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Abstract

Large Language Models (LLMs) are increas-
ingly used worldwide for diverse applications.
However, ensuring their safe use continues to
be a complex challenge. To tackle this, safety
is often embedded into models as a “behav-
ior” and is frequently overfit to harms prevalent
in Western-centric datasets. In this work, we
aim to address this by systematically explor-
ing the potential of model merging in this di-
verse multi-task setting — considering safety
in LLMs as a “task” and combining models
trained for safety-specific tasks with those for
more general-purpose tasks, all within a multi-
lingual context. We categorize our experiments
into two primary groups: objective-based and
language-based, according to the fine-tuning
objective of the models being merged. Our re-
sults demonstrate that objective-based merging
is significantly more effective than data mixing,
yielding improvements of up to 8% in general
performance and 10% in safety. We also find
that language-based merging is highly effective
— by merging monolingual models, we achieve
a 4% increase in general performance and 7%
reduction in harm across all languages over the
data mixing approach. Overall, our compre-
hensive study of model merging in the context
of multilingual safety provides a useful frame-
work for building strong and safe multilingual
models without the need for retraining them.

1 Introduction

Large language models demonstrate strong multi-
tasking capabilities across diverse domains (Brown
et al., 2020; Radford et al., 2019). It is well es-
tablished that equipping a model with any kind of
capabilities with the standard paradigm of training
requires copious amounts of data. Multi-tasking
abilities typically arise from fine-tuning models
on mixed datasets, which combine data from var-
ious sources and across many tasks (Raffel et al.,
2023; Wang et al., 2019; Ustiin et al., 2024). How-
ever, determining the optimal strategy for mixing

datasets in multi-task training is often complex and
resource-intensive, as it must ensure that all tasks
benefit from the shared training process — espe-
cially in the context of safety, where the general
performance of models often gets compromised in
exchange for safety (Bai et al., 2022a; Tsipras et al.,
2019; Bianchi et al., 2024; Ray and Bhalani, 2024;
Ustiin et al., 2024).

More recently, an emerging approach for en-
abling multi-tasking has focused on training dis-
tinct models for specific tasks and combining their
parameters together using a predefined algorithm
(Tam et al., 2023; Yang et al., 2024; Li et al., 2024a;
Wan et al., 2024; Zhou et al., 2024; Davari and
Belilovsky, 2024), to yield a resultant model that
performs well on all of the considered tasks. This
method has shown great promise in building mod-
els with new capabilities without incurring addi-
tional costs and challenges that accompany train-
ing from scratch. However, a key question remains
— how does it compare to traditional data mixing
and weighting approaches? We are, in particular,
interested in exploring LLM safety with the per-
spective that “safety” can be conceptualized as an
additional “task-solving” capability that a model
can learn than a behavior that needs to be embed-
ded via the method of model merging.

We evaluate the trade-offs between safety and
general performance under severe multi-task con-
straints — optimizing for helpfulness and harmless-
ness in a multilingual setting. The inherent diffi-
culties of handling multiple languages, each with
its unique linguistic structures, cultural nuances,
and potential biases, present a formidable task for
aligning these models (Schwartz et al., 2022; Kotek
et al., 2023; Khandelwal et al., 2023; Vashishtha
et al., 2023; Khondaker et al., 2023; Ustiin et al.,
2024; Aryabumi et al., 2024; Singh et al., 2024).
Mitigating harm across multiple languages is crit-
ical, given the wide adoption of LLMs across the
world. However, a common issue in safety work



currently is the narrow focus on addressing it for
English. And so, the challenges are compounded
in this scenario by the scarce amount of safety data
available across different languages (Singh et al.,
2024). However, it is precisely because of these
severe constraints that this presents an interesting
setting to thoroughly evaluate the benefits of model
merging.

We conduct an exhaustive study to compare tra-
ditional approaches for balancing multi-objective
training by curating a wide set of training data mix-
tures with model merging methods for combining
models trained on different subsets of data. Our
large-scale evaluation runs across 6 languages from
5 different language families and encompasses
both supervised fine-tuning and preference training
across 4 different merging techniques. Through our
comprehensive experimental setup, we summarize
our key findings and contributions as follows:

1. Merging outperforms mixing. We find that
model merging is more effective than weighting
data mixtures for achieving a good balance between
safety and generalizability in language models. The
top-performing methods for individual objectives
were TIES, which reduced harm by 10.4%, and
Linear merging, which improved general perfor-
mance by 8.6% over simple data mixing. The
best approach for balancing both objectives was
SLERP, which consistently achieved optimal trade-
offs across different training strategies, with 3.1%
reductions in harm and 7.0% gains in general per-
formance over the data mixing approach.

2. Merging is effective at extending multilin-
gual coverage. Instead of merging across objec-
tives (safety-finetuned model and general-finetuned
model), we experiment with merging across lan-
guages. Our findings indicate that when each
model is trained on a mixture of safety and gen-
eral data in a single language and then merged,
it achieves improvements of up to 3.8% in gen-
eral benchmarks and a reduction of up to 6.6% in
harmful generations compared to a multilingually
finetuned model.

