd1 , ...,RdY ×dL ,RdN ] of the network:

F1 = σ(W1X + b1) (1)
Fj+1 = σ(Wj+1Fj) + bj+1 (2)

Ŷi = FL = WLFL−1 + bL. (3)

Then define the empirical loss function of the network, R(W ) as

R(W ) = L([W1, b1, ...,WN , bN ]) =
∑
i

ℓ(Yi, FL), (4)

where ℓ is the loss function.
We denote n(l, r) a neuron of the network with r-th index in layer l, and n(l, r;xα) the output value
before the activation with input xα. We denote act(l, r;xα) the output value after the activation
with input xα.
Let A{B1, B2, ..., Bn} denote AB1, AB2, ..., ABn.
If property P is generic if it holds almost everywhere (except measure zero). For instance, if P
holds for generic X ∈ RN , then P holds for almost every X ∈ RN .

Additionally, we classify local minima as follows.

Definition 1. Let Ŵ be a local minimum of the loss L.

• A bad local minimum Ŵ is called attracting if there is no non-increasing path to the global
minimum from Ŵ .
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• A bad local minimum Ŵ is called non-attracting if there exists a non-increasing path to
the global minimum from Ŵ

• A global minimum is considered attracting.

4 EXISTENCE OF A LOCAL MINIMUM FOR PARTIALLY LINEAR ACTIVATIONS

As studied in the works (Yun et al., 2018; He et al., 2020), a local minimum can be constructed by
borrowing the parameters from the linear model, using the local linearity of the piece-wise linear
activation function. Similarly, we investigate the existence of a local minimum in the network with
partially linear activation functions using the partial linearity of the activation functions.

Proposition 1. Suppose σ is partially linear with σ(x) = cx + d on a open interval (α, β). Then
R(W ) has a local minimum.

Proof. The proof is provided in Appendix A.1.1.

However, if σ(x) has no linearity, the borrowing technique is no longer available. Therefore, we
have to approach the problem in a new way.

5 EXISTENCE OF A LOCAL MINIMUM IN THE 2-LAYER NETWORKS FOR
GENERAL N

5.1 EXISTENCE OF A LOCAL MINIMUM IN THE NARROW 2-LAYER NETWORKS

In this section, we study the existence of a bad local minimum on the loss surface of 2-layer networks
with smooth activation functions for general N . First, consider the following 2-layer network of
width 1.

F2(W ) = w2σ(w1x+ b1) + b2. (5)

We present the following assumptions on the activation functions. We borrow the idea of the as-
sumption from the proof of Theorem 2 in Ding et al. (2022).

Assumption 1. Assume σ(x) is analytic and
B2(x) = {1, σ(x), σ′(x), xσ′(x), σ′′(x), xσ′′(x), x2σ′′(x)} is linearly independent. In fact, this
implies that σ(x) is not a solution to any second order linear ODE with polynomial coefficient of
the following form:

(Ax2 +Bx+ C)y′′ + (Dx+ E)y′ + Fy +G = 0, (6)

where A,B,C,D,E, F, and G are scalar and are not zero at the same time.

Assumption 1 describes the linear independence of the set B2(x) to be used in proving Proposition
2. Although the statement of Assumption 1 might seem unfamiliar, we discover that it is actually
a mild assumption that holds for almost all analytic functions (in sense of measure). In fact, we
prove that the most of widely used activation functions such as Tanh, Sigmoid, SiLU (Elfwing
et al., 2018), SoftPlus, GELU (Hendrycks & Gimpel, 2016), Swish (Ramachandran et al., 2017),
and Mish (Misra, 2019) actually satisfy Assumption 1 (Lemma 1). Therefore, Assumption 1 can be
considered to cover almost all smooth activation functions widely used in machine learning so far.
To show linear Independence, we use the more generalized concept, algebraic independence, in other
words, transcendence. The disciple of differential Galois theory studies the algebraic properties of
functions with derivations. Please see Appendix B for explanations for more details.
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Lemma 1. Tanh, Sigmoid, SiLU, SoftPlus, GELU, Swish, and Mish activation functions satisfy
Assumption 1.

tanh(x) =
ex − e−x

ex + e−x
(7)

sigmoid(x) =
1

1 + e−x
(8)

SiLU(x) =
x

1 + e−x
(9)

SoftP lus(x) = log(1 + ex) (10)

GELU(x) =
x

2
(1 + erf(

x√
2
)) =

x

2
(1 +

2√
π

∫ x/
√
2

0

e−t2dt) (11)

Swish(X) = x · sigmoid(βx) (12)
Mish(x) = x · tanh(softP lus(x)) = x · tanh(log(1 + ex)). (13)

Generally, it holds for almost every analytic function (i.e. except measure zero).

Proof. In this proof, we present the proof for σ(x) = sigmoid(x). Please see Appendix A.2.1 for
the other activation functions.

Suppose σ(x) is sigmoid. Suppose σ(x) is a solution of some second order linear ODE of form
equation 6. Then since

σ′(x) = σ(x)(1− σ(x)), σ′′(x) = σ(x)(1− σ(x))(1− 2σ(x)),

we have

(Ax2 +Bx+ C)(σ(x)(1− σ(x))(1− 2σ(x))) + (Dx+ E)σ(x)(1− σ(x)) + Fσ(x) +G

=(2Ax2 + 2Bx+ 2C)(σ(x))3 + (−3Ax2 + (−3B −D)x+ (−3C − E))(σ(x))2+

(Ax2 + (B +D)x+ (C + E + F ))(σ(x)) +G = 0.

Since σ(x) can be viewed as the root of a cubic equation with polynomial coefficients, we can
consider the field extension of the quotient field of the polynomial ring. Let Q denote the quotient
field of the polynomial ring and Q(σ(x)) be an extension field of Q with σ(x). Let L be a Galois
extension of Q including element σ(x). Since σ(x) is the root of the cubic equation, the degree of
field extension is finite.

[Q(σ(x)) : Q] ≤ [L : Q] ≤ |S3| = 6.

However, since σ(x) = 1
1+e−x is transcendental function, it cannot be expressed in terms of a finite

sequence of algebraic operations, hence

[Q(σ(x)) : Q] = ∞.

This is a contradiction, therefore the sigmoid function satisfies Assumption 1.

To show that Assumption 1 holds for almost every analytic function, we utilize the following Pi-
card–Lindelöf theorem, which guarantees the uniqueness of the solution of the ODE.

Theorem 1 (Picard–Lindelöf theorem). Let D ⊆ R × Rn be a closed rectangle with (t0, y0) ∈ D
(t0, y0) ∈ D. Let f : D → Rn be a function that is continuous in t and Lipschitz continuous in y.
Then, there exists some ϵ > 0 such that the initial value problem

y′(t) = f(t, y(t)), y(t0) = y0. (14)

has a unique solution y(t) on the interval [t0 − ε, t0 + ε]

By taking y = (y(t), y′(t)), the ODE of the form 6 has a unique solution with the initial value
(y(t0), y

′(t0)) = (y0, y
′
0) ∈ R×R. Since the ODE 6 has 7 degrees of freedom, the solution set of 6

has 14 degrees of freedom, i.e, is isomorphic to R14. Because the space of the analytic functions has
infinite degrees of freedom, i.e., isomorphic to RZ≥0 , we conclude that the solutions set has measure
zero in the space of analytic functions.
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Remark 1. The exception set of Assumption 1 is the set of solutions of equation 6, including ex,
sin(x). Since ex, sin(x) are solutions of y′ = y, y′′ = −y, they do not satisfy Assumption 1.

Now we show that there exists a strict local minimum of the 2-layer neural network of width 1 by
constructing suitable Y ∈ R1×N for generic X ∈ R1×N .

Proposition 2. Consider a 2-layer network with N ≥ 7, and dX = d1 = dY = 1. Suppose ℓ is
L2 loss function, and σ(x) satisfies Assumption 1. Then R(W ) has a strict local minimum Ŵ for a
generic dataset X ∈ R1×N with R(Ŵ ) > 0. Moreover, Hessian matrix H(Ŵ ) of R(W ) at Ŵ is
strictly positive definite.

Proof. The proof is provided in Appendix A.2.2.

Now we have a pair (X,Y ) where the neural networks can have a local minimum. By giving a
small perturbation to (X,Y ), we attain a perturbed (X̃, Ỹ ). If the neural network have a local
minimum for the perturbed (X̃, Ỹ ), we can conclude that the network has a local minimum for
positive measure of data, which is realistic condition. To show this, we need the following lemma.

Lemma 2. Let F (a, b) be a smooth function for a ∈ Rm and b ∈ Rn. Suppose for fixed b0 ∈ Rn,
F (·, b0) has a strict local minimum at a = a0 and the Hessian [ ∂2F

∂ai∂aj
](a0, b0) is strictly positive

definite. Then for any ϵ > 0, there exists δ > 0, such that for any b̃ ∈ B(b0, δ), F (·, b̃) has a strict
local minimum at some a = ã ∈ B(a0, ϵ) and the Hessian [ ∂2F

∂ai∂aj
](ã, b̃) is strictly positive definite.

Proof. The proof is provided in Appendix A.2.3.

By setting a = W, b = (X,Y ) in Lemma 2, together with Proposition 2, we show that a strict local
minimum exists for data of positive measure.

Proposition 3. Consider a 2-layer network with N ≥ 7, and dX = d1 = dY = 1. Suppose ℓ is L2

loss function, and σ(x) satisfies Assumption 1. Then there exists a positive measure of X ∈ R1×N

and Y ∈ R1×N , such that R(W ) has a strict local minimum with strictly positive definite Hessian
matrix.

Proof. Define F (W, (X,Y )) = ∥F2(W )(X)−Y ∥22. For a 2-layer network, by Proposition 2, there
exists Ŵ and (X0, Y0) such that F (·, (X0, Y0)) has a strict local minimum at W = Ŵ with the
strictly positive definite Hessian [ ∂2F

∂Wi∂Wj
](Ŵ , (X0, Y0)). By Lemma 2, for any ϵ > 0 there exists

δ > 0, such that for any (X̃, Ỹ ) ∈ B((X0, Y0), δ), F (·, (X̃, Ỹ )) has a strict local minimum at some
W̃ ∈ B(Ŵ , ϵ) and the Hessian [ ∂2F

∂Wi∂Wj
](W̃ , (X̃, Ỹ )) is strictly positive definite.

