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Abstract
The ability to efficiently explore high-dimensional
state spaces is essential for the practical success of
deep Reinforcement Learning (RL). This paper in-
troduces a new exploration technique called Ran-
dom Latent Exploration (RLE), that combines the
strengths of exploration bonuses and randomized
value functions (two popular approaches for ef-
fective exploration in deep RL). RLE leverages
the idea of perturbing rewards by adding struc-
tured random rewards to the original task rewards
in certain (random) states of the environment, to
encourage the agent to explore the environment
during training. RLE is straightforward to imple-
ment and performs well in practice. To demon-
strate the practical effectiveness of RLE, we eval-
uate it on the challenging ATARI and ISAACGYM
benchmarks and show that RLE exhibits higher
overall scores across all the tasks than other ap-
proaches, including action-noise and randomized
value function exploration.

1. Introduction
Exploration is a central problem in Reinforcement Learning
(RL) (Sutton & Barto, 2018), which is even more challeng-
ing in sparse-reward scenarios where the learning signal is
rarely available. The essence of exploration lies in uncov-
ering rewards that surpass those obtained from the current
policy. Typical exploration approaches use action noise
(e.g., ϵ-greedy, Boltzmann sampling, etc.) to search for
useful reward signals. However, action noise alone cannot
perform so-called deep exploration (Osband et al., 2016a)
that requires the agent to discover rewards far away from
the initial states.

Action noise fails to enable deep exploration because it pro-
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duces dithering actions (i.e., moving back and forth around
the initial state), which limit exploration to areas close to
the initial states. There are currently two popular families
of strategies for deep exploration: (i) adding exploration
bonus to the reward (Pathak et al., 2017; 2019; Bellemare
et al., 2016; Pritzel et al., 2017; Burda et al., 2019) and (ii)
utilizing randomized value functions (Osband et al., 2013;
2016a;b; Fortunato et al., 2017; Ishfaq et al., 2023; 2021)
for exploration. Based on the guidance of Optimism in the
Face of Uncertainty (Lattimore & Szepesvári, 2020), ex-
ploration bonuses are purposed to estimate the novelty of
states and encourage the policy to visit new states. As states
distant from initial ones are seldom visited and hence novel,
these bonuses facilitate deeper exploration. However, it
necessitates training an additional deep neural network and
fails to improve the action noise exploration method over
the majority of tasks in both discrete (Chen et al., 2022)
and continuous (Schwarke et al., 2023) control tasks, which
limits the widespread adoption of exploration bonuses as a
default exploration strategy in deep RL (Chen et al., 2022).

On the other hand, randomized value function methods are
grounded on the framework of Thompson sampling (Russo
et al., 2018), and are simpler to implement, as they do not
necessitate estimating state novelty. These methods roll out
trajectories using policies sampled from a distribution over
learned value functions. As each trajectory is rolled out by
the same policy, there are no action noises. Hence, those
trajectories are temporally consistent (Dabney et al., 2020)
and can move the agent further from initial states, thereby
enabling exploration. However, neither bonus-based nor
randomized value function methods improve over action
noise exploration significantly (Chen et al., 2022).

We conjecture that current randomized value function ap-
proaches fail to substantially improve action noise based
exploration strategies (Schulman et al., 2017; Chen et al.,
2022; Taïga et al., 2019) because practical implementations
of randomized value function approaches fail to represent
a diverse enough value function distribution. If the value
function distribution is not rich enough, the policies induced
from them will be similar and hence won’t be able to cover
diverse states in the environments. These methods are thus
ineffective at discovering states associated with rewards.
The practical implementations either train an ensemble of
value functions (Osband et al., 2016a) to approximate the
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distribution of value functions or perturb the parameters
(i.e., neural network weights) of the learned value functions
(Fortunato et al., 2017; Plappert et al., 2017). Unfortunately,
ensemble-based approaches (Osband et al., 2016a) require a
large ensemble to capture diverse value functions, which is
memory-intensive and infeasible in practice. While param-
eter noise methods (Fortunato et al., 2017; Plappert et al.,
2017) need less memory, Hong et al. (2018) and our experi-
ments (Section 4.1) have shown that these methods fail to
produce diverse trajectories.

In this paper, we aim to provide an exploration strategy
that is easy to implement and effective in practice across
a variety of domains spanning both discrete and continu-
ous control tasks. To this end, we bridge the best of both
worlds in exploration bonus and randomized value func-
tion approaches: we train the policy with perturbed rewards
that are obtained by adding random rewards to the original
reward (i.e., task reward received from the environment). Al-
tering rewards has been shown to be effective at producing
diverse trajectories in prior works of skill discovery (Eysen-
bach et al., 2018). As our experiments in Section 4.1 show,
introducing randomness to rewards influences the policy to
produce diverse behaviors, leading to diverse trajectories.
These randomized rewards act as a “randomized bonus” for
the policy. Furthermore, because they can be randomly sam-
pled in a simple way, implementing randomized rewards is
straightforward in practice. Meanwhile, the specific method
by which novelty is estimated is crucial for bonus-based
exploration (Houthooft et al., 2016; Bellemare et al., 2016;
Ostrovski et al., 2017; Pathak et al., 2019), therefore making
it more complex to implement.

To show the effectiveness of our approach, we experiment
with Random Latent Exploration (RLE), our exploration
strategy, in ATARI—a popular discrete action space deep RL
benchmark (Bellemare et al., 2013), and ISAACGYM—a
popular continuous control deep RL benchmark (Makoviy-
chuk et al., 2021), each consisting of many different tasks
with varying degrees of exploration difficulty. We imple-
ment our method on top of the popular RL algorithm, Proxi-
mal Policy Optimization (PPO) (Schulman et al., 2017) and
compare it with PPO in other exploration strategies. Our
experimental results demonstrate that RLE improves over
standard PPO in ATARI and ISAACGYM. Furthermore, RLE
also exhibits a higher aggregated score across all tasks in
ATARI than other exploration methods, including RND and
randomized value function strategies (Fortunato et al., 2017).
Importantly, these improvements were obtained by simply
adding RLE on the top of the base PPO implementation
(with minimal change to hyperparameters), thus highlight-
ing the generality of our approach as a plug-in utility.

2. Preliminaries
Reinforcement Learning (RL). RL is a popular paradigm

for solving sequential decision-making problems (Sutton
& Barto, 2018) where an agent operates in an unknown
environment (Sutton & Barto, 2018) and aims to improve
its performance through repeated interactions with the en-
vironment. At each round of interaction, the agent starts
from an initial state s0 of the environment and collects a
trajectory. At each timestep t within that trajectory, the
agent perceives the state st, takes an action at ∼ π(.|st)
with its policy π, receives a task reward rt = r(st, at), and
transitions to a next state st+1 until reaching terminal states,
after which a new trajectory is initialized from s0 and the
above repeats. The goal of the agent is to learn a policy
π that maximizes expected return Eπ

[∑∞
t=0 γ

tr(st, at)
]

in a trajectory. A straightforward approach is to estimate
the expected return of a policy by rolling out trajectories
(s0, a0, s1, · · · , ) through Monte Carlo sampling (Konda &
Tsitsiklis, 1999), and then optimizing this to find the optimal
policy, but unfortunately, the corresponding estimates are
of high variance and thus often require a huge number of
data. Thus, in practice, various RL algorithms learn a value
function (or value network) V π from the interaction that
approximates

V π(s0) ≈ Eπ

[ ∞∑
t=0

γtr(st, at)
]
, (1)

and train the policy π to maximize the value V π(s0) (e.g.
using policy gradient).

Exploration. As the reward may be delayed and not imme-
diately presented to the agent, the agent may need to take
many actions and visit a sequence of states without rewards
before it receives any learning signal (reward). As such,
taking greedy action at at each step that maximizes imme-
diate reward r(st, at) does not necessarily lead to a high
return. Thus, RL algorithms require “exploring” states and
actions that may lead to low immediate rewards but could
potentially end up with high return in the long run. We refer
to this process as exploration throughout this paper.

