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Abstract

Single-cell transcriptomics provides detailed genetic insights into cellular
heterogeneity within intact organs and the intercellular signaling that un-
derpins tissue homeostasis, development, and disease. To improve the infer-
ence of intercellular signaling and pathway activity, we introduce scKGOT,
a novel method that employs the Knowledge Graph Optimal Transport
(KGOT) algorithm to model and quantify ligand-receptor-signaling net-
works between sender and receiver cells. scKGOT defines sender and re-
ceiver spaces using pairwise distance matrices from gene expression profiles
and leverages prior knowledge from the Ligand-Receptor-Pathway Knowl-
edge Graph (LRP-KG) as initial guidance for transport optimization, al-
lowing for dynamic adaptation based on gene expression data. Through
comprehensive benchmarking on public single-cell transcriptomic datasets,
scKGOT consistently outperforms existing inference methods in terms of
precision and interpretability. Furthermore, we demonstrate its practical
applicability across multiple case studies, uncovering complex pathway in-
teractions and revealing insights into cellular heterogeneity in diverse bio-
logical contexts. By incorporating scKGOT, we provide a robust and gen-
eralizable approach for pathway inference in single-cell analyses, advancing
the understanding of intercellular communication mechanisms and offering
valuable insights into biological processes at the cellular level.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) technologies are increasingly being used to char-
acterize the heterogeneity of a complex tissue (Macosko et al., 2015; Klein et al., 2015).
Beyond annotating cell types and transcript abundance, it is important to understand the
underlying mechanism of cell-cell communication within the tissue microenvironment (Shao
et al., 2020; Armingol et al., 2021). scRNA-seq technology holds great promise for investi-
gating cell-cell communication mediated by ligand-receptor interactions at gene expression
level. Several methods have been developed to infer ligand-receptor pairs that are active be-
tween two cell types (Efremova et al., 2020; Jin et al., 2021; Cheng et al., 2021). They focus
on direct predictions of ligand-receptor pairs based on gene expression and the correlation
between genes.
Due to the intertwined nature of biological pathways, simply examining expression levels of
ligand and receptor genes cannot reliably capture the activated signaling pathway mediat-
ing intercellular communication. As a step forward, NicheNet (Browaeys et al., 2020) and
CellCall (Zhang et al., 2021) aim to identify both ligand-receptor pairs and genes down-
stream of them. However, existing methods hardly make full use of biological pathways
to infer cell-cell communication for the fact holds that ligand-receptor-mediated cell-cell
communication relies on the activation of the specific signaling pathways, e.g., JAK-STAT
pathway, PKC pathway, and MAPK pathway (Hu et al., 2021). It is still a great challenge
to accurately model the intercellular ligand-receptor signaling pathways for the inference of
cell-cell communication.
Inspired by the remarkable performance of optimal transport in numerous tasks (Cang &
Nie, 2020; Cang et al., 2023), we herein introduce single-cell Knowledge Graph Optimal
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Transport (scKGOT), a method for construction of a signaling network (union of multi-
ple signaling pathways) to infer ligand-receptor-mediated cell-cell communication using our
proposed scKGOT algorithm for the first time based on single-cell transcriptomic data.
The algorithm first equips with a Ligand-Receptor-Pathway Knowledge Graph (LRP-KG)
consisting of intra-cellular and intercellular functional gene-gene interactions with different
types of pathways. It then identifies the activated signaling pathways by addressing a novel
scKGOT problem that incorporates gene importance and pathway Knowledge Discrepancy
(KD), highlighting highly confident ligand-receptor pairs and top-ranked pathways. Path-
ways involving ligand-receptor-mediated cell-cell communications are then reconstructed
based on predictions and known facts in LRP-KG.
Inspired by the remarkable performance of optimal transport in various tasks (Cang &
Nie, 2020; Cang et al., 2023), we introduce single-cell Knowledge Graph Optimal Trans-
port (scKGOT), a method for constructing signaling networks (unions of multiple signaling
pathways) to infer ligand-receptor-mediated cell-cell communication from single-cell tran-
scriptomic data. Our scKGOT algorithm is equipped with a Ligand-Receptor-Pathway
Knowledge Graph (LRP-KG), which encompasses both intra-cellular and intercellular gene-
gene interactions across different types of pathways. The algorithm identifies activated sig-
naling pathways by solving a novel scKGOT problem that incorporates gene importance and
pathway Knowledge Discrepancy (KD), focusing on highly confident ligand-receptor pairs
and top-ranked pathways. Subsequently, it reconstructs pathways involving ligand-receptor-
mediated cell-cell communications based on both predictions and existing knowledge within
the LRP-KG.
The primary objective of the scKGOT algorithm is to find an optimal transportation plan
in pathways from ligands to receptors based on LRP-KG, considering genes from different
pathways, cell-type–specific expression, and correlation connection to highly active ligand-
receptor pairs. We hypothesize that by integrating prior knowledge of signaling pathways
and modeling the fine-grained gene interactions, scKGOT will outperform existing meth-
ods in terms of precision and interpretability. To test this hypothesis, we benchmark the
performance of scKGOT using carefully curated scRNA-seq datasets with ground truth
ligand-receptor-mediated cell-cell communication across 11 human and mouse tissues.
To demonstrate scKGOT’s utility in uncovering biological insights, we conducted a multi-
level analysis of pathway activation, showcasing its capability to explore complex signaling
dynamics. We also performed a pathway interaction analysis of cell type pairs, including
individual analyses of specific cell type pairs and comparisons between tumor and non-tumor
cell types, further revealing scKGOT’s potential to uncover key biological insights.