5.2 LOCAL MINIMUM EMBEDDING AND A BAD LOCAL MINIMUM IN THE WIDER NETWORKS

In the previous subsection, we show the existence of a local minimum in 2-layer networks of width
1. In this subsection, we introduce a technique called local minimum embedding which embeds a
local minimum from the smaller network into the larger network. Using this technique, we show
that a bad local minimum can exist in the wider networks. We introduce the definition of the local
minimum embedding.

Definition 2 (Local minimum embedding). Consider a L-layer neural network F small(X) with the
width d1, d2, ...dL and the weights W small. Consider a neuron n(l, r) with index r in layer l. Let
[usmall

r,i ]
dl−1

i=1 be the incoming weights into n(l, r) and [vsmall
s,r ]

dl+1

s=1 be the outgoing weights of n(l, r).
The weights of the smaller network W large can be represented as

W small = ([usmall
r,i ]

dl−1

i=1 , [vsmall
s,r ]

dl+1

s=1 , W̄
small), (15)

where W̄ small denote the collection of all remaining weights of the smaller network.
Consider the larger network Flarge(X) by adding a new neuron n(l,−1) referring n(l, r) with new
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weights [ularge
−1,i ]

dl−1

i=1 and [vlarges,−1 ]
dl+1

s=1 . The weights of the larger network W large can be represented
as

W large = ([ularge
−1,i ]

dl−1

i=1 , [vlarges,−1 ]
dl+1

s=1 , [u
large
r,i ]

dl−1

i=1 , [vlarges,r ]
dl+1

s=1 , W̄
large). (16)

Note that [ularge
−1,i ]

dl−1

i=1 and [vlarges,−1 ]
dl+1

s=1 are the incoming and outgoing weights of the new neuron
n(l,−1) in the larger network.
Then define the local minimum embedding function γr

λ mapping W small to W large as

γr
λ([u

small
r,i ]

dl−1

i=1 , [vsmall
s,r ]

dl+1

s=1 , W̄
small) = ([ularge

−1,i ]
dl−1

i=1 , [vlarges,−1 ]
dl+1

s=1 , [u
large
r,i ]

dl−1

i=1 , [vlarges,r ]
dl+1

s=1 , W̄
large)

with

[ularge
−1,i ]

dl−1

i=1 = [usmall
r,i ]

dl−1

i=1 , [vlarges,−1 ]
dl+1

s=1 = λ[vsmall
s,r ]

dl+1

s=1 , (17)

[ularge
r,i ]

dl−1

i=1 = [usmall
r,i ]

dl−1

i=1 , [vlarges,r ]
dl+1

s=1 = (1− λ)[vsmall
s,r ]

dl+1

s=1 , W̄
large = W̄ small (18)

The key idea of the local minimum embedding is to construct the larger network that works the same
as the smaller network.

Remark 2. By definition, the smaller network and the larger network have the same output.

Flarge(x) = Fsmall(x) (19)

for all x ∈ RdX . This is independent of the embedding parameter λ ∈ R.

Under what conditions is the local minimum in the smaller network still the local minimum in the
larger network? The following theorem describes the condition.

Theorem 2 ((Petzka & Sminchisescu, 2021)). Define the matrices Bi,j and Dr,s
i as

Bi,j =

N∑
α=1

dl+1∑
k=1

∂ℓα(xα, yα)

∂n(l + 1, k;xα)
· vk,r · σ′′(n(l, r;xα))act(l − 1, i;xα)act(l − 1, j;xα), (20)

and

Dr,s
i :=

N∑
α=1

∂ℓα(xα, yα)

∂n(l + 1, s;xα)
σ′(n(l, r;xα))act(l − 1, i;xα). (21)

Then, assume Bi,j is either

• positive definite and λ ∈ (0, 1), or

• negative definite and λ ∈ (−∞, 0) ∪ (1,∞).

Then the embedding γr
λ(·) determines a local minimum in the larger network if and only if Dr,s

i = 0
for all i, s.

Now, together with Proposition 3, we show that a bad local minimum exists in the wide network.

Theorem 3. Suppose dX = dY = 1, d1 ≥ 2, N ≥ 7, ℓ is L2 function and the activation function
σ(x) satisfies Assumption 1. Then there exists a positive measure of X ∈ R1×N and Y ∈ R1×N ,
such that the network 1− d1 − 1 has a bad local minimum.

Proof. The proof is provided in Appendix A.2.4.

Remark 3. The Ŵ d1 found in Theorem 3 is the local minimum by definition (i.e., R(Ŵ d1) ≤
R(W̃ ) for the neighborhood W̃ ). However, its type is actually non-attracting (i.e., there exists
non-increasing path to the global minimum.)
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6 EXISTENCE OF A LOCAL MINIMUM IN 3-LAYER NETWORKS FOR GENERAL
N

So far, we construct a local minimum for the 2-layer neural network. In the next section, we stretch
the existence of a local minimum to the 3-layer network. Unlike the 2-layer, the problem becomes
very complex because of the composition of σ(x). In the case of 3-layer, the assumption becomes:
Assumption 2. Assume σ(x) is analytic and satisfies Assumption 1. Additionally, assume that σ(x)
satisfies the following claims.
Claim 1. σ(σ(x)) is transcendental over Q(σ(x)).
Claim 2. If

α1 + α2σ(σ(x)) + α3σ
′(σ(x)) + α4σ

′′(σ(x)) = 0 (22)
for some αi ∈ Q(σ(x)), then αi = 0 for all i.
Lemma 3. Assume σ(x) satisfies Assumption 2. Define B3(x), B3,1, B3,2 as

B3(x) = {1, σ(σ(x)), σ′(σ(x)){1, σ(x), σ′(x){1, x}, σ′′(x){1, x, x2}},
σ′′(σ(x)){1, σ(x), σ(x)2, σ′(x){1, x}, σ′′(x){1, x, x2}, σ′(x)2{1, x, x2},
σ(x)σ′(x){1, x}, σ(x)σ′′(x){1, x, x2}, σ′(x)′σ′′(x){1, x, x2, x3}}, σ′′(x)2{1, x, x2, x3, x4}},

B3,1(x) = {σ′(σ(x))σ′′(x)x2}, (23)

B3,2(x) = {σ′(σ(x))σ′′(x)}, (24)

B3,3(x) = {σ′′(σ(x))}, (25)

and B̃3(x) = B3(x)−B3,1(x)−B3,2(x)−B3,3(x).
Then, we have

span{B3,i(x)} ∩ span{B̃(x)} = {0} (26)
span{B3,i(x)} ∩ span{B3,j(x)} = {0}, (27)

for i, j = 1, 2, 3 and i ̸= j.

Proof. The proof is provided in Appendix A.2.5.

We need to check that .
Lemma 4. Tanh, Sigmoid, SiLU, SoftPlus, GELU, Swish, and Mish functions satisfy Assumption 2.

Proof. The proof is provided in Appendix A.2.6.

We believe Assumption 2 holds for almost every analytic function, but due to the mathematical
difficulties with the composition of functions, we leave it a conjecture.
Conjecture 1. Assumption 2 holds for almost every analytic function (i.e except measure zero).

Now we show that there exists a strict local minimum in the 3-layer neural network of width 1.
Together with Lemma 2, a strict local minimum exists for data of positive measure.
Proposition 4. Consider a 3-layer network with N ≥ 34, and dX = d1 = d2 = dY = 1. Suppose
ℓ is L2 loss function, and σ(x) satisfies Assumption 1 and 2. Then there exists a positive measure
of X ∈ R1×N and Y ∈ R1×N , such that R(W ) has a strict local minimum Ŵ . Moreover, Hessian
matrix H(Ŵ ) of R(W ) at Ŵ is strictly positive definite.

Proof. The proof is provided in Appendix A.2.7.

Similar to the 2-layer network, using the local minimum embedding, we show that a bad local
minimum exists in the wide 3-layer network.
Theorem 4. Suppose dX = dY = 1, d1 ≥ 2, d2 ≥ 2, N ≥ 34, ℓ is L2 function and the activation
function σ(x) satisfies Assumption 1 and 2. Then there exists a positive measure of X ∈ R1×N and
Y ∈ R1×N , such that the network 1− d1 − d2 − 1 has a bad local minimum.

Proof. The proof is provided in Appendix A.2.8.
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7 CONCLUSION AND FUTURE WORK

We investigate the existence of a bad local minimum in the 2-layer and 3-layer neural networks with
general smooth activations. In addition, We present techniques for handling the smooth activation
functions. Together with the studies on the piece-wise linear activations, it is verified that the neural
networks with widely-used activation functions such as ReLU, SiLU, GELU, Swish, and Mish can
have a bad local minimum. A future research direction will be investigating the existence of a
bad local minimum in the general L-layer network. Although several empirical pieces of evidence
suggest that an attracting local minimum actually exists in many cases when the width is less than N ,
there it has not been theoretically elucidated. One can try to show the existence of an attracting bad
local minimum and bad local valley in the neural network with smooth activations when d1 < N .
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A APPENDIX

In this section, we provide detailed proofs of the theorems, propositions, and lemmas.

A.1 PROOFS IN SECTION 4

A.1.1 PROOF OF PROPOSITION 1

Proposition. Suppose σ is partially linear with σ(x) = cx + d on a open interval (α, β). Then
R(W ) has a local minimum.

Proof. Consider the linear minimization problem∑
i

ℓ(Yi,W

[
Xi

1

]
). (28)

Let W̄ be a linear minimizer of the above problem.
Let Ȳ ∈ RdY be the output of linear model and M,m be the maximum and minimum value of
{Ȳi}Ni=1

Ȳi = W̄

[
Xi

1

]
M := max

i
max(Ȳi)

m := min
i

min(Ȳi).

Then we can find f(x) = px+ q, p ̸= 0, p, q ∈ R such that,

f(M), f(m) ∈ (α, β).

