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Abstract

Large Language Models (LLMs) are increas-001
ingly used worldwide for diverse applications.002
However, ensuring their safe use continues to003
be a complex challenge. To tackle this, safety004
is often embedded into models as a “behav-005
ior” and is frequently overfit to harms prevalent006
in Western-centric datasets. In this work, we007
aim to address this by systematically explor-008
ing the potential of model merging in this di-009
verse multi-task setting — considering safety010
in LLMs as a “task” and combining models011
trained for safety-specific tasks with those for012
more general-purpose tasks, all within a multi-013
lingual context. We categorize our experiments014
into two primary groups: objective-based and015
language-based, according to the fine-tuning016
objective of the models being merged. Our re-017
sults demonstrate that objective-based merging018
is significantly more effective than data mixing,019
yielding improvements of up to 8% in general020
performance and 10% in safety. We also find021
that language-based merging is highly effective022
— by merging monolingual models, we achieve023
a 4% increase in general performance and 7%024
reduction in harm across all languages over the025
data mixing approach. Overall, our compre-026
hensive study of model merging in the context027
of multilingual safety provides a useful frame-028
work for building strong and safe multilingual029
models without the need for retraining them.030

1 Introduction031

Large language models demonstrate strong multi-032

tasking capabilities across diverse domains (Brown033

et al., 2020; Radford et al., 2019). It is well es-034

tablished that equipping a model with any kind of035

capabilities with the standard paradigm of training036

requires copious amounts of data. Multi-tasking037

abilities typically arise from fine-tuning models038

on mixed datasets, which combine data from var-039

ious sources and across many tasks (Raffel et al.,040

2023; Wang et al., 2019; Üstün et al., 2024). How-041

ever, determining the optimal strategy for mixing042

datasets in multi-task training is often complex and 043

resource-intensive, as it must ensure that all tasks 044

benefit from the shared training process — espe- 045

cially in the context of safety, where the general 046

performance of models often gets compromised in 047

exchange for safety (Bai et al., 2022a; Tsipras et al., 048

2019; Bianchi et al., 2024; Ray and Bhalani, 2024; 049

Üstün et al., 2024). 050

More recently, an emerging approach for en- 051

abling multi-tasking has focused on training dis- 052

tinct models for specific tasks and combining their 053

parameters together using a predefined algorithm 054

(Tam et al., 2023; Yang et al., 2024; Li et al., 2024a; 055

Wan et al., 2024; Zhou et al., 2024; Davari and 056

Belilovsky, 2024), to yield a resultant model that 057

performs well on all of the considered tasks. This 058

method has shown great promise in building mod- 059

els with new capabilities without incurring addi- 060

tional costs and challenges that accompany train- 061

ing from scratch. However, a key question remains 062

– how does it compare to traditional data mixing 063

and weighting approaches? We are, in particular, 064

interested in exploring LLM safety with the per- 065

spective that “safety” can be conceptualized as an 066

additional “task-solving” capability that a model 067

can learn than a behavior that needs to be embed- 068

ded via the method of model merging. 069

We evaluate the trade-offs between safety and 070

general performance under severe multi-task con- 071

straints – optimizing for helpfulness and harmless- 072

ness in a multilingual setting. The inherent diffi- 073

culties of handling multiple languages, each with 074

its unique linguistic structures, cultural nuances, 075

and potential biases, present a formidable task for 076

aligning these models (Schwartz et al., 2022; Kotek 077

et al., 2023; Khandelwal et al., 2023; Vashishtha 078

et al., 2023; Khondaker et al., 2023; Üstün et al., 079

2024; Aryabumi et al., 2024; Singh et al., 2024). 080

Mitigating harm across multiple languages is crit- 081

ical, given the wide adoption of LLMs across the 082

world. However, a common issue in safety work 083
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currently is the narrow focus on addressing it for084