3. Not all merging methods are equal. Some
merging methods consistently result in net posi-
tive gains across both axes of performance (safety
and general) simultaneously, while others display
clear trade-offs. Model merging algorithms like
Linear and TIES bring gains in only one dimen-
sion. For example, Linear merging resulting in
improvements of up to 9% on general benchmarks

but showing performance degradation as high as
8% on safety evaluations. Whereas merging mod-
els using DARE-TIES and SLERP is more effec-
tive in balancing the dual objectives, with SLERP
showing the most significant improvements in both
general performance and harm reduction (7% and
3.1% respectively). We see a similar pattern with
linear merging.

2 Mix versus Merge Setup

In this section, we detail our experimental setup,
which involves training models with various data
mixtures targeting different objectives to establish
the “Mix”, followed by merging some of these
trained checkpoints into a single model to obtain
the “Merge”. This setup serves as the founda-
tion for our comprehensive comparison of merging
methods’ effectiveness in balancing safety and gen-
eral performance in multilingual settings. Our ex-
periments are set across both supervised fine-tuning
(SFT) and offline preference tuning, specifically
Direct Preference Optimization (DPO) (Rafailov
et al., 2023).

2.1 Merging Approaches

We conduct extensive experiments with diverse
data mixtures to create a pool of model candidates.
From this pool, we merge the best-performing
checkpoints using four different algorithms to pro-
duce the final merged models.

1) Linear Merge: Linear merging involves sim-
ple linear weighted averaging of model parameters,
weighted by specified coefficients. This method
is widely used in convex optimization and deep
learning (Nagarajan and Kolter, 2021; von Oswald
et al., 2022; Wortsman et al., 2022). This process
is formulated as:

N
Hmerged = Z a;; (1
=1

where «; represents the weight assigned to the pa-
rameters of each model, with the constraint that
Zf\; 1 o; = 1. We conduct ablations by varying
the values of «; to investigate different weighting
ratios for the base models.

2) Spherical Linear Interpolation (SLERP):
This technique is used to smoothly blend two
models by interpolating their weights along the
shortest path on a high-dimensional sphere (White,
2016; Goddard et al., 2024). SLERP preserves
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Figure 1: Overview of our Mix versus Merge framework: We analyze the differences in merging models on
trained with specialized multilingual datasets, particularly in the context of safety, in contrast to those trained
directly on mixtures of these datasets. We follow the LL.M-as-a-judge approach for evaluating the performance of

these models along two axes — general and safety.

each model’s unique characteristics and geometric
properties, even in complex spaces. The process
involves normalizing the vectors to ensure equal
length, calculating the angle €2 between them, and
performing the interpolation as follows:

sin((1 —t)Q)
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SLERP typically merges only two models at a time.
Here, ¢ € [0, 1] determines the interpolation weight,
with ¢ = 0 using only Model 1 and ¢t = 1 using
only Model 2. This method improves upon stan-
dard weight averaging by preserving the geometric
integrity of the model.

3) TIES-Merging: This method efficiently com-
bines multiple models by addressing parameter in-
terference and sign conflicts, which occur when
models suggest opposing adjustments to the same
parameter due to task-specific fine-tuning (Yadav
et al., 2023). The process begins by trimming pa-
rameters to retain only those with significant mag-
nitude changes, i.e., the top-k%. It then resolves
sign conflicts by creating a consensus sign vector:

N
s = sign (Z sign(@i)> 3)
i=1

Finally, it merges the parameters by averaging
those that align with the consensus sign:

1 N
emerged =S N Zl |01| “4)

TIES-Merging ensures that only parameters con-
tributing to the agreed-upon direction are included
in the final model, enhancing performance.

4) DARE-TIES: This technique (Yu et al., 2024)
builds upon TIES by applying dropout to the delta
parameters before merging them using the TIES
method. It reduces interference from redundant
parameters and helps maintain the model’s overall
performance.

We apply gradient weighting to all merging
methods except for Linear Merge. With weight-
ing, we define a blend ratio to specify the merge
between the model parameters. Gradient weighting
dictates how that ratio changes across the specified
values and uses linear interpolation to further estab-
lish a smoother gradient of blend ratios for merging
the parameters. For example, if the blend ratio be-
tween Model 1 and Model 2 is defined as [0, 0.5,
1], this implies that the merge begins with 100%
of Model 2’s parameters, gradually transitioning
to a 50-50 blend between the two and concluding
with only Model 1’s parameters at the end. For all
merging methods, we conduct an exhaustive search
over the set {0,0.3,0.5,0.7,1} to determine the
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Figure 2: Mixing versus merging: Safety and general performance of a 15% Safety Mix model (§2.2) against SLERP
merging, which emerges as the best method for balancing trade-offs, for both SFT and DPO based checkpoints.
Lower is better for (a) and higher is better for (b). Both metrics are measured with respect to the Aya 23 base model.

optimal parameter contributions. Our experiments
utilize the mergekit library from Arcee (Goddard
et al., 2024).