Let define the weight Ŵ = [Ŵ1, b̂1, Ŵ2, b̂2] of 2-layer network as :

Ŵ1 =

[
f(W̄[1:dX ])

0

]
, b̂1 =

[
f([W̄ ][dX+1])

0

]
(29)

Ŵ2 =
[
(cp)−1IdY

0
]
, b̂2 = (−p−1q − (cp)−1d)1. (30)

Since Ŵ1Xi + b̂1 = f(Ȳi) ∈ [α, β] , we have σ(Ŵ1Xi + b̂1) = cf(Ȳi) + d. Then we claim Ŵ
is the local minimum. To show this, we introduce the small disturbance δW = (δw1 , δb1 , δw2 , δb2).
Then, since (Ŵ1 + δW1

)Xi + b̂1 + δb1 ∈ (α, β),

σ((Ŵ1 + δW1
)Xi + b̂1 + δb1) = σ(

[
pȲi + q1dY

0

]
+ δW1

Xi + δb1) = c(

[
pȲi + q1dY

0

]
+ δW1

Xi + δb1) + d

F2 = (Ŵ2 + δW2
)(

[
cpȲi + cq1dY

0

]
+ cδW1

Xi + cδb1 + d) + δb2

= Ȳi + [p−1δW1
Xi + p−1δb1 ][:dY ] + δW2

([cpȲi + cq1dY
][:dY ]cδb1 + d) + cδW2

δW1
Xi + δb2

= Ȳi + δ

[
Xi

1

]
, (31)

where δ = [δ1, δ2] and

δ1 = p−1δW1 [:,:dY ] + cδW2
δW1

(32)

δ2 = p−1δb1 [:,:dY ] + δW2
([cpȲi + cq1dY

][:dY ]cδb1 + d) + δb2 . (33)

Because, R(Ŵ ) = Rlinear(W̄ ) < Rlinear(W̄ + δ) = R(Ŵ + δW ), we can conclude that Ŵ is the
local minimum.
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A.2 PROOFS IN SECTION 5 AND 6

A.2.1 PROOF OF LEMMA 1

Lemma. Tanh, Sigmoid, SiLU, SoftPlus, GELU, Swish, and Mish activation functions satisfy As-
sumption 1.

tanh(x) =
ex − e−x

ex + e−x
(34)

sigmoid(x) =
1

1 + e−x
(35)

SiLU(x) =
x

1 + e−x
(36)

SoftP lus(x) = log(1 + ex) (37)

GELU(x) =
x

2
(1 + erf(

x√
2
)) =

x

2
(1 +

2√
π

∫ x/
√
2

0

e−t2dt) (38)

Swish(X) = x · sigmoid(βx) (39)
Mish(x) = x · tanh(softP lus(x)) = x · tanh(log(1 + ex)). (40)

Generally it holds for almost every analytic function (i.e. except measure zero).

Proof. Suppose σ(x) is sigmoid. Suppose σ(x) is a solution of some second order linear ODE of
form equation 6. Then since

σ′(x) = σ(x)(1− σ(x)), σ′′(x) = σ(x)(1− σ(x))(1− 2σ(x)),

we have

(Ax2 +Bx+ C)(σ(x)(1− σ(x))(1− 2σ(x))) + (Dx+ E)σ(x)(1− σ(x)) + Fσ(x) +G

=(2Ax2 + 2Bx+ 2C)(σ(x))3 + (−3Ax2 + (−3B −D)x+ (−3C − E))(σ(x))2+

(Ax2 + (B +D)x+ (C + E + F ))(σ(x)) +G = 0.

Since σ(x) can be viewed as the root of a cubic equation with polynomial coefficients, we can
consider the field extension of the quotient field of polynomial ring. Let Q denote the quotient field
of polynomial ring and Q(σ(x)) be a extension field of Q with σ(x). Let L be a Galois extension of
Q including element σ(x). Since σ(x) is the root of cubic equation, the degree of field extension is
finite.

[Q(σ(x)) : Q] ≤ [L : Q] ≤ |S3| = 6.

However, since σ(x) = 1
1+e−x is transcendental function, it cannot be expressed in terms of a finite

sequence of the algebraic operations, hence

[Q(σ(x)) : Q] = ∞.

This is a contradiction, therefore the sigmoid function satisfies Assumption 1.
Similarly, because tanh(x) = 2sigmoid(2x)− 1, the tanh function satisfies Assumption 1.

For σ(x) = SiLU(x), since SiLU(x) is a special case of Swish(x), please refer to Swish(x)
part.

For σ(x) = SoftP lus(x), we have σ′(x) = s(x) where s(x) denotes the sigmoid function. Then
we have

σ′(x) = s(x)

σ′′(x) = s′(x) = s(x)(1− s(x)).

By substituting into equation 6, we have

σ(x) = P2(s(x)),

12
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for some quadratic polynomial P2(X). By substituting into equation 6 again, we have

σ(x) = P4(s(x)),

for some quartic polynomial P4(x). Similar to SiLU case, we have a contradiction.
Therefore we conclude that for sigmoid activation function s(x), if σ(x) is a form of polynomial of
s(x), k-th derivative, k-th indefinite integral or their linear combination, i.e,

σ(x) ∈ span{Pi(s(x)), s
(k)(x),

∫ (k)

s(s)dx(k)},

then σ(x) satisfies Assumption 1.
For σ(x) = GELU(x), note that

σ′(x) =
1

2
(1 + erf(

x√
2
)) + x

1√
2π

e−
x2

2 (41)

σ′′(x) =

√
2√
π
e−

x2

2 − x2 1√
2π

e−
x2

2 . (42)

Direct substitution into equation 6 induces

(Ax2 +Bx+ C)(

√
2√
π
e−

x2

2 − x2 1√
2π

e−
x2

2 )

+ (Dx+ E)(
1

2
erf(

x√
2
) + x

1√
2π

e−
x2

2 +
1

2
) +

F

2
(xerf(

x√
2
) + x) +G = 0 (43)

1

2
erf(

x√
2
)(Dx+ E + Fx) +

1√
2π

e−
x2

2 (−Ax4 −Bx3 + (2A− C +D)x2 + (2B + E)x+ 2C)

+ (
D + F

2
)x+

E

2
+G = 0. (44)

Since erf(x) = 2√
π

∫ x

0
e−t2dt is not an elementary function by Liouville’s theorem (Theorem 5), we

have
(Dx+ E + Fx) = 0.

Otherwise, erf(x) would be an elementary function. Therefore we have

D = −F, E = 0.

Similarly, since e−
x2

2 is transcendental over Q, we have

A = 0, B = 0, (2A− C +D) = 0, (2B + E) = 0, C = 0, D + F = 0, E = 0, G = 0.

Therefore every coefficient is zero. Hence we have a contradiction.
For σ(x) = Swish(x), the proof is a generalized case of SiLU(x). Let σ(x) = xs(βx), where
s(x) denotes the sigmoid function. Then we have

σ′(x) = s(βx)(1 + βx(1− s(βx)))

σ′′(x) = βs(βx)(1− s(βx))(2 + βx− 2βxs(βx)).

By substituting into equation 6, we get the cubic equation with polynomial coefficient, of which
s(x) is a solution. Similarly, let L be a Galois extension of Q including element s(x), the degree of
field extension is

[Q(s(x)) : Q] ≤ [L : Q] ≤ |S3| = 6.

Since s(x) is transcendental, this is a contraction.

For σ(x) = Mish(x) = x·tanh(log(1+ex)), it is sufficient to show that τ(x) := tanh(log(1+ex))
is not a solution of the following second order linear ODE

(Ax3 +Bx2 + Cx+D)y′′ + (Ex2 + Fx+G)y′ + (Hx+ I)y + J = 0. (45)

13
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To show this, let f(x) = log(1 + ex) and s(x) = sigmoid(x). Since tanh(x) = e2x−1
e2x+1 , e

x =
s(x)

s(x)−1 , we have

tanh(f(x)) =
(1 + ex)2 − 1

(1 + ex)2 + 1
=

(1 + s(x)
s(x)−1 )

2 − 1

(1 + s(x)
s(x)−1 )

2 + 1
=

3s(x)2 − 2s(x)

5s(x)2 − 6s(x) + 2
. (46)

Then we have

τ ′(x) = (
3s(x)2 − 2s(x)

5s(x)2 − 6s(x) + 2
)′ =

4s(s− 1)2(2s− 1)

(5s2 − 6s+ 2)2
(47)

τ ′′(x) =
−4s(s− 1)2(s3 + 7s2 − 8s+ 2)

(5s2 − 6s+ 2)3
. (48)

By substituting into equation 45, σ(x) is a solution of the equation of degree 6. Since s(x) is
transcendental, this is a contraction.

A.2.2 PROOF OF PROPOSITION 2

Proposition. Consider a 2-layer network with N ≥ 7, and dX = d1 = dY = 1. Suppose ℓ is L2

loss function, and σ(x) satisfies Assumption 1. Then R(W ) has a strict local minimum Ŵ for a
generic dataset X ∈ R1×N with R(Ŵ ) > 0. Moreover, Hessian matrix H(Ŵ ) of R(W ) at Ŵ is
strictly positive definite.

Proof. By assumption 1, {1, σ(x), σ′(x), xσ′(x), σ′′(x), xσ′′(x), x2σ′′(x)} is linearly independent.
Let A(X) = {1N , [σ(xi)], [σ

′(xi)], [xiσ
′(xi)], [σ

′′(xi)], [xiσ
′′(xi)], [x

2
iσ

′′(xi)]}. Consider the
mapping

(x1, x2, ..., x7) 7→ det(A([xi]
7
i=1)). (49)

Because of linear independence, this map is not zero map. Since σ(x) is analytic, this map is also
analytic. Therefore, zero set of the map has measure zero.
Therefore, for generic X = (x1, x2, ...xN ), rank(A([xi]

N
i=1)) ≥ 7. we have seven linearly inde-

pendent N -dimensional vectors

{1N , [σ(xi)], [σ
′(xi)], [xiσ

′(xi)], [σ
′′(xi)], [xiσ

′′(xi)], [x
2
iσ

′′(xi)]}Ni=1.

