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Abstract

Equivariant neural networks outperform traditional deep neural networks on a
number of tasks. The theoretical understanding of their generalization properties
remains, however, limited. In this paper, we analyze the generalization capabilities
of Group Convolutional Neural Networks (GCNNs) with ReLU activation function
through the lens of Vapnik-Chervonenkis (VC) dimension theory. By deriving
upper and lower bounds, we investigate how the network architecture affects the
VC dimension.

1 Introduction

A central challenge in machine learning is selecting a model that generalizes well, meaning models
that maintain high performance on both training and unseen data. In neural networks, a common
strategy to enhance generalization is to explicitly incorporate task-specific symmetries into the
network architecture, as is done in Group Convolutional Neural Networks (GCNNs). Therefore,
understanding the theoretical aspects of generalization is particularly important for GCNNs—this is
the problem we address in this paper.

GCNNG s were first introduced by [[10] to improve statistical efficiency and enhance geometric reason-
ing. Since then equivariant network structures have evolved to support equivariance on Euclidean
groups [6, 15} 33]], compact groups [[18]] and Riemannian manifolds [34]. More recent architectures
have even been generalized beyond other types of symmetry groups [35} [11} 27]. GCNNs have
demonstrated promise in a variety of domains, including fluid dynamics [32}131]], electrodynamics
[35]], medical image segmentation [6], partial differential equation (PDE) solvers [8], and video
tracking [29]. A notable example of the success of equivariant neural networks is the AlphaFold algo-
rithm, which achieves high accuracy in protein structure prediction through a novel roto-translation
equivariant attention architecture of the neural network [[15} [14].

While GCNNSs have demonstrated strong empirical performance—often outperforming Deep (Feed-
forward) Neural Networks (DNNs)—rigorous theoretical guarantees remain limited. This gap is
not due to a lack of interest; indeed, several works have attempted to address the theoretical under-
standing of GCNN’s generalization. Most of these studies approach the problem by comparing the
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generalization behavior of equivariant neural networks to that of models without built-in symmetries
[7, 24, 112} 26} 25) 28]. While these works offer valuable insights, they typically do not account
for the specific GCNN architecture and are instead applicable to general equivariant or invariant
classifiers. In contrast, our work provides generalization bounds for GCNNSs that explicitly account
for the number of layers, the number of weights, and the input dimension.

Recent works that study GCNN generalization for given architectures are, to the best of our knowledge,
limited to two-layer networks [4} 21]]. Our analysis extends this to GCNNs of arbitrary depth.

To study the generalization properties of GCNNs, we examine the VC (Vapnik—Chervonenkis) dimen-
sion, the pseudo-dimension, and the fat-shattering dimension—classical measures from statistical
learning theory that quantify the capacity of a model class to fit arbitrary labelings. For example, a
class that can realize all labelings of n points has VC dimension at least n, while a class with only
two different functions has VC dimension 1. Recent work has revived VC-based analysis for modern
network architectures, including GCNNs [[13| 21]], convolutional neural networks (CNNs) [17], and
DNNs [3].

2 Results

The main result establishes upper and lower bounds on the VC dimension of GCNNs with ReLU
activation function. Let Hy, 1, and Fyy, 1, denote the classes of GCNNs and DNNs, with ReLU
activation function, number of weights W, depth L, and r the group size in the GCNN. We prove
that under the assumption L < W99 there exist constants ¢, C' > 0 such that

c(VC(fW,L) n W10g2(r)> < VC(Hw.r,) < C(VC(fW,L) L LW 1og2(r)). 1)

While we have not made an attempt to optimize the constants in the inequalities, Section [C]shows
that if additionally W > L2 and W > 125, one can take ¢ = 1/7500 and C' = 500.

This result demonstrates that, contrary to previous intuition, the class of GCNNS is richer than the
class of DNNs with the same number of parameters. The difference in capacity can be expressed
as a logarithmic function of the group size, with a larger group size leading to a more pronounced
difference between the two classes. In the limiting case r — oo, the VC dimension of GCNN5s
diverges to infinity. Importantly, the analysis does not depend on the specific structure of the group
and therefore applies to both continuous and compact Lie groups.

The analysis also naturally extends to the fat-shattering dimension, which measures how many points
can be separated with a given margin, and thus additionally captures robustness of the classifier.
For model classes that are closed under positive scaling, the fat-shattering and pseudo-dimensions
coincide (see Theorem 11.14 in [1]]). Since ReLLU activations are positively homogeneous, that is,
scaling the output of the final layer scales the entire network output, the GCNNs we consider are
closed under positive scaling. Consequently, the generalization bounds derived in this paper for the
pseudo-dimension also apply directly to the fat-shattering dimension.

Whereas the ReL.U activation function is the running example, the inequalities hold under broader
conditions on the activation function stated here (the constants ¢, C' do depend, however, on the
activation function). As the proof of the upper bound follows the strategy in [3l], the same assumptions
appear. The lower bound holds if a DNN with this activation function can approximation the indicator
function on an interval.

Assumption 1 (Requirement for the upper bound). The activation function is piecewise polynomial.
Assumption 2 (Range of activation functions for the lower bound). For any A < Bande > 0, there
exists a DNN I satisfying
f(a:) _ 1, lf:L’ €[A+e B—¢,
0, ifr¢[A—e B+e.

These assumptions imply that the same bounds hold for the Leaky ReLU () o := max(z, ax),
with 0 < o < 1 the Leaky ReLU parameter. Indeed, the Leaky ReLU is piecewise linear with two
linear segments and therefore the upper bound applies. For the lower bounds, it is sufficient to check



that a DNN with Leaky ReLU activation can approximate the indicator function on [A, B] using
1

(1—a)e

where ¢ > 0,and A < B — e.

I p(2) = (@ = (A= )sia = (@ = Ao — (2= (B= )10~ (@~ B)ra) |,

For general smooth activation functions, however, the current proof strategy does not extend directly.
For instance, in the case of sigmoidal networks, a lower bound appears feasible because such networks
can approximate indicator functions (see, e.g., Lemma 4 in [19])). In contrast, the upper bound does not
follow readily: the region-counting argument, which applies to networks with piecewise polynomial
activations like ReLU, fails for sigmoidal activations due to the absence of polyhedral decision
boundaries.

Finally, to complete the comparison between the generalization bounds of GCNNs and DNNs, we
also analyze the VC dimension of GCNNs with group size r and DNNs when both architectures have
the same number of neurons per layer. In this setting, GCNNs benefit from weight sharing across
group elements, which reduces their number of parameters by a factor of 72 compared to DNNs
(see Section[4.2)). We show that, under these conditions, the VC dimension of GCNNS is reduced
proportionally to the group size 7.

3 GCNNs

3.1 Group theoretic concepts

GCNNs capture symmetries in data via group theory. A group G is a set equipped with an operation o

such that h, g € G implies hog € G there exists an identity element e € G such thateog = goe = g
1 1

for all g € G there exists an inverse element g~ € G such that g~ 0o g = g o g~! = e; and for any
g,h,i € G,wehave (goh)oi=go(hoi).
A group action describes how a group interacts with another set. More specifically, an action of G
onaset Xisamapo: G x X — X such that for all g1, g2 € G and forall x € X

(9192) oz =g10(g207).