2 Problem Formulation

Previous works (Browaeys et al., 2020; Efremova et al., 2020) have shown that the binding
problem of ligand-receptor pairs can be formulated as a classification task from a proba-
bilistic perspective, which predicts the existence of a binding between ligand and receptor
genes given a dataset D.

ẑ = arg max
z∈C

P (z | D) (1)

where C is the candidate set of interest containing ligand-receptor pairs.
From a fine-grained deconstruction perspective, we propose a novel formulation that consid-
ers the underlying transportation of signals through multiple pathways. Denoting the space
of pathways as W, we formulate the signaling transportation between ligands and receptors
across pathways as follows:

ẑ = arg max
z∈C

Σwn∈W P (z | wn, D) · P (wn | D)

= arg max
z∈C

Σwn∈W s1(z, wn, D) · s2(wn, D)
(2)
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Here, wn represents a pathway retrieved from the LRP-KG space of pathways W. In this
factorization, the first factor P (z | wn, D) corresponds to the gene importance score of
ligand-receptor pairs within pathway wn, while the second factor P (wn | D) reflects the
pathway knowledge discrepancy (KD) for pathway wn given a dataset D. For each pair
ẑ, the most relevant pathways are ranked by KD, with smaller values indicating better
alignment.
This formulation (Eq. 2) provides several key advantages: (1) It retains the original proba-
bilistic formulation, making our model comparable to previous research and machine learn-
ing baselines, ensuring fair benchmarking. (2) It explicitly models the transportation of
ligand-receptor pairs through multiple pathways, offering additional insights for further
analysis, such as identifying the dominant pathway behind active ligand-receptor pairs. (3)
It can be extended to zero-shot scenarios, where candidate ligand-receptor pairs are not lim-
ited by hand-crafted priors, enabling the discovery of ligand-receptor pairs and pinpointing
critical components of highly activated pathways.