Then we can find N − 5 linearly independent N -dimensional vectors {vk} such that

⟨vk,1N ⟩ = 0 (50)
⟨vk, [σ(xi)]⟩ = 0 (51)

⟨vk, [σ′(xi)]⟩ = 0 (52)

⟨vk, [xiσ
′(xi)]⟩ = 0 (53)

⟨vk, [xiσ
′′(xi)]⟩ = 0 (54)

⟨vk, [σ′′(xi)]⟩ > 0 (55)

⟨vk, [x2
iσ

′′(xi)]⟩ > 0. (56)

Select data points Y = [yi]
N
i=1 as

yi = F2(xi)− w2

N−5∑
k=1

ck[vk]i, (57)

for some positive ck ∈ R.
Then pick Ŵ = (w1, b1, w2, b2) = (1, 0, w2, 0), where w2 > 0 can be fixed arbitrarily.

Define ∆y ∈ RN such that

[∆Y ]i = F2(xi)− yi = w2

N−5∑
k=1

ck[vk]i.
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Then we get

⟨∆Y,1N ⟩ = ⟨∆Y, [σ(xi)]⟩ =⟨∆Y, [σ′(xi)]⟩ = ⟨∆Y, [xiσ
′(xi)]⟩ = ⟨∆Y, [σ′′(xi)]⟩ = 0 (58)

⟨∆Y, [xiσ
′′(xi)]⟩ > 0 (59)

⟨∆Y, [x2
iσ

′′(xi)]⟩ > 0. (60)

Then for the loss R = ∥F2(xi)− yi∥22 = ⟨F2(X)− Y, F2(X)− Y ⟩, derivatives are

∂R
∂w1

= 2⟨∆Y,Xσ′(X)⟩ = 0 (61)

∂R
∂b1

= 2⟨∆Y, σ′(X)⟩ = 0 (62)

∂R
∂w2

= 2⟨∆Y, σ(X)⟩ = 0 (63)

∂R
∂b2

= 2⟨∆Y,1⟩ = 0. (64)

Hence Ŵ is a stationary point. In addition, R(Ŵ ) = ⟨∆Y,∆Y ⟩ > 0 by construction.

To show Ŵ is a strict local minimum, we need to show that Hessian H(Ŵ ) of R(W ) is strictly
positive definite at W = Ŵ . Therefore we need to show that

uTH(Ŵ )u = lim
t→0

R(Ŵ + tu) +R(Ŵ − tu)− 2R(Ŵ )

t2
> 0, (65)

for all u = (uw1 , ub1 , uw2 , ub2) with ∥u∥2 = 1.

First, note that

R(Ŵ + tu)−R(Ŵ ) = ⟨F2(Ŵ + tu)− Y, F2(Ŵ + tu)− Y ⟩ − ⟨F2(Ŵ )− Y, F2(Ŵ )− Y ⟩
= ⟨F2(Ŵ + tu)− F2(Ŵ ), F2(Ŵ + tu)− F2(Ŵ )⟩+ 2⟨∆Y, F2(Ŵ + tu)− F2(Ŵ )⟩
= ∥F2(Ŵ + tu)− F2(Ŵ )∥22 + 2⟨∆Y, F2(Ŵ + tu)− F2(Ŵ )⟩, (66)

and because Ŵ = (w1, b1, w2, b2) = (1, 0, w2, 1),

F2(Ŵ + tu)(x)− F2(Ŵ )(x)

= ((w2 + tuw2
)σ((w1 + tuw1

)x+ b1 + tub1) + b2 + tub2)− (w2σ(w1x+ b1) + b2)

= (w2 + tuw2)(σ((1 + tuw1)x+ tub1)− σ(x)) + tuw2σ(x) + tub2

= (w2 + tuw2
)(σ(x+ t(uw1

x+ ub1))− σ(x)) + tuw2
σ(x) + tub2 . (67)

Let u1 = uw1x+ ub1 . By Taylor theorem, we have

σ(x+ t(uw1
x+ ub1))− σ(x) = σ′(x)tu1 +

1

2
σ′′(x)t2u2

1 + o(t2)

= σ′(x)tuw1x+ σ′(x)tub1 +
1

2
σ′′(x)t2(u2

w1
x2 + 2uw1ub1x+ u2

b1) + o(t2). (68)

Therefore, we have

F2(Ŵ + tu)(x)− F2(Ŵ )(x)

= (w2 + tuw2
)(σ′(x)tuw1

x+ σ′(x)tub1 +
1

2
σ′′(x)t2(u2

w1
x2 + 2uw1

ub1x+ u2
b1)) + tuw2

σ(x) + tub2 + o(t2).

(69)

By equation 66, we can calculate R(Ŵ + tu) +R(Ŵ − tu)− 2R(Ŵ ).

R(Ŵ + tu) +R(Ŵ − tu)− 2R(Ŵ ) = (R(Ŵ + tu)−R(Ŵ )) + (R(Ŵ − tu)−R(Ŵ ))

= ∥F2(Ŵ + tu)− F2(Ŵ )∥22 + ∥F2(Ŵ − tu)− F2(Ŵ )∥22+
2⟨∆Y, F2(Ŵ + tu)− F2(Ŵ )⟩+ 2⟨∆Y, F2(Ŵ − tu)− F2(Ŵ )⟩. (70)
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By equation 58 and equation 69, we have

⟨∆Y, F2(Ŵ + tu)− F2(Ŵ )⟩ =
1

2
(w2 + tuw2

)t2u2
w1

⟨∆Y, σ′′(X)X2⟩+ 1

2
(w2 + tuw2

)t2u2
b1⟨∆Y, σ′′(X)⟩+ (w2 + tuw2

)⟨∆Y, o(t2)⟩.
(71)

We consider the following two cases.
Case 1: (uw1

, ub1) ̸= (0, 0).
In this case, by equation 71

2⟨∆Y, F2(Ŵ + tu)− F2(Ŵ )⟩+ 2⟨∆Y, F2(Ŵ − tu)− F2(Ŵ )⟩ (72)

=(w2 + tuw2
)(t2u2

w1
⟨∆Y, σ′′(X)X2⟩+ t2u2

b1⟨∆Y, σ′′(X)⟩) + o(t2). (73)

Since ∥F2(Ŵ + tu)− F2(Ŵ )∥22 + ∥F2(Ŵ − tu)− F2(Ŵ )∥22 ≥ 0, we have

lim
t→0

R(Ŵ + tu) +R(Ŵ − tu)− 2R(Ŵ )

t2
(74)

≥ lim
t→0

(w2 + tuw2
)(t2u2

w1
⟨∆Y, σ′′(X)X2⟩+ t2u2

b1
⟨∆Y, σ′′(X)⟩) + o(t2)

t2
(75)

= w2(u
2
w1

⟨∆Y, σ′′(X)X2⟩+ u2
b1⟨∆Y, σ′′(X)⟩ > 0. (76)

Case 2: (uw1 , ub1) = (0, 0).
In this case, we have ∥F2(Ŵ+tu)−F2(Ŵ )∥22+∥F2(Ŵ−tu)−F2(Ŵ )∥22 = ∥tuw2

σ(X)+tub21N∥22
and ⟨∆Y, F2(Ŵ + tu)−F2(Ŵ )⟩+ ⟨∆Y, F2(Ŵ − tu)−F2(Ŵ )⟩ = o(t2). Since σ(X) and 1N are
independent, ∥uw2

σ(X) + ub21N∥22 > 0. Therefore, we have

lim
t→0

R(Ŵ + tu) +R(Ŵ − tu)− 2R(Ŵ )

t2
(77)

= lim
t→0

t2∥uw2
σ(X) + ub21N∥22 + o(t2)

t2
= ∥uw2σ(X) + ub21N∥22 > 0. (78)

In both cases, we have uTH(Ŵ )u > 0 for all u. Therefore, Hessian H(Ŵ ) is strictly positive
definite at Ŵ and Ŵ is a strict local minimum of R(W ).

A.2.3 PROOF OF LEMMA 2

Lemma. Let F (a, b) be a smooth function for a ∈ Rm and b ∈ Rn. Suppose for fixed b0 ∈ Rn,
F (·, b0) has a strict local minimum at a = a0 and the Hessian [ ∂2F

∂ai∂aj
](a0, b0) is strictly positive

definite. Then for any ϵ > 0, there exists δ > 0, such that for any b̃ ∈ B(b0, δ), F (·, b̃) has a strict
local minimum at some a = ã ∈ B(a0, ϵ) and the Hessian [ ∂2F

∂ai∂aj
](ã, b̃) is strictly positive definite.

The first part of this proof follows the proof of Lemma B.2 in Ding et al. (2022).

Proof. Let ϵ > 0 be given. Since a0 is a strict local minimum of F (·, b0), there exists ϵ1 such that
F (ã, b0) > F (a, b0), for all ã ∈ B(a0, ϵ1).
Let ϵ2 = min{ϵ, ϵ1/2}. Then we have F (ã, b0) > F (a, b0) for all a ∈ ∂B̄(a0, ϵ2). Then define

η = inf
ã∈∂B̄(a0,ϵ2)

F (ã, b0)− F (a0, b0) > 0, a∗ = arg inf
ã∈∂B̄(a0,ϵ2)

F (ã, b0)− F (a0, b0). (79)

Since ∂B̄(a0, ϵ2) is compact and F is continuous, such a∗ exits. Then, since F is uniformly contin-
uous on B̄((a0, b0), ϵ2), there exists 0 < δ ≤ ϵ2 such that

|F (α1, β1)− F (α2, β2)| <
η

3
, (80)
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for all (α1, β1), (α2, β2) ∈ B̄((a0, b0), ϵ2) with ∥(α1, β1) − (α2, β2)∥2 < δ. Then for any b̂ ∈
B(b0, δ), we have

F (a0, b̂) < F (a0, b0) +
η

3
= (F (a∗, b0)− η) +

η

3
= F (a∗, b0)−

2

3
η (81)

< F (a∗, b̂)− 1

3
η < inf

ã∈∂B̄(a0,ϵ2)
F (ã, b̂). (82)

Since B̄(a0, ϵ2) is compact, â := arg inf ã∈B̄(a0,ϵ2) F (ã, b̂) exists. Then, since

F (â, b̂) ≤ F (a0, b̂) < inf
ã∈∂B̄(a0,ϵ2)

F (ã, b̂), (83)

â is in interior of B̄(a0, ϵ2). Therefore, there exists ϵ3 > 0 such that B̄(â, ϵ3) ⊂ B(a0, ϵ2). Thus
F (â, b̂) ≤ F (ã, b̂) for all ã ∈ B̄(â, ϵ3) with ϵ3 < ϵ2 ≤ ϵ.