English. And so, the challenges are compounded085

in this scenario by the scarce amount of safety data086

available across different languages (Singh et al.,087

2024). However, it is precisely because of these088

severe constraints that this presents an interesting089

setting to thoroughly evaluate the benefits of model090

merging.091

We conduct an exhaustive study to compare tra-092

ditional approaches for balancing multi-objective093

training by curating a wide set of training data mix-094

tures with model merging methods for combining095

models trained on different subsets of data. Our096

large-scale evaluation runs across 6 languages from097

5 different language families and encompasses098

both supervised fine-tuning and preference training099

across 4 different merging techniques. Through our100

comprehensive experimental setup, we summarize101

our key findings and contributions as follows:102

1. Merging outperforms mixing. We find that103

model merging is more effective than weighting104

data mixtures for achieving a good balance between105

safety and generalizability in language models. The106

top-performing methods for individual objectives107

were TIES, which reduced harm by 10.4%, and108

Linear merging, which improved general perfor-109

mance by 8.6% over simple data mixing. The110

best approach for balancing both objectives was111

SLERP, which consistently achieved optimal trade-112

offs across different training strategies, with 3.1%113

reductions in harm and 7.0% gains in general per-114

formance over the data mixing approach.115

2. Merging is effective at extending multilin-116

gual coverage. Instead of merging across objec-117

tives (safety-finetuned model and general-finetuned118

model), we experiment with merging across lan-119

guages. Our findings indicate that when each120

model is trained on a mixture of safety and gen-121

eral data in a single language and then merged,122

it achieves improvements of up to 3.8% in gen-123

eral benchmarks and a reduction of up to 6.6% in124

harmful generations compared to a multilingually125

finetuned model.126

3. Not all merging methods are equal. Some127

merging methods consistently result in net posi-128

tive gains across both axes of performance (safety129

and general) simultaneously, while others display130

clear trade-offs. Model merging algorithms like131

Linear and TIES bring gains in only one dimen-132

sion. For example, Linear merging resulting in133

improvements of up to 9% on general benchmarks134

but showing performance degradation as high as 135

8% on safety evaluations. Whereas merging mod- 136

els using DARE-TIES and SLERP is more effec- 137

tive in balancing the dual objectives, with SLERP 138

showing the most significant improvements in both 139

general performance and harm reduction (7% and 140

3.1% respectively). We see a similar pattern with 141

linear merging. 142

2 Mix versus Merge Setup 143

In this section, we detail our experimental setup, 144

which involves training models with various data 145

mixtures targeting different objectives to establish 146

the “Mix”, followed by merging some of these 147

trained checkpoints into a single model to obtain 148

the “Merge”. This setup serves as the founda- 149

tion for our comprehensive comparison of merging 150

methods’ effectiveness in balancing safety and gen- 151

eral performance in multilingual settings. Our ex- 152

periments are set across both supervised fine-tuning 153

(SFT) and offline preference tuning, specifically 154

Direct Preference Optimization (DPO) (Rafailov 155

et al., 2023). 156

2.1 Merging Approaches 157

We conduct extensive experiments with diverse 158

data mixtures to create a pool of model candidates. 159

From this pool, we merge the best-performing 160

checkpoints using four different algorithms to pro- 161

duce the final merged models. 162

1) Linear Merge: Linear merging involves sim- 163

ple linear weighted averaging of model parameters, 164

weighted by specified coefficients. This method 165

is widely used in convex optimization and deep 166

learning (Nagarajan and Kolter, 2021; von Oswald 167

et al., 2022; Wortsman et al., 2022). This process 168

is formulated as: 169

θmerged =
N∑
i=1

αiθi (1) 170

where αi represents the weight assigned to the pa- 171

rameters of each model, with the constraint that 172∑N
i=1 αi = 1. We conduct ablations by varying 173

the values of αi to investigate different weighting 174

ratios for the base models. 175

2) Spherical Linear Interpolation (SLERP): 176

This technique is used to smoothly blend two 177

models by interpolating their weights along the 178

shortest path on a high-dimensional sphere (White, 179

2016; Goddard et al., 2024). SLERP preserves 180
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Figure 1: Overview of our Mix versus Merge framework: We analyze the differences in merging models on
trained with specialized multilingual datasets, particularly in the context of safety, in contrast to those trained
directly on mixtures of these datasets. We follow the LLM-as-a-judge approach for evaluating the performance of
these models along two axes – general and safety.

each model’s unique characteristics and geometric181

properties, even in complex spaces. The process182

involves normalizing the vectors to ensure equal183

length, calculating the angle Ω between them, and184

performing the interpolation as follows:185

θSLERP(t) =
sin((1− t)Ω)

sin(Ω)
θ1 +

sin(tΩ)

sin(Ω)
θ2 (2)186

SLERP typically merges only two models at a time.187

Here, t ∈ [0, 1] determines the interpolation weight,188

with t = 0 using only Model 1 and t = 1 using189

only Model 2. This method improves upon stan-190

dard weight averaging by preserving the geometric191

integrity of the model.192

3) TIES-Merging: This method efficiently com-193

bines multiple models by addressing parameter in-194

terference and sign conflicts, which occur when195

models suggest opposing adjustments to the same196

parameter due to task-specific fine-tuning (Yadav197

et al., 2023). The process begins by trimming pa-198

rameters to retain only those with significant mag-199

nitude changes, i.e., the top-k%. It then resolves200

sign conflicts by creating a consensus sign vector:201

s = sign

(
N∑
i=1

sign(θi)

)
(3)202

Finally, it merges the parameters by averaging 203

those that align with the consensus sign: 204

θmerged = s · 1

N

N∑
i=1

|θi| (4) 205

TIES-Merging ensures that only parameters con- 206

tributing to the agreed-upon direction are included 207

in the final model, enhancing performance. 208

4) DARE-TIES: This technique (Yu et al., 2024) 209

builds upon TIES by applying dropout to the delta 210

parameters before merging them using the TIES 211

method. It reduces interference from redundant 212

parameters and helps maintain the model’s overall 213

performance. 214

We apply gradient weighting to all merging 215

methods except for Linear Merge. With weight- 216

ing, we define a blend ratio to specify the merge 217

between the model parameters. Gradient weighting 218

dictates how that ratio changes across the specified 219

values and uses linear interpolation to further estab- 220

lish a smoother gradient of blend ratios for merging 221

the parameters. For example, if the blend ratio be- 222

tween Model 1 and Model 2 is defined as [0, 0.5, 223

1], this implies that the merge begins with 100% 224

of Model 2’s parameters, gradually transitioning 225

to a 50-50 blend between the two and concluding 226

with only Model 1’s parameters at the end. For all 227

merging methods, we conduct an exhaustive search 228

over the set {0, 0.3, 0.5, 0.7, 1} to determine the 229
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Figure 2: Mixing versus merging: Safety and general performance of a 15% Safety Mix model (§2.2) against SLERP
merging, which emerges as the best method for balancing trade-offs, for both SFT and DPO based checkpoints.
Lower is better for (a) and higher is better for (b). Both metrics are measured with respect to the Aya 23 base model.