3 Knowledge Graph Optimal Transport (KGOT)

To address the above problem in a fine-grained perspective, we developed the Knowledge
Graph Optimal Transport (KGOT) framework for pairing ligands and receptors across path-
ways between two cell types. In scKGOT, we defines a sender space (C1, p) and a receiver
space (C2, q), where C1 ∈ Ra×a and C2 ∈ Rb×b are pairwise distance matrices derived from
the gene expression profiles of the sender and receiver cell types, respectively. The vectors
p ∈ Ra and q ∈ Rb represent the marginal distributions of gene expression levels, capturing
the relative abundance of each gene within the sender and receiver cells, respectively. Path-
ways from the LRP-KG are used as prior knowledge, providing initial estimates that guide
the search process. However, the final optimal transport solution is primarily influenced by
gene expression data, allowing scKGOT to adapt dynamically and discover new interactions
that extend beyond the predefined pathways.
scKGOT simulates signal transmission by leveraging the LRP-KG as a foundation for signal
transportation, integrating prior knowledge with data-driven insights to identify key ligand-
receptor interactions and discover novel pathways. It uses single-cell datasets from various
species and organs. For each cell type pair of interest, scKGOT predicts ligand-receptor
relationships by enumerating multiple pathways and calculating the probability distribution
of ligand-receptor pairs as a weighted average across signaling transportation problems.
The model predicts two key components in this framework: (1) gene importance score,
indicating the importance of gene pairs within specific pathways, and (2) pathway knowledge
discrepancy (KD), estimated as the total cost of signal transportation across the pathways.
To obtain the optimal transport plan γ∗ ∈ Ra×b, we minimize the loss function L(C1, C2, γ),
defined as follows:

γ∗ = arg min
γ

L(C1, C2, γ)

= arg min
γ

∑
i,j,k,l

L (C1i,j , C2k,l) · γi,k · γj,l (3)

s.t. γ ≥ 0, γ1 ≤ p, γT 1 ≤ q,

1T γ1 = m ≤ min {∥a∥1, ∥b∥1} .

where L (C1i,j , C2k,l) represents the square loss between the correlation distance matrices
C1 and C2, where i and j are genes from sender cells and k and l are genes from receiver
cells. The variables p and q represent the marginal distributions of gene expression for the
sender and receiver cells, respectively.
The optimal solution γ∗ directly computes s1 and s2. The gene importance score s1(z, wn, D)
is derived from the transport plan, reflecting how well ligand-receptor pairs align with the
observed data in a specific pathway.
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s1(z, wn, D) =
γ∗

i,k∑
i,k γ∗

i,k

(4)

γ∗
i,k represents the transport mass for the gene pair (i, k), and the sum

∑
i,k γ∗

i,k provides
the normalization. Meanwhile, s2(wn, D) is calculated as the normalized transport cost,

s2(wn, D) = norm(L(C1, C2, γ∗)) (5)

The function norm(L(C1, C2, γ∗)), which converts the minimized loss into a maximization
framework using norm(·) = 1 − Percentile(·). This transformation ensures that a lower
transport cost results in a higher s2 value, representing a better alignment of the pathways
with the dataset information. By maximizing s2, scKGOT identifies pathways that are most
consistent with the observed gene expression data, enabling the model to adapt and reveal
new biological insights beyond the initial pathway information provided by the LRP-KG.
By deconstructing the LRP-KG into distinct signaling pathways, scKGOT provides an en-
semble view of gene-level intercellular communication, emphasizing the complexity of bio-
logical signaling across various cell types. Its pathway-centric approach not only maps gene
interactions across multiple routes but also highlights key genes with significant expression,
using LRP-KG to decode complex cellular signaling networks and solve the KGOT problem.
scKGOT offers high interpretability, providing researchers with a profound understanding of
inferred gene-level cell-cell communication networks. Its comprehensive suite of visualization
tools—including heatmaps, Sankey diagrams, and network plots—enables researchers to
dissect and scrutinize the computational predictions of gene importance scores and pathway
knowledge discrepancies. These visual aids are crucial for identifying key genes and active
pathways, elucidating their interconnections, and providing a deeper understanding of the
complex mechanisms underlying intercellular communication.

