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ABSTRACT

Long-horizon agentic search requires iteratively exploring the web over long tra-
jectories and synthesizing information across many sources, and is the foundation
for enabling powerful applications like deep research systems. In this work, we
show that popular agentic search frameworks struggle to scale to long trajectories
primarily due to context limitations—they accumulate long, noisy content, hit
context window and tool budgets, or stop early. Then, we introduce SLIM (Simple
Lightweight Information Management), a simple framework that separates re-
trieval into distinct search and browse tools, and periodically summarizes the
trajectory, keeping context concise while enabling longer, more focused searches.
On long-horizon tasks, SLIM achieves comparable performance at substantially
lower cost and with far fewer tool calls than strong open-source baselines across
multiple base models. Specifically, with o3 as the base model, SLIM achieves 56%
on BrowseComp and 31% on HLE, outperforming all open-source frameworks by
8 and 4 absolute points, respectively, while incurring 4–6x fewer tool calls. Finally,
we release an automated fine-grained trajectory analysis pipeline and error taxon-
omy for characterizing long-horizon agentic search frameworks; SLIM exhibits
fewer hallucinations than prior systems. We hope our analysis framework and
simple tool design inform future long-horizon agents1.

1 INTRODUCTION

Long-horizon agentic search involves performing searches over long trajectories and reasoning
over many sources, and requires powerful systems that can explore diverse sources and leverage
tools effectively. The ability to reason over long trajectories serves as the foundation for exciting
applications such as deep research (OpenAI, 2025; Google, 2025; xAI, 2025). Due to its immense
potential in solving complex tasks, long-horizon systems have been a key focus in the community,
eliciting the development of many proprietary and open-source frameworks. Among open-source
systems, HuggingFace Open Deep Research (Roucher et al., 2025) and GPT Researcher (Elovic,
2023) opt for complex multi-agent orchestration while SEARCH-O1 (Li et al., 2025b) uses a single
agent. However, despite the numerous approaches, they still fail in complex long-trajectory settings,
and there are no systematic approaches to analyze their trajectories and identify the failure modes.

In this work, we first analyze existing frameworks by examining their trajectory outcomes on
BrowseComp (Wei et al., 2025), a challenging long-horizon agentic search benchmark. Our analysis
shows that these frameworks still struggle with long-trajectory tasks, failing on more than 50% of the
samples—most of the failures are due to hitting the context window limit, running out of tool budget,
or stopping too early.

We attribute these failure modes to poor context management that can fill the context window with
noisy information that derails long search trajectories. The limited context restricts the number of
turns in each trajectory, resulting in incomplete information gathering. To overcome these limitations,
we design SLIM (Simple Lightweight Information Management), a framework with three simple yet
powerful components—search, browse, and summarization—that effectively manage the context size
of long-horizon systems. The simple tool design allows LLMs to interleave searching for diverse
information and browsing promising pages without spending unnecessary tool calls on noisy search

1Our code will be made publicly available.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 1 2
Cost ($)

10

20

30

40

50

BrowseComp

0 200 400
Tools (Count)

10

20

30

40

50

0.1 0.2 0.3
Cost ($)

17.5

20.0

22.5

25.0

27.5

30.0

HLE

0 25 50 75
Tools (Count)

17.5

20.0

22.5

25.0

27.5

30.0

Base (o3) SLIM (Ours) ReAct Search-o1 HF Open Deep Research GPT-Researcher

Figure 1: With o3 as the base model, SLIM achieves better performance than existing frameworks
on both BrowseComp and HLE while using more than 4-6x fewer tool calls and lower overall costs,
which account for LLM token usage and tool costs.

results. Furthermore, the summarization module acts as a general-purpose context manager that
can reduce long trajectories into more condensed summaries. These design choices combine to
allow the system to scale to longer trajectories while maintaining a concise context and reduced tool
costs. Under a comparable cost budget, with o3 as the base model, SLIM significantly outperforms
the previous best open-source frameworks by 8 and 4 absolute points on BrowseComp and HLE,
respectively, while requiring only 15-25% of the tool calls (Figure 1).

Finally, we introduce an automated trajectory-level analysis pipeline that provides fine-grained
insights into long-horizon frameworks. To characterize mistakes made by these systems, we develop
an error taxonomy identifying common failure modes. Our analysis reveals that SLIM’s advantage
stems from its robustness to failure modes such as hallucinations and unfocused and generic searches.
We hope our analysis pipeline, error taxonomy, and careful design choices in SLIM can serve as a
foundation for understanding and improving long-horizon agentic search systems.

2 PRELIMINARIES: LONG-HORIZON AGENTIC SEARCH

Previous information-seeking tasks, such as open-domain question answering, are simpler, as they
typically involve factoid questions that are easy to answer with a single source (Joshi et al., 2017;
Kwiatkowski et al., 2019; Petroni et al., 2021). As a result, these tasks can be mostly solved with
static retrieval-augmented generation (RAG) systems that leverage at most a few retrieval steps (Lewis
et al., 2020; Izacard et al., 2023; Shi et al., 2024), and do not showcase the challenges of realistic,
long-horizon agentic search settings. In contrast, we study long-horizon tasks with complex queries
that require extensive searches to gather the necessary information and reasoning over different
sources to synthesize the answer. In this section, we formalize the task, describe the datasets for
studying long-horizon agentic search, and review some previous long-horizon systems.

2.1 TASK FORMULATION

We formalize long-horizon agentic search tasks as follows: given a query q, a corpus of documents D,
the system needs to perform a sequence of tool calls to find relevant information from D and output a
final answer o, which is checked against the annotated groundtruth answer a. A critical component
of the system is the design of its tools and how it interacts with the corpus; each tool is a function
Ti(x)→ y that maps arbitrary system-generated inputs x to arbitrary outputs y.

Furthermore, agentic systems are often controlled by a tool budget T , the maximum number of tool
calls they are allowed to use in any trajectory. The tool budget T also corresponds to the maximum
number of turns in a trajectory, as each turn corresponds to one tool call2. Thus, how to manage the
input context to the underlying LLM across many tool uses and turns is another critical design choice
in long-horizon systems. Finally, the final step where the system outputs its final answer does not
count towards the tool budget.

2Some architectures, such as the CodeAgent (Wang et al., 2024) used in HF-ODR, allow for parallel tool
calls in one step (e.g., using for loops), but we found that the models we tested do not use this capability.
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Figure 2: Example queries and their relevant documents for BrowseComp (Wei et al., 2025) and
HLE (Phan et al., 2025).

In long-horizon agentic search settings, the web is most often used as the corpus D due to the
diversity and complexity of the queries, and each document di = (ui, ti, ci) comprises a URL, title,
and content. In practice, long-horizon systems typically use search engines R(q) → {(ui, ti)}n1
to obtain a list of n web pages with their titles and URLs most relevant to the search query q.
Furthermore, a scraping operation C(ui)→ ci is necessary to obtain the full content of any URL as
search engines only provide a list of URLs, but scraping is slow and noisy in practice.

In traditional QA settings, since the retrieval tool only needs to be called once due to the simplicity
of the queries and the small size of the corpus (i.e., Wikipedia), retrieval returns the full list of
documents and their contents Rwiki(q) → {(ti, ci)}n1 . As a result, many long-horizon systems
follow a similar design, where the retrieval tool is a single search engine call followed by scraping all
returned URLs. However, the complexity of long-horizon agentic search requires many tool calls to
gather the necessary information (Li et al., 2025b; Jin et al., 2025b). As we demonstrate empirically
later, this naive tool design leads to severe context limitations, where the system is overwhelmed by
long, noisy content, motivating the design of more efficient tool interfaces for long-horizon systems.

2.2 DATASETS

We select two datasets with naturally difficult queries that require long-trajectory searches and
verifiable answers, which ensures the reliability of subsequent analyses. For evaluation, we sample
a random subset of 300 instances from each dataset due to the high costs of running long-horizon
systems. An example query from each dataset is shown in Figure 2.

BrowseComp (Wei et al., 2025) consists of challenging queries targeting hard-to-find information.
BrowseComp tests one of the core capabilities of long-horizon systems—the ability to exhaustively
search the web over long trajectories and collect the necessary information. These queries were
rigorously validated by humans to require > 10 minutes of searching on the open web. As a result,
BrowseComp is extremely challenging for long-horizon systems.