2.2 Training Data

Safety dataset. We use the human-annotated
prompts from the multilingual Aya Red-teaming
dataset (Aakanksha et al., 2024) as seeds to syn-
thetically generate pairs of adversarial prompts
and contextually safe completions following the
synthetic data generation pipeline outlined in
Aakanksha et al. (2024).

General purpose dataset. Following previous
works (Aakanksha et al., 2024), we use a sampled
set of 10,000 English prompts from the Ultrafeed-
back Binarized (Cui et al., 2023; Tunstall et al.,
2023) dataset translated into our target languages.
This dataset will be referred to as the “general-
purpose” dataset for the remainder of the paper.

Training data Mix. We study models trained on
different mixtures of data - 0% Safety Mix, 15%
Safety Mix and 100% Safety Mix. The varying
ratio of safety data simulates different objectives.
For example, training with 100% safety data allows
us to model an upper bound of expected harm miti-
gation and to obtain a model optimized for safety.
In contrast, the 15% Safety mix consists of a com-
bination of safety and general-purpose data in a 1:5
ratio — this represents a more real-world scenario
typical of deployment settings and maintains a rea-
sonable ratio for optimizing for both helpfulness
and harmlessness of a model (Bai et al., 2022b).
Unless specified otherwise, we use the 15% Safety
mix as the baseline for our experimentation. The
other mixes follow similar relationships between

their naming and ratios.

2.3 Key Ablations

In order to study the relative merits of merging for
different objectives across a wide set of languages,
we conduct extensive ablations. We detail some of
the most critical experiment variants below:

Objective-based merging. To evaluate the rela-
tive merits of merging on balancing dual-objectives,
we merge models that have been separately opti-
mized for general-purpose abilities and safety. This
builds upon our multilingual 0% and 100% Safety
Mixes (see Section 2.2) to balance the trade-offs
between safety and general performance.

Language-based merging. Multilinguality re-
mains one of the most challenging tasks in lan-
guage modeling. We aim to determine whether
language-specific models can be used off-the-shelf
to incorporate language capabilities and explore
how merging models based exclusively on different
languages affects their downstream performance.

Specifically, we investigate whether combining
models optimized for both safety and general per-
formance with a 15% language-specific safety mix
for our target languages leads to better performance
than training on a mixture of those languages. For
clarity, to produce a multilingual model with safe
and general-purpose abilities for English, French,
and Spanish (referred to as the EN-FR-SP group
later), we merge models optimized independently
on a 15% Safety Mix for each of these languages.

2.4 Evaluation

Baseline. We evaluate the performance of all
models against that of a previous checkpoint of



Type Method SFT DPO
P AyaRT (/) Dolly-200 (1) AyaRT () Dolly-200 (1)

0% Safety -41.4 70.0 -39.2 70.7

Training data mix 15% Safety -56.6 674 -54.69 71.0
100% Safety -64.4 64.8 -68.2 75.0
Linear -49.1 (-7.5) 76.0 (+8.6) -48.6 (-6.1) 75.0 (+4.0)
SLERP -582 (+1.2) 726 (+5.2) -57.8 (+3.1) 78.0 (+7.0)

Merging TIES -452 (-11.4) 749 (+7.5) -65.1(+10.4)  63.6(-7.4)
DARE-TIES -56.1(-0.5) 70.0 (+2.6) -55.9 (+1.2) 78.5 (+7.5)

Table 1: Comparison of Safety and General performance across various methods. Safety performance is evaluated us-

ing the Aya Red-teaming (Aya RT) benchmark in terms of the “Relative Percentage Change in Harmful Generations’

’

while General performance is evaluated with the Dolly-200 benchmark as “Absolute Win-rate Percentages”. Both
metrics are measured with respect to the Aya 23 base model. Scores are aggregated across six languages: English,
Hindi, French, Spanish, Arabic, and Russian. Performance deltas, highlighted in color, represent differences from

the 15% Safety Mix baseline.

the Aya 23 8B model (Aryabumi et al., 2024) —
which henceforth acts as the baseline for all evalu-
ations. This model is also treated as the pre-trained
base model for all of our experiments. We note that
this model was not optimized for safety. Hence, we
measure the ability to minimize harmful model gen-
erations with respect to this model (% decrease).

We establish two axes of performance for our
experiments — how safe model generations are
and how well they perform on general-purpose
benchmarks. We measure these with the following
benchmarks:

Safety benchmark. We use the English prompts
from the human-annotated Aya Red-teaming
dataset (Aakanksha et al., 2024) and translate them
into all of our target languages using the NLLB-
3.3B model for an apples-to-apples comparison -
i.e., for Hindi, French, Spanish, Arabic and Rus-
sian, resulting in a final set of 6 languages for eval-
uation. We measure the safety performance on this
dataset as the negative relative percent change in
harmful model generations with respect to the Aya
23 base model and report aggregated scores over
all languages.