optimal parameter contributions. Our experiments230

utilize the mergekit library from Arcee (Goddard231

et al., 2024).232

2.2 Training Data233

Safety dataset. We use the human-annotated234

prompts from the multilingual Aya Red-teaming235

dataset (Aakanksha et al., 2024) as seeds to syn-236

thetically generate pairs of adversarial prompts237

and contextually safe completions following the238

synthetic data generation pipeline outlined in239

Aakanksha et al. (2024).240

General purpose dataset. Following previous241

works (Aakanksha et al., 2024), we use a sampled242

set of 10,000 English prompts from the Ultrafeed-243

back Binarized (Cui et al., 2023; Tunstall et al.,244

2023) dataset translated into our target languages.245

This dataset will be referred to as the “general-246

purpose” dataset for the remainder of the paper.247

Training data Mix. We study models trained on248

different mixtures of data - 0% Safety Mix, 15%249

Safety Mix and 100% Safety Mix. The varying250

ratio of safety data simulates different objectives.251

For example, training with 100% safety data allows252

us to model an upper bound of expected harm miti-253

gation and to obtain a model optimized for safety.254

In contrast, the 15% Safety mix consists of a com-255

bination of safety and general-purpose data in a 1:5256

ratio – this represents a more real-world scenario257

typical of deployment settings and maintains a rea-258

sonable ratio for optimizing for both helpfulness259

and harmlessness of a model (Bai et al., 2022b).260

Unless specified otherwise, we use the 15% Safety261

mix as the baseline for our experimentation. The262

other mixes follow similar relationships between263

their naming and ratios. 264

2.3 Key Ablations 265

In order to study the relative merits of merging for 266

different objectives across a wide set of languages, 267

we conduct extensive ablations. We detail some of 268

the most critical experiment variants below: 269

Objective-based merging. To evaluate the rela- 270

tive merits of merging on balancing dual-objectives, 271

we merge models that have been separately opti- 272

mized for general-purpose abilities and safety. This 273

builds upon our multilingual 0% and 100% Safety 274

Mixes (see Section 2.2) to balance the trade-offs 275

between safety and general performance. 276

Language-based merging. Multilinguality re- 277

mains one of the most challenging tasks in lan- 278

guage modeling. We aim to determine whether 279

language-specific models can be used off-the-shelf 280

to incorporate language capabilities and explore 281

how merging models based exclusively on different 282

languages affects their downstream performance. 283

Specifically, we investigate whether combining 284

models optimized for both safety and general per- 285

formance with a 15% language-specific safety mix 286

for our target languages leads to better performance 287

than training on a mixture of those languages. For 288

clarity, to produce a multilingual model with safe 289

and general-purpose abilities for English, French, 290

and Spanish (referred to as the EN-FR-SP group 291

later), we merge models optimized independently 292

on a 15% Safety Mix for each of these languages. 293

2.4 Evaluation 294

Baseline. We evaluate the performance of all 295

models against that of a previous checkpoint of 296

4



Type Method SFT DPO
Aya RT (↓) Dolly-200 (↑) Aya RT (↓) Dolly-200 (↑)

Training data mix
0% Safety -41.4 70.0 -39.2 70.7
15% Safety -56.6 67.4 -54.69 71.0
100% Safety -64.4 64.8 -68.2 75.0

Merging

Linear -49.1 (-7.5) 76.0 (+8.6) -48.6 (-6.1) 75.0 (+4.0)
SLERP -58.2 (+1.2) 72.6 (+5.2) -57.8 (+3.1) 78.0 (+7.0)
TIES -45.2 (-11.4) 74.9 (+7.5) -65.1 (+10.4) 63.6 (-7.4)
DARE-TIES -56.1 (-0.5) 70.0 (+2.6) -55.9 (+1.2) 78.5 (+7.5)

Table 1: Comparison of Safety and General performance across various methods. Safety performance is evaluated us-
ing the Aya Red-teaming (Aya RT) benchmark in terms of the “Relative Percentage Change in Harmful Generations”
while General performance is evaluated with the Dolly-200 benchmark as “Absolute Win-rate Percentages”. Both
metrics are measured with respect to the Aya 23 base model. Scores are aggregated across six languages: English,
Hindi, French, Spanish, Arabic, and Russian. Performance deltas, highlighted in color, represent differences from
the 15% Safety Mix baseline.