Humanity’s Last Exam (HLE; Phan et al., 2025) tests across multiple domains and often requires
domain-specific knowledge and reasoning skills. These expert domains span across a wide range of
topics, such as biology, mathematics, and physics. HLE tests the ability of long-horizon systems to
leverage the web to find helpful information that can aid reasoning-heavy problems. These questions
are rigorously vetted by domain experts, and most existing systems fail to achieve high accuracy. We
use the text-only subset to allow for evaluation of text-only systems.

3
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Table 1: Comparison of SLIM with existing frameworks. In contrast to single-agent works that
bundle search and browsing search results into one retrieval tool, we separate it into two distinct tools.

Framework Architecture # Tools Tools Input to LLM Context Summarization

REACT Single-agent 1 Retrieval All search results -
SEARCH-O1 Single-agent 1 Retrieval All search results Retrieved content
HF-ODR Multi-agent 11 Search, Browse, Python, ... Selected search results Search agent result
GPT-R Multi-agent 1 Retrieval All search results Retrieved content

SLIM (ours) Single-agent 2 Search, Browse Selected search results Task trajectory

2.3 EXISTING APPROACHES

We briefly describe some popular approaches to agentic search, ranging from simple single-LLM
frameworks to complex multi-agent systems. We summarize the differences between these frame-
works in Table 1; more details are in §A.1.

REACT (Yao et al., 2023) is a simple framework that allows an LLM agent to alternate between
thinking and acting, allowing tool calling across many turns. Following the original work, our
implementation gives the LLM access to a single retrieval tool—given a query, the tool returns a list
of top 10 results along with their web contents. All search results are then concatenated to the agent’s
context for subsequent steps. When the LLM chooses not to use the search tool, the final output is
used for evaluation. Our experiments vary the maximum number of turns in each trajectory.

SEARCH-O1 (Li et al., 2025b) builds upon REACT with an additional “reason-in-document” step,
where an LLM summarizes the search results and their contents before appending the results to the
agent’s input context. Although the summary step reduces context length for the main LLM compared
to REACT, this approach still uses many scraping operations in each search step (one for each search
result), and summarization incurs a large amount of LLM token usage.

HuggingFace OpenDeepResearch (HF-ODR; Roucher et al., 2025) leverages a hierarchical struc-
ture consisting of a manager agent and a search agent. The manager agent calls the search agent to
perform detailed searches. The search agent iteratively interacts with a search engine, a browser, and
other tools (detailed in §A.2), and returns a summary of its searches. The manager agent may use the
summary to issue more queries or output a final answer. We use the default settings, which fixes the
maximum number of turns T = 20 for the manager and search agent.

GPT-Researcher (GPT-R; Elovic, 2023) is a complex multi-agent system where each agent has
distinct roles: a research conductor that orchestrates the search process, a report generator that creates
the report, a context manager that summarizes search results, and a source curator that selects relevant
sources from scraped pages. The system uses a deep researcher agent that acts as a search tree node,
spawning multiple children nodes with these same components. We use the default setting, which
fixes the depth of the search tree = 2 and the breadth of search at each depth = 4.

3 FAILURE MODES OF EXISTING APPROACHES

Despite recent progress, we still know little about how individual components in these systems
perform, or fail. To study behavior on long-horizon tasks, we focus on BrowseComp, which naturally
induces extended, multi-step search trajectories. For this task, the final outcome can reveal the overall
performance of each framework as well as its relationship with the context window limitation and
tool budget constraints. For this analysis, we let the framework run up to a fixed number of turns and
output an answer. We categorize the final outcome in Table 2.

For this analysis, we consider different tool budgets for REACT and SEARCH-O1, and use the default
20 turns for HF-ODR. We observe that context window limitations and tool budgets are the main
bottlenecks for existing approaches in Figure 3, and each framework exhibits distinct patterns.

Specifically, REACT often hits the context window limit over a long trajectory due to the large amount
of text returned by each search call. As a result, it cannot effectively scale to long trajectories and
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Table 2: Categorization of different search outcomes and their descriptions.
Outcome Description

Correct The system outputs the correct answer
Exceed context The system exceeds LLM’s context window, falling back to not using any tools
Exceed budget The system exceeds the tool calling or iteration budget
Early stopping The system outputs an incorrect answer before reaching the iteration budget
No tool used A special case of early stopping where the system does not use any tools
Misc. error Due to uncontrollable factors (e.g., API content filters) the system outputs an error message

0 20 40 60 80 100
Percentage (%)

ReAct (T=5)
ReAct (T=10)

Search-o1 (T=10)
Search-o1 (T=50)

HF-ODR (T=20)

Correct Exceed context Exceed budget No tools Early stop Misc. Error

Figure 3: Each framework exhibits distinct outcome trends—REACT predominantly runs out of
context window, while SEARCH-O1 is often limited by the tool budget (T). We exclude GPT-R due
to its predefined workflow—the outcome can only be either correct or incorrect.

make full use of its tool budgets. SEARCH-O1 failure cases are almost entirely due to exceeding the
tool budget, which suggests increasing the tool budget may potentially lead to better performance.
However, such an increase is non-trivial without incurring a significant amount of cost—each retrieval
step in SEARCH-O1 involves scraping all search results, even though only a fraction of these results
are relevant, leading to a large amount of LLM token consumption during the summarization step.

Finally, we observe that HF-ODR often prematurely terminates due to the manager agent’s inability
to leverage its search agent across multiple steps. Furthermore, HF-ODR is the only framework that
do not use any tools in a significant percentage of the trajectories (10%), suggesting that complex
prompt-engineered workflows may be prone to reducing the tool calling capabilities of the base
model. The root cause of these failure modes is poor context management—exceeding context and
tool budgets, or stopping too early. In the next section, we explore how to substantially improve
agentic search frameworks through better context management.

4 OUR FRAMEWORK: SLIM

A key takeaway from our analysis is that long-trajectory tasks require scaling up the number of
turns and tool calls while keeping the context concise to avoid hitting the context window limit.
Specifically, search results are often noisy and irrelevant to the answer, so filling up the context with
content from all search results can lead to noisy context and unnecessary tool costs. Motivated by
these observations, we introduce SLIM (Simple Lightweight Information Management) with two
key principles: (1) using simple and flexible tools for LLMs to interact with, and (2) minimizing
the amount of noisy information presented to the model and keeping the context concise during
exploration. An overview of SLIM in comparison to existing frameworks is shown in Figure 4.

Concretely, SLIM adopts three simple yet powerful components—search, browse, and
summarization—to effectively manage the context and scale the number of turns.

Search tool R. As the main vehicle for exploring the web, SLIM uses a simple and fast interface
for the search tool. Specifically, the search tool only returns the top k search results from a search
engine, where each search result consists of a title, a URL, and a short snippet of its content. A crucial
difference from previous frameworks is that previous work often bundles the search and browse
functionality and returns the full content for all search results, and relies on the main LLM to discern
relevant context. In comparison, our search tool only returns a short snippet of each result, keeping
the output concise and avoiding wasting context and tool calls on irrelevant content.

5
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Figure 4: Compared to REACT and SEARCH-O1, the cooperation between search, browse, and
summarization modules allows SLIM to accumulate shorter contexts and less noisy information after
exploring the same amount of searches.

Browse tool B. Our browse tool is designed to complement the search tool by allowing the LLM to
dig deeper into promising search results. Specifically, the browse tool B(u, q)→ maxci∈c sim(ci, q)
returns the most relevant section of the content c from the URL u to the query q. Notably, this design
enables the LLM to select the most relevant search result and choose a subset of the content that best
matches the specific information it is looking for. As a result, our browse tool is significantly more
efficient and cheaper than previous frameworks that exhaustively browse all search results in terms of
both the scraping operations and the amount of new tokens introduced to the context.

Summarization module S . Despite the brevity of each tool response, agent context inevitably grows
as it explores over a long horizon of searches. To maintain a concise context while retaining the
effective exploration history, we introduce a summarization module that periodically compresses the
LLM context. We find a simple heuristic sufficient: we summarize the entire conversation history
after every n turns of tool calls and replace the trajectory with the summary. This crucially differs
from previous works where summarization is solely applied to search results at each turn.