3. Our Method: Random Latent Exploration
Problem statement. Our goal in this paper is to create an
exploration strategy that improves the standard action noise
exploration method overall on the majority of tasks and
domains (both discrete and continuous control) and is yet
easy to implement. Toward that end, we provide a simple
exploration method that combines the best of both worlds
and bridges the approach of using reward bonuses (Belle-
mare et al., 2016; Burda et al., 2019) with randomization
for exploration (Osband et al., 2016a;b).

Challenge: Ensuring diversity. The key challenge in ran-
domized exploration methods lies in their ability to generate
diverse behaviors within the environment. Specifically, if
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the value functions and policies sampled at random bear
too much similarity, they will yield nearly identical trajecto-
ries (s0, a0, r0, s1, · · · ), consequently limiting exploration
to a narrow region of the environment. The primary techni-
cal challenge, then, is devising a method that ensures such
diversity in the generated trajectories.

Approach: Randomized rewards. To overcome the above
challenge, we propose enhancing trajectory diversity by al-
tering the agent’s rewards, inspired by skill discovery meth-
ods (Eysenbach et al., 2018) that use varied reward functions
to develop diverse skills resulting in different state visitation
distribution. In particular, in every episode of training, we
randomly perturb the given task reward by adding a ran-
domized reward to certain (random) parts of the state space.
Then, we train policies to maximize the composite of ran-
domized and task rewards. The key idea is that in every
round of interaction, the random rewards added to certain
random parts of the state space will incentivize the agent
to visit those areas, and if these random areas are diverse
enough, we will get diverse behaviors in the environment
during training—thus incentivizing exploration. However,
since the random rewards are repeatedly resampled and
thus keep on changing during training to ensure stable and
effective learning, both policies and value functions must
be aware of the specific random reward function in use;
otherwise, the changing reward functions will comprise a
partially observable MDP (Kaelbling et al., 1998). We take
inspiration from the Universal Value Function Approximator
(UVFA) (Schaul et al., 2015), which trains networks based
on varying goals. We adopt their approach by equating their
goals to different reward functions, thus making the policy π
and the value function V π condition on the sampled reward
function. This ensures that the random rewards no longer
appear as noises to the policy. The remaining questions are:

• How to implement the randomized reward functions?

• How to make the policy and the value function condition
on the sampled reward functions?

We outline our implementation of the above idea in the next
section and defer full implementation details to Appendix B.

3.1. Algorithmic Implementation

Randomized reward functions. An effective approach
to implementing randomized reward functions necessitates
adherence to two fundamental principles. First, the ran-
domized rewards require correlating with states; otherwise,
they would appear as white noises, which does not help
exploration as shown by Fortunato et al. (2017). Second, the
function must be factorized to allow both the policy and the
value function to condition the factors of the randomized
reward function. This avoids the perception of the reward

as partially observable by the policy. To fulfill these criteria,
we implement the randomized reward function (denoted as
F ) as the dot product of the state feature and a randomly
chosen latent vector:

F (s, z) = ϕ(s) · z, (2)

where ϕ : S → Rd is a feature extractor that transforms a
state into a d-dimensional vector, and z ∈ Rd represents
a latent vector. Randomized rewards for each state are
generated by sampling z from a given distribution Pz , and
then setting rewards as F (s, z).

Latent conditioned policy and value network. Recall that
the policy and the value function have to be aware of the
state and the random variable that factorizes the randomized
reward function F . To achieve this, we augment the input
to the policy and the value functions with the latent vector
z. The resulting policy and the value networks are π(.|s, z)
and V π(s, z). We train the latent-conditioned value network
to approximate the expected sum of the original reward and
the randomized rewards as below

V π(s,z) ≈ Eπ

[ ∞∑
t=0

γt(R(st, at) + F (st+1, z))

]
, (3)

and train the latent-conditioned policy π to maximize
V π(s, z) at every state s and latent vector z. Both value and
policy networks can be trained with any off-the-shelf RL
algorithms, e.g. PPO (Schulman et al., 2017), DQN (Mnih
et al., 2015), A3C (Mnih et al., 2016), SAC (Haarnoja et al.,
2018).

Latent vector sampling. To randomize the latent vector
z, rather than resampling it at each timestep, which could
cause dithering actions due to fast-changing latent vectors
fed to the policy, it is resampled at the start of each trajec-
tory. This ensures each trajectory is rolled out under the
same policy and latent vector z, maintaining temporal con-
sistency crucial for deep exploration, as indicated by prior
studies (Osband et al., 2016a; Fortunato et al., 2017). The
distribution of z will be elaborated in Section 4.

As we train the policy conditioned on the latent factor of
the randomly sampled reward function, we term our method
as Random Latent Exploration (RLE). We outline the al-
gorithm in Algorithm 1 and present the detailed version in
Algorithm 2. Note that at line 6 in Algorithm 1, we com-
pute the randomized reward at the next state st+1 since the
next state reflects the credit of taking action at and state st.
This choice is also common in prior works that compute
exploration bonuses at each step (Burda et al., 2019).
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Algorithm 1 Random Latent Exploration (RLE)
1: Input: Latent distribution Pz

2: repeat
3: Sample a fresh latent vector: z ∼ Pz

4: for t = 0, . . . , T do
5: Take action at ∼ π(.|st, z) and transition to st+1

6: Receive reward: rt = R(st, at) + F (st+1, z)
7: end for
8: Update policy network π and value network V π with

the collected trajectory (z, s0, a0, r0, s1, · · · , sT )
9: until convergence

4. Experiments
We aim to show that our RLE improves over the action
noise exploration method typically used in many RL algo-
rithms (Schulman et al., 2017; Mnih et al., 2015) on the
majority of tasks in both discrete and continuous control
domains. Throughout the experiments, we train the agent
for each task using PPO (Schulman et al., 2017) since it is a
popular RL algorithm used in both discrete and continuous
control tasks. Standard PPO implementation (Schulman
et al., 2017) explores by sampling actions from the policy
(i.e., a Boltzmann distribution over actions) learned.

We also compare RLE with the following exploration strate-
gies as baselines:

• NOISYNET (Fortunato et al., 2017): We chose it to be
the representative baseline from the family of randomized
value function exploration strategies (Osband et al., 2016a;
Fortunato et al., 2017; Plappert et al., 2017) because it has
been used in prior works on benchmarking exploration
strategies (Chen et al., 2022; Taïga et al., 2019).

• RND (Burda et al., 2019): We choose RND to be the
representative baseline from the family of bonus-based
exploration methods since it shows considerable improve-
ments over action noises and randomized value function
approaches in hard-exploration tasks in ATARI.

4.1. Illustrative Experiments on FOURROOM

To test whether our method can perform deep exploration
that is essential in many tasks requiring exploration, we
start by running toy experiments on the the FOURROOM
environment (Sutton et al., 1999). We explain the setting of
FOURROOM environment and the results as follows.

Setup. Figure 1 illustrates FOURROOM environment with
50 × 50 states. The environment consists of four rooms
separated by solid walls (which the agent can’t cross) and
connected with small openings of a single state each (which
the agent needs to go through to travel across rooms). The
agent perceives the (x, y) coordinates as the state input, and

can take an action to move left, right, up, and down (if not
interrupted by a wall). At the beginning of each trajectory,
the agent always starts from the top-right corner of the
room (denoted by the letter “S”). In this study, we always
give zero rewards to the agent since we are interested in
understanding and comparing how each exploration strategy
behaves in the presence of sparse rewards, or even zero
everywhere. This is also known as reward-free exploration.

s

Figure 1. FOURROOM en-
vironment. The agent
starts at the top-right state
(denoted by red ’S’) and
can move left, right, up,
and down. The black bars
denote walls that block the
agent’s movement.