General benchmark. We use the Multilingual
Dolly-200 Eval set (Singh et al., 2024; Ustiin et al.,
2024), which measures the open-ended generation
capabilities of a language model. This dataset con-
sists of a sample of 200 prompts from the Dolly-
15k dataset translated into a number of languages,
which then acts as a test bed for measuring the
general performance of a language model. We use
win-rates against the baseline to track performance

changes.

To evaluate all experiments, we closely fol-
low the evaluation framework of previous works
(Aakanksha et al., 2024) and use the LLM-as-
a-judge approach with GPT-4! as the evaluator.
Given our dual axes of evaluation, safety and gen-
eral performance, we instruct GPT-4 to classify
model outputs as harmful or not to assess safety
performance and to indicate an overall preference
between two models’ responses (experiment ver-
sus the Aya 23 base model) to measure the general
performance.

3 Results and Discussion

In this section, we will present our results and dis-
cuss our findings.

3.1 Model merging wins over data mixing

Table 1 summarizes our findings and presents re-
sults for objective-based merging. The model
trained on the 15% Safety Mix demonstrates strong
performance on general tasks, achieving win rates
of 67.4% for SFT and 71% for DPO. However,
we see even greater improvements when merging
checkpoints, with win-rates rising to 72.6% and
78%, respectively. We observe similar patterns in
safety performance — the 15% Safety Mix model
reduces harm by 56.6% for SFT and 54.7% for
DPO. However, by merging checkpoints instead of
mixing data, we achieve further reductions, reach-
ing 58.2% for SFT and 57.8% for DPO. We evalu-

"https://platform.openai.com/docs/models/gpt-4-turbo-
and-gpt-4
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Figure 3: Comparison between different merging methods across safety and general performance with DPO
checkpoints. Both metrics are measured with respect to the Aya 23 base model. Lower is better for the left and
higher is better for the right. The red dashed line shows the model trained on a mix of safety and general data (/5%

Safety Mix).

ate the model with the best trade-off by considering
the average percentage change of both objectives
relative to the 15% Safety Mix model. Amongst
the four methods evaluated, SLERP proved to be
the most effective in balancing the two-fold objec-
tive of safety and general performance. Figure 2
shows the outcome of SLERP merging for both
SFT and DPO checkpoints against the 15% Safety
Mix baseline.

Overall, this supports the claim that merging
models explicitly trained for different objectives
outperforms building data mixtures aimed at the
same goals. This is particularly compelling as a
technique given previous studies have shown that
optimizing for safety in a language model can nega-
tively impact its general-purpose abilities (Bianchi
etal., 2024; Ray and Bhalani, 2024; Bhardwaj et al.,
2024; Ustiin et al., 2024).

3.2 Not all merging methods are equal

Merging almost always benefits general perfor-
mance, with all techniques but one (TIES) outper-
forming the 15% Safety Mix baseline (see Table 1).
We observe gains as high as 7.5% in general perfor-
mance when combining models with DARE-TIES,
closely followed by SLERP with 7% gains. When
focusing on safety performance, Table 1 illustrates
that almost all merging methods perform superior
to the 15% Safety Mix baseline, with the exception
of Linear lagging behind by around 6%.

The dissimilarity of the checkpoints optimized
for two different objectives can degrade perfor-
mance when merging linearly, as the specialized
parameter configurations for each task get diluted.

On the other hand, we observe that TIES estab-
lishes substantial improvements in harm reduction
by around 10% over the 15% Safety Mix. TIES
strategically combines parameters based on their
role in each task, preventing destructive interfer-
ence while maintaining task-specific capabilities.
When considering the trade-off between the two pri-
mary objectives — enhancing general performance
and minimizing harm — SLERP emerges as the
overall winner. This is mainly because SLERP
finds intermediate points that balance both objec-
tives’ requirements by following the natural man-
ifold of the parameter space rather than forcing
direct averaging. The spherical interpolation in
SLERP maintains relative distances between pa-
rameters, preventing one objective from dominat-
ing the other during merging.

3.3 Not all languages benefit equally

Next, we break down the multilingual evaluation
and assess the effects of merging methods on indi-
vidual languages. A detailed examination of Figure
3 (and Figure 6 in the Appendix) reveals that al-
though overall improvements are consistent, the
optimal trade-offs for different languages depend
mostly on the underlying training regime of the
model checkpoints used for merging.

Highest beneficiaries. For DPO, we find that
Russian shows the most successful safety perfor-
mance with a reduction of 15% over the 15% Safety
Mix model with TIES merging. Spanish exhibits
the most impressive improvements with around 6%
with SLERP over the 15% Safety Mix baseline in
general performance. For SFT, Hindi displays the
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largest reduction in harm (12.14%) with SLERP
over the 15% Safety Mix model. However, Spanish
continues to reap the most benefits from merging
with an improvement of 10% gains in general per-
formance with both Linear and TIES.