On the functions {f : G — R}, the left regular representation of a group G is the action

(9o f)(g") = f(g"'g), foranyg,g €G. 2)

For a so-called kernel function I : G — R and a function f : G — R, the group convolution of
with f at an element g € G is defined as

(Kx f)g /IC ') - Fg) dp(d), 3)

with p being the Haar measure [23, Theorem 8.1.2]. The Haar measure is a unique left-invariant
measure that exists for all locally compact groups (see [30, Definition 1.18]). For the integral in (3)
to be well-defined, we assume that both, the signal f and the kernel K, are measurable and bounded.

The group convolution computes a weighted average over the group elements. It is equivariant with
respect to the left regular representation of G defined in @), that is, g o (K % f) = (K % (g o f)) for
any group element g.

In the case where G is a finite group, the group convolution becomes the sum

(K* g |G| > Klg™'d) - f(9)- “)

9'€eG

In practice, continuous groups such as rotations or translations are often discretized, and computations
are performed on finite grids. This discretization process involves approximating the group G by a
finite subset

G"={g1.92:--- 9}
We refer to the cardinality r as the resolution of the discretization.



For example, for the group formed by all continuous rotations, the discretization selects a finite
number of rotation angles. For the translation group, discretization consists of a finite number of
shifts.

After discretization, the group convolution operates on this finite set. Ignoring the reweighting it is
then given by

(K £)lg) ==Y K(g'g)) - f(g))- ©)
j=1

This operation is called G-correlation [9]. Note that (JC* g) =7 - (K xg). If K = 1(- = ¢) with e
the identity element of the group, then, on G", K * f = f. The G-correlation heavily depends on the
discretization of the group and can differ significantly from the integral version (3). However, both
definitions become approximately the same (up to rescaling) if the elements g; are drawn from the
Haar measure. In the case of GCNNs, the discretization is determined by the structure of the data.

3.2 GOCNN architecture
To parametrize the kernel function, let
Ke:G— R, s=1,...,k (6)

be a set of basis functions. The kernel functions Ky, are then expressed as linear combinations of
these basis functions, that is,

k
Kw =) w,, ©)
s=1
where w = (w1, ..., wy) is the vector of trainable parameters.

Given an activation function o : R — R, a group convolutional unit (GCNN unit) or G-convolution
takes an input function on the discretized group f = (f1,..., fimy)? : G" — R™0 as input and
outputs another function on the discretized group h : G" — R. The output A is

ho(Z/Cwi*fib) ®)
i=1

with the group convolution operation  defined in (3. The weight vectors w1, . .., w,, and the bias b
are parameters that are learned from the data. In line with the common terminology, we refer to the
output as feature map.

A GCNN layer (also called G-convolutional layer or G-conv layer) computes several GCNN units
in parallel, using the same input functions but applying different kernel functions (also known as
filters), each with potentially different parameters. Specifically, a GCNN layer with A units and

input function f = (f1,..., fme)? : G — R™° computes the following M functions
mo
hj:a<21cwu*fi—bj>, j=1,...,M, )
i=1

where Ky, connects the i-th input with the j-th output. The trainable parameters in the GCNN layer
are the weight vectors w;; and the biases b;. As other network architectures, GCNNs are typically
structured hierarchically, with several GCNN layers followed by fully connected layers. We assume
that the input of the first GCNN layer are already functions on the discretized group.

Let L be the number of GCNN layers and assume that the respective numbers of GCNN units in
the layers 1,..., L is denoted by my, ..., my. To derive a recursive formula for the GCNN, we
denote the inputs of the GCNN by hg 1, . .., ho,m,- Note that they are also assumed to be functions
G" - R.Ifforagiven{ =0,...,L —1, hey,...,hsm, are the outputs (also known as feature
maps) of the ¢/-th GCNN layer, then, the m,11 outputs of the (¢ 4+ 1)-st GCNN layer are given by

me
hg_;,_l’j = O—(ZKWE? * hgﬂ' - bge)) (10)

i=1



for=1,...,myy1. The final output of the GCNN is given by

S healg), (1)

i=1 geGr

which equals up to reweighting a global average pooling operation. As we take the sum over all
group elements g, this operation makes the network invariant instead of equivariant to geometric
transformation (see, e.g., [18. (16} 6]).

In this work, we consider the ReL U activation function o(x) = max{z,0}. We denote the class of
ReLU GCNNs with L layers, m; units in layer ¢ = 0,..., L, k dimensional weight vectors in (7)),
and r the cardinality of the discretized group by

H(k,mo,...,mp,T). (12)

The learnable parameters are the vectors w( ) and the biases b'” for j=1,...,mgl=0,...,L—1.
During the training phase, they are updatecf through gradlent -based optlmlzatlon techniques, such as
stochastic gradient descent (SGD). The updates aim to minimize an objective function, typically a
loss function measuring the difference between the network predictions and the true labels. While
in practice, GCNN architectures also include feedforward layers, we only focus in this work on the
GCNN layers.

3.3 CNN:s as a special case of GCNNs

The convolutional layer in CNNs can be obtained as a specific case of the GCNN layer for the
translation group 7'. An element t of the translation group corresponds to a vector (t1,t) € R2, and
the group operation is defined as t o t’ = (t1 + ¢}, t2 + t), meaning that one vector is shifted by the
components of another. The inverse of a translation t is t~! = (—ty, —t2), reversing the direction of
the shift.

A square image can be interpreted as a function on the unit square [0, 1] x [0, 1]. Setting the function
values to zero outside the unit square, it can then be extended to a function on R2. Since R? is
isomorphic to the translation group, a square image can thus be viewed as a function on the translation
group 7.

To illustrate the discretization step, consider the MNIST dataset [20]], which consists of grayscale
images of handwritten digits ranging from 0 to 9. Each MNIST image is represented by grayscale
values. This means that my is equal to 1, as the image is characterized solely by pixel brightness. In
contrast, for an RGB image, mo = 3, corresponding to the red, green, and blue components of each
pixel.

Furthermore, since the values are only on a 28 x 28 pixel grid, the translation group T is discretized

by 7 = {(55. 45) | i
The function value f (-

287 28) 18 the (Z 7)- th pixel value.

In CNNs, the coefficients of the convolutional filters are typically represented by s x s weight
matrices, with s a prechosen integer. For simplicity, we consider s = 3 in the following. The

28 7 28

Ko (w1, uz) = Zé,szl W1 k41 1((u1,u2) = (&, ) ), and's; ; := (i/28, j/28), this can also
be rewritten in the form (3)) via

(K = f)(si,5) = Z KW(Si_,jl ot)- f(t)

teT 784

5 8 wnet(0- g 2)- () o

teT784 £ k=—1

= Z Wet1, k+1f(l+é7j+k>~

lk=—1

convolutional filter computes Zz k1 Wet1, ka(““Z M) 1,7 = 1,...,28. For the kernel

Thus, in this equivalence, the kernel is a linear combination of indicator functions.