To show the strictness, we need the following lemma.

Lemma 5. Let A ∈ Rn×n be a strictly positive definite matrix. Let σmax(A) and σmin(A) denote
the largest and smallest singular values of A. Then for a small symmetric perturbation matrix ∆A
with |σmax(∆A)| < |σmin(A)|, A+∆A is also strictly positive definite.

Proof. Let x ∈ Rn be a vector. Then we have

xT (A+∆A)x = xTAx+ xT∆Ax ≥ σmin(A)∥x∥2 − σmax(∆A)∥x∥2 > 0. (84)

Therefore A+∆A is strictly positive definite.

Note that since F is smooth, the function [ ∂2F
∂ai∂aj

](a, b) is also smooth. Since [ ∂2F
∂ai∂aj

](a, b) is
smooth at (a0, b0) and strictly positive definite, for any ϵ4 > 0, there exists δ4 > 0 such that

∥[ ∂2F

∂ai∂aj
](a0, b0)− [

∂2F

∂ai∂aj
](α, β)∥ < ϵ4, if ∥(a0, b0)− (α, β)∥ < δ4. (85)

Therefore, by picking small enough ϵ4 > 0 such that ϵ4 < σmin[
∂2F

∂ai∂aj
](a0, b0), [ ∂2F

∂ai∂aj
](α, β)

is strictly positive definite by Lemma 5. By defining ϵ2 = min{ϵ, ϵ1/2, δ4}, instead of ϵ2 =

min{ϵ, ϵ1/2} we can say that [ ∂2F
∂ai∂aj

](â, b̂) is strictly positive definite. Therefore â is a strict local

minimum of F (·, b̂).

A.2.4 PROOF OF THEOREM 3

Theorem. Suppose dX = dY = 1, d1 ≥ 2, N ≥ 7, ℓ is L2 function and the activation function
σ(x) satisfies Assumption 1. Then there exists a positive measure of X ∈ R1×N and Y ∈ R1×N ,
such that the network 1− d1 − 1 has a bad local minimum Ŵ d1 .

Proof. Consider the small 2-layer network with dX = d1 = dY = 1. By Proposition 3, there exists
a strict local minimum Ŵ with R(Ŵ ) > 0 and strictly positive definite Hessian matrix, for positive
measure of (X,Y ). Now, we calculate B1,1 in equation 20 in Thereom 2

B1,1 =

N∑
α=1

∂ℓα(xα, yα)

∂f(xα)
· vs,r · σ′′(n(1, r;xα))x

2
α,1 (86)

=
∑
i

[∆Y ]iw2σ
′′(xi)x

2
i (87)

= w2

∑
i

[∆Y ]iσ
′′(xi)x

2
i (88)

= w2⟨∆Y, σ′′(X)X2⟩ > 0. (89)
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Now, we consider the local minimum embedding on the hidden layer with λ as described in Def-
inition 2. We add a new neuron n(1,−1) referring n(1, 1) on the hidden layer using embedding
function. Denote W (2) be parameters of the larger network at the first step (The larger network has
a width of 2 at the first step). By Lemma 13, we have the Hessian matrix H (equation 165) and
Dr,s

i = 0 by Lemma 14.
Without loss of generality, suppose w2 > 0. Pick λ ∈ (0, 1). Since Ŵ has the strictly positive
definite Hessian, Hsmall is also strictly positive definite, and αβ[B1,1] is positive. On the last axis
[vs,−1 − vs,1] of B, the loss of the larger network is constant on the last axis by direct calculation.
Therefore, we conclude W (2) is a local minimum of the larger network.
Consider the path λ from (0, 1) to (−∞, 0) ∪ (1,∞). Note that the loss is constant along the path.
Additionally, αβ[B1,1] becomes positive to negative along the path, hence we conclude that the
point become saddle finally. Because there exists a non-increasing path from W (2), W (2) is not
global minimum, i.e. the bad local minimum.

We add a new neuron every step. At step t, we have

B
(t+1)
1,1 =

N∑
α=1

∂ℓα(xα, yα)

∂f(xα)
· (1− λ)t−1vs,r · σ′′(n(1, r;xα))xα,1xα,1 (90)

= w2(1− λ)t−1⟨∆Y, σ′′(X)X2⟩ > 0. (91)

Therefore by similar argument, we conclude that W t+1 is a local minimum.
Finally, we construct sufficiently wide neural network (1-(t+1)-1) which has a bad local minimum
for each t. □

A.2.5 PROOF OF LEMMA 3

Lemma. Assume σ(x) satisfies Assumption 2. Define B3(x), B3,1, B3,2 as

B3(x) = {1, σ(σ(x)), σ′(σ(x)){1, σ(x), σ′(x){1, x}, σ′′(x){1, x, x2}},
σ′′(σ(x)){1, σ(x), σ(x)2, σ′(x){1, x}, σ′′(x){1, x, x2}, σ′(x)2{1, x, x2},
σ(x)σ′(x){1, x}, σ(x)σ′′(x){1, x, x2}, σ′(x)′σ′′(x){1, x, x2, x3}}, σ′′(x)2{1, x, x2, x3, x4}},

B3,1(x) = {σ′(σ(x))σ′′(x)x2}, (92)

B3,2(x) = {σ′(σ(x))σ′′(x)}, (93)

B3,3(x) = {σ′′(σ(x))}, (94)

and B̃3(x) = B3(x)−B3,1(x)−B3,2(x)−B3,3(x).
Then, we have

span{B3,i(x)} ∩ span{B̃(x)} = {0} (95)
span{B3,i(x)} ∩ span{B3,j(x)} = {0}, (96)

for i, j = 1, 2, 3 and i ̸= j.

Proof. First, we need the following lemma.

Lemma 6. Suppose that g(x) is not zero constant function and g(x), f1(x), f2(x), ..., fn(x) are
analytic and a set of analytic functions {f1(x), f2(x), ..., fn(x)} is linearly independent. Then
{g(x)f1(x), g(x)f2(x), ..., g(x)fn(x)} is also linearly independent.

Proof. Since g(x) is analytic function, the zero set Z(g(x)) of g(x) has no limit points.
Hence there exists an open interval I = (a, b), such that g(x) ̸= 0 on I . Suppose
{g(x)f1(x), g(x)f2(x), ..., g(x)fn(x)} is not linearly independent. Then there exist {ai}i = 1n,
such that

∑n
i=1 aig(x)fi(x) = 0 and not all {ai}i = 1n are zero. Since g(x) ̸= 0 on I , by multiply-

ing 1
g(x) , we have

∑n
i=1 aifi(x) = 0 on I . Since h(x) :=

∑n
i=1 aifi(x) = 0 is analytic and h(x) =

0 on I , h(x) = 0 on R. This is a contradiction. Therefore {g(x)f1(x), g(x)f2(x), ..., g(x)fn(x)} is
linearly independent.
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Since Claim 1 and 2 hold, we have

span{B} = span{1} ⊕ span{σ(σ(x)){...}} ⊕ span{σ′(σ(x)){...}} ⊕ span{σ′′(σ(x)){...}}.

Therefore, span{σ′(σ(x)){...}} is linearly independent with others.
Since σ(x) satisfies Assumption 1, B2(x) is linearly independent. Since σ′(σ(x)) is analytic,
{σ′(σ(x)){1, σ(x), σ′(x){1, x}, σ′′(x){1, x, x2}} is linearly independent by Lemma 6. Since con-
stant function 1 is linearly independent with all other non-constant functions, σ′′(σ(x)) is linearly
independent with all other functions in {σ′′(σ(x)){...}} − {σ′′(σ(x))} by Lemma 6. Hence equa-
tion 95-equation 96 hold.

A.2.6 PROOF OF LEMMA 4

Lemma. Tanh, Sigmoid, SiLU, SoftPlus, GELU, Swish, and Mish functions satisfy Assumption 2.

Proof. Suppose σ(x) = sigmoid(x). By Lemma 12, Claim 1 holds. For Claim 2, suppose

α1 + α2σ(σ(x)) + α3σ
′(σ(x)) + α4σ

′′(σ(x)) = 0, (97)

where αi ∈ Q(σ(x)) are not zero at the same time. Since σ′(x) = σ(x)(1 − σ(x)), σ′(x)
and σ′′(x) are the second and third order polynomials in terms of σ(x). Since σ′′(σ(x)) =
P3(σ(x)), σ

′(σ(x)) = P2(σ(x)), for some third and second order polynomials P3, P2, we can say
σ(σ(x)) is a solution of a cubic polynomial in Q(σ(x)). This is a contradiction since σ(σ(x)) is
transcendental over Q(σ(x)). Therefore, Claim 2 holds.
For the case of σ(x) = Tanh, since σ′(x) = −σ(x)2, we can apply the similar argument with
sigmoid.
For the case of σ(x) = SiLU(x), we have σ(σ(x)) = log(2+ex). Since log(1+ex) and log(2+ex)
are algebraically independent, Claim 1 and 2 hold.
For the case of σ(x) = GELU(x), consider a the following differential field extension

Q(erf(
x√
2
), e−

x2

2 ) ⊂ Q(erf(
x√
2
), e−

x2

2 , erf(
x

2
√
2
(1+erf(

x√
2
)))) = Q(erf(

x√
2
), e−

x2

2 , σ(σ(x))).

(98)
Let p(x) = erf( x

2
√
2
(1 + erf( x√

2
))). Then since

p′(x) =
2√
π
e
− x2

8 (1+erf( x√
2
))2

(
1

2
√
2
(1 + erf(

x√
2
)) +

x

2
√
2

1√
2π

e−
x2

2 ), (99)

p′(x) is transcendental over Q(erf( x√
2
), e−

x2

2 ). Therefore, p(x) is transcendental over

Q(erf( x√
2
), e−

x2

2 ). Therefore Claim 1 holds. Since p(x) is not elementary by Liouville’s theo-

rem and e
− x2

8 (1+erf( x√
2
))2 is transcendental in Q(erf( x√

2
), e−

x2

2 ), Claim 2 holds.
For σ(x) = Swish(x) = xs(βx), where σ(x) = sigmoid(x), because it is similar with the sig-
moid, Claim 1 and 2 hold.
For σ(x) = Mish(x), Claim 1 holds by Lemma 12. Claim 2 also holds by similar arguments used
in the proof of Lemma 1.