Lowest beneficiaries. When merging DPO-
based checkpoints (Figure 3), we surprisingly find
English to benefit the least from merging across
both axes of performance. We observe an overall
decline of 24.87% in safety and 14.5% in general
metrics compared to the 15% Safety Mix model
with Linear and TIES merging respectively. For
SFT checkpoints in the merging pool (Figure 6),
we find that Spanish shows the lowest safety per-
formance with TIES with an increase in harmful
generations of around 16% while Hindi has the
least gains in general performance with DARE-
TIES with a decline of about 4% in comparison to
the 15% Safety Mix.

It is worth noting that while merging leads to
performance degradation in some languages com-
pared to data mixing, it still delivers strong results,
maintaining an absolute win-rate above 50% for all
languages relative to the base model.

3.4 Merging monolingual models

Given the challenges posed by multilinguality and
the linguistic and cultural variability introduced by
each language, especially in the backdrop of safety,
next we study the impact of merging models ex-
clusively grounded in different languages on their
downstream performance. For this set of experi-
ments, we fine-tune our base model, Aya 23 8B,
on monolingual data maintaining the 15% Safety
Mix (§2.2) and use the resulting checkpoints for

merging models across languages. For instance,
to obtain a French-only model optimized for both
safety and general performance, we fine-tune the
model with only French samples, maintaining a
15% mix of safety in the training data. Extending
this process for all languages yields 6 separately
fine-tuned models on monolingual data.

Additionally, to understand the impact of scal-
ing the number of languages during merging, we
combine these models in gradation of two sets:
one with 3 languages and another with 6. The
3-language set includes English, French, Spanish
chosen for their closer familial ties and is referred
to as the “/EN,FR,SP]” selection. The 6-language
set comprises all our target languages — English,
French, Spanish, Hindi, Arabic and Russian — and
is termed “[All]” henceforth.

We focus on TIES for this set of experiments
because its permutation-invariant nature helps us
eliminate additional confounders and isolate the
impact of language-based merging on overall per-
formance. We use the same baseline as in previous
experiments: a fine-tuned version of Aya 23 on a
multilingual 15% Safety Mix. Figure 4 presents
the results. We find that when compared to the
base model, we successfully increase general per-
formance and reduce harm generations across all
variants. Merging 6 monolingual models (“/All]”)
consistently outperforms the corresponding “mix”
baseline, with safety metrics showing harm reduc-
tions as high as 6.6% and absolute improvements of
3.8% in general performance. However, we also ob-
serve some evidence of cross-lingual interference;
merging 3 models (“/EN,FR,SP]”) yields better
performance on both tasks compared to merging



6 models with differences of approximately 2%
in safety and 6% in general performance. These
results highlight model merging as an effective
method for integrating a diverse set of languages
without sacrificing performance on key metrics.
The choice of languages and the number of models
significantly influence the performance gains.

4 Related Work

Model Merging. Recent research has demon-
strated success in developing innovative strategies
to harness the collective power of multiple LLMs
by suggesting methods for combining their unique
strengths. This approach offers an efficient solu-
tion and has been widely explored for fine-tuned
models sharing the same pre-trained base model,
thereby sharing a part of their optimization trajec-
tories (Frankle et al., 2020; Izmailov et al., 2019;
Ilharco et al., 2023; Wortsman et al., 2022). Ini-
tial efforts focused on merging models with simple
weighted averaging of the parameters (Wortsman
et al., 2022; Matena and Raffel, 2022; Gupta et al.,
2020) and showed dramatic performance gains
for the resultant merged model. More recently,
many works have investigated non-linear meth-
ods of merging models (White, 2016; Yadav et al.,
2023; Yu et al., 2024) while aiming to improve
general downstream performance. However, some
recent works have focused on ensuring the safety
of LLMs when merging, having demonstrated that
misalignment transfers trivially from the base to
the combined model in this process (Hammoud
et al., 2024). Other works “realign” language mod-
els by fusing an initial aligned model with many
task vectors based on the suitably identified safety
subspace (Yi et al., 2024). Model merging has
also been extended to a multilingual setting — for
developing task-solving LLMs for low-resource
languages without the availability of SFT data in
the target languages (Tao et al., 2024). Our work
distinguishes itself from prior approaches due to
the complexity of the contrasting targets it seeks
to satisfy — balancing safety and general-purpose
objectives across a wide set of languages. To the
best of our knowledge, no prior work has investi-
gated the alignment of LLMs via model merging
in a multilingual context while optimizing for a
two-fold objective.

Multilingual Safety. With the increased perva-
siveness of LLMs in recent times, the landscape of
language model research has evolved with a height-