We compared the agents trained
with different exploration strate-
gies: PPO, NOISYNET, RND,
and RLE. The corresponding pol-
icy in each of these exploration
strategies is trained with Proximal
Policy Optimization (PPO) algo-
rithm (Schulman et al., 2017) for
2.5 million timesteps. For RLE,
the feature extractor defined in
Equation (2) is set to be a ran-
domly initialized neural network
with one hidden layer, the output
layer of which has the same di-
mension as z ∼ Pz . Further im-
plementation details are available
in Appendix B.2. We remark that,
because of the walls, the FOUR-
ROOM environment requires deep exploration to go to states
distant from the initial states.

How does the latent vector influence the generated tra-
jectories? The exploration of RLE is driven by sampling
the latent vector z to change the behavior of the policy net-
work π and the objective of the value network V π . One may
wonder what is the impact of z on the induced policy’s be-
haviors. To evaluate this, we sample different latent vector
z ∼ Pz and rollout trajectories with the policy conditioning
on those z, plotting each trajectory in a different color in
Figure 2. For this plot, we chose the checkpoint of the policy
network stored in the middle of training (i.e., 1.5 million
timesteps) since we want to study the behaviors of the pol-
icy network before it converges. Figure 2 demonstrates that
the trajectories generated by different latent vectors z can
span across all four rooms. This shows that altering the la-
tent vector z can produce diverse trajectories and that latent
vectors can influence the behaviors of the policy network.
We provide the rollouts of trajectories for random seeds for
RLE, PPO, RND and NOISYNET in Appendix C.

Explaining the observed trajectory diversity. To explain
why the trajectories generated by an RLE policy are diverse,

We also perform experiments on FOURROOM with an sparse
task reward of 1 at the bottom-left corner. The results and visual-
ization of visitation counts are deferred to Appendix C.
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Figure 2. Rollout of multiple trajectories from a policy trained with
RLE in the middle of the training (1.5 million timesteps), where
each color denotes a distinct trajectory. As the figure demonstrates,
changing the latent vector z in RLE leads to diverse trajectories
across all four rooms.

we plot several of the reward functions induced by sampling
different z in Figure 11. These plots demonstrate the di-
versity of the random rewards, each of which can guide the
policy to a different part of the state space.

State Visitations in the environment. We plot the state
visitation counts of each exploration strategies and present
the results in Figure 3. The results shows that PPO’s state
visitation centers around the initial room (i.e, top-right),
indicating that action noises are not able to bring the agent
far away from the initial state. In contrast, we see that RLE,
RND, and NOISYNET are all able to frequently reach the
rooms beyond the initial room, with RLE visitation count
spread out across the four rooms. This suggests that RLE
is capable of doing deep exploration similar to prior deep
exploration algorithms for this environment.

4.2. Benchmarking Results on ATARI

Having performed illustrative experiments on the FOUR-
ROOM toy environment, we now evaluate our method on
more realistic and challenging tasks. We aim to show that
RLE can improve PPO’s overall performance on most tasks.

Setup. We evaluate our method in the well-known ATARI
benchmark (Bellemare et al., 2013). Following the common
practice in ATARI (Mnih et al., 2015), the agent perceives a
stack of the most recent four 84 × 84 grayscale frames as
inputs and takes discrete actions available in the gamepad
of ATARI (see Bellemare et al. (2013) for further environ-
ment details). For RLE, we chose the feature learned by
the value network followed by a randomly initialized linear
layer as ϕ (used in Equation 2) and set the dimension of
the latent vector z as 8. Note that the randomly initialized
linear layer is frozen after initialization. We use the stan-
dard PPO hyperparameters provided in (Burda et al., 2019).

s
RLE (Ours)

s
PPO

s
RND

s
NoisyNet

0

103

106

Figure 3. State visitation counts of all the methods after training for
2.5M timesteps without any task reward (reward-free exploration).
The start location is represented by the red ‘S’ at the top right.

The hyperparameters and implementation details of all the
algorithms and PPO are deferred to Appendix B. For each
ATARI game (i.e., environment), we train each agent with 5
different random seeds for 40 million frames, as prior work
(Chen et al., 2022; Bellemare et al., 2016) suggested. How-
ever, we trained MONTEZUMA’S REVENGE for 200 million
frames since its exploration difficulty is much harder than
other ATARI games (Burda et al., 2019).

Does RLE improve the overall performance? We answer
this question by calculating the interquartile mean (IQM)
(Agarwal et al., 2021) and its 95% confidence interval,
which was estimated using the bootstrapping method (DiCi-
ccio & Efron, 1996) on the aggregated human-normalized
scores from 57 games. Unlike empirical mean scores, IQM
mitigates the influence of outliers on the aggregated metric.
Figure 4 demonstrates that RLE achieves a higher IQM
human-normalized score compared to all baselines, indicat-
ing that RLE enhances performance over other exploration
strategies in the majority of ATARI tasks. Besides the aggre-
gate results, we present the learning curves for all methods
across the 57 ATARI games in Figure 19. Additionally, the
final mean score of each method across five seeds for each
ATARI game is provided in Table 6 in the appendix.

Does RLE improve over the baselines consistently? In
addition to the margin of performance improvement on the
aggregated score across all games, we demonstrate that
RLE results in performance improvement over the base-
lines with high probability. Following the evaluation pro-
tocol suggested in Agarwal et al. (2021), we measure the
probability of improvement (POI) between algorithms and
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Figure 4. Aggregated human normalized score across all 57 ATARI
games. RLE exhibits a higher interquartile mean (IQM) of nor-
malized score than PPO across 57 ATARI games, showing that
RLE improves over PPO in the majority of tasks.

their 95% confidence intervals, estimated using the boot-
strapping method (DiCiccio & Efron, 1996), and present
the results in Figure 5. Figure 5(a) shows that the lower
confidence bound of POI for RLE over each algorithm is
above 0.5, indicating that RLE statistically outperforms the
other baselines (Agarwal et al., 2021). This means that for
a randomly chosen task in ATARI, running RLE is highly
likely to yield a higher score than the other baselines, imply-
ing that RLE’s performance improvements are consistent
and not limited to a few games. Conversely, Figure 5(b) re-
veals that the POI over PPO for both NOISYNET and RND
is far below 0.5, suggesting that NOISYNET and RND do
not consistently improve over PPO despite having better
performance in a few games (see Figure 19).

4.3. Benchmarking Results on ISAAC GYM

To demonstrate that RLE can improve upon PPO in both
discrete and continuous control tasks, we also conducted
experiments in ISAACGYM (Makoviychuk et al., 2021), a
benchmark suite containing numerous continuous control
tasks. We implemented RLE on top of PPO and trained
it with standard PPO hyperparameters in ISAACGYM pro-
vided in CleanRL, with implementation details provided
in Appendix B.4. We selected both manipulation and lo-
comotion tasks for evaluation and presented the learning
curves in Figure 7, with learning curves on all environments
presented in Figure 23. As the return is positive for PPO
in each environment, we normalize runs by dividing by the
mean score of PPO in that environment (i.e., normalize PPO
to have a score of 1). For further details of this metric, see
Appendix B.4.2.

Does RLE improve over PPO in continuous control?
The results show that RLE achieves a higher average return
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NoisyNet
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(a): Probability of Improvement Over Baseline

Pr(RLE > Algorithm)

0.3 0.4 0.5 0.6 0.7 0.8

RLE
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A
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0.67

0.38

0.35

(b): Probability of Improvement over PPO

Pr(Algorithm > PPO)

Figure 5. (a) Probability of improvement of our method, RLE,
over the baselines NOISYNET, RND and PPO across all 57
ATARI games. The lower confidence bound of RLE’s POI over
the other algorithms are all greater than 0.5. This means that
RLE statistically improves the other algorithms (Agarwal et al.,
2021). (b) Probability of improvement of RLE, RND, and
NOISYNET over PPO across all 57 ATARI games. POI over PPO
of both NOISYNET and RND are below 0.5, implying that nei-
ther NOISYNET nor RND statistically improve over PPO overall
across 57 ATARI games.

than PPO in most tasks, with particularly large performance
gains in ALLEGROHAND and SHADOWHAND, indicating
that RLE improves upon PPO in continuous control tasks.
In ALLEGROHAND and SHADOWHAND, the objective is
to control a anthropomorphic hand to reorient objects to a
target pose. These tasks require more exploration than other
continuous control tasks since it takes many steps to achieve
the target pose. Additionally, in CARTPOLE, PPO perfor-
mance degrades abruptly in the middle of training, while
RLE maintains high performance throughout, suggesting
that RLE prevents the learning process from collapsing
during training.