the Aya 23 8B model (Aryabumi et al., 2024) –297

which henceforth acts as the baseline for all evalu-298

ations. This model is also treated as the pre-trained299

base model for all of our experiments. We note that300

this model was not optimized for safety. Hence, we301

measure the ability to minimize harmful model gen-302

erations with respect to this model (% decrease).303

We establish two axes of performance for our304

experiments — how safe model generations are305

and how well they perform on general-purpose306

benchmarks. We measure these with the following307

benchmarks:308

Safety benchmark. We use the English prompts309

from the human-annotated Aya Red-teaming310

dataset (Aakanksha et al., 2024) and translate them311

into all of our target languages using the NLLB-312

3.3B model for an apples-to-apples comparison -313

i.e., for Hindi, French, Spanish, Arabic and Rus-314

sian, resulting in a final set of 6 languages for eval-315

uation. We measure the safety performance on this316

dataset as the negative relative percent change in317

harmful model generations with respect to the Aya318

23 base model and report aggregated scores over319

all languages.320

General benchmark. We use the Multilingual321

Dolly-200 Eval set (Singh et al., 2024; Üstün et al.,322

2024), which measures the open-ended generation323

capabilities of a language model. This dataset con-324

sists of a sample of 200 prompts from the Dolly-325

15k dataset translated into a number of languages,326

which then acts as a test bed for measuring the327

general performance of a language model. We use328

win-rates against the baseline to track performance329

changes. 330

To evaluate all experiments, we closely fol- 331

low the evaluation framework of previous works 332

(Aakanksha et al., 2024) and use the LLM-as- 333

a-judge approach with GPT-41 as the evaluator. 334

Given our dual axes of evaluation, safety and gen- 335

eral performance, we instruct GPT-4 to classify 336

model outputs as harmful or not to assess safety 337

performance and to indicate an overall preference 338

between two models’ responses (experiment ver- 339

sus the Aya 23 base model) to measure the general 340

performance. 341

3 Results and Discussion 342

In this section, we will present our results and dis- 343

cuss our findings. 344

3.1 Model merging wins over data mixing 345

Table 1 summarizes our findings and presents re- 346

sults for objective-based merging. The model 347

trained on the 15% Safety Mix demonstrates strong 348

performance on general tasks, achieving win rates 349

of 67.4% for SFT and 71% for DPO. However, 350

we see even greater improvements when merging 351

checkpoints, with win-rates rising to 72.6% and 352

78%, respectively. We observe similar patterns in 353

safety performance — the 15% Safety Mix model 354

reduces harm by 56.6% for SFT and 54.7% for 355

DPO. However, by merging checkpoints instead of 356

mixing data, we achieve further reductions, reach- 357

ing 58.2% for SFT and 57.8% for DPO. We evalu- 358

1https://platform.openai.com/docs/models/gpt-4-turbo-
and-gpt-4
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Figure 3: Comparison between different merging methods across safety and general performance with DPO
checkpoints. Both metrics are measured with respect to the Aya 23 base model. Lower is better for the left and
higher is better for the right. The red dashed line shows the model trained on a mix of safety and general data (15%
Safety Mix).

ate the model with the best trade-off by considering359

the average percentage change of both objectives360

relative to the 15% Safety Mix model. Amongst361

the four methods evaluated, SLERP proved to be362

the most effective in balancing the two-fold objec-363

tive of safety and general performance. Figure 2364

shows the outcome of SLERP merging for both365

SFT and DPO checkpoints against the 15% Safety366

Mix baseline.367

Overall, this supports the claim that merging368

models explicitly trained for different objectives369

outperforms building data mixtures aimed at the370

same goals. This is particularly compelling as a371

technique given previous studies have shown that372

optimizing for safety in a language model can nega-373

tively impact its general-purpose abilities (Bianchi374

et al., 2024; Ray and Bhalani, 2024; Bhardwaj et al.,375

2024; Üstün et al., 2024).376

3.2 Not all merging methods are equal377

Merging almost always benefits general perfor-378

mance, with all techniques but one (TIES) outper-379

forming the 15% Safety Mix baseline (see Table 1).380

We observe gains as high as 7.5% in general perfor-381

mance when combining models with DARE-TIES,382

closely followed by SLERP with 7% gains. When383

focusing on safety performance, Table 1 illustrates384

that almost all merging methods perform superior385

to the 15% Safety Mix baseline, with the exception386

of Linear lagging behind by around 6%.387

The dissimilarity of the checkpoints optimized388

for two different objectives can degrade perfor-389

mance when merging linearly, as the specialized390

parameter configurations for each task get diluted.391

On the other hand, we observe that TIES estab- 392

lishes substantial improvements in harm reduction 393

by around 10% over the 15% Safety Mix. TIES 394

strategically combines parameters based on their 395

role in each task, preventing destructive interfer- 396

ence while maintaining task-specific capabilities. 397

When considering the trade-off between the two pri- 398

mary objectives — enhancing general performance 399

and minimizing harm — SLERP emerges as the 400

overall winner. This is mainly because SLERP 401

finds intermediate points that balance both objec- 402

tives’ requirements by following the natural man- 403

ifold of the parameter space rather than forcing 404

direct averaging. The spherical interpolation in 405

SLERP maintains relative distances between pa- 406

rameters, preventing one objective from dominat- 407

ing the other during merging. 408

3.3 Not all languages benefit equally 409

Next, we break down the multilingual evaluation 410

and assess the effects of merging methods on indi- 411

vidual languages. A detailed examination of Figure 412

3 (and Figure 6 in the Appendix) reveals that al- 413

though overall improvements are consistent, the 414

optimal trade-offs for different languages depend 415

mostly on the underlying training regime of the 416

model checkpoints used for merging. 417

Highest beneficiaries. For DPO, we find that 418

Russian shows the most successful safety perfor- 419

mance with a reduction of 15% over the 15% Safety 420

Mix model with TIES merging. Spanish exhibits 421

the most impressive improvements with around 6% 422

with SLERP over the 15% Safety Mix baseline in 423

general performance. For SFT, Hindi displays the 424
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Figure 4: Monolingual model merging: We compare mixing vs merging with SFT checkpoints optimized for
languages. The “[All]” bars represent model variants with all 6 languages – English, Hindi, French, Spanish, Arabic
and Russian. “[EN,FR,SP]” is the pool of 3 “monolingual” models – English, French and Spanish . Both metrics
are measured with respect to the Aya 23 base model. Lower is better for the left and higher is better for the right.