ened emphasis on safeguarding user experiences,
thereby placing an increased focus on mitigating
potential risks across diverse linguistic contexts.
Several works (Deng et al., 2023; Liu et al., 2023)
have investigated challenges around multilingual
jailbreaks, and introduced novel frameworks and
datasets for building robust mitigation strategies.
Previous work has examined multilingual toxic-
ity mitigation with a detailed comparison between
SFT and retrieval-augmented-based methods (Poz-
zobon et al., 2024). It has been shown that LLMs
tend to generate more harmful and irrelevant re-
sponses in low-resource languages when prompted
maliciously (Shen et al., 2024). Techniques such as
safety context distillation (Ustiin et al., 2024) which
harness synthetic data to institute safety guardrails
into a model, have shown significant promise to-
wards reducing the harmfulness in model genera-
tions. Overall, for a more standardized analysis of
safety in multilingual settings, several benchmarks
(Wang et al., 2023; Jain et al., 2024; Aakanksha
et al., 2024) have been introduced and established
in recent times. While methods such as SFT and
DPO (Aakanksha et al., 2024; Li et al., 2024b)
have been studied extensively for aligning language
models, some recent works have also pivoted to-
wards weight interpolation for the same objective
and have demonstrated the effectiveness of adding
a safety vector to compromised fine-tuned mod-
els for successful realignment (Bhardwaj et al.,
2024). We direct our efforts towards the devel-
opment of aligned language models by merging a
diverse range of languages.

5 Conclusion

In this work, we demonstrated the effectiveness
of model merging as a potential solution towards
building highly-performant aligned language mod-
els across a wide range of languages. Through our
comprehensive experimentation, we showed how
models obtained as a result of merging exhibit su-
perior performance on the dual axes of safety and
general metrics. However, our experiments also
revealed that there is variability in the trade-offs
established by different merging algorithms, espe-
cially in a multilingual context. Additionally, we
also demonstrated the success of combining mod-
els to extend language coverage while maintaining
performance on the relevant metrics.



Limitations

While model merging offers a promising solution
for better aligning LLMs, it poses a big challenge
towards the interpretability of such models. The
underlying weight distributions of neural networks
are notoriously difficult to understand as they lack
inherent meaning and merging only adds to the ob-
scurity. Additionally, our work in its current shape
does not include a hybrid set of experiments be-
tween the tasks and the languages, which would
be an interesting setting to analyze the merits of
merging in. Furthermore, it would also be valuable
to study the impact of adding more tasks and/or
objectives to the merging recipe on overall perfor-
mance.
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A Additional Ablations

A.1 Comparison of merging applied to DPO
and SFT.

Model merging is a highly adaptable technique that
can be applied at any stage of the training process
owing to its simple input requirement of model
checkpoints. To determine the optimal stage for
maximizing its benefits, we merge and evaluate
SFT and DPO checkpoints independently as these
techniques have shown great success towards the
alignment of language models (Aakanksha et al.,
2024; Shen et al., 2024).

A.2 Sensitivity to hyperparameters.

Previous works (Ilharco et al., 2023) have shown
that merging is sensitive to the hyperparameters
involved and have developed sophisticated algo-
rithms (Akiba et al., 2024; Xiao et al., 2023; Davari
and Belilovsky, 2024) to find the optimal values for
the same. To this end, we seek to find the impact of
varying the weighting scheme of Linear merging
on both general performance and safety.

A.3 Comparison between additional merging
methods

In the main text, we focus on standard model merg-
ing methods like weight averaging, SLERP etc.
and explore the potential of merging through them.
However, we extend our study here to measure the
impact of additional merging methods in order to
debias our findings from a limited subset of merg-
ing methods.

B Additional Results

B.1 DPO merges are more robust than SFT
merges

Given the versatility of merging, which can be ap-
plied to any grouping of checkpoints, we separately
compare merging gains when applied to models op-
timized with SFT and DPO (Table 1). We find that
DPO merging better preserves safety constraints
while improving performance, while SFT merging
shows a performance-safety tradeoff. This suggests
that DPO training creates more stable and consis-
tent parameter spaces for merging than SFT.

More concretely, our experiments show larger
consistent improvements when merging DPO
checkpoints, with average gains of 2.8% and 2.2%
over the base model across the four merging meth-
ods assessed for general performance and safety,
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respectively. While merging SFT checkpoints also
resulted in significant general performance gains,
averaging around 6%, it led to an average increase
of 4.6% in harmful generations relative to the 15%
Safety Mix model.

B.2 Impact of safety model weight on merging

Here, we evaluate how model coefficients during
merging impact our “objective-based” merging ap-
proach on our dual axes of performance. Figure 5 il-
lustrates that the safety performance of the merged
model is greatly enhanced when a higher weight
is attributed to the safety model. The merged
model can mitigate harm more effectively than the
15% Safety Mix baseline, even with a normalized
weighting for the constituent safety model as low
as 0.3. For general performance, we observe that
increasing the weight of the safety-focused model
leads to a decrease in the model’s performance
on general tasks. However, across all weightings,
merging models consistently outperforms the data
mix run.

B.3 SLERP establishes the best trade-offs

In this section, we experimented with some addi-
tional merging methods with the DPO checkpoints.
Results can be found in Table 2. Here, Task Arith-
metic (Ilharco et al., 2023) seems to perform the
best, quite similarly to SLERP (but inferior), while
the other two seem lacking. Model Stock’s (Jang
et al., 2024) performance is contingent on the al-
gorithm exploiting certain geometric properties of
the weight space to find the optimal set of weights
with which to combine the models. However, this
approach might overlook nuanced interactions be-
tween model parameters, potentially limiting per-
formance gains in complex scenarios. In case of
DELLA-merging (Deep et al., 2024), it relies heav-
ily on magnitude based pruning under the assump-
tion that magnitudes correlate to importance, which
may not necessarily be true.