Finally, we combine these components into a single framework by allowing the underlying LLM to
call either the search or the browse tools at every turn. Then, the summarization module compresses
the entire conversation every n turns to reduce the amount of noise. Our implementation uses
Google3 as the search tool, crawl4ai4 as the browse tool, and the same LLM as the agent model for
summarization. More details, an example trajectory, and ablations on the search tool, browse tool,
and summarization module are shown in §A.4.

5 RESULTS

We use o3, o4-mini, and Claude-4-Sonnet as our base models. For each instance, we evaluate the
system’s performance as well as the number of tool calls and tokens used. The number of tool calls
is the sum of the search API and browse/scraping operations. For the number of tokens, we take
a weighted sum of the LLM input and output tokens across all turns. We exclude cached input
tokens from the total tokens count since practical systems are typically implemented with caching
mechanisms in long-trajectory tasks with shared context. For each dataset we report results averaged
over all instances. More details on the experimental setup can be found in §A.5.

We present the main results with o3 as the base model in Table 12. Under the same cost, SLIM
achieves significant improvements over SEARCH-O1, the best performing open-source framework,

3https://serper.dev/
4https://github.com/unclecode/crawl4ai
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Figure 5: With o4-mini as the base model, SLIM consistently outperforms other baselines on
BrowseComp while using fewer tool calls and lower overall costs. On HLE, SLIM can achieve overall
higher performance and use fewer tool calls.
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Figure 6: With Claude-4-Sonnet as the base model, SLIM consistently outperforms other baselines
on BrowseComp while using fewer tool calls and lower overall costs. On HLE, SLIM can achieve
overall higher performance and use fewer tool calls.

by 8 and 4 points on BrowseComp and HLE, respectively. The difference is more pronounced when
controlling for cost: on BrowseComp, SLIM can scale to 150 turns while using less total cost and
reaching higher performance than the corresponding SEARCH-O1 setting (50 turns). Furthermore,
SLIM uses significantly fewer tool calls—less than 25% of the tool calls used by SEARCH-O1—
suggesting that SLIM can leverage tools much more efficiently. The performance-cost comparisons
of these systems are shown in Figure 1, and the detailed numbers and comparisons are shown in
Table 12. We also conduct statistical tests to compare the performance of SLIM with the baselines, as
shown in Table 13.

We also show results with different base models—o4-mini in Figure 5 and Claude-4-Sonnet in
Figure 6. SLIM consistently achieves the highest performance across these models and all datasets
compared to other frameworks, suggesting that our simple design generalizes well to models of
different sizes and training strategies. Furthermore, our effective context management also results in
fewer tool calls and often lower overall costs compared to the baselines. SLIM also shows consistent
trends across all three base models whereas certain frameworks only work well under certain models;
for instance, HF-ODR only achieves competitive performance with Claude, where the engineered
prompts are more effective. Overall, this is strong evidence that SLIM serves as an effective framework
for long-horizon tasks. We show tables with full results and ablations on the baselines in §A.6.

6 FINE-GRAINED TRAJECTORY-LEVEL ANALYSIS

6.1 TRAJECTORY-LEVEL ERROR TAXONOMY

To understand how SLIM improves over other systems at a deeper level, we extend the analysis beyond
the task outcome, and focus on characterizing the mistakes that a system makes over the course of its

7
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1: wikipedia/Maja_Salvador, imdb/Filipina Beauty

2: timenote/Virginia_Weidler, wikipedia/Sharon_Pierre-Louis

...

20: timenote/Virginia_Weidler, wikipedia/Maja_Salvador

21: wikipedia/Nick_Mutuma

Question: Provide the birth name of a certain individual: 

1. hired for a coordinator position in 2012 and later promoted

2. has a child that was born in the United States. 

3. released their debut single between 2010 and 2015. 

Groundtruth Answer: Nicholas Munene 
Mutum (a Kenyan actor)

Search queries:

1: debut single 2012 filipina actress model business administration

2: "child born in the United States" singer actress 
3: "promoted to manager" "debut single" 2014

... 
19: Filipina actress gave birth in the United States 2015 

20: Filipina actress debut single 2013

... 
48: "marketing coordinator" 2012 Philippines 
49: "children born in the United States"  actress "Philippines"

Search results:

Explanation: I was unable to reliably identify...

Exact Answer: Unable to determine from the information available   

(2) Confirmation bias: ≥50% search 
queries focus on a wrong candidates 
due to early noisy signals.

(1) Unfocused searches: overly 
generic queries that do not narrow 
down search space

(5) Abstention: do not attempt to 
answer a question.

(3) Inefficient search: search 
repetitive information/URLs

(4) Answer ignored: correct answer 
found in trajectory but not used

Example Output 1:

Explanation: Angeline Quinto satisfies every clue: 

Angeline is a Filipino singer with a child born in the US.

Angeline’s debut single was released in 2012. 

Angeline was promoted from coordinator to manager at 1FMs 

(6) Hallucination: generated 
statements are not supported by 
contents from the trajectory.

Example Output 2:

Cross check with search results → 
2/4 unsupported statements

Figure 7: Examples of each trajectory-level failure mode on a BrowseComp sample.

long search trajectories. To this end, we first develop a shared taxonomy of common failure modes by
manually examining individual trajectories from the compared systems on BrowseComp. We present
examples of each failure mode in the taxonomy in Figure 7, and detailed definitions in §A.3. Our
taxonomy covers possible failure modes for long-horizon search agents in the information gathering
process (e.g., unfocused searches, confirmation bias, and inefficient search) as well as the answer
synthesis stage (e.g., ignoring the answer, abstention, and hallucination).

Based on the taxonomy, we develop an automated error analysis pipeline that annotates each trajectory
with the failure modes using a mix of rule-based heuristics and LLM-as-a-judge approaches. Our
pipeline carefully examines all parts of each trajectory—the search queries and results, the browsed
contents, and the final answer—to identify the failure modes. We describe the pipeline more in §A.3.

6.2 ANALYSIS OF TRAJECTORY-LEVEL FAILURE MODES

For fair comparison, we analyze all frameworks under a similar cost budget5. For each framework
we choose the setting with the closest cost to SLIM with tool budget T = 150, according to Table 12.
The distribution of trajectory-level errors are shown in Table 3, where we show the percentage of
correct answer and each failure mode across all samples. We first observe that SLIM’s advantage
in performance could be attributed to the notably reduced hallucination rate compared to other
frameworks. This is likely due to the fact that SLIM can choose what URLs to browse based on
the search results, allowing it to reduce the amount of noise in the context. In contrast, the other
frameworks observe significantly higher hallucination rates compared to SLIM, suggesting that they
often resort to their parametric knowledge to answer the question when they cannot find the correct
answer through tool calls.

Moreover, SEARCH-O1 and SLIM observe higher percentages of answer ignored than other frame-
works. One explanation is that these frameworks tend to encounter more search results across their
longer trajectories, which leads to a higher chance of finding the answer, but also a higher chance of
ignoring it. In contrast, REACT and HF-ODR do not scale well to longer trajectories, which means
they are unlikely to encounter the correct answer. Our analysis reveals that a promising direction for

5We exclude GPT-R because their implementation do not return the contents of the search results.
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Table 3: The percentage of trajectory over all samples that observe each failure mode. For
hallucination only, we report the percentage of hallucinations for samples that ends with an incorrect
answer and do not abstain.

Turn
Budget Correct Confirm

Bias
Unfocused

Search
Inefficient

Search Abstention Answer
Ignored HallucinateFramework

REACT 10 7.0 9.3 44.0 3.9 1.0 0.7 56.7
SEARCH-O1 50 48.3 9.3 33.7 7.2 4.3 26.0 46.8
HF-ODR 20 20.0 6.7 58.7 43.9 32.3 1.7 96.2
SLIM 150 56.0 9.7 34.0 7.6 27.7 30.7 19.0

improving long-horizon agentic search frameworks is to enable language models to better identify
the correct answer from long trajectories.

Notably, despite the improvements on hallucination, SLIM still suffers from high abstention rates,
and is more prone to ignoring the groundtruth answers. We leave these improvements to future work,
and hope that our trajectory-level analysis can be a useful tool for improving long-horizon systems in
more interpretable and concrete ways.