largest reduction in harm (12.14%) with SLERP425

over the 15% Safety Mix model. However, Spanish426

continues to reap the most benefits from merging427

with an improvement of 10% gains in general per-428

formance with both Linear and TIES.429

Lowest beneficiaries. When merging DPO-430

based checkpoints (Figure 3), we surprisingly find431

English to benefit the least from merging across432

both axes of performance. We observe an overall433

decline of 24.87% in safety and 14.5% in general434

metrics compared to the 15% Safety Mix model435

with Linear and TIES merging respectively. For436

SFT checkpoints in the merging pool (Figure 6),437

we find that Spanish shows the lowest safety per-438

formance with TIES with an increase in harmful439

generations of around 16% while Hindi has the440

least gains in general performance with DARE-441

TIES with a decline of about 4% in comparison to442

the 15% Safety Mix.443

It is worth noting that while merging leads to444

performance degradation in some languages com-445

pared to data mixing, it still delivers strong results,446

maintaining an absolute win-rate above 50% for all447

languages relative to the base model.448

3.4 Merging monolingual models449

Given the challenges posed by multilinguality and450

the linguistic and cultural variability introduced by451

each language, especially in the backdrop of safety,452

next we study the impact of merging models ex-453

clusively grounded in different languages on their454

downstream performance. For this set of experi-455

ments, we fine-tune our base model, Aya 23 8B,456

on monolingual data maintaining the 15% Safety457

Mix (§2.2) and use the resulting checkpoints for458

merging models across languages. For instance, 459

to obtain a French-only model optimized for both 460

safety and general performance, we fine-tune the 461

model with only French samples, maintaining a 462

15% mix of safety in the training data. Extending 463

this process for all languages yields 6 separately 464

fine-tuned models on monolingual data. 465

Additionally, to understand the impact of scal- 466

ing the number of languages during merging, we 467

combine these models in gradation of two sets: 468

one with 3 languages and another with 6. The 469

3-language set includes English, French, Spanish 470

chosen for their closer familial ties and is referred 471

to as the “[EN,FR,SP]” selection. The 6-language 472

set comprises all our target languages — English, 473

French, Spanish, Hindi, Arabic and Russian — and 474

is termed “[All]” henceforth. 475

We focus on TIES for this set of experiments 476

because its permutation-invariant nature helps us 477

eliminate additional confounders and isolate the 478

impact of language-based merging on overall per- 479

formance. We use the same baseline as in previous 480

experiments: a fine-tuned version of Aya 23 on a 481

multilingual 15% Safety Mix. Figure 4 presents 482

the results. We find that when compared to the 483

base model, we successfully increase general per- 484

formance and reduce harm generations across all 485

variants. Merging 6 monolingual models (“[All]”) 486

consistently outperforms the corresponding “mix” 487

baseline, with safety metrics showing harm reduc- 488

tions as high as 6.6% and absolute improvements of 489

3.8% in general performance. However, we also ob- 490

serve some evidence of cross-lingual interference; 491

merging 3 models (“[EN,FR,SP]”) yields better 492

performance on both tasks compared to merging 493
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6 models with differences of approximately 2%494