4 Experiments

4.1 Experimental Settings

Task and Baselines. To evaluate the performance of scKGOT in predicting ligand-
receptor binding, we frame this task as a multi-relation link prediction problem and compare
scKGOT against several well-established knowledge graph embedding (KGE) methods which
rely heavily on knowledge graphs, including TransE (Bordes et al., 2013), DistMult (Yang
et al., 2014), RotatE (Sun et al., 2019), and ComplEx (Trouillon et al., 2016). These base-
line methods account for various relational characteristics, such as symmetric, asymmetric,
inverse, compositional, and 1-to-N relationships.
Dataset. We conducted experiments on 6 human and 5 mouse scRNA-seq datasets, with
each dataset containing at least one pair of ligand and receptor within the cell pairs of inter-
est. All scRNA-seq datasets were retrieved from several high-quality reports. For the con-
struction of LRP-KG, KEGG (Kanehisa et al., 2017) and Reactome (Fabregat et al., 2018)
provide 2,302 human pathways and 1,800 mouse pathways with 2,223,641 and 1,651,421
records of ligand-receptor interaction facts respectively, including binding, dephosphoryla-
tion and activation, etc.
Metrics. We report Mean Rank (MR) and Hits@K (K = 1, 5, 10, 50) based on the filtered
setting, which accounts for the varying sizes of rank candidates. The results, summarized
in Fig. 1, are derived from five independent runs using different random seeds. For all
experiments, we employ permutation testing with 100 iterations. For comparison with
specialized cell-cell interaction prediction methods, we report accuracy and percentile rank.

4.2 Performance Comparison

The evaluation protocol for ligand-receptor binding, framed as a multi-relation link predic-
tion task, follows the standard practice of link prediction under the stochastic local closed
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Figure 1: Performance comparison of different models for gene-gene interaction predictions.

world assumption, with a modification in the ensemble ranking procedure. Since ligand-
receptor pairs may be involved in multiple pathways within our LRP-KG, we evaluate all
ground truth triples and assign scores accordingly. The final rank for each ligand-receptor
prediction is determined by the highest rank achieved among all scored triples, treating each
pathway as a distinct relation in the evaluation process.
As shown in the upper section of Fig. 1, while Hits@K metrics are comparable across meth-
ods, scKGOT significantly outperforms baseline models on Mean Rank by making predic-
tions where both the LRP-KG and scRNA-seq data provide corroborating evidence, leading
to more stable and accurate rankings compared to baseline models. This result demonstrates
the effectiveness of integrating prior knowledge in LRP-KG with gene expression data.
To further validate scKGOT, we compared it with several baseline methods specifically de-
signed for cell-cell interaction prediction, including NicheNet (Browaeys et al., 2020), Cell-
PhoneDB (Efremova et al., 2020), SingleCellSignalR (Cabello-Aguilar et al., 2020), CellChat
(Jin et al., 2021), and CellCall (Zhang et al., 2021). The results, shown in the lower sec-
tion of Fig. 1, indicate that scKGOT achieves accuracy levels comparable to these baselines.
However, scKGOT notably excels in percentile rank across all datasets, consistently ranking
target ligand-receptor pairs within the top 1-5 positions out of hundreds or even thousands
of potential candidates. This results in percentile rank values frequently approaching 0.999,
indicating the model’s ability to prioritize biologically relevant interactions with remarkable
precision. The minimal variance observed in the box plots further underscores the robustness
and reliability of scKGOT in producing consistently accurate top-ranked predictions.
One notable observation from our experiments is that while traditional methods perform well
in many contexts, they may face challenges in scenarios that involve modeling signal propa-
gation through multiple pathways. In contrast, explicit consideration of pathway complexity
by scKGOT appears to provide a more nuanced understanding of the intricate dynamics of
intercellular communication. Our results highlight the robustness of scKGOT in capturing
the structural and functional relationships between genes. These findings underscore the
potential of scKGOT as a powerful tool for gene-level intercellular communication analysis.
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Figure 2: Structured methodology from cellular to pathway-level analysis. (a) Distribu-
tions of pathway knowledge discrepancy via Kernel Density Estimation (KDE). (b) Size-
insensitivity in pathway identification, demonstrating that larger pathways do not distort
the scores. (c) Heatmap analysis exposing scKGOT’s internal mechanisms. (d) Sankey
diagram providing a detailed visual representation of ligand-receptor-pathway connections,
facilitating the identification and interpretation of key interactions.