7 RELATED WORK

Deep research. Recently, the community has taken great interests in deep research systems due to
their potential to solve complex tasks—there have been efforts across both industry (OpenAI, 2025;
Google, 2025; xAI, 2025; Nguyen et al., 2025) and open-source communities (Wu et al., 2025a;
Du et al., 2025; Sun et al., 2025, inter alia). They are often evaluated through long-horizon search
trajectories tasks that also require complex reasoning (Wei et al., 2025; Phan et al., 2025). Other
benchmarks evaluate the long-form generation capabilities of systems (Du et al., 2025).

Furthermore, between the opaque proprietary systems and increasingly complex open-source systems,
there is little understanding on the underlying behavior of long-horizon systems and how they fail
in practice. In this work, we aim to fill this gap by introducing an error taxonomy for long-horizon
systems and an automatic error analysis pipeline. We design our automated analysis pipeline to
conduct fine-grained analysis across a search trajectory, while previous works study more general
multi-agent interaction (Pan et al., 2025; Deshpande et al., 2025). The two approaches, general
and specific, are complementary to each other in gaining a better understanding of agentic systems.
Finally, in contrast to existing open-source approaches that are growing increasingly more complex,
we show that a simple approach with carefully designed tools can achieve better performance with
fewer tool calls.

Reinforcement learning for long-horizon systems. There have been considerable efforts in improv-
ing search agents through reinforcement learning (Li et al., 2025c; Zheng et al., 2025; Chen et al.,
2025; Li et al., 2025a; Wu et al., 2025b, inter alia). A popular approach is to synthetically generate
question-answer pairs that require long-horizon search trajectories (Xia et al., 2025; Tao et al., 2025).
Other works focus on comparing different training objectives (Jin et al., 2025b;a). However, critical
analysis of the error modes and comparison of different frameworks are still lacking.

8 CONCLUSION

In this work, we propose SLIM, a simple yet effective long-horizon agentic search framework that
addresses context limitations prevalent in existing systems. We show that SLIM consistently achieves
the highest performance across different base models and datasets compared to other frameworks
while using fewer tool calls and lower overall costs, suggesting that our simple design enables better
long-horizon agentic search.

We then develop an automated error analysis pipeline to characterize the failure modes of long-horizon
systems. Our analysis shows that SLIM is more resistant to failure modes such as hallucination. We
hope our framework and analysis pipeline can serve as a useful tool for the community to understand
and improve long-horizon agentic search systems.
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This work studies the behavior of long-horizon agentic search systems, and how to improve them
through better design choices. Although there are no direct ethical concerns, we acknowledge that
the web and LLMs are complex systems that can be used for harmful purposes.

REPRODUCIBILITY STATEMENT

All of our experiments were conducted between August 2025 and October 2025, and we release
the output files for all of our experiments. Although we release the code and results publicly, the
stochastic nature of LLMs and search engines makes it difficult to exactly reproduce the results
shown. While we try to control for this by running all experiments around the same time, there may
still be slight differences in the results (e.g., same search query may yield different search results due
to search engine updates and indexing).
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Grabb, Abhishek Shukla, Alan Givré, John Arnold Ambay, Archan Sen, Muhammad Fayez Aziz,
Mark H Inlow, Hao He, Ling Zhang, Younesse Kaddar, Ivar Ängquist, Yanxu Chen, Harrison K
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Emanuele Rodolà, Jules Robins, Dominic Williamson, Vincent Cheng, Brad Raynor, Hao Qi, Ben
Segev, Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Michael P. Brenner,
Mao Mao, Christoph Demian, Peyman Kassani, Xinyu Zhang, David Avagian, Eshawn Jessica

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Scipio, Alon Ragoler, Justin Tan, Blake Sims, Rebeka Plecnik, Aaron Kirtland, Omer Faruk
Bodur, D. P. Shinde, Yan Carlos Leyva Labrador, Zahra Adoul, Mohamed Zekry, Ali Karakoc,
Tania C. B. Santos, Samir Shamseldeen, Loukmane Karim, Anna Liakhovitskaia, Nate Resman,
Nicholas Farina, Juan Carlos Gonzalez, Gabe Maayan, Earth Anderson, Rodrigo De Oliveira
Pena, Elizabeth Kelley, Hodjat Mariji, Rasoul Pouriamanesh, Wentao Wu, Ross Finocchio, Ismail
Alarab, Joshua Cole, Danyelle Ferreira, Bryan Johnson, Mohammad Safdari, Liangti Dai, Siriphan
Arthornthurasuk, Isaac C. McAlister, Alejandro José Moyano, Alexey Pronin, Jing Fan, Angel
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Bohdal, Atharv Singh Patlan, Shehzaad Dhuliawala, Caroline Geirhos, Julien Wist, Yuval Kansal,
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A APPENDIX

A.1 EXISTING FRAMEWORKS

REACT (Yao et al., 2023) is a simple framework that allows an LLM agent to alternate between
thinking and acting. This framework allows the agent to use tool calls across many turns. Following
the original work’s knowledge-intensive task settings, our implementation gives the LLM access to a
single search tool—given a query, the tool returns a list of top 10 search results, from a search engine,
along with their web contents. The search results are then concatenated and appended to the agent
context for subsequent steps. When the LLM chooses not to use the search tool, the final output is
used for evaluation.

In our implementation, we vary the maximum number of turns in each trajectory from 1 to 10.
Consistent with SLIM, we use Google as the search engine, accessed through the Serper API, which
returns a list of top 10 search results. Each search result contains a title, a URL, and a short snippet
of the content. After obtaining the top 10 search results, we emulate previous RAG approaches by
scraping all search result URLs and concatenate their content. Similar to SLIM, we use crawl4ai
to scrape web pages. We truncate each scraped document to at most 10,000 characters, which
corresponds to roughly 1,000 tokens.

We notice that REACT often hits the context window limit as the retrieval results are often too long.
When the LLM API call fails due to the context window limit, we fallback to not using any tools
and just ask the base LLM to answer the question. As a result, we only experiment with up to 10
turns, where the framework already falls back to not using any tools for most queries. A sketch of the
framework is shown in Alg. 1.

SEARCH-O1 (Li et al., 2025b) builds upon REACT with an additional “reason-in-document” step,
where an LLM summarizes the list of top 10 search results and their contents before appending the
results to the agent’s input context. Although the summary added to the agent context is relatively
short compared to the full search result, this approach still uses a large amount of browse calls in each
search step, and the summarization steps incur a large amount of LLM token usage. In our setting,
we vary the maximum number of turns in each trajectory from 1 to up to 100 turns.

Similar to REACT, the retrieval tool at each step consists of a single Serper API call, followed by
multiple scraping operations. We adopt the code from the original implementation6, which uses
BeautifulSoup7 to scrape the search result URLs. In this implementation, the scraping operation will
extract part of the web content that best matches the short snippet returned by the search engine.
The matching is done by simply computing the F1 scores between the snippet and sentences in the
web page. Subsequently, the context is filled up with at most 2,500 characters from the web page.
Then, all context from the search results are concatenated and appended to the agent context for the
summarization step.

It is important to note that the scraping operation is relatively expensive due to the network latency,
resulting in long running time for the framework. A sketch of the framework is shown in Alg. 2.

HuggingFace OpenDeepResearch (HF-ODR; Roucher et al., 2025) leverages a hierarchical struc-
ture consisting of a manager agent and a search agent. The manager agent calls the search agent
to perform detailed searches, and the search agent iteratively interacts with the search engine and a
simulated browser to gather information. When the search agent concludes its searches, it generates a
summary of its searches and returns it to the manager agent. The manager agent may use the summary
to issue additional queries or output the final answer. Furthermore, another key feature of HF-ODR
is its access to additional tools, such as a Python interpreter. We use the default settings8, which fixes
the maximum number of turns for the manager and search agent to be 20. A sketch of the framework
is shown in Alg. 3. Specific descriptions of each tool can be found in Section A.2.

6https://github.com/RUC-NLPIR/Search-o1
7https://beautiful-soup-4.readthedocs.io/en/latest/
8https://github.com/huggingface/smolagents/tree/main/examples/open_

deep_research
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GPT-Researcher (GPT-R; Elovic, 2023) is a complex multi-agent system where each agent has
distinct roles. Specifically, the system consists of a researcher conductor that orchestrates the search
process, a report generator that generates the final report at the end of the search process, a context
manager that summarizes search results, and a source curator that selects relevant sources from
scraped web pages. Finally, GPT-R uses a deep researcher agent that acts as the node of a search tree,
where each node is able to spawn multiple child nodes, each of which is a system with the previously
described components. We use the default settings of the framework9, which fixes the depth of the
search tree to be 2 and the breadth of search at each depth to be 4. A sketch of the framework is
shown in Alg. 4.