in safety and 6% in general performance. These495

results highlight model merging as an effective496

method for integrating a diverse set of languages497

without sacrificing performance on key metrics.498

The choice of languages and the number of models499

significantly influence the performance gains.500

4 Related Work501

Model Merging. Recent research has demon-502

strated success in developing innovative strategies503

to harness the collective power of multiple LLMs504

by suggesting methods for combining their unique505

strengths. This approach offers an efficient solu-506

tion and has been widely explored for fine-tuned507

models sharing the same pre-trained base model,508

thereby sharing a part of their optimization trajec-509

tories (Frankle et al., 2020; Izmailov et al., 2019;510

Ilharco et al., 2023; Wortsman et al., 2022). Ini-511

tial efforts focused on merging models with simple512

weighted averaging of the parameters (Wortsman513

et al., 2022; Matena and Raffel, 2022; Gupta et al.,514

2020) and showed dramatic performance gains515

for the resultant merged model. More recently,516

many works have investigated non-linear meth-517

ods of merging models (White, 2016; Yadav et al.,518

2023; Yu et al., 2024) while aiming to improve519

general downstream performance. However, some520

recent works have focused on ensuring the safety521

of LLMs when merging, having demonstrated that522

misalignment transfers trivially from the base to523

the combined model in this process (Hammoud524

et al., 2024). Other works “realign” language mod-525

els by fusing an initial aligned model with many526

task vectors based on the suitably identified safety527

subspace (Yi et al., 2024). Model merging has528

also been extended to a multilingual setting – for529

developing task-solving LLMs for low-resource530

languages without the availability of SFT data in531

the target languages (Tao et al., 2024). Our work532

distinguishes itself from prior approaches due to533

the complexity of the contrasting targets it seeks534

to satisfy — balancing safety and general-purpose535

objectives across a wide set of languages. To the536

best of our knowledge, no prior work has investi-537

gated the alignment of LLMs via model merging538

in a multilingual context while optimizing for a539

two-fold objective.540

Multilingual Safety. With the increased perva-541

siveness of LLMs in recent times, the landscape of542

language model research has evolved with a height-543

ened emphasis on safeguarding user experiences, 544

thereby placing an increased focus on mitigating 545

potential risks across diverse linguistic contexts. 546

Several works (Deng et al., 2023; Liu et al., 2023) 547

have investigated challenges around multilingual 548

jailbreaks, and introduced novel frameworks and 549

datasets for building robust mitigation strategies. 550

Previous work has examined multilingual toxic- 551

ity mitigation with a detailed comparison between 552

SFT and retrieval-augmented-based methods (Poz- 553

zobon et al., 2024). It has been shown that LLMs 554

tend to generate more harmful and irrelevant re- 555

sponses in low-resource languages when prompted 556

maliciously (Shen et al., 2024). Techniques such as 557

safety context distillation (Üstün et al., 2024) which 558

harness synthetic data to institute safety guardrails 559

into a model, have shown significant promise to- 560

wards reducing the harmfulness in model genera- 561

tions. Overall, for a more standardized analysis of 562

safety in multilingual settings, several benchmarks 563

(Wang et al., 2023; Jain et al., 2024; Aakanksha 564

et al., 2024) have been introduced and established 565

in recent times. While methods such as SFT and 566

DPO (Aakanksha et al., 2024; Li et al., 2024b) 567

have been studied extensively for aligning language 568

models, some recent works have also pivoted to- 569

wards weight interpolation for the same objective 570

and have demonstrated the effectiveness of adding 571

a safety vector to compromised fine-tuned mod- 572

els for successful realignment (Bhardwaj et al., 573

2024). We direct our efforts towards the devel- 574

opment of aligned language models by merging a 575

diverse range of languages. 576

5 Conclusion 577

In this work, we demonstrated the effectiveness 578

of model merging as a potential solution towards 579

building highly-performant aligned language mod- 580

els across a wide range of languages. Through our 581

comprehensive experimentation, we showed how 582

models obtained as a result of merging exhibit su- 583

perior performance on the dual axes of safety and 584

general metrics. However, our experiments also 585

revealed that there is variability in the trade-offs 586

established by different merging algorithms, espe- 587

cially in a multilingual context. Additionally, we 588

also demonstrated the success of combining mod- 589

els to extend language coverage while maintaining 590

performance on the relevant metrics. 591
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Limitations592

While model merging offers a promising solution593

for better aligning LLMs, it poses a big challenge594

towards the interpretability of such models. The595

underlying weight distributions of neural networks596

are notoriously difficult to understand as they lack597

inherent meaning and merging only adds to the ob-598

scurity. Additionally, our work in its current shape599

does not include a hybrid set of experiments be-600

tween the tasks and the languages, which would601

be an interesting setting to analyze the merits of602

merging in. Furthermore, it would also be valuable603

to study the impact of adding more tasks and/or604

objectives to the merging recipe on overall perfor-605

mance.606
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A Additional Ablations867