Table 1. Probability of Improve-
ment (POI) of RLE (Ours) over
PPO (higher is better) in ISAAC-
GYM

RLE over PPO

POI 0.66
95% CI [0.60, 0.72]

Also, Table 1 shows that
RLE achieves a lower
confidence bound of POI
above 0.5, indicating that
RLE improves over PPO
in a statistically high
probability.

Does RLE achieve
higher overall performance than PPO? To study the
overall performance, we also measure the IQM of the nor-
malized return of RLE and PPO. The return is normalized
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so that the mean score of PPO in each environment is 1.
Figure 6 presents the IQM of normalized return, showing
that RLE achieves higher IQM over PPO and thereby
indicating RLE improves the overall performance on most
tasks in ISAACGYM.
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Figure 6. Aggregated normalized score across all 9 IsaacGym tasks
that we consider. RLE achieves a higher interquartile mean of
normalized score compared to PPO, indicating that it can improve
over PPO in continuous control domains as well.

4.4. Ablation Studies

We ran various ablation studies on ATARI and ISAACGYM
environments to explore how different hyperparameters and
design choices affect RLE performance.

Latent vector distribution. We investigated the impact
of different latent vector distributions on RLE’s perfor-
mance. Our study involves training RLE with various dis-
tributions, including Uniform([−0.5, 0.5]d) and isotropic
normalN (0, Id) distributions, within a d-dimensional space
where d = 8. The detailed implementation is described in
Appendix B. The results presented in Figure 8 indicate that
RLE performs better than PPO across different latent vector
distributions. This suggests that RLE’s efficacy is not sig-
nificantly affected by the choice of latent vector distribution.

Latent vector dimension. This study explores how robust
is RLE to different choices of the dimension d of the latent
vector z. We trained RLE for d ∈ {2, 8, 32, 128}, where
d = 8 is the dimension used in the results presented in
Section 4.2. The outcomes, depicted in Figure 9, demon-
strate that RLE is capable of surpassing PPO across all
tested dimensions. Although there are slight performance
variations between different d values, these differences are
subtle, suggesting that RLE’s performance is insensitive to
the choice of latent vector dimension d.

Latent vector conditioning. In Section 3.1, we emphasized
the necessity for the policy to be conditioned on the latent

vector to prevent randomized rewards F (s, z) from being
perceived as noise by both the policy and the value network.
This design choice’s importance is underscored by compar-
ing RLE models with and without latent-conditioned policy
and value networks, as shown in Figure 10. RLE without
latent vector conditioning exhibited a performance drop in
the VENTURE task, a hard-exploration game with sparse
rewards. We hypothesize that the absence of latent vector
conditioning results in limited behavioral variability in the
policy network, as its outputs remain unchanged by different
latent vector samples. This limitation likely leads to failures
in challenging exploration tasks that necessitate a broader
diversity in trajectory generation.

Features vectors obtained from random neural network.
In the ATARI experiments described in Section 4.2, we
used a slow-moving estimate of the CNN features (see Ap-
pendix B.3.1) learned by the value network to compute
RLE rewards. This choice of features slightly contributes
to improved performance. Figure 21 presents the IQM of
the normalized score and the POI of RLE over PPO with
and without using the CNN features learned by the value
network. The results demonstrate that incorporating value
network features leads to a higher POI, while not signif-
icantly affecting the IQM. We plot the learning curve in
each game for both variants in Figure 22, finding that while
performance is broadly similar, there are a few games where
the two variants have large differences in performance.

Choices of network architecture for the random reward
network. Since RLE relies on neural networks to extract
features for computing random rewards F (s, z), it’s im-
portant to examine how the choice of network architecture
affects performance. We investigated the impact of differ-
ent network architectures for extracting features ϕ(s) on
the computation of RLE rewards F (s, z) in ISAACGYM
(Makoviychuk et al., 2021), with the IQM of the normalized
score in Figure 24 and POI over PPO shown in Figure 25.
In our original ISAACGYM experiments, we used the value
network’s architecture for RLE. In this ablation study, we
tested a shallower neural network architecture. The results
indicate that RLE with a shallower network still performs
well, suggesting that RLE is not highly sensitive to the
choice of network architecture.

White noise random rewards. In Section 3.1, we empha-
sized the importance of ensuring that RLE’s random reward
function F is correlated with states. If the random rewards
are not state-dependent, they will act as white noise and will
not enhance performance. In this ablation study, we empiri-
cally investigate the significance of making random rewards
dependent on states. We compare the state-dependent RLE
reward F (s,z) with white noise rewards sampled from a
normal distribution with zero mean and unit variance. This
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Figure 7. Comparison of learning curves between RLE and standard PPO. RLE achieves higher return than the standard PPO in the
majority of the tasks, especially in tasks like ALLEGROHAND and SHADOWHAND that require more exploration. This means RLE
improves over PPO in continuous control domain as well.
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Figure 8. Learning curves of RLE with varying latent vector dis-
tribution Pz (see Section 3.1), where RLE (Sphere) is the one
used in Section 4.2. The figure shows that RLE with the three
distributions can all outperform PPO. This shows that RLE is not
sensitive to the choice of latent vector distribution.

study was conducted in ISAACGYM environments, with
the results presented in Figure 26. The results demonstrate
that white noise rewards significantly degrade performance,
indicating that RLE rewards are not merely white noise.

5. Related Works
Random reward prediction was used as an auxiliary task
(Jaderberg et al., 2016) for improving representation learn-
ing in prior works (Dabney et al., 2021; Lyle et al., 2021). A
closely related work is Ramesh et al. (2022), which employs
a random general value function (GVF) (Sutton et al., 2011)
for exploration by initializing a random reward function
and using an ensemble of networks to predict policy-based
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Figure 9. Learning curves of RLE with varying latent vector di-
mension d (see Section 3.1), where RLE (d = 8) is the one used
in Section 4.2. The figure shows that RLE can outperform PPO
in all the four chosen dimension. This shows that RLE is not
sensitive to the choice of latent vector dimension.

random reward sums. The difference in prediction and the
Monte Carlo estimate of random rewards, multiplied by
prediction variance, enhances the agent’s reward. Our work
presents a distinct approach from Ramesh et al. (2022) both
in terms of motivation and implementation. Contrary to
Ramesh et al. (2022), which aligns with previous studies
(Burda et al., 2019; Pathak et al., 2017) by employing pre-
diction errors as exploration bonuses, our RLE algorithm
directly trains the policy with random rewards, demonstrat-
ing superior performance. This finding underscores that
RLE provides a new angle to design exploration strategy
beyond using prediction errors as exploration bonuses. Ad-
ditionally, our RLE algorithm offers a more straightforward
implementation by eliminating the need for ensemble train-
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works (see Section 3.1). The figure displays that RLE without
latent vector condition suffers performance drop in VENTURE, a
hard-exploration task with sparse rewards.

ing and Monte Carlo return estimation of random rewards.
The detailed discussion on the relevant literature can be
found in Appendix A.

6. Discussion and Conclusion
In this paper, we proposed a new exploration method called
RLE that is straightforward to implement in practice, and
effective in challenging deep RL benchmarks like ATARI.
We conclude with discussions and future work directions:

Simple plug-in for deep RL algorithms. RLE simply re-
quires adding randomized rewards to the rewards received
by the agent and augmenting the agent’s input with addi-
tional latent variables that correlate to these randomized
rewards. As a result, RLE is agnostic to the base RL algo-
rithm and can be integrated with any RL algorithm. Given
its simplicity, generality, and the overall performance im-
provement it provides, we recommend using RLE as the
default exploration strategy in deep RL implementations.