3.4 Difference between GCNN and deep feedforward network architectures

GCNNSs and deep feedforward neural networks (DNNs) differ in how their computational units are
defined. In a DNN, each unit computes an affine transformations applied to the output of the previous
layer, followed by an activation function o. If z is the output of the previous layer, w is a weight
vector, and b a bias, then a unit in a DNN computes

o(w'z—b). (13)

The class of ReLU DNNs with L layers (that is, L — 1 hidden layers and one output layer), m; units
(or neurons) in layer ¢ = 0, ..., L, and a single unit in the output layer (i.e., my = 1) is denoted by
F(mg,...,mp). (14)

While both the DNN class F(my, ..., my,) and the GCNN class H(k, mg, ..., mr,r) share the
same architectural structure and apply the ReLU activation function, they differ in their unit definition,
meaning that 7 (mo, ..., mz) uses DNN units (I3) and H(k, mg, ..., mr,r), employs GCNN units

4 VC dimension of GCNNs

We now derive upper bounds for the VC dimension of the GCNN class H(k, mg, ..., mr,7). We
begin by formally introducing the VC dimension.

Definition 1 (Growth function, VC dimension, shattering). Let H denote a class of functions from F
to {—1,1} (often referred to as the hypotheses class). For any non-negative integer m, we define the
growth function of H as the maximum number of distinct classifications of m samples that can be
achieved by classifiers from H. Specifically, it is defined as:

(h(fl)’ah(fm)) : hGHH

If H can generate all possible 2™ classifications for a set of m inputs, we say that H shatters that set.

Formally, if
{(h(f1),- - h(fm)) s h € HY| =27,
we say H shatters the set {f1,..., fm}.

The Vapnik-Chervonenkis dimension of H, denoted as VC(H), is the size of the largest
shattered set, specifically the largest m such that 113 (m) = 2™. If no such largest m exists, we
define VC(H) = oo.

The VC dimension cannot be directly applied to a class of real-valued functions, such as neural
networks. To address this, we follow the approach in [3] and use the pseudodimension as a measure
of complexity. The pseudodimension is a natural extension of the VC dimension and retains similar
uniform convergence properties (see [22] and Theorem 19.2 in [LL]).

Definition 2 (pseudodimension). For a class H of real-valued functions, we define its pseudodimen-
sion as VC(H) := VC(sign(H)), where

sign(H) := {sign(H —b) | H € H, b € R},
where sign(x) is 1 for x > 0 and —1 otherwise. We write Il to denote a growth function of sign(H).

For common parameterized function classes, the VC dimension is related to the number of parameters.
For DNN, it also depends on the network depth, as discussed in [3]]. As proved in this paper, for
GCNN:s, the VC dimension further depends on the resolution. The following result provides an
upper bound on the VC dimension of the GCNN class H (k, mo, . .., mg,r) formally defined in (T2).
Recall that L is the number of layers, m; is the number of units in layer ¢ = 0, . . ., L, weight vectors
are k dimensional, and r is the cardinality of the discretized group.

Theorem 1 (Upper Bound). The VC dimension of the GCNN class H = H(k,mq,...,mp, ) is
upper bounded by

L L
UB(H) ::L+1+4(ZW4> log, (Seerg), (15)

{=1 {=1



with Wy the number of parameters up to the (-th layer, that is,
‘

We =Y mj(km;_1 +1). (16)
j=1

The proof strategy is borrowed from [3]], and the detailed proof is provided in the supplement.

An alternative to bounding the VC dimension based on the number of layers and neurons per layer is
to express the bound in terms of the total number of trainable parameters. The main advantage of this
approach is that it applies to a wider range of architectures including sparsely connected GCNNs. In
this context, 3] establishes a bound on the VC dimension for the class

Fw,p =A{F =F(mo,...,mg) | £ < LW (F) < W}, a7
consisting of DNNs with at most L hidden layers and an overall number of weights W.

Similarly, we consider the GCNN class:
7_[W,L.,'I“ = {H(kvm(]v"wmfvr) | gg L7WL S W}a (18)

consisting of all GCNN architectures with a total number of parameters bounded by W, depth at
most L, and r the cardinality of the discretized group. The following theorem provides a lower bound
on the VC dimension for this class:

Theorem 2 (Lower bound). If W, L > 3, then there exists a universal constant c such that
VC(Hw,L,r) > cmax{VC(Fw,), Wlogy(r)}.

The proof of this theorem is particularly challenging and requires novel techniques. Standard
approaches used for DNNs cannot be directly applied, as the second term in the lower bound depends
on the cardinality of the group—an aspect unique to GCNNs. Unlike DNNs, where the VC dimension
is determined solely by the number of parameters and layers, GCNNs introduce an additional
dependency on the input dimension. To overcome these challenges, we establish a new connection
between GCNNs and DNNs and show how the structure of GCNNs allows indicator-based functions
to shatter [log,(r)] input functions. A proof sketch is provided in Section[6] with the full proof
detailed in the supplement.

4.1 Analyzing the tightness of bounds for GCNNs

To compare the upper and lower bounds, we first establish a connection between the VC dimensions
of DNNs and the upper bound for GCNNS, as VC(Fyy, 1) appears in the lower bound. For this, we
rely on the VC dimension bound for DNNs with piecewise-polynomial activation functions, derived
in Theorem 7 of [3]]. Specifically, we focus on the class of DNNs with L layers and m; units in layer
i, as defined in (T4). This network class corresponds to the case where d = 1 and p = 1 in Theorem
6 of [3]. By applying the inequality log, (log,(x)) < log,(z), which holds for any x > 2, the VC
dimension bound for this class simplifies to

L L
UB(F):=L+2 ( > Wg(}‘)) log, (4e > émg) ,
=1 =1
where F is shorthand for F(my, ..., myr). Here, W;(F) represents the number of parameters in F

up to the ¢-th layer, given by

4
Wo(F) = mj(m;_1+1). (19)
j=1

Comparing (T6) and (19), and assuming an equal number of computational units per layer in both
GCNNs and DNNs, we observe that the number of parameters in GCNNSs satisfies the inequality
W; < kW,;(F), where k is the dimension of the weight vector w in (7). Combining this with the
bound in Theorem [T} we obtain

L
UB(H) <2UB(F)+4 ( > Wg(H)) logy (2r). (20)
(=1

Combining this inequality with the Eq. we arrive at the following result.



Corollary 1. If W is the total number of parameters and L the depth of the network, with L < W99,
then there exists a universal constant C' such that VC(Hw,r,) < C (VC(Fw,r) + LW logy(r)) .

By combining Corollary [I| with Theorem 2} we derive the bounds presented in (T)). In this setting, the
difference between the upper and lower bounds on the VC dimension is at most a factor of L. Closing
this gap is a challenging problem, but we conjecture that the lower bound could be improved. Our
intuition stems from the fact that the upper bound is derived using a parameter-counting argument,
closely following the approach in [3]. In that work, it was shown that when using a parameter-
counting argument, the lower bound could be achieved, at least in the case of DNNs. This suggests
that to fully close the gap, either the proof technique for the upper bound must be fundamentally
changed, or a different example must be constructed to strengthen the lower bound.