Other frameworks. There are many recent works on agentic search systems and memory-
management frameworks (Gangi Reddy et al., 2025; Xu & Peng, 2025; Belcak & Molchanov,
2025). We chose the most popular open-source agentic search and deep research systems for com-
parison. These systems also span both simple single-agent and complex multi-agent systems, which
we believe serve as a representative and fair group of baselines for the paper. Due to the high cost
and long runtime of agentic systems, we only evaluate the representative baselines. Although there
are explicit memory-management frameworks, we find that existing summarization models already
do something similar to memory-selective mechanisms through qualitative analysis. In the example
trajectory we show in Figure 8, the model summarizes the trajectory into several bullet points, such as
“Investigation and findings so far”, “Current hypothesis”, and “Needed next”. The resulting summary
is similar to many memory-selective mechanisms that only retain relevant facts to the current query.
Thus, we find that allowing the model to compress the full trajectory naturally filters out irrelevant
information while achieving simplicity and avoiding over-prompt-engineering.

Algorithm 1: ReAct
Data: Task input x, LLM θ, maximum number of turns T
Function search(q):

return (titlei, urli, snippeti)ki=1;
Function browse(u, q):

D ← scrape(u);
return D[: 10000];

Result: Task output y
Turn t← 1;
Context C ← {x};
T ← {search};
while t < T do

ot ← θ(C; T ) ; /* LLM may only call the search tool */
switch ot do

case search do
R← search(ot) ; /* Perform search */
C ← C ∪ {ot}; /* Browse every search result and append */
for (ti, ui, si) ∈ R do

C ← C ∪ browse(ui, si)

case Final Answer do
return ot;

t← t+ 1;
return θ(C; final answer);

A.2 HUGGINGFACE OPEN DEEP RESEARCH TOOLS

HF-ODR is a hierarchical framework that consists of a manager agent and a search agent. The
manager agent has access to the following tools:

9https://github.com/assafelovic/gpt-researcher
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Algorithm 2: Search-o1
Data: Task input x, LLM θ, maximum number of turns T , summary interval n
Function search(q):

return (titlei, urli, snippeti)ki=1;
Function visit(u, q):

D ← scrape(u);
D ← split(D) = {di}mi=1;
if q = ∅ then return d′ ← d1;
else d′ ← argmaxdi∈D F1(di, q);
return d′;

Result: Task output y
Turn t← 1;
Context C ← {x};
T ← {search};
while t < T do

ot ← θ(C; T ) ; /* LLM may only call the search tool */
switch ot do

case search do
R← search(ot) ; /* Perform search */
l← length(C);
D ← {ci}li=l−5 ;
for (ti, ui, si) ∈ R do

D ← D ∪ visit(ui, si) ; /* Visit every search result */

C ← C ∪ {ot, θ(D; summarize)};
case Final Answer do

return ot;

t← t+ 1;
return θ(C; final answer);

1. Search Agent: an agent that will search the internet to answer a question.
2. Visualizer: given the path to a downloaded image, it will call an LLM to answer questions

about the image.
3. Text Inspector: given the path to a downloaded text file, it will call an LLM to answer

questions about the text.

The search agent has access to the following tools:

1. Google Search: a search engine that will search the internet to answer a question. This tool
uses Serper API in the backend.

2. Visit Tool: visit a URL and render the page in HTML as in a browser.
3. Page Up: navigate the current page by scrolling up.
4. Page Down: navigate the current page by scrolling down.
5. Finder Tool: find a text in the current page.
6. Find Next: find the next occurrence of the text in the current page.
7. Archive Search: search the archives for information.
8. Text Inspector: given the path to a downloaded text file, it will call an LLM to answer

questions about the text.

Detailed descriptions of each tool can be found in the original implementation10.
10https://github.com/huggingface/smolagents/blob/main/src/smolagents/

default_tools.py
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Algorithm 3: HuggingFace Open Deep Research
Data: Task input x, LLM θ, maximum number of turns for search and main agents Ts and Tm,

respectively, and planning interval p
web tools←
{Search,Visit,Page Up, Page Down, Finder,Find Next,Archive Search,Text Inspector};

main tools← {search agent,Visualize,Text Inspector};
Function plan(q, c):

/* Prompt the LLM to generate a plan */
return θ(q, c; plan);

Function search agent(q):
P ← plan(q, ∅);
C ← {q, P};
t← 1;
while t < Ts do

if t mod p = 0 then
P ← plan(q, C);
C ← C ∪ {P};

ot ← θ(C;web tools);
if type(ot) = final answer then

return ot;
/* do the tool call, see A.2 for tool details */
C ← C ∪ {ot, tool(ot)};
t← t+ 1;

return θ(C; final answer);
Result: Task output y
Turn t← 1;
P ← plan(x, ∅);
Context C ← {x, P};
/* the main agent plans and calls the search agent */
while t < Tm do

if t mod p = 0 then
P ← plan(x,C);
C ← C ∪ {P};

ot ← θ(C;main tools);
if type(ot) = final answer then

return ot;
C ← C ∪ {ot, tool(ot)};
t← t+ 1;

return θ(C; final answer);

A.3 TRAJECTORY-LEVEL ANALYSIS DEFINITIONS

In this subsection, we describe how we annotate each trajectory with the failure modes. For LLM-
as-a-judge approaches, we use o3-2025-04-16 as the judge model. In each of the following
LLM-as-a-judge approaches, we use the same judge model, and force the model to generate its
response in a json format for easy parsing. We find that existing frontier LLMs are powerful enough
to reliably check for simple yes/no questions and output them in a json format.

Confirmation bias. Confirmation bias occurs when the system finds a potential candidate that is
incorrect in its search process, and subsequently spends the majority of its search budget on the same
candidate without considering other options, leading to a lack of exploration in the search space. To
detect this, we first collect all the search queries that the system has made and then use an LLM to
check if the search queries overly focus on a single wrong candidate. The judge model is given access
to the groundtruth answer and the search queries, so it’s able to determine if the search queries are
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Algorithm 4: GPT-Researcher
Data: Task input x, LLM θ, research depth D, research breadth B, summary interval n
Function search(q):

return (titlei, urli, snippeti)ki=1;
Function visit(u, q):

D ← scrape(u);
D ← split(D) = {di}mi=1;
if q = ∅ then return d′ ← d1;
else d′ ← argmaxdi∈D F1(di, q);
return d′;

Function plan(q):
/* Prompt the LLM to generate a list of queries */
R← search(q);
return θ(x,R; plan);

Function conduct research(q):
/* Conduct research on one query by generating subqueries and

retrieve and scrape */
Q← plan(q);
R← ∅;
for qi ∈ Q do

for ti, ui, si ∈ search(qi) do
ri ← visit(ui, si);
R← R ∪ ri;

return θ(x,R; process);
Function deep research(q, d):

/* Recursively plan and conduct research */
Q← plan(q);
R← ∅;
for qi ∈ Q do

ri ← conduct research(qi);
/* Prompt the LLM to generate takeaways and follow up

questions */
q′i ← θ(ri; process);
if d < D then

R← R ∪ deep research(q′i, d+ 1);

return R;
Result: Task output y
Turn t← 1;
Context C ← {x};
P ← plan(x);
R← deep research(P, 1);
return θ(R;write report);

relevant to the groundtruth answer and the similarities between different search queries. We consider
a trajectory to have confirmation bias if a majority of the search queries are similar to each other, and
focuses on a single wrong candidate. The prompt used for confirmation bias detection is shown in
Table 4.