Connection to posterior sampling. At a high level, while
RLE seems similar to the posterior sampling-based ap-
proaches (Thompson, 1933; 1935; Russo et al., 2018) in
the sense that both utilize randomization for exploration,
there are important differences: Firstly, the two methods
explore via different mechanisms. Posterior sampling ran-
domizes over different models of the environment, whereas
RLE perturbs the reward function using random rewards.

Secondly, the sampling distribution Pz is fixed throughout
learning in RLE, whereas the posterior distribution in poste-
rior sampling changes with time and needs to be computed
for every round (which is often challenging in practice).
Thirdly, in posterior sampling, the posterior will eventually
concentrate around the true model, and thus the algorithm
will execute the optimal policy for the underlying environ-
ment. Whereas, in RLE, since the task rewards are constant
throughout learning whereas random rewards change, in the
later stage of the learning, the trained policy πz should focus
on optimizing just the task rewards, and we believe that the
random rewards will simply act as a regularization.

Benefits from parallelization. Note that, by design, our
algorithm samples independent z in every round and can
thus benefit from parallelization by running the algorithm
on multiple copies of the same environment (when possible,
e.g. using a simulator). Since different z produce diverse
trajectories (see Figure 2 or Figure 15 for illustrations), mul-
tiple parallel copies of the same agent will simply produce
more diverse data which would accelerate exploration.

On the inductive bias of ϕ. RLE is modular as one can
choose any feature extractor ϕ(s) e.g. Transformer net-
works (Vaswani et al., 2017), MLPs, or even nonparametric
models such as kernels. In our ATARI experiments we use
a CNN for ϕ, but it would be interesting to explore how
other choices of ϕ affect the diversity of the induced reward
functions, and hence the generated trajectories.

z-sampling. At every timestep in Algorithm 1 the latent
variable z is sampled independently from the fixed distri-
bution Pz which is chosen at initialization. However, it is
also intuitive to expect that Pz should change as we learn
more about the underlying environment. Looking forward
it would be interesting to explore algorithms that change Pz

while training, e.g. to sample more from the set of latent
variables which have not been explored yet or for which the
corresponding policies πz have historically performed well
in the given environment.

Other limitations. Currently, we limit our study to on-
policy algorithms. Looking forward it would be interesting
to extend RLE to off-policy algorithms such as DQN (Mnih
et al., 2015) and SAC (Haarnoja et al., 2018); A practi-
cal way to do so would be to condition the Q-function
on z in addition to its usual inputs. Separately, an im-
portant direction for future work is to explore the method
in more continuous control and real-world robotics do-
mains. While it is clear that our approach scales to high-
dimensional state spaces in ATARI and continuous control
tasks in ISAACGYM, it would also be interesting to see how
it would generalize for real-world RL applications, e.g. in
robotics.
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A. Additional Related Works
There are two main approaches in RL for exploration, (a) Randomize the agent by injecting noise thus inducing diverse
behavior, and (b) Provide explicit reward bonuses that incentivize the agent to go to novel states. RLE, bridging the two
approaches, injects noise into the agent by adding random latent reward bonuses during training.

Randomness is the key tool in many exploration strategies in RL. Perhaps the most popular example is ϵ-greedy or Boltzmann
sampling-based exploration (Mnih et al., 2013; Dann et al., 2022; Cesa-Bianchi et al., 2017; Eysenbach et al., 2018), which
explores by playing random actions. Entropy regularization (Williams & Peng, 1991; Mnih et al., 2016), and MaxEnt
RL (Haarnoja et al., 2018; Eysenbach & Levine, 2021; Garg et al., 2023; Hazan et al., 2019) are other instances of exploration
algorithms that utilize randomness, as they explicitly bias towards learning policies that have a high entropy. Another
exploration approach is to directly inject noise into the parameters of the policy or value networks, e.g. in off-policy methods
(Fortunato et al., 2017), RLHF with linear MDPs (Wu & Sun, 2023), online RL in tabular (Osband et al., 2016b), and linear
MDPs (Zanette et al., 2020). Another line of work includes using Thompson sampling (Thompson, 1933; 1935; Russo
et al., 2018), or posterior sampling for exploration (Osband et al., 2013; Gopalan & Mannor, 2015; Kveton et al., 2021;
Zhang, 2022), which maintains a posterior distribution over the ground truth model and relies on the uncertainty in the
posterior distribution for exploration. Posterior sampling, however, is intractable in practical RL settings due to the need to
sample from the extremely complex posterior distribution; Various empirical approaches aim to sample from an approximate
posterior instead (Li et al., 2021; Dwaracherla et al., 2020), but are unfortunately memory intensive. We note that RLE is
different from these other works as it explores by adding random rewards instead of randomizing over the actions, policies,
or models of the environment.

Exploration by adding explicit reward bonuses is also well studied in both theoretical and applied RL literature. A popular
technique is to add novelty-based exploration bonuses that are constructed using prediction errors in transition dynamics
(Pathak et al., 2017; 2019; Ramesh et al., 2022) or outputs of randomly initialized target network RND (Burda et al.,
2019), etc. Other approaches construct reward bonuses using upper confidence bounds on the uncertainty estimates for
the underlying model (Auer et al., 2008; Vaswani et al., 2019), using discriminatively trained exemplar models to estimate
novelty (Fu et al., 2017), or using elliptical potentials when the MDP has a linear parameterization (Jin et al., 2020; Zhang
et al., 2022; Agarwal et al., 2020). Unfortunately, these methods often introduce additional components into the learning
setups, e.g. additional neural networks for generating bonuses and the associated hyperparameters, which can make learning
unstable. In contrast, RLE is much simpler to deploy as it adds random reward functions that are computed using features
from the policy network.

RLE closely resembles the idea of Follow The Perturbed Leader (FTPL) developed in RL theory literature (Kveton et al.,
2019b;a; 2020; Rakhlin & Sridharan, 2016; Dai et al., 2022). FTPL-based methods explore by adding carefully designed
perturbations to the reward function that can guarantee optimism; since the perturbations are closely tied to the underlying
modeling assumptions, FTPL-based methods are currently limited to restricted settings like linear bandits, tabular MDPs,
etc. In contrast, RLE simply adds a random reward function sampled from a fixed distribution Pz , and is thus applicable
in more practical RL settings. Another major difference is that our method also utilizes z-conditioned policies and value
functions, and thus the randomness is shared amongst the reward function, policy network and value network.

Finally, there is a long line of work in the theoretical RL literature on developing exploration algorithms that can optimally
exploit the structure of the underlying task in model-based RL (Ayoub et al., 2020; Sun et al., 2019; Foster et al., 2021),
model-free RL (Jin et al., 2021; Du et al., 2021) and agnostic RL setting (Jia et al., 2023), however, the focus in these works
is on statistical efficiency and the provided approaches are not computationally tractable.
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B. Experimental Implementation Details
In this section, we provide the hyperparameters and implementation details of our algorithm (RLE) along with the baseline
methods (PPO, RND, NOISYNET) for the FOURROOM and ATARI Environments. We also provide hyperparameters and
implementation details for all ISAACGYM experiments.

B.1. RLE Pseudocode

Below, we provide the pseudocode for RLE in Algorithm 2.