A.2.7 PROOF OF PROPOSITION 4

Proposition. Consider a 3-layer network with N ≥ 34, and dX = d1 = d2 = dY = 1. Suppose
ℓ is L2 loss function, and σ(x) satisfies Assumption 1 and 2. Then there exists a positive measure
of X ∈ R1×N and Y ∈ R1×N , such that R(W ) has a strict local minimum Ŵ . Moreover, Hessian
matrix H(Ŵ ) of R(W ) at Ŵ is strictly positive definite.

Proof. To begin the proof, we need the following lemmas.

Lemma 7. Suppose that σ(x) is not a constant function and σ(x), f1(x), f2(x), ..., fn(x) are ana-
lytic, and a set of analytic functions
B(x) = {f1(x), f2(x), ..., fn(x)} is linearly independent,
then B(σ(x)) = {f1(σ(x)), f2(σ(x)), ..., fn(σ(x))} is also linearly independent.
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Proof. Since σ(x) is not constant function, there exists p ∈ R, such that σ′(p) ̸= 0. By Inverse
Function Theorem for analytic functions, there exists an open neighborhood U ∈ R of p so that
σ(x) is injective in U and the inverse σ−1 : σ(U) → U exists and is analytic.
Now, suppose B(σ(x)) is not linearly independent. Then there exist {ai}ni=1 such that∑n

i=1 aifi(σ(x)) = 0 and not all {ai}ni=1 are zero. For any y ∈ σ(U), there exists the unique x ∈ U ,
such that σ(x) = y. Since fi(y) = fi(σ(x)), we have

∑n
i=1 aifi(y) =

∑n
i=1 aifi(σ(x)) = 0 for

all y ∈ σ−1(U). Define h(y) as h(y) :=
∑n

i=1 aifi(y). The fact h(y) = 0 on σ−1(U) implies that
the zero set of h(y) has a limit point. Because h(y) is analytic, h(y) = 0 in R. This contradicts that
B(σ(x)) is not linearly independent. Therefore B(σ(x)) is linearly independent.

Lemma 8. If σ(x) satisfies Assumption 1, then
B2(σ(x)) = {1, σ(σ(x)), σ′(σ(x)), σ(x)σ′(σ(x)), σ′′(σ(x)), σ(x)σ′′(σ(x)), σ(x)2σ′′(σ(x))} is
linearly independent.

Proof. Since σ(x) satisfies Assumption 1,
B2(x) = {1, σ(x), σ′(x), xσ′(x), σ′′(x), xσ′′(x), x2σ′′(x)} is linearly independent.
By Lemma 7, B2(σ(x)) is linearly independent.

Consider 3-layer network.

F3(W ) = w3σ(w2σ(w1x+ b1) + b2) + b3. (100)

First, recall that

B3(x) = {1, σ(σ(x)), σ′(σ(x)){1, σ(x), σ′(x){1, x}, σ′′(x){1, x, x2}},
σ′′(σ(x)){1, σ(x), σ(x)2, σ′(x){1, x}, σ′′(x){1, x, x2}, σ′(x)2{1, x, x2},
σ(x)σ′(x){1, x}, σ(x)σ′′(x){1, x, x2}, σ′(x)′σ′′(x){1, x, x2, x3}}, σ′′(x)2{1, x, x2, x3, x4}},

B3,1(x) = {σ′(σ(x))σ′′(x)x2}, (101)

B3,2(x) = {σ′(σ(x))σ′′(x)}, (102)

B3,3(x) = {σ′′(σ(x))}, (103)

and B̃3(x) = B3(x)−B3,1(x)−B3,2(x)−B3,3(x).
By Lemma 3, since σ(x) satisfies Assumption 2, we have

span{B3,i(x)} ∩ span{B̃(x)} = {0} (104)
span{B3,i(x)} ∩ span{B3,j(x)} = {0}, (105)

for i, j = 1, 2, 3 and i ̸= j. Then we can decompose B(x) = span{B3(x)} as

B3(x) = B3,1(x)⊕ B3,2(x)⊕ B3,3(x)⊕ B⊥
3 (x). (106)

where B3,1(x) = span{B3,1(x)}, B3,2(x) = span{B3,2(x)}, B3,3(x) = span{B3,3(x)}, and
B⊥
3 (x) is the space in B(x) which is orthogonal to B3,1(x), B3,2(x), and B3,3(x). In addition, we

can say

B̃3(x) ⊆ B⊥
3 (x), (107)

where B̃3(x) = span{B̃3(x)}.
Consider the mapping

(x1, x2, ..., xN ) 7→ det([B2(σ(xi))]
7
i=1), (108)

where [B2(σ(xi))]
7
i=1 is

[B2(σ(xi))]
7
i=1

= {1N , [σ(σ(xi))], [σ
′(σ(xi))], [σ(xi)σ

′(σ(xi))], [σ
′′(σ(xi))], [σ(xi)σ

′′(σ(xi))], [σ(xi)
2σ′′(σ(xi))]}7i=1.
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Note that only first seven xis are used in the mapping. Since B(σ(x)) is linearly independent by
Lemma 8, the mapping is not a zero map. Because the mapping is not a zero map and is ana-
lytic, all seven vectors in B2([σ(xi)]

7
i=1) are linearly independent for generic X = (x1, x2, ..., xN ).

Therefore B2([σ(xi)]
N
i=1) is also linearly independent for generic X = (x1, x2, ..., xN ).

We define a reduction set red(A) of a set A = {a1, a2, ..., an} as

red(A) = {ai|ai ̸∈ span{a1, a2, ..., ai−1}}. (109)

Note that dim(span{A}) = dim(span{red(A)}) = |red(A)|.
Consider the mapping

(x1, x2, ..., xN0
) 7→ det([red(B3)(xi)]

N0
i=1), (110)

where red(B3(x)) is a reduction set of B3(x) and N0 = dim(B3(x)). Note that N0 = dim(B3(x))
= dim(span{B3(x)}) ≤ 34. Since the mapping is not a zero map and is analytic,

[B3(xi)]
N0
i=1 = [B3,1(xi)]

N0
i=1 ⊕ [B3,2(xi)]

N0
i=1 ⊕ [B3,3(xi)]

N0
i=1 ⊕ [B⊥

3 (xi)]
N0
i=1, (111)

[B̃3(x)]
N0
i=1 ⊆ [B⊥

3 (x)]
N0
i=1 (112)

hold for generic X = (x1, x2, ..., xN ).
Then we can find (N −N0)) independent N -dimensional vectors {vk} such that

⟨vk, [bj,B⊥
3
(xi)]⟩ = 0 (113)

⟨vk, [bB3,1
(xi)]⟩ > 0 (114)

⟨vk, [bB3,2
(xi)]⟩ > 0 (115)

⟨vk, [bB3,3
(xi)]⟩ > 0, (116)

where {bj,B⊥(x)}, {bB3,1
(x)}, {bB3,2

(x)}, and {bB3,3
(x)} are basis of B⊥(x), B3,1(x), B3,2(x), and

B3,3(x), respectively. Without loss of generality, we set

bB3,1
(x) = σ′(σ(x))σ′′(x)2x2 (117)

bB3,2
(x) = σ′(σ(x))σ′′(x)2 (118)

bB3,3
(x) = σ′′(σ(x)). (119)

Therefore we conclude
⟨vk, [bj,B̃3

(xi)]⟩ = 0, (120)

where bj,B̃3
are basis of B̃3 = span(B̃3).

Then select data point Y = [yi]
N
i=1 as

yi = F3(xi)− w3

N−N0∑
k=1

ck[vk]i. (121)

for some ck ∈ R.
Define ∆Y ∈ RN such that

[∆Y ]i = F3(xi)− yi = w3

N−N0∑
k=1

ck[vk]i.

Then we have:

⟨∆Y, [bj,B⊥
3
(xi)]⟩ = 0 (122)

⟨∆Y, [bj,B3,1(xi)]⟩ > 0 (123)

⟨∆Y, [bj,B3,2
(xi)]⟩ > 0. (124)

⟨∆Y, [bj,B3,3(xi)]⟩ > 0. (125)

Now pick Ŵ = (w1, b1, w2, b2, w3, b3) = (1, 0, 1, 0, w3, 0), where w3 > 0.
First, we claim that Ŵ is a stationary point. To show this, we compute the gradients of R(W ) =
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∥F3(W )−Y ∥2 = ∥w3σ(w2σ(w1x+b1)+b2)+b3−Y ∥2 at W = Ŵ . By equation 113-equation 116
the gradients are computed as

∂R
∂w3

= 2⟨∆Y, σ(σ(X))⟩ = 0 (126)

∂R
∂b3

= 2⟨∆Y,1N ⟩ = 0 (127)

∂R
∂w2

= 2⟨∆Y, σ′(σ(X))σ(X)⟩ = 0 (128)

∂R
∂b2

= 2⟨∆Y, σ′(X)⟩ = 0 (129)

∂R
∂w1

= 2⟨∆Y, σ′(σ(X))σ′(X)X⟩ = 0 (130)

∂R
∂b1

= 2⟨∆Y, σ′(σ(X))σ′(X)⟩ = 0. (131)

Therefore Ŵ is a stationary point of R(W ).
To show Ŵ is a strict local minimum, we need to show that Hessian H(Ŵ ) of R(W ) is strictly
positive definite at W = Ŵ . Therefore we need to show that

uTH(Ŵ )u = lim
t→0

R(Ŵ + tu) +R(Ŵ − tu)− 2R(Ŵ )

t2
> 0, (132)

for all u = (uw1
, ub1 , uw2

, ub2 , uw3
, ub3) with ∥u∥2 = 1. Similar to equation 70, we compute

R(Ŵ + tu) +R(Ŵ − tu)− 2R(Ŵ ) as

R(Ŵ + tu) +R(Ŵ − tu)− 2R(Ŵ )

= ∥F3(Ŵ + tu)− F3(Ŵ )∥22 + ∥F3(Ŵ − tu)− F3(Ŵ )∥22+
2⟨∆Y, F3(Ŵ + tu)− F3(Ŵ )⟩+ 2⟨∆Y, F3(Ŵ − tu)− F3(Ŵ )⟩. (133)

We consider the following two cases.
Case 1: (uw1

, ub1) = (0, 0)
In this case, we have a similar to the case of L = 2 network where x is replaced by σ(x).