4.3 Multi-level Analysis for Pathway Activation

Beyond achieving strong performance metrics, we now explore how scKGOT provides
deeper, multi-dimensional insights into pathway activation within specific datasets. Using
scKGOT, we conducted a comprehensive multi-level analysis of pathway activation from
three perspectives: cells, genes, and pathways, as illustrated in Fig. 2. Each pair of cell
types is treated as the fundamental unit of study, allowing us to systematically explore the
signaling pathways and interactions specific to each cell type pair.
At the pathway level, we observe the distribution of pathway knowledge discrepancy scores
(Fig. 2a), which reveals significant deviations from a normal distribution. This deviation
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supports the robustness of scKGOT’s predictions, demonstrating that our algorithm ef-
fectively leverages pathway information without being biased by the size of the pathways
involved. In particular, larger pathways do not disproportionately influence the scores, as
shown in Fig. 2b, highlighting the size-insensitive nature of scKGOT when identifying and
ranking pathways.
Furthermore, our analysis extends to the internal mechanisms of scKGOT, where we per-
form a detailed co-analysis of ligand-receptor-pathway interactions (Fig. 2c). The heatmaps
provide a multi-faceted visualization that captures the complexity of these interactions, offer-
ing deeper insights into how scKGOT integrates ligand-receptor interactions with pathway
recognition. This co-analysis is crucial for understanding the underlying biological processes
and for validating the model’s predictive capabilities.
Finally, Fig. 2d presents a detailed visualization of the ligand-receptor-pathway co-analysis
conducted using scKGOT. This Sankey diagram provides an intuitive representation of the
connections between pathways, ligands, and receptors. The thickness of these connections
reflects the strength of the predicted interactions, helping to prioritize key interactions for
further biological investigation.

4.4 Pathway Interaction Analysis of Cell Type Pairs

Using scKGOT, we explored pathway interactions across three datasets with the goal of
identifying critical gene interactions that might be overlooked in traditional analyses. By
focusing on the largest connected components, we aimed to gain insights into how different
cell types communicate within various biological contexts, contributing to a deeper under-
standing of processes such as immune modulation, cell signaling, and tissue remodeling.
In the placenta dataset (Fig. 3a), scKGOT identified interactions between lymphatic en-
dothelial cells and villous cytotrophoblasts, highlighting pathways like TGF-β signaling and
integrin-ECM interactions (Heldin & Moustakas, 2016). These findings suggest that TGF-β
may play a role in immune tolerance and placental remodeling (Heldin & Moustakas, 2016),
while integrin signaling appears important for maintaining placental structure. Clusters of
immune-related genes also indicate that scKGOT could assist in predicting how the placenta
manages inflammation and immune regulation.
In the testis dataset (Fig. 3b), scKGOT revealed significant interactions between Sertoli cells
and spermatogonial stem cells, emphasizing the potential role of Wnt signaling in regulating
spermatogenesis (Nusse & Clevers, 2017). Additionally, the identification of integrin-ECM
genes suggests these interactions are key to the structural integrity of the seminiferous
tubules (Lu et al., 2012). scKGOT further pointed to immune modulation, which may be
crucial for protecting germ cells in the testis.
In the third dataset, comparing tumor and non-tumor liver sinusoidal endothelial cells inter-
acting with pericytes, we observed distinct differences in the modules identified by scKGOT.
In the tumor environment (Fig. 3c), ECM remodeling and Notch signaling pathways were
notably present, suggesting their importance in promoting tumor progression (Lu et al.,
2012). The tumor interactions revealed a more aggressive engagement with ECM compo-
nents, likely facilitating cellular migration and invasion, while Notch signaling appeared to
support the maintenance of tumor cell plasticity and the promotion of abnormal angiogen-
esis (Ferrara et al., 2003). Conversely, in the non-tumor condition (Fig. 3d), interactions
seemed to be more focused on maintaining normal tissue structure and homeostasis. These
findings underscore that the integration of LRP-KG with scRNA-seq data provides a pow-
erful approach to generating biological hypotheses about cellular communication patterns
in both normal and diseased states.