Algorithm 2 Detailed Pseudocode for Random Latent Exploration (RLE)
1: Input: Latent distribution Pz, N parallel workers, T steps per update, S steps per sampling, feature network update

rate τ
2: Randomly initialize a feature network ϕ with the same backbone architecture as the policy and value networks
3: Initialize running mean µ = 0 and standard deviation σ = 1 estimates of ϕ(s) over the state space
4: Sample an initial latent vector for each parallel worker: z ∼ Pz

5: repeat
6: Sample initial state s0.
7: for t = 0, . . . , T do
8: Take action at ∼ π(.|st, z) and transition to st+1

9: Compute feature f(st+1) = (ϕ(st+1)− µ)/σ

10: Compute random reward: F (st+1, z) =
f(st+1)

∥f(st+1)∥ · z
11: Receive reward: rt = R(st, at) + F (st+1, z)
12: for i = 0, 1, . . . , N − 1 do
13: if worker i terminated or S timesteps passed without resampling then
14: Resample sample z ∼ Pz for worker i
15: end if
16: end for
17: end for
18: Update policy network π and value network V π with the collected trajectory (z, s0, a0, r0, s1, · · · , sT )
19: Update feature network ϕ using the value network’s parameters: ϕ← τ · π + (1− τ) · ϕ
20: Update µ and σ using the batch of collected experience.
21: until convergence

B.2. FOURROOM Environment

We provide the hyperparameters used for experiments in the FOURROOM environment in Table 2.

B.2.1. RLE IMPLEMENTATION IN FOURROOM ENVIROMENT

In our implementation of RLE for FOURROOM environment, we ensure that the random reward functions F (s, z) take
values in [−1, 1].To compute the reward given a state s and latent variable z, we normalize the output of ϕ(s) to have unit
norm. Specifically, we define the reward as:

F (s,z) =
ϕ(s)

∥ϕ(s)∥
· z,

where ϕ is the randomly initialized feature network that transforms the state s to a vector with the same dimension as z. In
the FOURROOM environment, we sample z from the unit sphere at every training step, which occurs every 128 timesteps.
We perform the sampling independently for each of the 32 parallel workers.

B.3. ATARI

We display the hyperparameters used for experiments in ATARI games in Table 3. For PPO and RND, we use the default
hyperparameters based on the cleanrl codebase (Huang et al., 2022), which were tuned for ATARI games. For NOISYNET,
we use the same hyperparameters as PPO with the exception of the entropy loss weight, which is set to 0 as recommended
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by (Fortunato et al., 2017). We give a detailed description of the ATARI implementation of RLE below.

B.3.1. RLE IMPLEMENTATION DETAILS IN ATARI

Feature network architecture and update. We start with a randomly initialized neural network ϕ which takes a state s as
input and outputs a vector in Rd, which has the same dimension as z. In our implementation, ϕ contains a CNN backbone
with an identical architecture to the (shared) policy and value backbone, along with a final linear layer on top to convert it to
a low dimension Rd. In our implementation, we choose d = 8. To update ϕ, we follow the rule:

CNNϕ ← τ · CNNV + (1− τ) · CNNϕ

for a small value of τ , and we choose τ = 0.005 for our experiments. This network update is inspired by the target network
update in DQN (Mnih et al., 2015) and does not require any gradient steps.

Computation of random reward bonus. When the agent experiences a transition (s, a, s′), we obtain random reward
bonus from ϕ as follows: Obtain the low-dimensional vector output ϕ(s′). We standardize the output of ϕ(s′) using a
running mean and standard deviation estimate so that the output is a normal distribution on Rd. Meanwhile, sample a vector
z ∼ Sd−1, and compute the following value

F (s′, z) =
ϕ(s′) · z
∥ϕ(s′)∥

.

Policy input. The policy observes the observation returned by the environment, which is 4 stacked grayscale frames of
dimension (84, 84). In addition, the policy observes z as well as the random reward F (st, z) from the previous time step.

Resampling of the latent variable z. In our Atari experiments, there are 128 parallel workers. We sample z independently
across all workers from the d-dimensional unit sphere Sd−1, and resample upon either of the following signals:

1. An environment has reached the ‘DONE’ flag, or

2. An environment has survived with this z for 1280 time steps.

Policy training. We use PPO with the augmented observation space train on the combined reward as usual. As we
resample z during an episode, we also treat the problem of maximizing randomized reward as episodic. Specifically, we set
the ‘done’ signal to True whenever we resample z. Thus, we do not use returns from future z within the same episode to
estimate the return under the current z.

B.3.2. EVALUATION DETAILS IN ATARI

Human normalized score To compute aggregate performance, we first compute the human normalized score for each
seed in each environment as Agentscore−Randomscore

Humanscore−Randomscore
. After this, we compute the IQM to measure aggregate performance as

recommended in (Agarwal et al., 2021) as it is robust to outliers.

Capped human normalized score We use the capped human normalized score (CHNS) (Badia et al., 2020) to measure the
aggregate performance of RLE and baselines in Figure 20. To compute the CHNS, we first compute the human normalized
score (HNS) of the agent, as done in (Badia et al., 2020), as Agentscore−Randomscore

Humanscore−Randomscore
, after which it is clipped to be between

0 and 1. In addition to aggregate metrics, we provide individual mean scores of all methods in all 57 games in Table 6 along
with the corresponding learning curves in Figure 19.

Probability of improvement We use the probability of improvement (POI), recommended in (Agarwal et al., 2021), to
measure the relative performance between algorithms across all 57 ATARI games.

Bootstrapped confidence intervals We use the bootstrapping method (DiCiccio & Efron, 1996; Agarwal et al., 2021)
to estimate the confidence intervals for all aggregated metrics we report, and mean performance for an algorithm in one
environment.
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B.4. ISAACGYM

We display the hyperparameters used for experiments in IsaacGym in Table 4. For PPO, we use the default hyperparameters
recommended by the cleanrl codebase (Huang et al., 2022), which were tuned for IsaacGym tasks and can vary across
tasks (specifically, using different hyperparameters for the SHADOWHAND and ALLEGROHAND tasks). For RLE, we use
the same hyperparameters for each task. We also display the environment-specific hyperparameters in Table 5, which are
shared for each training algorithm we consider in our experiments.

B.4.1. RLE IMPLEMENTATION DETAILS IN ISAACGYM

Feature network architecture and update Similar to our implementation of RLE in the ATARI domain, we start with a
randomly initialized neural network ϕ that has an MLP backbone with the same architecture as the backbone of the value
function. We update the backbone paramaters using the same slow moving average as in Appendix B.3.1 with τ = 0.005:

MLPϕ ← τ ·MLPV + (1− τ) ·MLPϕ.

Computation of random reward bonus We standardize the output of ϕ(s′) using a running mean and standard deviation
estimate so the output approximates a normal distribution on Rd. We sample a vector z ∼ Sd−1 and compute the reward as:

F (s′, z) = ϕ(s′) · z.

Note that this is slightly different from the implementation in ATARI, where we divide by ∥ϕ(s′)∥. We use reward
normalization for RLE in both domains to scale the randomized reward, so both types have a similar effect.

B.4.2. EVALUATION DETAILS IN ISAACGYM

PPO normalized score We use the IQM of the PPO normalized score to compute aggregate performance across 9 different
environments in IsaacGym. We compute the PPO normalized score of the agent as Agentscore/PPOmean. For example, the
mean performance of PPO in a single environment under the PPO normalized score will be 1. We compute the IQM of this
metric for 5 seeds across 9 games (or 45 total runs) to aggregate performance.

Other evaluation details Similar to our experiments in the ATARI domain, we use the bootstrapping method to estimate
confidence intervals and use the probability of improvement to measure relative performance between different algorithms.

C. Visualizations on FOURROOM

In this section, we provide further results and visualizations for the FOURROOM environment:

RL with task reward. In addition to the reward-free setting, we train all methods in the FOURROOM environment in a
sparse-reward setting for 2.5M timesteps. There is a reward of 1 in the bottom-left corner, and the reward is 0 at all other
states. We plot the state visitation counts of all methods after 500K and 2.5M timesteps in Figure 12. In addition, we train
five seeds in this environment for each method, and find that the average score for RLE and NOISYNET is 0.6, while the
average score for RND and PPO is 0. This suggests that the FOURROOM environment is a task that requires exploration as
it is difficult for methods that rely on action noise like PPO to achieve any reward.