A.1 Comparison of merging applied to DPO868

and SFT.869

Model merging is a highly adaptable technique that870

can be applied at any stage of the training process871

owing to its simple input requirement of model872

checkpoints. To determine the optimal stage for873

maximizing its benefits, we merge and evaluate874

SFT and DPO checkpoints independently as these875

techniques have shown great success towards the876

alignment of language models (Aakanksha et al.,877

2024; Shen et al., 2024).878

A.2 Sensitivity to hyperparameters.879

Previous works (Ilharco et al., 2023) have shown880

that merging is sensitive to the hyperparameters881

involved and have developed sophisticated algo-882

rithms (Akiba et al., 2024; Xiao et al., 2023; Davari883

and Belilovsky, 2024) to find the optimal values for884

the same. To this end, we seek to find the impact of885

varying the weighting scheme of Linear merging886

on both general performance and safety.887

A.3 Comparison between additional merging888

methods889

In the main text, we focus on standard model merg-890

ing methods like weight averaging, SLERP etc.891

and explore the potential of merging through them.892

However, we extend our study here to measure the893

impact of additional merging methods in order to894

debias our findings from a limited subset of merg-895

ing methods.896

B Additional Results897

B.1 DPO merges are more robust than SFT898

merges899

Given the versatility of merging, which can be ap-900

plied to any grouping of checkpoints, we separately901

compare merging gains when applied to models op-902

timized with SFT and DPO (Table 1). We find that903

DPO merging better preserves safety constraints904

while improving performance, while SFT merging905

shows a performance-safety tradeoff. This suggests906

that DPO training creates more stable and consis-907

tent parameter spaces for merging than SFT.908

More concretely, our experiments show larger909

consistent improvements when merging DPO910

checkpoints, with average gains of 2.8% and 2.2%911

over the base model across the four merging meth-912

ods assessed for general performance and safety,913

respectively. While merging SFT checkpoints also 914

resulted in significant general performance gains, 915

averaging around 6%, it led to an average increase 916

of 4.6% in harmful generations relative to the 15% 917

Safety Mix model. 918

B.2 Impact of safety model weight on merging 919

Here, we evaluate how model coefficients during 920

merging impact our “objective-based” merging ap- 921

proach on our dual axes of performance. Figure 5 il- 922

lustrates that the safety performance of the merged 923

model is greatly enhanced when a higher weight 924

is attributed to the safety model. The merged 925

model can mitigate harm more effectively than the 926

15% Safety Mix baseline, even with a normalized 927

weighting for the constituent safety model as low 928

as 0.3. For general performance, we observe that 929

increasing the weight of the safety-focused model 930

leads to a decrease in the model’s performance 931

on general tasks. However, across all weightings, 932

merging models consistently outperforms the data 933

mix run. 934

B.3 SLERP establishes the best trade-offs 935

In this section, we experimented with some addi- 936

tional merging methods with the DPO checkpoints. 937

Results can be found in Table 2. Here, Task Arith- 938

metic (Ilharco et al., 2023) seems to perform the 939

best, quite similarly to SLERP (but inferior), while 940

the other two seem lacking. Model Stock’s (Jang 941

et al., 2024) performance is contingent on the al- 942

gorithm exploiting certain geometric properties of 943

the weight space to find the optimal set of weights 944

with which to combine the models. However, this 945

approach might overlook nuanced interactions be- 946

tween model parameters, potentially limiting per- 947

formance gains in complex scenarios. In case of 948

DELLA-merging (Deep et al., 2024), it relies heav- 949

ily on magnitude based pruning under the assump- 950

tion that magnitudes correlate to importance, which 951

may not necessarily be true. 952

B.4 Continual training after merging 953

In this section, we examine the dynamics of merg- 954

ing and preference training, focusing on the best 955

ways to integrate both into the training pipeline. 956

More specifically, we use DPO to assess whether 957

continual preference tuning of a merged checkpoint 958

results in stronger models compared to a merged 959

model where the constituent models were individ- 960

ually preference-tuned. As can be seen in Table 961

3, our experiments demonstrate that continually 962
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Figure 5: Ablation: Effect of “safety weighting” while Linear merging. We vary the weight assigned to the 100%
Safety model while merging linearly and measure the impact of the same. Both metrics are measured with respect to
the Aya 23 base model. Lower is better for the left and higher is better for the right.
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Figure 6: Comparison between different merging methods across safety and general performance with SFT
checkpoints. Both metrics are measured with respect to the Aya 23 base model. Lower is better for the left and
higher is better for the right. The red dashed line represents the model trained on a mixture of safety and general
data (15% Safety Mix).

Type Method DPO
Aya RT (↓) Dolly-200 (↑)

Merging
Task Arithmetic -53.3 (-1.3) 78.8 (+7.8)
Model Stock -4.2 (-50.5) 45.2 (-25.8)
DELLA -19.7 (-35.0) 73.0 (+2.0)

Table 2: Comparison of Safety and General performance across some additional merging methods on DPO
checkpoints. Safety performance is evaluated using the Aya Red-teaming (Aya RT) benchmark in terms of the
“Relative Percentage Change in Harmful Generations” while General performance is evaluated with the Dolly-200
benchmark as “Absolute Win-rate Percentages”. Both metrics are measured with respect to the Aya 23 base model.
Scores are aggregated across six languages: English, Hindi, French, Spanish, Arabic, and Russian. Performance
deltas, highlighted in color, represent differences from the 15% Safety Mix baseline (refer Table 1).

preference-tuning the models after performing the963

merge yields better outcomes in terms of alignment.964

The “after” merging variant (SFT → ⟨merge⟩ →965

DPO) shows better safety performance by reducing966

harmful generations by 6.5% whereas the “before”967

merging variant (SFT → DPO →⟨merge⟩) exhibits968

a 3.1% decrease. We observe improvements in the 969

general performance of both variants, with the “af- 970

ter” merge variant yielding a 3% increase, and the 971

“before” merge variant achieving a 7% increase. 972
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Training pipeline Aya RT (↓) Dolly-200 (↑)

SFT → ⟨merge⟩ -58.2 (+1.6) 72.6 (+5.2)
SFT → DPO → ⟨merge⟩ -57.8 (+3.1) 78.0 (+7.0)
SFT → ⟨merge⟩ → DPO -61.2 (+6.5) 74.0 (+3.0)

Table 3: Comparison between offline preference tuning models before (row 2) and after (row 3) merging. The scores
represent absolute “% relative change in harm” with respect to the Aya 23 base model while the gains in parentheses
are reported with respect to the 15% Safety Mix model. The merging technique used here is SLERP.