4.5 Ablation Study

To thoroughly evaluate the robustness and sensitivity of scKGOT, we designed a compre-
hensive ablation study consisting of three distinct experimental sets, each targeting specific
aspects of the model (see Table 1 for details).
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Figure 3: Visualization of the largest connected subgraphs for pathway interactions from
three datasets. (a) Lymphatic endothelial cell and villous cytotrophoblast in the human
placenta, highlighting TGF-β and integrin-ECM interactions. (b) Sertoli cell and sper-
matogonial stem cell in the human testis, emphasizing Wnt signaling and immune modula-
tion. (c) Tumor liver vascular endothelial cell and pericyte in human tumor, revealing ECM
remodeling and Notch signaling driving tumor progression. (d) Non-tumor liver vascular
endothelial cell and pericyte, showing distinct pathway interactions that maintain tissue
structure and homeostasis. Ligands are represented by red circles, and receptors by green
circles. Node colors correspond to functional categories: immune response (red-orange), cell
signaling (blue), extracellular matrix (green), angiogenesis (purple), cell adhesion (orange),
hormonal signaling (pink), neurotransmission (teal), and other functions (gray).

To assess the impact of reducing prior knowledge, we systematically removed facts (Fact-
Drop) and pathway types (TypeDrop) from the LRP-KG. The results revealed that scKGOT
maintained stable performance when up to 20% of pathway connections were removed. We
believe this stability can be attributed to the inherent sparsity of the knowledge graph and
the relatively limited amount of human-curated data. However, as the reduction increased
to 30% or more, a noticeable decline in performance was observed, particularly in specific
datasets. This suggests that there is a critical threshold beyond which the loss of information
begins to significantly impair the model’s ability to accurately predict ligand-receptor in-
teractions. Additionally, when over 50% of pathway types were removed, scKGOT’s results
were markedly affected. This outcome is likely due to the model’s ability to automatically
identify and prioritize the most influential pathways, effectively disregarding less impactful
routes even when substantial data reduction occurs.
To explore scKGOT’s sensitivity to data reduction, we focused on the effects of removing
less expressive genes (ExprDrop) and cells (CellDrop) from the scRNA-seq data. The find-
ings showed that scKGOT sustained robust performance with up to a 30% reduction in
under-expressed genes. However, beyond this point, performance deteriorated sharply, sug-
gesting that the extensive removal of these genes disrupts the distribution of gene expression
and diminishes the richness of potential information pathways, thereby reducing predictive
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Table 1: Ablation Study of scKGOT performance on datasets with different sizes, tissues
and species. Regarding robustness, we consider two aspects: prior knowledge and data
availability. The prior knowledge part includes discarding facts (FactDrop) or pathway types
(TypeDrop) by percentage from LRP-KG, while the data availability part includes dropping
genes with low expression values (ExprDrop) or randomly removing cells (CellDrop) by
percentage.

Human Mouse
Tissue Pl1 Pl2 Tumor1 Tumor2 Brain1 Brain2 Colon MG
FactDrop 10% 0.995 0.994 0.994 0.994 0.998 0.957 0.992 0.994
FactDrop 30% 0.983 0.836 0.993 0.994 0.998 0.931 0.991 0.994
FactDrop 50% 0.976 0.948 0.987 0.994 − − 0.996 0.994
FactDrop 70% 0.937 − 0.982 0.993 − − 0.975 0.992
FactDrop 90% 0.941 0.943 − − − − − 0.979
TypeDrop 10% 0.993 0.995 0.993 0.994 0.998 0.955 0.993 0.994
TypeDrop 30% 0.986 0.990 0.989 0.992 0.997 0.958 0.994 0.994
TypeDrop 50% 0.983 0.988 0.981 0.990 0.996 0.963 0.972 0.991
TypeDrop 70% 0.873 − 0.971 0.982 − − − 0.980
TypeDrop 90% − − − − − − − 0.917
ExprDrop 10% 0.993 0.995 0.993 0.993 0.997 0.957 0.992 0.994
ExprDrop 30% 0.992 0.989 0.992 0.989 0.893 0.926 0.987 0.992
ExprDrop 50% 0.899 0.974 0.989 0.980 0.788 0.952 − 0.982
ExprDrop 70% 0.753 0.548 0.955 0.971 0.683 0.625 − 0.976
ExprDrop 90% − − − − − − − −
CellDrop 10% 0.991 0.995 0.994 0.993 0.998 0.958 0.992 0.995
CellDrop 30% 0.993 0.993 0.993 0.991 0.998 0.992 0.991 −
CellDrop 50% 0.991 0.994 0.987 0.989 0.998 − 0.992 −
CellDrop 70% 0.992 0.994 0.982 0.966 0.997 0.899 0.990 −
CellDrop 90% 0.990 0.988 − − 0.996 − − −

accuracy. In contrast, scKGOT demonstrated considerable resilience to cell reduction, con-
tinuing to perform effectively even when up to 70% of cells were removed. We infer that
this resilience is due to scKGOT’s reliance on the mean expression levels of genes, allowing
the model to derive accurate analyses from a smaller sample size without compromising the
integrity of pathway predictions.