State visitations.

• Figure 12 shows state visitation counts for all algorithms trained with a sparse task reward which is 1 at the bottom-left
state (red ’*’) and 0 everywhere else.

• Figure 13 shows state visitation counts for all algorithms trained for 500K and 2.5M steps without any task reward.

• Figure 14 shows state visitation counts for RLE trained in a modified version of the environment with stochastic
observations within a 2x2 square region of the environment. Through this, we test if RLE is susceptible to the “NoisyTV”
problem (Burda et al., 2019).
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Figure 11. Visualization of the reward function F (s;z) for 10 different random choices of z in FOURROOM environment. The reward is
is given by F (s,z) = z · ϕ(s)/∥ϕ(s)∥. The above image demonstrates the diversity and coverage of random reward functions in the
FOURROOM environment.
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(b) After 2.5M timesteps.

Figure 12. State visitation counts for different methods on FOURROOMS environment trained for 500K and 2.5M timesteps with task
reward. The start location is the top-right state of the grid (represented by the red ‘S’). The agent gets a task reward of 1 at the bottom-left
state (represented by red ‘*’).

Visualizations of trajectory diversity across algorithms.

• Figure 15 shows 5 trajectories sampled from policies trained with RLE across 5 different seeds at three different points
in training: after 500K steps, 1.5M steps, and 2.5M steps.

• Figure 16 shows the same for NOISYNET.
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Figure 13. State visitation counts for different algorithms on FOURROOMS environment after training for 500K timesteps and 2.5M
timesteps. All algorithms were trained without task reward (reward-free exploration).
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Figure 14. State visitation counts for RLE when trained in an environment with stochasticity in the observation space. The observation
is only stochastic within the red square and is deterministic everywhere else. Even after discovering the red square, the agent is able
to discover states outside of those regions and continues to explore throughout training. This suggests that RLE is less affected by the
NoisyTV problem compared to novelty-based exploration methods.

• Figure 17 shows the same for RND.

• Figure 18 shows the same for PPO.

From visual evaluation, the above plots suggest that RLE induces more diverse trajectories as compared to other baselines
(PPO, RND, and NOISYNET) on the FOURROOM environment.
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Figure 15. Visualization of trajectories generated by sampling from a policy trained with RLE for 2.5M timesteps in a reward-free setting
across 5 seeds at different points in training. We sample 5 trajectories for each seed.
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Figure 16. Visualization of trajectories generated by sampling from a policy trained with NOISYNET for 2.5M timesteps in a reward-free
setting across 5 seeds at different points in training. We sample 5 trajectories for each seed.
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Figure 17. Visualization of trajectories generated by sampling from a policy trained with RND for 2.5M timesteps in a reward-free setting
across 5 seeds at different points in training. We sample 5 trajectories for each seed.

22



Random Latent Exploration for Deep Reinforcement Learning

Se
ed

 0

500K Timesteps 1.5M Timesteps 2.5M Timesteps

Se
ed

 1
Se

ed
 2

Se
ed

 3
Se

ed
 4

Figure 18. Visualization of trajectories generated by sampling from a policy trained with PPO for 2.5M timesteps in a reward-free setting
across 5 seeds at different points in training. We sample 5 trajectories for each seed.
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Parameter Value

PPO
Total Timesteps 2, 500, 000
Optimizer Adam
Learning Rate 0.001
Adam Epsilon 0.00001
Parallel Workers 32
Steps per Batch 128
Discount Rate 0.99
Generalized Advantage Estimation λ 0.95
Minibatches per Epoch 4
Epochs per Training Step 4
Clipping Coefficient 0.2
Entropy Loss Weight 0.01
Discount Rate 0.99
Value Loss Weight 0.5
Gradient Norm Bound 0.5
Use Advantage Normalization True
Use Clipped Value Loss True
Policy Network Architecture MLP (64,64,4)
Value Network Architectures MLP (64,64,1)
Network Activation Tanh

NOISYNET
Initial σ 0.017

RND
Intrinsic Reward Coefficient 1.0
Drop Probability 0.25
Predictor Network Architecture MLP (256, 256, 256, 256, 256)
Target Network Architecture MLP (64,256)
Network Activation ReLU

RLE
Intrinsic Reward Coefficient 0.1
Latent Vector Dimension 4
Feature Network Architecture MLP (64,64,64,4)
Network Activation ReLU

Table 2. Hyperparameters and network architectures for FOURROOM experiments.
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Parameter Value

PPO
Total Timesteps 40, 000, 000
Optimizer Adam
Learning Rate 0.0001
Adam Epsilon 0.00001
Parallel Workers 128
Steps per Batch 128
Discount Rate 0.99
Generalized Advantage Estimation λ 0.95
Minibatches per Epoch 4
Epochs per Training Step 4
Clipping Coefficient 0.1
Entropy Loss Weight 0.01
Discount Rate 0.99
Value Loss Weight 0.5
Gradient Norm Bound 0.5
Use Advantage Normalization True
Use Clipped Value Loss True
Policy Network Architecture CNN + MLP (256,448,448,18)
Value Network Architectures CNN + MLP (256,448,448,1)
Network Activation ReLU

NOISYNET
Initial σ 0.017
Entropy Loss Weight 0

RND
Intrinsic Reward Coefficient 1.0
Extrinsic Reward Coefficient 2.0
Drop Probability 0.25
Discount Rate 0.999
Entropy Loss Weight 0.001
Intrinsic Discount Rate 0.99
Predictor Network Architecture CNN + MLP (512,512,512)
Target Network Architecture CNN + MLP (512)
Network Activation LeakyReLU

RLE
Intrinsic Reward Coefficient 0.01
Latent Vector Dimension 8
Latent Vector Resample Frequency 1280
Learning Rate 0.0003
Feature Network Update Rate τ 0.005
Feature Network Architecture CNN + MLP (256,448, 8)
Network Activation ReLU

Table 3. Hyperparameters and network architectures for ATARI experiments.
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Parameter Value

PPO
Optimizer Adam
Learning Rate 0.0026
Adam Epsilon 0.00001
Steps per Batch 16
Discount Rate 0.99
Generalized Advantage Estimation λ 0.95
Minibatches per Epoch 2
Epochs per Training Step 4
Clipping Coefficient 0.2
Entropy Loss Weight 0.0
Discount Rate 0.99
Value Loss Weight 2.0
Gradient Norm Bound 1.0
Use Advantage Normalization True
Use Clipped Value Loss False
Policy Network Architecture MLP (256,256,256)
Value Network Architecture MLP (256,256,256,1)
Network Activation Tanh
Reward Scale 1.0

RLE
Intrinsic Value Loss Weight 0.5
Intrinsic Reward Coefficient 0.01
Latent Vector Dimension 32
Latent Vector Resample Frequency 16
Learning Rate 0.0001
Feature Network Update Rate τ 0.005
Policy Network Architecture MLP (256,256,256)
Value Network Architecture MLP (512,512,256,1)
Feature Network Architecture MLP (512,512,256)
Network Activation Tanh

PPO (ALLEGROHAND and SHADOWHAND)
Steps per Batch 8
Minibatches per Epoch 4
Epochs per Training Step 5
Reward Scale 0.01

Table 4. Hyperparameters and network architectures for IsaacGym experiments. The number of training steps and parallel workers
depends on the environment, but are shared across different methods.
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Parameter Value

ALLEGROHAND
Number of Timesteps 600, 000, 000
Number of Parallel Environments 8, 192

SHADOWHAND
Number of Timesteps 600, 000, 000
Number of Parallel Environments 8, 192

BALLBALANCE
Number of Timesteps 200, 000, 000
Number of Parallel Environments 4, 096

HUMANOID
Number of Timesteps 200, 000, 000
Number of Parallel Environments 4, 096

ANT
Number of Timesteps 100, 000, 000
Number of Parallel Environments 4, 096

CARTPOLE
Number of Timesteps 100, 000, 000
Number of Parallel Environments 4, 096

FRANKACABINET
Number of Timesteps 100, 000, 000
Number of Parallel Environments 4, 096

ANYMAL
Number of Timesteps 100, 000, 000
Number of Parallel Environments 4, 096

ANYMALTERRAIN
Number of Timesteps 100, 000, 000
Number of Parallel Environments 4, 096

Table 5. Environment-specific parameters and their values. These parameters are shared across all algorithms.
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D. Detailed Results and Learning Curves on all ATARI Games
We provide:

• The scores for each of the algorithms (RLE (Ours), PPO, RND and NOISYNET) on all 57 ATARI games in Table
6. Each of the algorithms was trained for 40M steps on all Atari games except for the results for MONTEZUMA’S
REVENGE where we trained for 400M steps. The reported Human performance is obtained from Mnih et al. (2013);
Badia et al. (2020).