In practical applications, GCNNs tend to have relatively small depth. For example, GCNNs use 7
layers for the rotated MNIST dataset and 14 layers for CIFAR-10 [9]]. In this regime, the derived
upper and lower bounds on the VC dimension are nearly identical, further supporting the practical
tightness of the results.

4.2 Comparison of VC bounds for GCNNs and DNNs

Equivariant neural networks are expected to have lower sample complexity than DNNs without
built-in symmetries, i.e those represented by F,. := F(rmy,...,rmy), where each layer ¢ has rm;
units. As shown in the following lemma, compared to DNNs, GCNNs reduce the VC dimension and
consequently the sample complexity proportionally to the group size r. This finding is consistent
with previous work [7, 24]].

Lemma 1. For a neural network with L layers and W (F,.) weights satisfying L < W (F,.)*9, there
exists ¢ > 0 such that for the GCNN class H := H(k, mg, ..., mp,r), the VC dimension satisfies

VCH) < SVO(F,). Q1)

r

Proof. The dimension k of the linear space generated by GCNN filters is bounded by r, as functions
on G" lie in a subspace determined by the identifiers of g € G". For DNNs where L < W (F,.)%9,
the VC dimension scales as VC(F,.) < W(F,.)Llog(W (F,)), where W (F,.) represents the number
of parameters in F,.. Using Eq. (T6), we obtain

L L
VC(F,) < W(F,)Llog(W(F,)) = (Z rme(rme—1 + 1)) Llog <Z rmg(rme—1 + 1))

=1 (=1

L L
> <Z rme(kme—1 + 1)) Llog (Z rme(kme_y + 1)) =rW(H)Llog (rW(H))

/=1 =1
> O(rUB(’H)).

Taking into account that U B(H) > VC(H), we obtain the claimed inequality (ZI)). O

A different but relevant comparison considers GCNNs and DNNss with the same number of parameters.
As stated in Theorem @]), in this case, the VC dimension of GCNN:Ss is larger than that of DNNs. The
difference lies in the scaling terms W log(r) and W Llog(r) between Hyy, 1, and Fy L.

5 Novelty compared to related work

In this section, we compare our contributions to the most relevant works on the generalization of
neural networks. First, we consider [3]], which analyzes the VC dimension of DNNs. While their
results provide valuable insights, they do not account for the dependence on the resolution r of the
group acting on the input data. One of the contributions of our work is showing that the VC dimension
of GCNN s depends logarithmically on r, a feature unique to GCNNSs and absent in [3].

For the special case of L = 1 and W = 2, the results scale as log(r), aligning with the findings
of [21]. However, we significantly extend these results to more practical settings, including deeper



architectures (L > 1) and larger parameter counts (/W > 2), making the findings more applicable to
real-world scenarios.

Finally, [26]] studies the sample complexity of data augmentation and compares it to learning without
augmentation. While their work is relevant to transformation-invariant learning, it does not analyze
the VC dimension of neural networks. As a result, their findings address a different aspect of
generalization and are complementary to ours.

6 Proof sketch of Theorem 2

To establish a lower bound for the VC dimension of the GCNN class, we recall that Hyy, 1, .., as
defined in @I), represents the class of GCNNs with resolution 7, k£ the dimension of the kernel space,
at most L layers, and no more than W parameters. Additionally, let G" = {g1,92,...,9-} be a
discretized group containing the identity element e.

To prove Theorem 2] we establish two lower bounds on the VC dimension of the GCNN class: one in
terms of the VC dimension of classical DNNs, and one in terms of the resolution 7. We then combine
these bounds to obtain the desired result. Specifically, we prove the existence of a universal constant
¢ > 0 such that

VC(Hw,L,r) > c- VC(Fw,L), (22)

and
VC(Hw,Lr) > c-W|logyr|. (23)

Here, Fyy, 1, is the class of DNNs with at most L hidden layers and at most W weights, as defined in

The proofs of both inequalities rely on the relationship between DNNs and GCNNs—specifically, that
a GCNN whose convolutional filters are proportional to the indicator function of the identity element
can be represented as a DNN. This result is important by itself and is formulated in Lemma [§]in the
supplementary material. This representation further implies that in order to prove that GCNNs can
shatter a set of m functions, it is sufficient to construct DNNs with the same number of parameters
that can shatter m points. This observation is central to the proofs and guides the construction used
in both bounds.

In both arguments, we utilize so-called indicator neural networks: DNNs with ReL.U activations that
approximate indicator functions over a specified interval [a, b]. The endpoints of these intervals serve
as learnable parameters, allowing the network to adaptively define its support. Formally, this can be
defined as follows:

Liape(z) = 1((az:— (a—e))+ — (Jc—a)Jr + (ﬂc—b)Jr — (a:— (b+e))+), (24)

€

with four neurons in the hidden layer and (z) := max(z, 0) the ReLU activation function.

Proof of bound (22) To prove (22)), we begin by constructing a new class of DNNs by adding
indicator networks to the original class F, which shatters VC(Fy, 1,). These indicator components are
designed to ensure that the resulting DNNs vanish outside a specified high-dimensional hypercube.
This construction guarantees the existence of m functions over G” for which the corresponding
GCNNs produce the same outputs as the original class F on the points it shatters.

The combined networks use at most 5/ weights and retain the same depth L. Finally, we use the
fact that for any constant ¢ > 1, the VC dimension satisfies VC(Fyw.1,) > ¢; - VC(F, 1) for some
constant ¢; < 1, completing the argument. Formally, this result is stated in the following lemma. The
proof is deferred to the supplementary material.

Lemma 2. For L > 3 let Hsw,+1,, be the class of GCNNs defined as in (33) and Fw .1, be the
class of DNN s defined as in (34). Then VC(Hsw.r+1.r) > VC(Fw.L).

Corollary 2. In the setting of Lemma 2| if the number of layers L > 3 and L < W9, then there
exists a constant ¢ such that VC(Hw,) > ¢ - VC(Fw,L).

Proof of bound (2Z3) To prove the lower bound in (23], we consider a subclass of GCNNs repre-
sented by an indicator network. We show that functions from this class can shatter a set of input



functions F,,, C {f : G" — R} with m := |log, 7|, by adjusting their parameters—specifically, the
endpoints of a specified interval—to match the values of the input functions in F7,,.

This GCNN class uses only 4 parameters and inherits the properties of ’indicator’ networks; in
particular, each function in the class outputs zero for any input function whose value lies outside
a specified interval [A, B]. This ensures that the GCNN only shatters functions whose values fall
within that interval.

Next, we consider the sum of W ’indicator’ networks, each designed to shatter functions with values
in disjoint intervals. The resulting sum can shatter the union of these functions, meaning it can shatter
W |log, 7| functions in total. By choosing W = 41¥, we conclude that VC/(H w1, ) > 1W [log, 7],
which completes the proof.

The following lemma provides a formal statement regarding the GCNN class represented by ’indicator’
networks, while the corollary presents the result for the sum of 17 “indicator’ networks. The proof
can be found in the supplementary material.