B.4 Continual training after merging

In this section, we examine the dynamics of merg-
ing and preference training, focusing on the best
ways to integrate both into the training pipeline.
More specifically, we use DPO to assess whether
continual preference tuning of a merged checkpoint
results in stronger models compared to a merged
model where the constituent models were individ-
ually preference-tuned. As can be seen in Table
3, our experiments demonstrate that continually



Safety Performance

General Performance

: -40 33\\ S 15% Mix | g | e &~ 15% Mix
< AN 0 Xy
£-45 8
o N 872 N
o S c S
250 £
S 270
2 -55 N 2
S \‘g@ ************* 2 Ve
B e
£ .60 <L 5 | B
g
R
65 66
0.1 0.2 03 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Weighting of "safety" model

Weighting of "safety" model

Figure 5: Ablation: Effect of “safety weighting” while Linear merging. We vary the weight assigned to the 100%
Safety model while merging linearly and measure the impact of the same. Both metrics are measured with respect to
the Aya 23 base model. Lower is better for the left and higher is better for the right.

o English @ French A Arabic ¢ Averaged
@ Hindi #  Spanish v Russian
-30 85
£ s
2
C-40| = 0 80| ® 8
£ & 2 % ® $
TR e -
2154
O 50| & 33 % g 75|77 ¢ "
2 m <@ v
(] ) ‘ 4 g & 3
o 60 570 v
[S) 8 ° m [0}
S 3
5 -70 < 65 o o
o o
]
@ g0 60
Linear SLERP TIES DARE TIES Linear SLERP TIES DARE TIES
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DPO
Type  Method AyaRT (}) Dolly-200 (1)
Task Arithmetic  -53.3 (-1.3) 78.8 (+7.8)
Merging Model Stock -4.2 (-50.5)  45.2(-25.8)
DELLA -19.7 (-35.0)  73.0 (+2.0)

Table 2: Comparison of Safety and General performance across some additional merging methods on DPO
checkpoints. Safety performance is evaluated using the Aya Red-teaming (Aya RT) benchmark in terms of the

“Relative Percentage Change in Harmful Generations” whi

le General performance is evaluated with the Dolly-200

benchmark as “Absolute Win-rate Percentages”. Both metrics are measured with respect to the Aya 23 base model.
Scores are aggregated across six languages: English, Hindi, French, Spanish, Arabic, and Russian. Performance

deltas, highlighted in color, represent differences from the

preference-tuning the models after performing the
merge yields better outcomes in terms of alignment.
The “after” merging variant (SFT — (merge) —
DPO) shows better safety performance by reducing
harmful generations by 6.5% whereas the “before”
merging variant (SFT — DPO — (merge)) exhibits
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15% Safety Mix baseline (refer Table 1).

a 3.1% decrease. We observe improvements in the
general performance of both variants, with the “af-
ter” merge variant yielding a 3% increase, and the
“before” merge variant achieving a 7% increase.



Training pipeline

AyaRT (1)

Dolly-200 (1)

SFT — (merge)
SFT — DPO — (merge)
SFT — (merge) — DPO

-582 (+1.6)  72.6 (+5.2)
-57.8 (+3.1)  78.0 (+7.0)
-61.2 (+6.5)  74.0 (+3.0)

Table 3: Comparison between offline preference tuning models before (row 2) and after (row 3) merging. The scores
represent absolute “% relative change in harm” with respect to the Aya 23 base model while the gains in parentheses
are reported with respect to the 15% Safety Mix model. The merging technique used here is SLERP.

B.5 Language-based breakdown of
“objective-based” merging

Tables 4 - 7 show the language-based breakdown
of our “objective-based” merging method.

C Computational Comparison

We would like to highlight here that there is little
to no additional computational cost associated with
model merging given the input models are readily
available.

For context, when using GPUs (let’s say 80GB
A100s), the upper bound on merging 8B models
is 180s or 3 minutes (under a minute on average),
requiring only a single GPU. However, the lower
bound on supervised fine-tuning the same 8B mod-
els across 8 such GPUs is 30 minutes and when
preference tuning (with DPO) is at least 16 hours.
For the most part, it would be trivial enough to carry
out merging on CPUs without significant changes
in time taken. And so, it would be much easier
and cheaper to search through the “merging” space
than to train (SFT or DPO, let alone SFT + DPO)
even a second “version B” model. For every model
that you would consider “training” with SFT or
DPO, there could undoubtedly be a dozen more or
an impressively large hard-to-count number with
merging respectively.

Overall, merging models is a relatively inexpen-
sive operation if the models are at hand. We also
note that there is no extra cost associated with merg-
ing at inference time in terms of memory or com-
pute.