Unfocused search. Unfocused search occurs when the system generates overly generic search queries
that are not useful for narrowing down the search space—the system cannot make any progress
towards finding useful information. To detect this, we first collect all the search queries that the
system has made and then use an LLM to check if the search queries are generic and not useful for
narrowing down the search space. We consider a trajectory to have unfocused search if a majority
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Prompt for Confirmation Bias Detection
You are a helpful assistant that can analyze the trajectory of an information-seeking agent.
You are given a question-answer pair and the search history of an agent that tried to answer
the question. You should analyze the search history and determine if the agent spends
more than half of the tool calls searching for the same incorrect answer. That is, the
agent continues searching for the same topic even though it’s not the correct answer to
the question, and spends half or more of its tool calls on these searches. Output your final
conclusion with your reasoning and a single word: ’yes’ if the agent spends more than half
of its tool calls on the same incorrect answer or ’no’ if the agent does not.
Reasoning: explain what the agent did, and if it did or did not focus its searches on a
wrong answer.
Conclusion: “yes” or “no”.
Search queries: <search-queries>
Question: <question>
Correct Answer: <correct-answer>

Table 4: System prompt used for detecting confirmation bias in agent trajectories

Prompt for Unfocused Search Detection
You are a helpful assistant that can analyze the trajectory of an information-seeking agent.
You are given a question-answer pair and the search history of an agent that tried to answer
the question. You should analyze the search history and determine if the search queries do
not help the agent narrow down the search space. Consider the following cases:
1. The agent searches for information relevant to the question and answer, but it’s not
specific enough to yield helpful results.
2. The agent searches for queries that are not sufficiently relevant or specific to the question
and answer, which does not narrow down the search space enough.
3. The agent explores the search space with diverse queries but does not use enough tool
calls to properly narrow down the search space by either eliminating wrong answers or
verifying the correct answer.
All of these cases are considered to be unfocused search. You should consider the whole
trajectory of the agent, and not just some of the tool calls—only consider the trajectory to
be unfocused if more than half of the searches are unfocused.
Output your final conclusion with your reasoning and a single word: ’yes’ if the searches
are unfocused or ’no’ if the searches are focused enough.
Reasoning: explain what the agent did, and if it did or did not use tool calls to properly
narrow down the search space.
Conclusion: “yes” or “no”.
Search queries: <search-queries>
Question: <question>
Correct Answer: <correct-answer>

Table 5: System prompt used for detecting unfocused search in agent trajectories

of the search queries are overly generic and not useful for narrowing down the search space. The
prompt used for unfocused search detection is shown in Table 5.

Inefficient tool usage. Inefficient tool usage occurs when the system does not discover new infor-
mation with its tool calls, and is therefore wasting its tool budget. Specifically, we use URLs as
a proxy for the information discovered by the system—a tool call that only return URLs seen in
previous search results is considered as a waste of tool budget. We use a simple heuristic for this
analysis—iterate over all search calls made in the trajectory and keep track of seen URLs. Then, we
report the percentage of search calls that only return URLs seen in previous search results.

Answer ignored. Answer ignored occurs when the system encounters the correct answer in its search
process, but does not use it to answer the question. One possible explanation is that the system
is distracted by other noisy information in its context, preventing it from correctly identifying the
groundtruth. We employ a simple approach for this analysis—we check if the groundtruth answer is
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Prompt for Groundtruth Ignored Detection
You are a helpful assistant that can analyze the trajectory of an information-seeking agent.
You are given a question-answer pair and a list of webpages. You should analyze the web
contents and determine if it contains the correct answer. The correct answer is considered
to be found if there are some context in the search results that is either a direct or near-exact
match to the correct answer. Output your final conclusion with your reasoning and a single
word: ’yes’ if the content contains the correct answer or ’no’ if the content does not contain
the correct answer.
Reasoning: explain if the web content contains the correct answer.
Conclusion: ”yes” or ”no”.
<tool-responses>
Question: <question>
Correct Answer: <correct-answer>

Table 6: System prompt used for detecting groundtruth ignored in agent trajectories

Prompt for Giving Up Detection
You are a helpful assistant that can analyze the final output of an information-seeking agent.
You are to check if the agent decides that it cannot find the correct answer. For example, if
the explanation states that it cannot find enough relevant information to answer the question,
or if the response is simply empty or ”I don’t know”, then the agent did not attempt to
answer the question. Output your final conclusion with a single word ”yes” if the agent
decides it did not find enough information to answer the question or ”no” otherwise.
Conclusion: ”yes” or ”no”.
Final output: <final-output>

Table 7: System prompt used for detecting giving up in agent trajectories

present in any of the tool responses. We employ a LLM judge to enable fuzzy matching between
the groundtruth answer and the tool responses. The prompt used for answer ignored detection is
shown in Table 6. We iterate over all tool calls and use this check to determine if any tool responses
contain the groundtruth answer. We terminate the iteration if we find a tool response that contains the
groundtruth answer, and report the percentage trajectories where at least one tool response contains
the groundtruth answer.

Abstention. Abstention occurs when the system does not attempt to answer the question due to the
lack of information in its context. Existing LLMs can often refuse to answer the question if it is not
confident in answering the question, but this behavior is not desirable for search agents that could
leverage additional tool calls to find the necessary information. We use a simple LLM judge to check
if the system attempted to answer the question. The prompt used for giving up detection is shown in
Table 7.

Hallucination. Hallucination occurs when the system generates information that is not supported by
the information it has discovered in its search process. In agentic search systems, it is not desirable
to hallucinate information, as it could result in incorrect and misleading answers and thus affect the
trustworthiness of the system. Inspired by previous works(Rashkin et al., 2023; Bohnet et al., 2022;
Gao et al., 2023), we check if the system hallucinates information by first decomposing the model’s
explanation into a set of atomic claims. Then, we iterate through all the tool responses from the
search process and check if the tool responses support all the claims. As long as one tool response
support a claim, we consider the system to not have hallucinated that claim. In the end, we report
the average percentage of unsupported claims across trajectories. The prompt used for decomposing
the model’s explanation into a set of atomic claims is shown in Table 8, and the prompt used for
hallucination detection is shown in Table 9. These prompts are derived from previous works that show
LLMs can reliably decompose texts into a set of atomic claims and check if claims are supported by
a piece of text—they also achieve high agreement with human judges (Gao et al., 2023; Kamoi et al.,
2023; Yen et al., 2025).
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Prompt for Decomposing Explanation into Atomic Claims
Read the given explanation and generate a list of atomic claims that are supported by
the explanation. Atomic claims that are basic facts that cannot be further broken down.
Generate at most 10 claims for the explanation.
Use the following as an example:
Explanation: Searching UFCStats for featherweight bouts
where the loser landed 14 of 83 significant strikes (16.87 %)
and went 0-for-4 on takedowns returns the fight Myles Jury
vs. Ricky Glenn at UFC 219: Cyborg vs Holm (30 Dec 2017).
• Ricky Glenn (nickname "The Gladiator"|a synonym
for swordsman)
was the loser: sig. strikes 14/83 (16.87 %), takedowns 0/4.
• Both fighters (Jury 29, Glenn 28) were under 35 and
are American.
• The referee was John McCarthy, whose first event for
the UFC was in 1994.
Thus, the MMA event is UFC 219: Cyborg vs Holm.

Exact Answer: UFC 219: Cyborg vs Holm

Confidence: 75%

Atomic Claims:
- Ricky Glenn was the loser
- Ricky Glenn was nicknamed ”The Gladiator”
- The sig. strike rate of Ricky Glenn was 14/83 (16.87- The takedown rate of Ricky Glenn
was 0/4
- Jury was age 29
- Glenn was age 28
- Jury is American
- Glenn is American
- The referee was John McCarthy
- John McCarthy’s first event for the UFC was in 1994
Output the atomic claims in the form of a json list.

Table 8: System prompt used for decomposing the model’s explanation into a set of atomic claims

Prompt for Hallucination Detection
You are a helpful assistant that can analyze the trajectory of an information-seeking agent.
You are given a list of webpages and a list of claims made by the agent. You should analyze
the web contents to determine if each claim is supported by the web content. A claim is
supported by the web content if its factual information is mostly supported by the web
content, and is not contradicted by the web content. Output your final conclusion with a list
of claims that are supported by the web content. Output the list in the form of a json list,
and you only need to write the index of the supported claims in the list and nothing else.
Webpages: <webpages>
Atomic Claims: <atomic-claims>

Table 9: System prompt used for detecting hallucination in agent trajectories

A.4 SLIM DETAILS AND ABLATIONS

We show an example of a SLIM trajectory in Figure 8. A sketch of the framework is also shown in
Alg. 5. Furthermore, we ablate our design choices along the following dimensions:

• Summarization frequency: Instead of summarizing the trajectory every n = 50 turns, we
summarize every n = 25 turns.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

What’s this movie: 

- released exclusively between 1960 and 1965.