Lemma 3. Let H4 1, be the class of GCNNs defined as in (33). Then VC(Ha ) > |logy7].
Moreover, for any two numbers A < B, there exists a finite subclass of GCNNs H C Ha. 1.,» that
shatters a set of log,, 1 input functions { f; : G" — [A,B] | i = 1,...,log, r}, and outputs zero for
any input function f : G" — R\ [A, B].

Corollary 3. The VC dimension of the class Haw, 1, r, consisting of GCNNs with 4W weights, L
layers, and resolution r satisfies the inequality VC (’H4VV7 Lﬂ-) > Wlog,r|.

By combining Corollaries[2]and [3| we obtain the lower bound
1
VC(Huwz,r) > max {eVC(Fiw,r), W lloga ] }.

thereby proving Theorem 2]

7 Conclusion

In this work, we established nearly-tight VC dimension bounds for a class of GCNNs, showing that
their complexity depends on the number of layers, the number of weights, and the resolution of
the group acting on the input data. While GCNNs share similarities with DNNs, they exhibit an
additional term, W |log, r |, which grows logarithmically with the input resolution . This aligns with
prior findings [21]] that, as r approaches infinity, the VC dimension of GCNNs becomes unbounded.

The results highlight the sensitivity of GCNNs to group discretization, offering new insights into
their model complexity and generalization behavior. While the upper and lower bounds are close in
practical settings, a gap remains, and refining the lower bound remains an open challenge.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes],

Justification: In the abstract, we claim a theoretical result, which is formally proven in the
main body of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of our work are discussed through the assumptions stated in
the formulation of the main theorem, which define the conditions under which the result
holds.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes],

Justification: We provide the formal statement of the theorems along with the full set of
assumptions. Complete proofs are included in the supplementary material, and the main
paper contains a high-level overview of the proof strategy.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA] .
Justification: The paper does not include experiment.
Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA] .
Justification: The paper does not include experiments requiring code
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA] .
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is theoretical in nature and does not involve human subjects,
sensitive data, or potential dual-use concerns. We have reviewed the NeurIPS Code of Ethics
and confirm that our work complies fully with its principles.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: This is a theoretical paper that does not introduce a new algorithm or applica-
tion, and therefore does not have direct societal impact in its current form.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Proof of Theorem 1]

Recall that
H:H(k7m07'-'7var)7 (25)
where r is the cardinality of the discretized group G” := {¢1, g2, . - . , gr - The parameter k determines
the number of basis functions
Ks :G" =R, s=1,...,k, (26)

in the parametrization of the kernel function

k
Kw = Z wsKs.
s=1

The other parameters my, . .., my, define the network architecture, and W, represents the number of
parameters in the GCNN up to layer ¢. The class H consists of all functions that can be represented
by a neural network with this architecture.

We restate Theorem 1 for convenience:

Theorem 3 (Theorem . The VC dimension of the GCNN class H = H(k, mg,...,mp,r) with
r > 1, is bounded from above by

L L

UBH):=L+1+4 <Z WZ> log, <8er > mz) : (27)
=1 =1

For the proof, we consider an input consisting of m functions from G" to R, denoted by

E,.={f1,---, [m} (28)

To prove we use the following known result:

Lemma 4. [Lemma 1, [2]]] Let p1, . .., pms be polynomials of degree at most t depending onn < m
variables. Then

L= |{(sign(ps (), .. sign(pm () : @ € R™}| < 2 (2;” t) ;

We denote S(¢) the number of regions in the parameter space R"¢, such that in each region, the
GCNN units in the ¢-th layer (denoted by {h¢ ;(g) | j < mye, f € Fi,,, g € G"}) behave like a fixed
polynomial of degree at most ¢ in the W, network parameters that occur up to layer /.

Lemma 5. Ler H be the class of GCNNs defined in (23), with at most Wy parameters up to layer
0e{1,...,L}. If Fy, is the class of functions defined in 28)), and S(¢) is as defined above, then for
£=0,1,...,L -1,

Wy
%mumww+ﬂ> s, (29)

Wet1

Moreover, the GCNN units {he11;(9) | j < muq1, f € Fn,g € G"} with hyya ; defined for
different functions f € F,,, are piecewise polynomials of degree < { + 1 in the network parameters.

sw+n<2(

Proof. As a first step of the proof, we show that any GCNN unit  ; of any layer ¢ € {0,..., L}
and j € {1,...,my} is a piecewise polynomial of degree at most . We proceed by induction on the
layers /.

For the base case ¢ = 0, the GCNN units hg ; for j < my correspond to the input of the network. As
the inputs are independent of the network parameters, hg ; are polynomials of degree 0.

Assume the statement holds for all layers up to £. We now prove it for layer £ + 1. The GCNN unit in
layer £ + 1 is defined by a convolution with the feature maps from the previous layer, that is,

mye
heprj =0 (Z Koo # hei = b§2)> )

i=1
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where the convolutional filter is expanded in terms of the fixed basis functions K via Iy, =
Zle wK. For fixed network parameters, g — he ;(g) is a function of the group, with k¢ ;(g) € R
for any g € G". By the induction hypothesis, h ;(g) are piecewise polynomials of degree at most ¢
with respect to the network parameters, with the polynomial pieces depending on the network input
and the group element g.

Next, for any input and any group element g, the term (K, * h¢ ;)(g) can be written as

(Ks * heg)(g) = Z Ke(97 0g') - huj(g).

g/eGr

Since hy, ;(g') is a piecewise polynomial of degree at most /, it follows that (K * hy ;)(g) is also a
piecewise polynomial of degree at most ¢. Thus, the convolution

k
(K hes)(9) = 3 w(Ks + hey)(g)

is a weighted sum of piecewise polynomials, which remains a piecewise polynomial. However,
multiplying by the weights w; increases the degree of the polynomial, making it at most ¢ + 1.

Subtractmg the bias term b( ) and applying the ReLLU activation function may increase the number of
pieces, but does not increase the degree of the polynomlals Therefore, for any input and any group
element g, the GCNN unit k¢4 j(g) remains a piecewise polynomial with degree < ¢ + 1. This
completes the proof by induction.

Next, we show (29). Each GCNN unit in layer £ 4 1 is computed by

with o(z) = max{z,0} the ReLU activation function. As mentioned above, applying the ReLU
function can increases the number of regions in the parameter space where the GCNN units behave
as polynomials. This occurs, as the ReLU function either outputs the input itself (for positive values)
or zero (otherwise). As a result its application decomposes each of the S(¢) regions of the parameter
space in layer ¢ in multiple subregions. To bound this number of subregions, we need to count the
number of possible sign pattern that can arise after applying the ReLU activation.

Fixing one of the S(¢) regions of layer ¢, by definition, all functions h ;(g) are polynomials in
the parameters of degree at most £. Each of the my;; GCNN units in layer ¢ + 1, is then also a
polynomial of degree at most ¢ + 1, leading to at most 1m 41 mr polynomials, where m is the number
of input functions defined in (28) and 7 is the resolution. Applying Lemmafd|to the 7 = myimr
polynomials of degree ¢ = ¢ + 1 depending on n = W) ; parameters leads to at most

5 <2emg+1mr(€ +1) > Wen
Weia ’

different sign patterns for each region of S(¢). This shows (Z9) and concludes the proof.