F3(Ŵ + tu)(x)− F3(Ŵ )(x) (134)
= ((w3 + tuw3

)σ((1 + tuw2
)σ(x) + tub2) + tub3)− (w3σ(σ(x))).

Since B2([σ(xi)]
N
i=1) is linearly independent and ⟨∆Y, σ′′(σ(X))⟩ > 0, we can apply the similar

argument used in the proof of Proposition 2 (the case of L = 2). Therefore, we conclude

uTH(Ŵ )u = lim
t→0

R(Ŵ + tu) +R(Ŵ − tu)− 2R(Ŵ )

t2
> 0. (135)

Case 2: (uw1
, ub1) ̸= (0, 0)

We calculate F3(Ŵ + tu)(x). By Taylor theorem, we have

σ((1 + tuw1
)x+ tub1) = σ(x) + σ′(x)(tuw1

x+ tub1) +
1

2
σ′′(x)(tuw1

x+ tub1)
2 + o(t2),

(136)

Then, by Taylor theorem again, we have

σ((1 + tuw2
)σ((1 + tuw1

)x+ tub1) + tub2)

=σ((1 + tuw2
)(σ(x) + σ′(x)(tuw1

x+ tub1) +
1

2
σ′′(x)(tuw1

x+ tub1)
2 + o(t2)) + tub2)

=σ(σ(x) + tuw2
σ(x) + (1 + tuw2

)(σ′(x)(tuw1
x+ tub1) +

1

2
σ′′(x)(tuw1

x+ tub1)
2 + o(t2)) + tub2)

=σ(σ(x)) + σ′(σ(x))u2 +
1

2
σ′′(σ(x))u2

2 + o(t2), (137)
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where u2 = tuw2
σ(x)+(1+tuw2

)(σ′(x)(tuw1
x+tub1)+

1
2σ

′′(x)(tuw1
x+tub1)

2)+tub2 +o(t2).
Therefore F3(Ŵ + tu)(x) is

F3(Ŵ + tu)(x) = (w3 + tuw3)σ((1 + tuw2)σ((1 + tuw1)x+ tub1) + tub2) + tub3 (138)

=(w3 + tuw3)(σ(σ(x)) + σ′(σ(x))u2 +
1

2
σ′′(σ(x))u2

2 + o(t2)) + tub3 . (139)

so we have

F3(Ŵ + tu)(x)− F3(Ŵ )(x)

= tuw3
σ(σ(x)) + (w3 + tuw3

)(σ′(σ(x))u2 +
1

2
σ′′(σ(x))u2

2 + o(t2)) + tub3 . (140)

Note that

u2
2 = t2u2

w2
σ(x)2

+ 2tuw2
(1 + tuw2

)(σ(x)σ′(x)(tuw1
x+ tub1) +

1

2
σ(x)σ′′(x)(tuw1

x+ tub1)
2 + 2t2uw2

ub2σ(x))

+ (1 + tuw2)
2(σ′(x)2(tuw1x+ tub1)

2 + σ(x)σ′(x)(tuw1x+ tub1)(tuw1x+ tub1)
2

+ σ′(x)(tuw1x+ tub1)tub2 +
1

4
σ′′(x)2(tuw1

x+ tub1)
4)

+ 2(1 + tuw2)tub2(σ
′(x)(tuw1x+ tub1) +

1

2
σ′′(x)(tuw1x+ tub1)

2) + t2u2
b2 + o(t2).

By expanding equation 140 and utilizing equation 113-equation 116, we can calculate

2⟨∆Y, F3(Ŵ + tu)− F3(Ŵ )⟩+ 2⟨∆Y, F3(Ŵ − tu)− F3(Ŵ )⟩ (141)

= (w3 + tuw3)t
2(1 + tuw2)u

2
w1

⟨∆Y, σ′(σ(X))σ′′(X)X2⟩
+ (w3 + tuw3)t

2(1 + tuw2)u
2
b1⟨∆Y, σ′(σ(X))σ′′(X)⟩

+ (w3 + tuw3)t
2u2

b2⟨∆Y, σ′′(σ(X))⟩+ o(t2).

(142)

Therefore uTH(Ŵ )u is

uTH(Ŵ )u = lim
t→0

R(Ŵ + tu) +R(Ŵ − tu)− 2R(Ŵ )

t2
(143)

≥ lim
t→0

(w3 + tuw3
)t2(1 + tuw2

)u2
w1

⟨∆Y, σ′(σ(X))σ′′(X)X2⟩
t2

+ lim
t→0

(w3 + tuw3
)t2(1 + tuw2

)u2
b1
⟨∆Y, σ′(σ(X))σ′′(X)⟩

t2

+ lim
t→0

(w3 + tuw3)t
2u2

b2
⟨∆Y, σ′′(σ(X))⟩

t2
> 0.

In both cases, we have uTH(Ŵ )u > 0 for all u. Therefore, Hessian H(Ŵ ) is strictly positive
definite at Ŵ and Ŵ is a strict local minimum of R(W ).

Similar to the proof of Proposition 3, using Lemma 2, we show that a strict local minimum exists
for data of positive measure.

A.2.8 PROOF OF THEOREM 4

Theorem. Suppose dX = dY = 1, d1 ≥ 2, d2 ≥ 2, N ≥ 34, ℓ is L2 function and the activation
function σ(x) satisfies Assumption 1 and 2. Then there exists a positive measure of X ∈ R1×N and
Y ∈ R1×N , such that the network 1− d1 − d2 − 1 has a bad local minimum.

Proof. Consider the small 3-layer network with dX = d1 = d2 = dY = 1. Then by Proposition 4,
there exists a strict local minimum Ŵ with R(Ŵ ) > 0. Let B1,1(1),D1,1(1) and B1,1(2),D1,1(2)
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be the B-matrix and D-matrix in Theorem 2 at layer 1 and 2. Then we have D1,1(1) = 0, D1,1(2) =
0, and

B1,1(1) =

N∑
α=1

∂ℓα(xα, yα)

∂n(2, 1;xα)
· v1,r · σ′′(n(1, r;xα))x

2
α,1 (144)

=

N∑
i=1

[∆Y ]iw3σ
′(σ(xi))σ

′′(xi)x
2
i (145)

= w3⟨∆Y, σ′(σ(X))σ′′(X)X2⟩ > 0. (146)

B1,1(2) =

N∑
α=1

∂ℓα(xα, yα)

∂n(3, 1;xα)
· v1,r · σ′′(n(2, r;xα))act(1, 1;xα)

2 (147)

=

N∑
i=1

[∆Y ]iw3σ
′′(σ(xi))σ(xi)

2 (148)

= w3⟨∆Y, σ′′(σ(X))σ(X)2⟩ = 0. (149)

Given d1 > 1 and d2 > 1, our strategy is as follows. We refer the step of constructing the network
1− a− b− 1 as step (a, b).
In the first step (2, 1), we consider the local minimum embedding on the layer 1 with λ1 ∈ (0, 1).
Similar to Theorem 2, because B1,1(1) is positive, the weights W (2,1) is the local minimum. By
adding a new neuron every step, we construct the network 1 − d1 − 1 − 1 with the local minimum
W (d1,1). Along the path of changing λ1 from (0, 1) to (∞, 0) ∪ (1,∞), because there exists a non-
increasing path to the global minimum, W (d1,1) is the bad local minimum.
Next, we add a new neuron in layer 2. In the step (d1, 2), we consider the local minimum embedding
on the layer 2 with λ2 ∈ (0, 1). Then D(2)(d1,2) = 0 by Lemma 14. Since B(2)(1,1) = 0, to show
the local minimality, we see the Hessian matrix (equation 165).
Along the path [αu−1,i−βur,i, vs,−1−vs,r], (λ2 = β2

α2+β2
), the loss is constant. Therefore W (d1,2)

is the bad local minimum of the network 1 − d1 − 2 − 1. By adding a new neuron every step, we
finally construct the network 1 − d1 − d2 − 1 with the local minimum W (d1,d2). As shown above,
W (d1,d2) is the bad local minimum along the path of changing λ1 from (0, 1) to (∞, 0)∪(1,∞).
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B DIFFERENTIAL GALOIS THEORY

In this section, we give a brief introduction to the differential Galois theory. For more information,
please see Hubbard & Lundell (2011); Churchill (2006); Van der Put & Singer (2012).
Definition 3. Let K be a field. An additive group homomorphism (′) : K → K is a derivation, if
the Leibniz rule

(k1k2)
′ = k′1k2 + k1k

′
2, (150)

holds for all k1, k2 ∈ K.
K is called differential field if K is equipped with the derivation.
The subfield Con(K) is called the constants of K if

Con(K) = {k ∈ K : k′ = 0}. (151)

Definition 4. Let L be a field and K be a subfield of K. K ⊂ L is called a field extension. The
larger field L is a K-vector space. The degree of a field extension K ⊂ L is the dimension of the
vector space, i.e.,

[L : K] = dimK L. (152)
α is algebraic if α is a root of a non-zero polynomial with coefficients in K. If every element of L
is algebraic over K, then an extension K ⊂ L is called an algebraic extension. If α is not a root of
any polynomial with coefficients in K, α is transcendental. An extension K ⊂ L is a transcendental
extension if L has a transcendental element over K.
Proposition 5. For an algebraic extension K ⊂ K(α), the extension degree [K(α) : K] equals
the degree of the minimal polynomial p(x), such that p(α) = 0. If the extension K ⊂ K(α) is
transcendental, the the extension degree is infinite.
Lemma 9. The functions ex and log(x) are transcendental.
Definition 5. Let K ⊂ L be a algebraic field extension. The extension K ⊂ L is called normal
extension if every irreducible polynomial over K which has a root in L, splits into linear factors in
L. The extension K ⊂ L is called separable extension if for every α ∈ L, the minimal polynomial
of α has no repeated roots. The extension K ⊂ L is called Galois extension if it is normal and
separable.
If the extension K ⊂ L is Galois, then its corresponding Galois group Gal(L/K) is defined as the
group of field automorphisms of L which fixes K.
Remark 4. If field K is finite field or a field of characteristic zero, then every algebraic extension
of K is separable.
Proposition 6. Let K ⊂ L = K(α1, α2, ..., αn) be a Galois extension, where α1, α2, ..., αn are
roots of a irreducible polynomial p(x) of degree n. Then its corresponding Galois group Gal(L/K)
is a subgroup of symmetric group Sn.
Definition 6. Let K be a differential field. L = K(l) is called a logarithmic extension of K if l is
transcendental over K and

l′ =
k′

k
, (153)

for some k ∈ K.
Similarly, L = K(l) is called a exponential extension of K if l is transcendental over K and

l′

l
= k′, (154)

for some k ∈ K.
This is analogues of the logarithm and exponential where l = log(k) and l = ek, respectively.
Then a differential field extension K ⊂ L is elementary if there exists a finite sequence of interme-
diate differential field extensions

K = K0 ⊂ K1 ⊂ ... ⊂ Kn = L, (155)

such that each Ki ⊂ Ki+1 is algebraic, logarithmic, or exponential extension. l is called elementary
if K ⊂ K(l) is an elementary extension.