- The cinematography for this movie was done by 
someone who published children's books.

[three more criteria]

cinematographer children's 
books author

"cinematographer" "children's 
book author" 1960 film

Generate

Generate

Search tool:

query → top k results 
(title, URL, short snippet)

Gunnar Fischer 1961 “Two 
Living One Dead” cast

Generate

Summarize

www.imdb.com/title/tt0053772/fullcredits

query: “Cinematography”

Generate

n tool calls

• The only cinematographer active 1960-65 who is also a 
published children’s-book author Gunnar Fischer...


• Cast member Patrick McGoohan’s career began when he 
“substituted” for an actor at Sheffield Repertory Theatre... 

Exact Answer:   (1961)

Generate

n tool calls

(1)Tunes of Glory (1960)<URL: https://www.imdb.com/title/tt0054412/news/>

... children's book author in the 1970's. York is survived by two children ...


(4) INGMAR BERGMAN'S 'THE DEVIL'S EYE'<URL: wordpress.com/2021/02/24/
ingmar-bergmans-...> It is noted as being the final Bergman film lenses by the 

great cinematographer Gunnar Fischer... 

Browse tool:

url, query → best matching 
content from webpage

Investigation and findings so far: 1.  Detailed look at The Devil’s Eye (1960) ... 
2.  Alternative Fischer-shot film 491 (1964) ...

Current hypothesis: “The Devil’s Eye” fits the cinematographer criterion... other 
clues still need verification or may point to a different Gunnar-Fischer film.

Needed next:  • Verify whether any Devil’s Eye actor started as a “substitute 
actor”.  • Check if any two cast members married each other in 1957....

(1) Two Living, One Dead (1961) - IMDb <URL: imdb.com/title/tt0055556/
fullcredits/> Two Living, One Dead ; Director · Anthony Asquith ; 

Cinematographer · Gunnar Fischer...

(2)Two Living, One Dead (1961) on MUBI <URL: mubi.com/en/films/two-living-

one-dead/cast> Two Living, One Dead. Cast & Crew. All titles ...

# Full cast & crew ## The Devil's Eye ... Production Designer (1) Costume Designer 
(1) Makeup Department (1) ... * [Pablo - Don Juans betjänt](imdb.com/title/

tt0053772/characters/nm0481270) * [Greve Armand de Rochefoucauld]
(imdb.com/title/tt0053772/characters/nm0298777)...

(1) Amazon.com: Sean Morgan <URL: amazon.com/stores/author/B0C3FND1N4> 
Sean Morgan is a director, writer, cinematographer and children's book author... 
(2) Movies about children's books writers <URL: imdb.com/list/ls095284425/> 

The story of Beatrix Potter, the author of...

Input task Web content

Search results 

(title, URL, snippet) Summary

Figure 8: An example of a SLIM trajectory.

Algorithm 5: SLIM

Data: Task input x, LLM θ, maximum number of turns T , summary interval n
Function search(q):

return (titlei, urli, snippeti)ki=1;
Function browse(u, q):

D ← scrape(u);
D ← split(D) = {di}mi=1;
if q = ∅ then return d′ ← d1;
else d′ ← argmaxdi∈D ROUGE-L(di, q);
return d′;

Result: Task output y
Turn t← 1;
Context C ← {x};
T ← {search, browse};
while t < T do

if t mod n = 0 then
C ← θ(C; summarize) ; /* Summarize every n turns */

ot ← θ(C; T );
switch ot do

case search do
qt ← ot;
C ← C ∪ {ot, search(qt)};

case browse do
ut, st ← ot;
C ← C ∪ {ot, browse(ut, st)};

case Final Answer do
return ot;

t← t+ 1;
return θ(C; final answer);

• Summarization trigger: Instead of summarizing the trajectory every n turns, we summarize
the trajectory when the input length exceeds a threshold τ = {32768, 65536} tokens.

• Search tool: We vary the number of top search results k = {10, 20}.
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• Browse tool: We vary the maximum length of the scraped content L =
{3000, 10000, 20000} characters. We also ablate the chunking and scoring strategy. By
default, we chunk by natural paragraphs (splitting at newlines) and use ROUGE-L as the
similarity metric. We also try using BM25 (Robertson & Zaragoza, 2009) as the similarity
metric and splitting the content into chunks of 100 words (splitting at any whitespace).

For these ablations, we use o4-mini as the base model due to its cheaper cost and test on a smaller
subset of 50 samples for each dataset. The results are shown in Table 10.

Table 10: Ablation results with o4-mini as the base model. The number of tokens is shown in
10,000s. The cost is shown in US dollars. We ablate design choices in the summarization module,
chunking strategy, and search and browse tool. For all settings, we set the tool budget to 100. The
default setting summarizes every n = 50 turns, chunks by newline, use ROUGE-L as the similarity
metric, and search returns the top k = 10 search results while browsing returns at most L = 10, 000
characters. These experiments use a smaller subset of 100 samples for each dataset, so they are not
directly comparable to the main results. Each experiment is run with three random seeds and the
results are the mean and standard deviation.

BrowseComp HLE

Score (↑) Tokens (↓) Tools (↓) Cost (↓) Score (↑) Tokens (↓) Tools (↓) Cost (↓)

SLIM Default 40.67±5.86 118.27±5.93 54.02±2.43 1.33±0.07 17.33±3.06 11.39±1.34 7.61±0.46 0.13±0.01

Summarization Module

n = 25 30.33±4.51 57.64±4.87 35.47±1.04 0.65±0.05 21.67±4.04 8.53±1.68 6.09±0.96 0.1±0.02
Summarize at 32K tokens 29.67±2.89 46±3.23 32.7±0.79 0.53±0.04 17.67±6.51 9.22±1.34 6.62±0.69 0.11±0.02
Summarize at 64K tokens 42.67±2.08 126.2±5.69 57.23±2.14 1.42±0.06 19.67±4.51 11.67±0.74 7.83±0.34 0.13±0.01

Chunking

Split newline, BM25 37.67±3.51 121.38±8.56 55.3±2.01 1.37±0.1 21.33±4.04 12.21±1.14 8.33±0.31 0.14±0.01
Split words, ROUGE 39.33±5.03 113.55±2.88 52.97±1.39 1.28±0.03 19.33±5.69 11.69±1.05 7.91±0.44 0.13±0.01
Split words, BM25 40.67±2.52 121.39±3.33 55.95±1.18 1.37±0.04 20.33±4.16 10.4±0.66 7.32±0.53 0.12±0.01

Search and Browse

No visit 34.33±2.89 111.53±5.1 63.47±2.03 1.26±0.06 15.33±1.15 14.35±1.68 10.42±0.9 0.16±0.02
No query in visit 37.33±1.15 187.63±9.54 66.82±2.34 2.1±0.11 20.33±2.08 14.55±0.75 8.9±0.62 0.17±0.01
k = 10, L = 3, 000 42±6.24 111.59±12.51 52.77±3.95 1.26±0.14 21.33±1.53 11.65±1.2 7.75±0.07 0.13±0.01
k = 10, L = 20, 000 38.67±1.53 117.35±7.79 54.5±1.53 1.32±0.09 20.67±0.58 12.19±1.24 7.84±0.57 0.14±0.01

A.5 EXPERIMENTAL DETAILS

We use o3, o4-mini, and Claude-4-Sonnet as our base models. To calculate the cost, we use the prices
listed in Table 11, which are obtained from respective websites https://platform.openai.
com/docs/models/o3, https://platform.openai.com/docs/models/o4-mini,
https://claude.com/pricing#api, https://www.firecrawl.dev/pricing.

For all models, we use a temperature of 1.0 and a maximum output token of 32, 768. For o3 and
o4-mini, we always use the default reasoning effort of ”medium” and for Claude-4-Sonnet, we set the
maximum number of thinking tokens to 30, 000.