O

Lemma 6. Ler H be the class of GCNNs defined in (23), with at most Wy parameters up to layer
¢ < L, and my GCNN units in layer {. For any integer m > 0, the growth function of this class can

be bounded by
Wr+1
) < ok H 2emrmg€ 2 2emL .
Wi +1

Proof. Lemma[5|shows that after L layers there are at most

oL H <26m7‘mg€)

regions in the parameter space R", on which the GCNN units in the last layer {hy i(g) | i <
mp, f € Fi,g € G"} behave like a fixed polynomial function of degree < L in W variables.
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Recall that the final output of the neural network, is obtained by applying average pooling to the
outputs of the GCNN units in the last layer. This implies that, for a fixed network architecture and
input, the output of the neural network is a piecewise polynomial of degree at most L, depending
on all W, network parameters. Since there are m possible inputs f1, ..., f,,, we get m piecewise
polynomials, each corresponding to one of these inputs. Bounding the growth function IT3;(m) now
means we need to count the number of different sign patterns that arises for classifiers in sign(#).
For that, we recall that by Definition 3.2 in the main article,

sign(H) := {sign(hw — b)|hw € H,w € RV= b € R}.
Applying Lemmad]to m polynomials of the form hy, — b of degree at most L and W, + 1 variables

leads to no more than
Wir+1
2emL
2 ( om ) (30)

Wi +1
distinct sign patterns that the classifiers in sign(#) can produce.

Thus, the growth function within each region, where the GCNN units in the last layer {hr, ;(g) | i <
mpr, f € Fn,g € G"} behave like a fixed polynomial function in W variables, is bounded by (30).
As a result, we conclude that the overall growth function IT3;(m) is bounded by

2emL >WL+1 _ oL L (Zemrmgé)wé 2( 2emL )WL+1
¢

L)-2 _
S() (WLJrl W, Wr+1

This completes the proof.

=1

O

For the proof of the Theorem [3| we also use the following technical lemma
Lemma 7. Suppose M < 9K (%)wfor some 7 > 16 and m > w > k > 0. Then m <
K + wlogs (27 log, 7).

Proof of Theorem 3] Let m := VC(#H). For convenience, define the sum
) L
W= Z Wi, (31)
i=1

where W; denotes the number of parameters of a GCNN in H up to layer 7.

We consider two complementary cases and prove the theorem for each of them separately.

Case 1: m < W + Wi, + 1. In this case, we have W+ W, +1< 3W < UB(H), where
UB(H) is defined in (27). For the latter inequality we use that log,, (867” Zle mg) > 1. Therefore,
Theorem 3l holds.

Case 2: m > W+ W + 1. Since m represents the VC dimension of #, it follows from the
definition of the VC dimension (see Definition 3.1 in the main article) that 13 (m) = 2™. Applying
Lemma [6] gives us

L w. Wr+1
2emrmel\ " ° [ 2emL E
II = 9m < oL+l _ . 32
(m) < e|:|1 ( W, ) (WL n 1) (32)

Next, we apply the weighted arithmetic-geometric mean (AM-GM) inequality to the right side of
(32), using weights W, /(W + W + 1) for £ =1,2,...,L,and W /(W + W, + 1), where W is
defined in (3T). This yields

I WA4+Wr+1
gm < gL+l 26m(’: >y fme+ L) _
o W+ Wp+1
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The last step of the proof involves applying Lemma [7]in [2] to this inequality, which provides an
upper bound for m. Before doing so, we must verify that all conditions of the lemma are satisfied.

In our case, 77 corresponds to m,  to L + 1, @ to W + Wy, + 1, and 7 to 2e(r Z[L 1 dmg + L).
Since rzg 1dmg + L > 2, we have 7 > 16. Moreover, we are considering the case where

m > W 4+ Wy, + 1, and it is straightforward to verify that W + W, +1 > L + 1 > 0. Therefore all
conditions of Lemmal[7]in [2] are indeed satisfied and we obtain

m < (L +1) + 2W log, <4e(ri£mg + L) -log, (26<Ti€mz + L)))
=1 =1

To simplify this inequality, we use that for all @ > 1, log,(2alog, a) = log,(2a) + logs (logy a) <
2log,(2a). Substituting a = 2e (r Z,@L:l Ime + L), we note that a < 4er Z,%:l ¢my and obtain

L
m < (L + 1) +4W log, (8er2€me>,
=1

completing the proof of the theorem. O

B Proof of Theorem

In this section, we provide the detailed proof of lower bound on the VC dimension, along with the
proofs for Lemmas 2} [3] and their corresponding Corollaries [2]and [3]

The class
HW,L,T = {H(kvm()a DR 7mlvr) | ‘€ S L7 WL S W}a (33)

includes all GCNN architectures with a total number of parameters bounded by 1, a maximum depth
of L, and r representing the cardinality of the discretized group G” := {g1, g2, . - ., g- } containing
the identity element e.

Next, we recall that F(my, ..., my) represents the class of fully connected feedforward ReLU
networks with L layers, where m; denotes the number of units in the i-th layer for¢ = 1,..., L. The

output of the last hidden layer of any neural network hw € F (myg, ..., myg), with parameters w, can
be written as a vector of size my,, that is, (h&}), . h&”“).

Finally, we define the class
]:W,L = {]-':]:(mo,...,mg)\EgL, WL(]:)SW}, (34)
consisting of DNNs with at most L hidden layers and a total number of weights not exceeding W.

Lemma 8. Consider GCNNs where the G-correlation uses kernels from a one-dimensional vector
space with a fixed basis given by the indicator function of the identity element e. For every hy, €

F(mg,...,myp), there exists a GCNN hy, with the same number of channels in each layer, i.e.,
hw € H(1,mo,...,mp,r), and parameters w, such that for any input function f : G" — R™°,
5SS HI(7(8,)) = ()
=1 j=1

Proof. Write H := H(1,mg,...,my,r). Consider a fixed input function f : G" — R™° and a
weight vector w € R" . Recall that the number of parameters in a GCNN is given by

L
Wy =Y mj(km;_y +1), (35)
j=1
where k is the dimension of the kernel space. In our case £ = 1 and the number of parameters for a

GCNN with architecture H is .

Wi =Y mj(m;_1+1). (36)
j=1
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This coincides with the number of parameters in a DNN with architecture F(mo, ..., my). Conse-

quently, the same weight vector w € R defines both, a DNN function hy and a GCNN function
hw € H when the input is fixed to f.

We now show that the outputs of the computational units in Ry and hy, are equal when applied to
f(g) and g, respectively. Specifically, we aim to prove that

hei(f(95)) = hei(95);

where ilgyi denotes a DNN computational unit in layer ¢ of iLw, with parameters fixed to w, and hy ;
represents a GCNN computational unit in layer ¢, with parameters fixed to w and input set to f. We
prove this by induction on the layer /.