Proposition 7. If l′

l = k′ for some nonzero k ∈ K, then l ̸∈ K, and moreover l cannot be algebraic
over K. Similarly if l′ = k′

k for some nonzero k ∈ K, then l ̸∈ K, and moreover l cannot be
algebraic over K.
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Theorem 5 (Liouville). Let K and L be differential fields of characteristic 0 with Con(K) =
Con(L), and K ⊂ L be an elementary extension. Suppose k ∈ K has no anti-derivative in K,
and there exists l ∈ L such that l′ = k (i.e. l has an anti-derivative in L). Then there exist
c1, ..., cn ∈ Con(K) and k1, ..., kn, γ ∈ K such that

k = c1
k′1
k1

+ ...+ cn
k′n
kn

+ γ′. (156)

In other words, if k has an elementary anti-derivative, then k must have this form.

Corollary 1. For K = R(x) or C(x), the functions e−x2

and sin(x)
x have no elementary anti-

derivatives.

Therefore the error function erf(x) =
∫ x

0
e−t2dt has no elementary anti-derivative.

Definition 7. Let K ⊂ L be a differential field extension. Its corresponding differential Galois
group G := DGal(L/K) is defined as the group of differential field automorphisms of L which
fixes K, and such that

g(l′) = g(l)′, (157)
for all g ∈ DGal(L/K) and l ∈ L.

Lemma 10, 11, and 12 describe some lemmas for exponential and logarithmic extensions.
Lemma 10. Let K = C(x). Consider differential field extensions

K ⊂ K(α) ⊂ K(α, β), (158)

where K ⊂ K(α) is an exponential extension, and β′ = t′

t for some t ∈ K(α) \ K. Then the
extension K(α) ⊂ K(α, β) is transcendental (therefore it is a logarithmic extension), if and only if
t is not a monomial in terms of α in K(α).

Lemma 11. Let K = C(x). Consider differential field extensions

K ⊂ K(α) ⊂ K(α, β), (159)

where K ⊂ K(α) is an logarithmic extension, and β′

β = t′ for some t ∈ K(α) \ K. Then the
extension K(α) ⊂ K(α, β) is transcendental (therefore it is an exponential extension), if and only
if β is not a form of aα+ b for some a, b ∈ C in K(α).

Lemma 12. Let K = C(x). Consider differential field extensions

K ⊂ K(α) ⊂ K(α, β), (160)

where K ⊂ K(α) is an exponential extension, and β′

β = t′ for some t ∈ K(α) \ K. Then the
extension K(α) ⊂ K(α, β) is transcendental (therefore it is an exponential extension).
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C LOCAL MINIMUM EMBEDDING

In this section, we give a brief introduction to the technique called local minimum embedding. For
more information, please see Fukumizu & Amari (2000); Nitta (2016); Petzka & Sminchisescu
(2021).
Definition (Local minimum embedding). Consider a L-layer neural network F small(X) with the
width d1, d2, ...dL and the weights W small. Consider a neuron n(l, r) with index r in layer l. Let
[usmall

r,i ]
dl−1

i=1 be the incoming weights into n(l, r) and [vsmall
s,r ]

dl+1

s=1 be the outgoing weights of n(l, r).
The weights of the smaller network W large can be represented as

W small = ([usmall
r,i ]

dl−1

i=1 , [vsmall
s,r ]

dl+1

s=1 , W̄
small), (161)

where W̄ small denote the collection of all remaining weights of the smaller network.
Consider the larger network Flarge(X) by adding a new neuron n(l,−1) referring (l, r) with new
weights [ularge

−1,i ]
dl−1

i=1 and [vlarges,−1 ]
dl+1

s=1 . The weights of the larger network W large can be represented
as

W large = ([ularge
−1,i ]

dl−1

i=1 , [vlarges,−1 ]
dl+1

s=1 , [u
large
r,i ]

dl−1

i=1 , [vlarges,r ]
dl+1

s=1 , W̄
large). (162)

where W̄ small denote the collection of all remaining weights of the smaller network. Note that
[ularge

−1,i ]
dl−1

i=1 and [vlarges,−1 ]
dl+1

s=1 are the incoming and outgoing weights of the new neuron n(l,−1) in
the larger network.
Then define the local minimum embedding function γr

λ mapping W small to W large as

γr
λ([u

small
r,i ]

dl−1

i=1 , [vsmall
s,r ]

dl+1

s=1 , W̄
small) = ([ularge

−1,i ]
dl−1

i=1 , [vlarges,−1 ]
dl+1

s=1 , [u
large
r,i ]

dl−1

i=1 , [vlarges,r ]
dl+1

s=1 , W̄
large)

with
[ularge

−1,i ]
dl−1

i=1 = [usmall
r,i ]

dl−1

i=1 , [vlarges,−1 ]
dl+1

s=1 = λ[vsmall
s,r ]

dl+1

s=1 , (163)

[ularge
r,i ]

dl−1

i=1 = [usmall
r,i ]

dl−1

i=1 , [vlarges,r ]
dl+1

s=1 = (1− λ)[vsmall
s,r ]

dl+1

s=1 , W̄
large = W̄ small. (164)

From here, we omit the superscript large for the weights of the larger network. In fact, we can
explicitly represent the Hessian of the larger network.
Lemma 13 (Petzka & Sminchisescu (2021)). Let L denote the loss function of the larger network
and ℓ be the loss function of smaller network. Let λ = β

α+β . Then the Hessian H of the loss L with
respect to the basis B = [u−1,r + ur,i, vs,−1 + vs,r, w̄, αu−1,i − βur,i, vs,−1 − vs,r] is given by:

H =


∂2ℓ

∂ur,i∂ur,j
2 ∂2ℓ
∂ur,i∂vs,r

∂2ℓ
∂w̄∂ur,i

0 0

2 ∂2ℓ
∂ur,i∂vs,r

4 ∂2ℓ
∂vs,r∂vt,v

2 ∂2ℓ
∂w̄∂vs,r

(α− β)[Dr,s
i ] 0

∂2ℓ
∂w̄∂ur,i

2 ∂2ℓ
∂w̄∂vs,r

∂2ℓ
∂w̄∂w̄′ 0 0

0 (α− β)[Dr,s
i ] 0 αβ[Br

i,j ] (α+ β)[Dr,s
i ]

0 0 0 (α+ β)[Dr,s
i ] 0

 (165)

where

Bi,j =

N∑
α=1

dl+1∑
k=1

∂ℓα(xα, yα)

∂n(l + 1, k;xα)
· vk,r · σ′′(n(l, r;xα))act(l − 1, i;xα)act(l − 1, j;xα) (166)

and

Dr,s
i :=

N∑
α=1

∂ℓα(xα, yα)

∂n(l + 1, s;xα)
σ′(n(l, r;xα))act(l − 1, i;xα). (167)

Theorem ((Petzka & Sminchisescu, 2021)). Define the matrices Bi,j and Dr,s
i as

Bi,j =

N∑
α=1

dl+1∑
k=1

∂ℓα(xα, yα)

∂n(l + 1, k;xα)
· vk,r · σ′′(n(l, r;xα))act(l − 1, i;xα)act(l − 1, j;xα) (168)

and

Dr,s
i :=

N∑
α=1

∂ℓα(xα, yα)

∂n(l + 1, s;xα)
σ′(n(l, r;xα))act(l − 1, i;xα). (169)

Then, assume Bi,j is either
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• positive definite and λ ∈ (0, 1), or

• negative definite and λ ∈ (−∞, 0) ∪ (1,∞).

Then the embedding γr
λ(·) determines a local minimum in the larger network if and only if Dr,s

i = 0
for all i, s.

Lemma 14 (Conditions on Dr,s
i = 0). Suppose for the outgoing weights vr,s of n(l, r;x), we have∑

s vs,r ̸= 0. Then Dr,s
i = 0 if one of the following holds.

• The layer l is the last hidden layer.

• For all t, t′, α, we have

∂ℓα
∂n(l + 1, t;xα)

=
∂ℓα

∂n(l + 1, t′;xα)
. (170)

• For each α, t,
∂ℓα

∂n(l + 1, t;xα)
= 0. (171)

Remark 5. Lemma 14 holds for 1 − 1 − 1 neural network. In other words, Dr,s
i = 0 for the case

dX = d1 = dY = 1.

Definition 8. Let

Hsmall =


∂2ℓ

∂ur,i∂ur,j
2 ∂2ℓ
∂ur,i∂vs,r

∂2ℓ
∂w̄∂ur,i

2 ∂2ℓ
∂ur,i∂vs,r

4 ∂2ℓ
∂vs,r∂vt,v

2 ∂2ℓ
∂w̄∂vs,r

∂2ℓ
∂w̄∂ur,i

2 ∂2ℓ
∂w̄∂vs,r

∂2ℓ
∂w̄∂w̄′

 (172)

be the smaller matrix of Hessian H .
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