• Learning curves for all the algorithms (RLE (Ours), PPO, RND and NOISYNET) for all 57 ATARI games in Figure 19.

• Aggregated capped human normalized score (described in Appendix B.3.2) for each of the algorithms (RLE (Ours),
PPO, RND and NOISYNET) over all 57 Atari games.

• An ablation study of how the soft update rule for the feature network affects performance on ATARI games taking three
metrics into account (scores on individual games, IQM of human normalized score, and probability of improvement
over PPO).

E. Detailed Results and Learning Curves on all ISAACGYM Tasks
We provide:

• The learning curves for PPO and RLE in all 9 ISAACGYM tasks that we consider in Figure 23.

• An ablation study of how different network architectures for ϕ affect performance on ISAACGYM tasks IQM of PPO
normalized score, and probability of improvement over PPO). We plot the IQM of PPO normalized score in Figure 24,
and probability of improvement over PPO in Figure 25.

• An ablation study of how using white noise for randomizing rewards affects performance, shown in Figure 26.
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Figure 19. Learning curves for different algorithms for all 57 ATARI games.
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PPO RND NoisyNet RLE (Ours)

Alien-v5 1409.22 1010.94 1112.59 1680.13
Amidar-v5 595.53 304.01 210.88 836.01
Assault-v5 1886.68 7045.97 1605.63 8368.57
Asterix-v5 3392.84 2439.56 2892.50 5350.79
Asteroids-v5 2913.15 3232.00 3513.02 1798.64
Atlantis-v5 915703.86 957537.41 972286.70 979023.58
BankHeist-v5 1017.55 250.91 678.44 1036.61
BattleZone-v5 35832.79 32536.65 30021.64 34793.65
BeamRider-v5 5200.10 6915.42 5755.02 5895.93
Berzerk-v5 845.95 931.95 812.45 1445.49
Bowling-v5 46.84 67.17 56.17 35.88
Boxing-v5 97.99 67.44 97.06 93.94
Breakout-v5 227.34 139.41 127.66 337.07
Centipede-v5 4634.04 7972.15 4419.47 4151.10
ChopperCommand-v5 4342.80 2140.08 4787.63 9710.00
CrazyClimber-v5 112278.70 107602.05 116637.17 115593.01
Defender-v5 46957.65 43387.18 34448.07 47872.91
DemonAttack-v5 30714.39 44342.27 28287.09 45217.82
DoubleDunk-v5 -1.57 -5.04 -1.43 -1.51
Enduro-v5 387.89 595.65 150.38 990.95
FishingDerby-v5 31.13 -57.88 14.14 30.68
Freeway-v5 25.83 21.19 32.40 32.49
Frostbite-v5 949.08 2944.37 1747.85 4658.90
Gopher-v5 1020.40 11822.26 1055.82 13290.12
Gravitar-v5 920.19 597.42 674.99 1381.69
Hero-v5 25495.80 14695.30 11433.06 9668.68
IceHockey-v5 -2.09 -16.70 -1.34 -2.39
Jamesbond-v5 3157.81 9347.30 4633.37 2452.21
Kangaroo-v5 6504.67 5474.45 1596.99 6992.13
Krull-v5 8731.23 7264.60 9063.52 8981.43
KungFuMaster-v5 26131.84 30902.44 43341.34 27813.32
MontezumaRevenge-v5 2077.03 4406.79 0.00 79.48
MsPacman-v5 2417.82 1446.32 2127.62 2676.20
NameThisGame-v5 9392.45 6078.34 7818.62 13701.36
Phoenix-v5 7137.14 19195.54 4786.92 11272.80
Pitfall-v5 -0.67 -3.41 -0.05 -57.65
Pong-v5 14.52 -10.34 7.10 17.17
PrivateEye-v5 98.34 87.24 95.55 97.79
Qbert-v5 12168.36 4300.73 3381.40 16261.59
Riverraid-v5 9268.85 4267.51 5642.73 12009.63
RoadRunner-v5 30354.36 19452.68 27037.68 53920.12
Robotank-v5 28.68 22.11 26.34 36.71
Seaquest-v5 1172.22 2463.42 920.71 1724.96
Skiing-v5 -16370.14 -10644.07 -16398.72 -13887.77
Solaris-v5 2203.41 1206.94 2584.66 2203.76
SpaceInvaders-v5 938.00 878.91 981.24 1981.37
StarGunner-v5 52219.39 23174.16 42645.43 64011.13
Surround-v5 -3.41 -7.28 -2.41 -3.91
Tennis-v5 -2.03 -19.44 -1.06 -4.49
TimePilot-v5 8319.51 9695.60 10888.94 11636.24
Tutankham-v5 204.57 140.97 142.70 209.23
UpNDown-v5 212171.29 251442.66 219951.36 151036.48
Venture-v5 401.20 969.00 0.06 782.98
VideoPinball-v5 32654.24 35275.58 28236.75 84825.64
WizardOfWor-v5 8355.05 10151.69 6306.86 9942.29
YarsRevenge-v5 74833.17 71789.37 65902.61 58507.98
Zaxxon-v5 17354.21 6273.86 6104.86 17403.15

Table 6. Performance on all 57 ATARI games. Each algorithm was trained for 40M timesteps, except for MONTEZUMA’S REVENGE

where we trained for 400M timesteps. The reported Human performance is obtained from Mnih et al. (2013); Badia et al. (2020).
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Figure 20. Capped human normalized score across all 57 Atari games. RLE outperforms all other methods in this metric and requires half
the training time to reach the same score as the next best method (PPO).
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(a) Probability of improvement over PPO with and without a
slow value feature update rule. Using the value features leads
to a slight increase in performance.

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 S
co

re

RLE
RLE (No Update)

(b) IQM of human normalized score of RLE, both with and
without a slow value feature update rule. With respect to this
metric, both versions of the method perform very similarly
overall.

Figure 21. Comparison of RLE performance with and without a slow value feature update rule.
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Figure 22. Learning curves for our method with and without a slow value feature update rule. Performance is usually similar.
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Figure 23. Comparison of learning curves between RLE and standard PPO. RLE achieves return greater than or equal to that of standard
PPO in the majority of tasks. We also compare RLE to an ablation of PPO that uses reward normalization and find that RLE improves
over it as well.
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Figure 24. IQM of PPO normalized score of RLE and RLE with a different architecture for ϕ. The different architecture used in this
experiment has less width and uses one less layer. The IQM of normalized score is similar for both methods, suggesting that RLE does
not highly depend on the architecture of the network ϕ.
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Figure 25. Probability of improvement over PPO of RLE and RLE with a different architecture for ϕ. The probability of improvement
for both RLE variants is close and the confidence intervals for the probability of improvement metric heavily overlap. This suggests that
RLE is robust to the choice of architecture for ϕ.
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Figure 26. Comparison of learning curves between RLE and PPO with random normal noise sampled i.i.d from a standard normal
distribution added to the reward at each timestep. The intrinsic reward coefficient is 0.01. RLE outperforms this variant of PPO in a large
majority of games, suggesting that RLE benefits from using state-dependent random rewards.
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