The statement holds trivially for the input layer, as g ; (f(g;)) = ho.i(g;) forany g; € G”. Assuming
it holds for all layers up to £ — 1, we now prove it for layer ¢.

Let K denote the indicator of the identity element e € G". By calculating the G-correlation between
K and f, we obtain K x f = f. Combining this with the definition of the GCNN unit (see (9) in the
main article) and the induction hypothesis, we have

me—1
he,i(gs) =0 (Z Wii‘_l)hé—l,t(gj) - bf’@)

me—1
Z Wf p hz 1,¢(95) — b(£)> (induction assumption)

me—1

me_1
- a( 3 (vl o)1) ——-

o Z (’Cwilfl) * hg,l’t) (95) — bg”) (definition of learned kernel)
t=1 ’Z

= hei(g5) (definition of GCNN unit).

This shows that the outputs of the computational units in hw and hy, are equal when applied to f(g)
and g, respectively.

Finally, the outputs of A, := (iz(l) .. iL(mL)) can be rewritten into the form
my, I T
DY RGO (f(95) Zzhngg ZZhLzQJ ) = hw(f),
=1 j=1 =1 j=1 =1 j=1
concluding the proof of the lemma. O

Next, we prove Lemma[2] The key ideas and steps of the proof have already been outlined in the
main article, so here we will focus on the formal statements that still needs to be established.

Recall that the indicator neural network

l(a,b,e) (37)
is a shallow ReLU network with four neurons in the hidden layer (see (25) in the main article). It
approximates the indicator function on the interval [a, b] in the sense that 1, ; oy (7) = 1if = € [a, b],
and 1(g 3,0 (2) =0ifz <a—eorxz >b+e.

Lemma 9. [Lemmal] 2|l For L > 3 let Hew,.+1,r be the class of GCNNs defined as in (33) and F,,
be the class of DNNs defined as in (34). Then

VC(Hew,L41,r) = VC(Fw,L)-
Proof. Let m be the VC dimension of the class of DNNs Fyy ;. There are 2™ possible binary
classifications for a set of m elements, subsequently denoted by d = 2™.

By definition, there exists a natural number mq and a set of m vectors
y:: {Y1a-~-a}’m}CRm07 (38)
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that can be shattered by a subset of networks HC Fw,r. Since there are no more than d distinct
classifiers for ), the class H consists of at most d DNN functions.

Next, we construct a DNN architecture using mg + 1 smaller DNN classes. One of these classes is 7:[,
while the remaining m classes consist of "indicator" networks, as described in (37). These indicator

networks ensure that the combined DNN vanishes outside a certain mg-dimensional hypercube. To
define this hypercube, we use the set ) from above.

Specifically, we choose numbers A > maxycy ||y|lco+1and B > A, and define the m(-dimensional
hypercube

To construct a DNN that vanishes on II, we define an approximate indicator function for II, using a
DNN with mg-dimensional inputy = (y1, - - . , Ymy )

JR
T:R™ R, I(y)= mo > Lap0s) (),
i=1

where 1(4 5,0.5)(%:) is an indicator network that approximates the indicator function for values
within (A4, B).

The final DNN is formed by combining functions from # with the indicator function I. Since DNNs
can be summed if they have the same depth, we adjust the depth of I to match the depth of the

functions from #H while ensuring that I remains constant on ) and II. Specifically, we use the fact
that for I(y) > 0, o(I(y)) = I(y) for the ReLU activation function o(z) = max{x,0} (for any y
from II or V). This means that by composing I with the required number of ReLU functions, we
can construct a DNN that satisfies the desired properties. This construction requires at most L < W
additional weights.

To complete the proof, we need to show that there are m input functions F,,, := {f1,..., fm} C {/ :
G" — R™°} that can be shattered by GCNNs from Hew, 1,41, As the set F,,,, we choose functions
defined by f;(e) = y; and f;(g) € [l for g € G" and g # e.

By the definition of shattering (see definition in the main article), to prove that F},, is shattered, it
is sufficient to show that for any binary classifier C : F,, — {0, 1}, there exists a corresponding
function in sign(Hew,r+1,) Whose values coincide with those of C on Fy,.

Choose h € H such that for some b € R, sign(h(y;) — b) = C(f;) fori =1,...,m.
Since II is compact, we define 3
T := h(y)|-
max [h(y)

The final DNN iLC adjusts h such that it vanishes on I but coincides with sign(ﬁ —b)on),
he = o(h — (T —b)I —b),
with o(x) = max{z,0}

Thus, for any f; € F,,,

sign [ Y he(fig;)) | = sign(h(y:) —b) = C(f.)-

Jj=1

By Lemma we can define a GCNN he such that he(f) = S0_, he (f(gs)) forany f € F,,. This
implies that sign(he(f; — b)) = C(f;) for any f; € F,.

As the number of weights in he is W + L + 4mg < 6W, this shows that our GCNN is in the class
Hew,L+1,r» completing the proof of the lemma. O

Corollary 4. [Corollary [Z]] In the setting ofLemma if the number of layers L > 3 and L, < W%,
then there exists a constant c such that

VC(HW7L7T) >c- VC(-FW,L)~
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Proof. From Equation (2) in [3]] , we know that for the class of fully connected neural networks
Fw,r with L layers and at most W overall parameters, there exist constants co and Cy such that

co - WLlog (?) < VC(Fw,) < Cy-WLlogW. (39)

Moreover, by Lemma([9} we have
VC(Hew./41,r) > VC(Fwr 17).
By choosing W = 6W’ and L = L’ + 1, this shows that
VC(Hw,L,r) = VO(F 1w L-1)-

To obtain the statement in the lemma, we combine this bound with the left inequality in (39), leading

to
1 w—1
VC(HW’L’T) 2 VC(‘FLéWJ,Lfl) 2 Co - gw -1 (L - ].) log ﬁ .

For some constant ¢; > 0, the right-hand side of this inequality is bounded from below by
c1-WLlogW.
By using the right inequality in (39), this can be further bounded,
c1-WLlogW > ¢ - VC(Fw,L),
showing the assertion. O
Next, we provide the proof for the second part of Theorem [2] which states that for some universal

constant ¢ > 0, the VC dimension VC(H,1..,-) is bounded by ¢ - W log, (7). As mentioned in the
main article, the first step of the proof is Lemma [3]

Lemma 10. [Lemma Let Hy 1, be the class of GCNNs defined in (33). Then
VC(HZLL,T) > UOgQ TJ .

Moreover, for any two numbers A < B, there exists a finite subclass of GCNNs H C Ha,r, r that
shatters a set of |log, 7| input functions

F, ={fi:G"—=[AB]|i=1,...,|logyT]},
and outputs zero for any input function f : G" — R\ [4, B].
Proof. To simplify the notation, let m = [log, r|. It will be enough to show that a subclass of
GCNNs ‘H C Ha4, 1., shatters the set of m input functions as this immediately implies that
VC(Ha,r,r) > |logyr].

The proof involves selecting d := 2™ distinct points in the interval [A, B] and defining "indicator"
neural networks of the form that output 1 at exactly one of these points. By adjusting the
parameters of these networks, we can control the intervals of our indicator networks and ensure that
each network outputs 1 at the desired point.