5 Conclusion

scKGOT integrates the Ligand-Receptor-Pathway Knowledge Graph (LRP-KG) with op-
timal transport to infer intercellular communication at the gene level, uncovering both
known and novel biological pathways. It robustly maps the largest connected components
in LRP-KG, which correspond to established pathways crucial for signal transduction in
diverse cellular contexts. scKGOT’s interpretability is enhanced by its visual flow-based
mapping of gene interactions, enabling identification of regulatory nodes and therapeutic
targets. The incorporation of optimal transport allows for fine-grained modeling of pathway
dynamics, addressing variability in single-cell data and improving prediction accuracy of
cell-cell interactions. This comprehensive framework not only advances pathway inference
but also provides actionable insights for molecular biology and clinical applications by eluci-
dating complex intercellular communication and offering potential for targeted therapeutic
strategies.
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A Crucial Pathways per Dataset

This appendix presents a comprehensive list of crucial pathways identified by scKGOT for
each dataset analyzed in our study. These pathways illuminate the intercellular commu-
nication patterns unique to different biological contexts, offering valuable insights into the
underlying mechanisms of cell-cell interactions.
Researchers can reference this appendix to gain a deeper understanding of crucial pathways
across various biological contexts and explore their implications for cellular processes and
disease mechanisms.

Tissue Cell Summary Pathway Summary
Brain Endothelial cell

Neural stem cell
Progesterone-mediated oocyte maturation
ErbB signaling pathway
Melanogenesis

Brain Endothelial cell
Neural stem cell

Th1 and Th2 cell differentiation
Non-alcoholic fatty liver disease (NAFLD)
Cell adhesion molecules (CAMs)

Brain Neuron
Microglia

Viral protein interaction with cytokine and cy-
tokine receptor
Neuroactive ligand-receptor interaction
Cytokine-cytokine receptor interaction

Colon Neuron
Macrophage

Complement and coagulation cascades
Viral protein interaction with cytokine and cy-
tokine receptor
NF-kappa B signaling pathway

Mammary
Gland

Luminal cell
Basal cell

Signaling by Receptor Tyrosine Kinases
Longevity regulating pathway
Influenza A

Spinal
Cord

Dividing myeloid cell
Astrocyte

Viral protein interaction with cytokine and cy-
tokine receptor
Costimulation by the CD28 family
Th1 and Th2 cell differentiation

Spinal
Cord

Dividing myeloid cell
Fibroblast

Cell adhesion molecules (CAMs)
Signaling by Receptor Tyrosine Kinases
Natural killer cell mediated cytotoxicity

Table 2: Summary of predicted pathways across mouse tissues and cellular interactions,
with three pathways per interaction due to space limitation.
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Tissue Cell Summary Pathway Summary
Embryo Mitotic fetal germ cell

Meiotic fetal germ cell
Neuroactive ligand-receptor interaction
HIF-1 signaling pathway
Retrograde endocannabinoid signaling

Embryo Mitotic fetal germ cell
Late granulosa

Complement and coagulation cascades
Cortisol synthesis and secretion
Regulation of lipolysis in adipocytes

Embryo Meiotic fetal germ cell
Late granulosa

GABAergic synapse
VEGF signaling pathway
Dilated cardiomyopathy (DCM)

Embryo Oogenesis fetal germ cell
Late granulosa

Non-alcoholic fatty liver disease (NAFLD)
TNF signaling pathway
Long-term potentiation