B.5 Language-based breakdown of973

“objective-based” merging974

Tables 4 - 7 show the language-based breakdown975

of our “objective-based” merging method.976

C Computational Comparison977

We would like to highlight here that there is little978

to no additional computational cost associated with979

model merging given the input models are readily980

available.981

For context, when using GPUs (let’s say 80GB982

A100s), the upper bound on merging 8B models983

is 180s or 3 minutes (under a minute on average),984

requiring only a single GPU. However, the lower985

bound on supervised fine-tuning the same 8B mod-986

els across 8 such GPUs is 30 minutes and when987

preference tuning (with DPO) is at least 16 hours.988

For the most part, it would be trivial enough to carry989

out merging on CPUs without significant changes990

in time taken. And so, it would be much easier991

and cheaper to search through the “merging” space992

than to train (SFT or DPO, let alone SFT + DPO)993

even a second “version B” model. For every model994

that you would consider “training” with SFT or995

DPO, there could undoubtedly be a dozen more or996

an impressively large hard-to-count number with997

merging respectively.998

Overall, merging models is a relatively inexpen-999

sive operation if the models are at hand. We also1000

note that there is no extra cost associated with merg-1001

ing at inference time in terms of memory or com-1002

pute.1003

D Statistical Significance Testing1004

We performed extensive significance testing for all1005

the findings that we present in our paper. Specif-1006

ically, we performed a pairwise Chi-squared test1007

(Pearson, 1900) between X and Y (which we define1008

below) with α = 0.05 across all languages sepa-1009

rately, since our prediction variables for both met-1010

rics were categorical – [harmful / not harmful] for1011

safety performance and [win, loss, tie] for gen- 1012

eral performance. This implies that all results with 1013

p-values less than 0.05 here are statistically sig- 1014

nificant. To be explicit, the null hypothesis states 1015

that there is no significant difference between the 1016

observed variables X and Y. 1017

For Figure 2, we ran two separate tests with X = 1018

“15% Mix” model and Y equal to one of “SLERP - 1019

SFT” and “SLERP - DPO” separately, for compar- 1020

ing the “Mix” and the “objective-based” “Merge” 1021

variant. All cases rejected the null hypothesis with 1022

p-values ranging from 5e−3 to 1e−52 (across both 1023

safety and general performance as well as differ- 1024

ent languages), indicating statistically significant 1025

results. 1026

For results in Figures 3 and 6, we performed 1027

separate tests for the SFT and DPO checkpoints 1028

with X = “SLERP” and Y = “TIES”, to compare 1029

the significance of the results between the most 1030

effective and least effective merging methods. All 1031

cases again rejected the null hypothesis with p- 1032

values ranging from 1e−3 to 4e−51 across safety 1033

and general performance for all languages. 1034

For Figure 4, we again ran separate tests with 1035

[X = “Mix: All” and Y = “Merge: Western”] for 1036

[EN, FR, SP] and another with [X = “Mix: All” 1037

and Y = “Merge: All”] with all 6 languages for 1038

comparing the performance between the “Mix” and 1039

the "language-based" “Merge” variants. All cases 1040

across both tests rejected the null hypothesis with 1041

p-values ranging from 1e−4 to 3e−49. 1042
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Type Method English Hindi Arabic French Spanish Russian

Training data mix
0% Safety -58.5 -46.8 -41.4 -33.3 -32.3 -34.0

15% Safety -69.1 -47.3 -57.2 -51.4 -53.5 -58.1
100% Safety -72.7 -51.4 -59.8 -55.7 -70.7 -72.7

Merging

Linear -58.2 -55.7 -48.2 -44.6 -39.9 -48.2
SLERP -64.4 -65.1 -55.7 -56.4 -51.4 -56.1
TIES -57.5 -45.7 -46.0 -42.4 -33.1 -46.7

DARE-TIES -59.3 -57.9 -57.2 -55.0 -50.7 -56.8

Table 4: Comparison of safety performance with “objective-based merging” across various methods on the Aya
Red-teaming benchmark in terms of the “Relative Percentage Change in Harmful Generations” with respect to the
Aya 23 base model at a language level. All methods utilize SFT checkpoints.

Type Method English Hindi Arabic French Spanish Russian

Training data mix
0% Safety 68.5 57.5 76.5 73.0 77.0 67.5

15% Safety 69.5 67.0 69.0 68.5 68.5 62.0
100% Safety 66.5 56.0 62.5 72.0 66.0 66.0

Merging

Linear 74.0 67.5 78.0 78.5 80.5 75.0
SLERP 72.5 64.5 78.5 72.5 78.5 69.0
TIES 77.5 64.5 78.5 70.5 80.5 78.0

DARE-TIES 68.0 63.0 74.0 73.5 71.0 72.5

Table 5: Comparison of general performance with “objective-based merging” across various methods on the
Multilingual Dolly-200 in terms of “Absolute Win-rates” against the Aya 23 base model at a language level. All
values are represent percentages. All methods utilize SFT checkpoints.

Type Method English Hindi Arabic French Spanish Russian

Training data mix
0% Safety -59.1 -45.6 -36.5 -28.7 -28.6 -34.4

15% Safety -68.8 -42.7 -57.9 -42.2 -54.9 -58.1
100% Safety -76.4 -62.8 -61.3 -62.4 -67.0 -77.9

Merging

Linear -33.4 -46.7 -55.0 -50.0 -45.3 -61.1
SLERP -56.1 -61.1 -61.8 -55.4 -49.6 -62.9
TIES -59.7 -61.5 -69.4 -58.2 -66.2 -75.5

DARE-TIES -53.2 -61.8 -61.1 -48.2 -48.3 -62.6

Table 6: Comparison of safety performance with “objective-based merging” across various methods on the Aya
Red-teaming benchmark in terms of the “Relative Percentage Change in Harmful Generations” with respect to the
Aya 23 base model at a language level. All methods utilize DPO checkpoints.

Type Method English Hindi Arabic French Spanish Russian

Training data mix
0% Safety 71.5 56.0 72.0 75.0 79.5 70

15% Safety 74.0 61.0 71.5 73.0 78 68.5
100% Safety 77.0 68.0 77.5 72.0 79.5 77

Merging

Linear 77.0 63.5 78.0 80.0 80.5 74.5
SLERP 81.0 69.0 79.5 77.5 84 77.5
TIES 59.5 61.0 69.0 65.6 65.5 61.0

DARE-TIES 77.5 68.5 78.5 83.0 82 81.5

Table 7: Comparison of general performance with “objective-based merging” across various methods on the
Multilingual Dolly-200 in terms of “Absolute Win-rates” against the Aya 23 base model at a language level. All
values are represent percentages. All methods utilize DPO checkpoints.
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