D Statistical Significance Testing

We performed extensive significance testing for all
the findings that we present in our paper. Specif-
ically, we performed a pairwise Chi-squared test
(Pearson, 1900) between X and Y (which we define
below) with o« = 0.05 across all languages sepa-
rately, since our prediction variables for both met-
rics were categorical — [harmful / not harmful] for
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safety performance and [win, loss, tie] for gen-
eral performance. This implies that all results with
p-values less than 0.05 here are statistically sig-
nificant. To be explicit, the null hypothesis states
that there is no significant difference between the
observed variables X and Y.

For Figure 2, we ran two separate tests with X =
“15% Mix” model and Y equal to one of “SLERP -
SFT” and “SLERP - DPO” separately, for compar-
ing the “Mix” and the “objective-based” “Merge”
variant. All cases rejected the null hypothesis with
p-values ranging from 5e—3 to 1e—52 (across both
safety and general performance as well as differ-
ent languages), indicating statistically significant
results.

For results in Figures 3 and 6, we performed
separate tests for the SFT and DPO checkpoints
with X = “SLERP” and Y = “TIES”, to compare
the significance of the results between the most
effective and least effective merging methods. All
cases again rejected the null hypothesis with p-
values ranging from le—3 to 4e—>51 across safety
and general performance for all languages.

For Figure 4, we again ran separate tests with
[X = “Mix: All” and Y = “Merge: Western”] for
[EN, FR, SP] and another with [X = “Mix: All”
and Y = “Merge: All”’] with all 6 languages for
comparing the performance between the “Mix” and
the "language-based" “Merge” variants. All cases
across both tests rejected the null hypothesis with
p-values ranging from le—4 to 3e—49.



Type Method English Hindi Arabic French Spanish Russian

0% Safety -58.5 -46.8 -41.4 -333 -32.3 -34.0

Training data mix ~ 15% Safety -69.1 -47.3 -57.2 -51.4 -53.5 -58.1
100% Safety -72.7 -51.4 -59.8 -55.7 -70.7 =727

Linear -58.2 -55.7 -48.2 -44.6 -39.9 -48.2

Merging SLERP -64.4 -65.1 -55.7 -56.4 -51.4 -56.1
TIES -57.5 -45.7 -46.0 -42.4 -33.1 -46.7

DARE-TIES -59.3 -57.9 -57.2 -55.0 -50.7 -56.8

Table 4: Comparison of safety performance with “objective-based merging” across various methods on the Aya
Red-teaming benchmark in terms of the “Relative Percentage Change in Harmful Generations” with respect to the
Aya 23 base model at a language level. All methods utilize SFT checkpoints.

Type Method English Hindi Arabic French Spanish Russian
0% Safety 68.5 57.5 76.5 73.0 77.0 67.5
Training data mix ~ 15% Safety 69.5 67.0 69.0 68.5 68.5 62.0
100% Safety 66.5 56.0 62.5 72.0 66.0 66.0
Linear 74.0 67.5 78.0 78.5 80.5 75.0
Merein SLERP 72.5 64.5 78.5 72.5 78.5 69.0
ging TIES 775 645 785 70.5 80.5 78.0
DARE-TIES 68.0 63.0 74.0 73.5 71.0 72.5

Table 5: Comparison of general performance with “objective-based merging” across various methods on the
Multilingual Dolly-200 in terms of “Absolute Win-rates” against the Aya 23 base model at a language level. All
values are represent percentages. All methods utilize SFT checkpoints.

Type Method English Hindi Arabic French Spanish Russian
0% Safety -59.1 -45.6 -36.5 -28.7 -28.6 -34.4
Training data mix ~ 15% Safety -68.8 -42.7 -57.9 -42.2 -54.9 -58.1
100% Safety -76.4 -62.8 -61.3 -62.4 -67.0 -77.9
Linear -334 -46.7 -55.0 -50.0 -45.3 -61.1
Merein SLERP -56.1 -61.1 -61.8 -55.4 -49.6 -62.9
gimng TIES 597 <615 694 582  -66.2 -75.5
DARE-TIES -53.2 -61.8 -61.1 -48.2 -48.3 -62.6

Table 6: Comparison of safety performance with “objective-based merging” across various methods on the Aya
Red-teaming benchmark in terms of the “Relative Percentage Change in Harmful Generations” with respect to the
Aya 23 base model at a language level. All methods utilize DPO checkpoints.

Type Method English Hindi Arabic French Spanish Russian

0% Safety 71.5 56.0 72.0 75.0 79.5 70

Training data mix ~ 15% Safety 74.0 61.0 71.5 73.0 78 68.5
100% Safety 77.0 68.0 77.5 72.0 79.5 77

Linear 77.0 63.5 78.0 80.0 80.5 74.5

Mergin SLERP 81.0 69.0 79.5 77.5 84 77.5

gme TIES 595 610 690 656 65.5 61.0
DARE-TIES 77.5 68.5 78.5 83.0 82 81.5

Table 7: Comparison of general performance with “objective-based merging” across various methods on the
Multilingual Dolly-200 in terms of “Absolute Win-rates” against the Aya 23 base model at a language level. All
values are represent percentages. All methods utilize DPO checkpoints.
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