Embryo Retinoid acid
signaling-responsive
fetal germ cell
Late granulosa

Breast cancer
Salmonella infection
Focal adhesion

Liver
Bud

iPS cell-derived hepatic
endoderm cell
iPS cell-derived endothe-
lial cell

Viral protein interaction with cytokine and cy-
tokine receptor
Neuroactive ligand-receptor interaction
GnRH secretion

Lung Fibroblast
Alveolar type 2 cell

Progesterone-mediated oocyte maturation
Melanogenesis
Cell adhesion molecules

Placenta Decidual natural killer cell
1
Extravillous trophoblast

Hedgehog signaling pathway
Viral protein interaction with cytokine and cy-
tokine receptor
Complement and coagulation cascades

Placenta Decidual natural killer cell
3
Extravillous trophoblast

Complement and coagulation cascades
Notch signaling pathway
GABAergic synapse

Placenta Lymphatic endothelial cell
Syncytiotrophoblast

Hedgehog signaling pathway
GnRH secretion
Regulation of lipolysis in adipocytes

Placenta Lymphatic endothelial cell
Villous cytotrophoblast

Renin secretion
Long-term potentiation
Hemostasis

Testis Sertoli cell
Spermatogonial stem cell

Fc epsilon RI signaling pathway
VEGF signaling pathway
Signaling pathways regulating pluripotency of
stem cells

Tumor Liver sinusoidal endothe-
lial cell
Pericyte

ECM remodeling
Notch signaling
Angiogenesis

Tumor Tumor liver vascular en-
dothelial cell
Pericyte

Viral protein interaction with cytokine and cy-
tokine receptor
Basal cell carcinoma
Adipocytokine signaling pathway

Table 3: Summary of predicted pathways across human tissues and cellular interactions
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B Limitation

When working with a limited number of cells, the statistical robustness of observations
can be significantly compromised due to small sample sizes, leading to ill-defined problems.
In such scenarios, many genes may appear unexpressed simply because the sample is not
adequately representative of the true biological diversity. This sparsity can introduce bi-
ases, resulting in misleading interpretations of signaling pathways and gene interactions.
Moreover, the reliability of the inferred intercellular communication networks diminishes, as
sparse data may fail to capture the full complexity of the underlying biological processes.
To mitigate these challenges, it is crucial to ensure sufficient cell coverage and consider com-
plementary methods or datasets to validate the findings, thereby enhancing the reliability
and interpretability of the results.

C Ligand-Receptor-Pathway Co-analysis

Fig. 4 is divided into three main sections from top to bottom: pathway-ligand, ligand-
receptor, and receptor-pathway, derived from human placenta data with 20,218 cells. The
sender cell type is lymphatic endothelial cells, while the receiver cell type is villous cytotro-
phoblasts. The color-coded edges represent connections within the same pathway, enabling
easy identification of predominant pathways across the predicted results. Intersections be-
tween different pathways also highlight ligand-receptor pairs associated with multiple path-
ways, showcasing cross-pathway communication, one of the key insights revealed by the
scKGOT algorithm.
In the central ligand-receptor section, the thickness of the lines corresponds to the predicted
interaction strength, helping to identify the top-ranked pairs among numerous connections.
For example, the IGF1-IGF1R pair is highly ranked and integrates signals from various
pathways, including pathways in cancer, glioma, HIF-1 signaling, oocyte meiosis, mTOR
signaling, and others. The significant thickness of the line connecting IGF1 and IGF1R
suggests a strong interaction prediction, warranting further investigation. Note that this
Sankey diagram is a more complete version of Fig. 2f.
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Figure 4: Sankey diagram illustrating the predicted interactions, with sections from the top
to bottom representing pathway-ligand, ligand-receptor, and receptor-pathway. The color-
coded edges indicate connections within the same pathway. In the ligand-receptor section,
line thickness reflects the strength of the predicted interactions.

15


	Introduction
	Problem Formulation
	Knowledge Graph Optimal Transport (KGOT)
	Experiments
	Experimental Settings
	Performance Comparison
	Multi-level Analysis for Pathway Activation
	Pathway Interaction Analysis of Cell Type Pairs
	Ablation Study

	Conclusion
	Crucial Pathways per Dataset
	Limitation
	Ligand-Receptor-Pathway Co-analysis