Specifically, define ¢ := 21(3(17:_/2‘) and select the d points
YV={y; =A+id|i=1,...,d}.
The input functions F,,, are now chosen from {f : G" — Y U {B — 6}}.

There are d = 2™ different binary classifiers for the set of m elements. Each binary classifier is
defined by the elements for which it outputs 1, and we can index these classifiers by the subsets of

{1,2,...,m}, denoted by S, ..., Sy. In our construction, each y; € ) corresponds to the binary
classifier determined by S;. More formally, the set of m input functions F,, = {f1,..., fm} is
defined by

(. itjes
figi) = {B — 4, otherwise.
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Next, we define the finite subclass in H4 r, - that shatters F;, and outputs zero for any function
f:G" =R\ [A4, B].

By the definition of shattering (definition is in the main article), for any binary classifier C : F;,, —
{—1, 1}, we need to find a function in sign(#4,z, ) matching C on F,.

For any classifier C : F,,, — {—1,1} we can find a subset S C {1,...,m} such that C(f;) = 1if
jeSandC(f;) =—1ifj € 5. There exists an index i* such that S S;«. Using Lemma' one
can construct a GCNN h;« € Hy 1, that matches C on F,,,. Indeed, for any f; € Fp,,

1, ifj € .5;,
Zl 1*7% X %g (fj(gs)) _{ > 1 < . (40)

0, otherwise.

Thus, sign(h;- (f) —0.5) = C(f) forall f € F,. As anindicator’ neural network 1,
has only 4 parameters and 2 layers, it isin Ha 1, .

Moreover, forany i = 1,...,dandany z € R\ [A, B], 1, J S %)(I) = 0. Arguing as for (40),
hi«(f) =0forany f: G" —>R\ [A, B].

That means that the class H := {hq, ..., hq} shatters input functions F,, and outputs O on the subset
{f:G" — R\ [A, B]}. This completes the proof. O

[V
[V

—% Y+ )

Corollary 5. [ Corollary The VC dimension of the class Haw,1,,», consisting of GCNNs with 4W
weights, L layers, and resolution r satisfies the inequality

VC (Haw,r) = W [logy 7).

Proof. To simplify notation, let m := |log, r].

We prove this corollary by defining W disjoint intervals [Ay, B1],..., [Aw, Bw], where A; =
(m + 3)i and B; := (m + 2)i. For different ¢ € {1,..., W} the set of input functions F; := {f :
G" — [A;, B;]} is disjoint since the values of the intervals do not overlap.

By Lemma foreachi =1,..., W, we can find a class of GCNNs H; C H4 1, that shatters a set
of m input functions F},, ; C F; and outputs O on any other set F},, ;, where j # 1.

Next we show that the class of GCNNs H := H; @ Ho @ --- @ Hw C Haw,r,» shatters the set
Fym = uzl F,, ;. This will prove the corollary.

By the definition of shattering, we need to find for any binary classifier C : Fy,,, — {0, 1}, a function
in sign(#) that matches C on Eyypp,.

Fori=1,...,W,letC; = F,, ; be the restriction of C to Fy, ;. As H; shatters I, ;, we can
choose a GCNN h¢, € H; such that its values match those of C; on F},, ;.

Next, we show that the values of the GCNN h¢ = ZzVL he, match C on Fyy,,. Let f be any input
function from Fyy,,,, say f € F,. For any i # ¢, it holds that h¢, (f) = 0 since he, € H,;. Thus,

th ) = he, (f)-

Since he, (f) = C(f) by the choice of h¢,, it follows that he(f) = C(f) for any f € Fyyp,.

This shows that the class H of GCNNs shatters Fyy ., proving the corollary. O
C On the constants in Equation (1)

While our main focus is on the asymptotic behavior of the VC dimension, it is instructive to express

the constants ¢ and C' for GCNNs in terms of the corresponding constants for DNNs. For DNNG, the
Eq(2) from [3]] states that there exist universal constants ¢+ and C'x such that

cr - WLlog (VLV) < VC(Fw,r) £ max UB(F) < Cr-WLlogW, (41)

FeFw,L
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where U B(F) denotes an upper bound on the VC dimension for the class F. As we show now, under
the commonly satisfied assumptions that W > L? and W > 125, we obtain

1

Cr = 0.04, C]: = 5, Cc

To derive an explicit lower bound for the constant ¢z for the class F of DNNs with at most W weights
and L layers, we follow Theorem 9 [3]]. This theorem constructs networks with VC dimension
> mn, where the architecture has 3 + 5k layers,

2+ n+4m+ k((11 +r)2" + 2r + 2) network parameters,

m + n input nodes, and
m+2+k(B5x2"+r+1)

computational nodes. For the parameter choices

w
7":710&2(’:), m:%, n=W—5m-2",

the VC dimension satisfies

VC(F)>mn=—W —5m-2") 16 W

rL _ WiLlog, (*f) (1 ~ 5logy () L)
8 16

To refine the estimate further, we use the assumption that W > L? and W > 125, such that

W Llog, (%) <1_ 5log,(VIV) 1 >

>
VC(F) =2 16

< W Llog, (%)
- 16

16 Wwi/4

0.674 > 0.04W Llog, (?) .

That means that ¢ can be chosen as 0.04.

To derive an explicit value for C'z, we follow the proof of Theorem 6 from [3]]. In that proof, it is
stated that:

VCdim(F) < L + <Z Wl> log, (4epRlog,(2epR))

where
R<W +W(L—1)d*1.
In the case of the ReLLU activation function, we have p = d = 1 and so,

VCdim(F) < L + (Z Wi> log, (4epR1log,(2epR))
<L+ 2W;L log, (4epR)
< L+2WLlog, (4eW L)
< L +2WLlog, (4eW®/ 2)
< L+ 3W Llog, (4eW)
Under the assumption that W > L2 and W > 125, we have
L+ WLlog,(4e) < L4 1.5W Llog,(125) < L+ 1.5W Llogy (W) < 2W Llog, (W)

leading us to
VCdim(F) < 5W Llog, (W),

and Cr = 5. Therefore Cx/cy = 5/0.04 = 125.
To derive C and ¢, recall that
Cr - WL log(W/L) < VC(FWJ,) < UB(FW,L) < C]: -WL log w. (2)
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Imposing again the assumptions that W > L? and W > 125, we have
C
UB(Fyw.) < == -2 czWLlog(W/L) = 250VC(Fy.L).
CF
Using this and Eq. (T9), we obtain

VC(Hw,r,r) < 2UB(Fw,) + 8W Llogr < 500(VC(Fw,) + WLlogr).

For the lower bound, using Lemma[2] we estimate

1 W 1
w > - — — ] > = 1
VC(]:[?-‘,L_l) > 50]:W(L 1) log (5(L — 1)) > 6chWL og W
1 Cr VC(J:WL)
> .. >~ s
250 oy VOUmL) 2 =5

Under stronger assumptions (e.g., W > L3), tighter bounds can be derived.
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