To calculate the token cost, we take a weighted sum of the token usage across all LLM calls: non-
cached input tokens plus 4 times the total output tokens, and multiply the results by price per token.
We exclude cached tokens from the calculation because in practice, long-horizon systems are expected
to have a large amount of cached tokens and system implementation that takes advantage of caching.
Then, for the total cost, we add in the number of search API and scrape URL operations, multiplied
by their respective prices. For the number of tool calls, we count the number of times the search API
and scrape operations, the two atomic tool operations, are called.

We also include the results of other trained systems in Table 12. For OpenAI Deep Research (DR), the
HLE number from the original blog post11 and the BrowseComp number is from the BrowseComp
paper (Wei et al., 2025). For Grok-4, the HLE number is from the original Grok 4 blog post 12 and
the BrowseComp number is from the Grok 4 Fast blog post 13. The WebResearcher (WebR) numbers

11https://openai.com/index/introducing-deep-research/
12https://x.ai/news/grok-4
13https://x.ai/news/grok-4-fast
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are from the original paper (Qiao et al., 2025), where we show the results of the main WebResearcher-
30B-A3B model; we exclude the heavy version since it uses multiple samples and aggregate the
results. The WebThinker (WebT) numbers are from the original paper (Li et al., 2025c), where we
show the results of the main WebThinker-32B model. They did not evaluate on BrowseComp, so we
only report the HLE number.

Table 11: Pricing for different components. Numbers are obtained from respective websites.
Cost

o3 $2.0 / M token
o4-mini $1.1 / M token
Claude-4-Sonnet $3.0 / M token
Google search $0.5 / K query
Scrape URL $0.83 / K query

A.6 ADDITIONAL RESULTS

Main Results. We show the results of SLIM with o3 as the base model over three random seeds in
Table 13. Here we also provide the concrete results for SLIM with different base models—o4-mini is
shown in Table 14, and Claude-4-Sonnet is shown in Table 15.

Table 12: Main results with o3 as the base model. All results are macro-averaged across test
instances. The number of tokens is shown in 10,000s. The cost is shown in US dollars. T denotes the
tool budget. For reference only, † marks deep research systems that underwent task-specific training.
Numbers are from the original reports (OpenAI, 2025; xAI, 2025; Qiao et al., 2025; Li et al., 2025c),
and are not directly comparable due to different subsets of test instances used.

BrowseComp HLE

T Score (↑) Tokens (↓) Tools (↓) Cost (↓) Score (↑) Tokens (↓) Tools (↓) Cost (↓)

o3 0 17.0 3.8 0.0 0.08 18.3 2.7 0.0 0.05

REACT
1 4.3 3.6 1.0 0.07 16.0 4.6 0.6 0.09
5 6.7 6.6 2.2 0.13 19.7 5.8 1.1 0.12

10 7.0 8.0 2.8 0.16 21.3 7.0 1.2 0.14

SEARCH-O1

1 18.0 3.8 9.5 0.08 20.0 3.3 5.2 0.07
5 24.0 8.0 46.9 0.20 20.7 5.4 18.7 0.12

10 31.0 13.7 89.8 0.35 26.3 6.6 23.9 0.15
25 40.0 27.8 183.2 0.70 25.0 10.9 44.2 0.25
50 48.3 51.5 306.2 1.27 27.0 12.6 49.8 0.29

100 55.7 93.3 456.7 2.23 27.0 14.5 52.2 0.33

HF-ODR 20 20.0 24.1 8.4 0.49 17.7 6.4 1.7 0.13
GPT-R - 10.7 5.8 69.5 0.17 16.0 6.4 85.6 0.20

SLIM

10 17.7 2.7 8.7 0.06 22.7 4.2 3.8 0.09
25 32.7 9.0 20.7 0.19 31.3 7.7 6.9 0.16
50 45.0 25.0 36.0 0.52 31.0 13.6 9.7 0.28

100 53.3 44.1 57.4 0.91 31.3 18.4 11.6 0.37
150 56.0 59.8 75.9 1.24 30.7 17.9 12.0 0.37

OpenAI DR† - 51.5 - - - 26.6 - - -
Grok-4† - 43.0 - - - 38.6 - - -
WebR-30B† - 37.3 - - - 28.8 - - -
WebT-32B† - 15.8 - - - - - - -

REACT Ablations. We vary the number of search results k and the maximum length of the scraped
content L for REACT to see the effect of search tool design choices, as shown in Table 16. We found
that overall there aren’t significant differences in the HLE results, but using fewer search results
k = 5 than the default k = 10 leads to a 2.7 points improvement in the BrowseComp results. This
is likely due to the fact that search results lower in the ranking are often noisy and irrelevant to the
question, and using fewer but more relevant search results leads to a more focused search process.
Furthermore, fewer search results means less context is added to the LLM, preventing it from hitting
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Table 13: Statistical significance analysis with o3 as the base model. We run with three random
seeds for each experiment and report the mean and standard deviation.

BrowseComp HLE

Score (↑) Tokens (↓) Tools (↓) Cost (↓) Score (↑) Tokens (↓) Tools (↓) Cost (↓)

o3 - 17.22±1.02 3.87±0.12 0±0 0.08±0 19.56±1.07 2.63±0.04 0±0 0.05±0
Search-o1 50 49.33±1.2 49.98±1.5 298.9±6.84 1.24±0.04 26.78±0.69 13.05±0.52 50.96±1.17 0.3±0.01
SLIM 150 53±1.2 54.77±5.23 50.84±0.44 1.12±0.1 32.11±1.84 16.44±1.15 10.3±0.98 0.33±0.02

Table 14: Main results with o4-mini as the base model. All results are macro-averaged across test
instances. The number of tokens is shown in 10,000s. The cost is shown in US dollars. T denotes the
maximum number of turns in each trajectory.

BrowseComp HLE

T Score (↑) Tokens (↓) Tools (↓) Cost (↓) Score (↑) Tokens (↓) Tools (↓) Cost (↓)

o4-mini - 5.0 5.1 0.0 0.06 15.0 2.2 0.0 0.02

REACT
1 1.3 4.6 1.0 0.05 17.0 4.0 0.5 0.04
5 3.0 7.7 2.1 0.09 15.3 4.6 0.7 0.05

10 2.3 7.4 2.3 0.08 15.3 4.9 0.8 0.05

SEARCH-O1

1 6.3 6.2 10.0 0.08 13.0 2.6 3.5 0.03
5 11.3 13.8 49.7 0.19 23.3 4.0 11.9 0.05

10 17.3 22.6 93.9 0.32 17.0 4.6 15.6 0.06
25 25.0 45.4 207.7 0.66 22.3 5.5 22.5 0.08
50 28.7 76.1 351.5 1.12 19.3 7.3 26.3 0.10

100 36.0 124.4 546.7 1.80 21.3 6.6 25.8 0.09

HF-ODR 20 15.0 38.9 15.4 0.44 16.3 8.3 3.9 0.09
GPT-R - 4.0 8.5 82.5 0.16 11.3 9.7 100.8 0.19

SLIM

10 14.0 5.7 8.8 0.07 21.0 3.6 3.1 0.04
25 24.3 24.0 23.2 0.28 23.7 7.2 5.9 0.08
50 31.0 73.7 40.1 0.83 25.7 10.0 7.0 0.11

100 34.0 92.9 45.2 1.05 26.7 12.2 7.7 0.14
150 37.0 107.8 49.5 1.22 24.7 14.4 8.6 0.16

Table 15: Main results with Claude-4-Sonnet as the base model. All results are macro-averaged
across test instances. The number of tokens is shown in 10,000s. The cost is shown in US dollars. T
denotes the maximum number of turns in each trajectory.

BrowseComp HLE

T Score (↑) Tokens (↓) Tools (↓) Cost (↓) Score (↑) Tokens (↓) Tools (↓) Cost (↓)

Claude-4-Sonnet - 1.0 1.9 0.0 0.06 6.3 3.9 0.0 0.12

REACT
1 0.3 0.0 0.0 0.00 8.3 0.0 0.0 0.00
5 0.3 0.0 0.0 0.00 8.3 0.0 0.0 0.00

10 0.3 0.0 0.0 0.00 8.0 0.0 0.0 0.00

SEARCH-O1

1 2.0 1.5 9.0 0.05 10.0 2.9 10.0 0.09
5 3.7 6.0 44.1 0.21 11.7 5.3 29.5 0.18

10 7.0 10.7 79.5 0.38 16.0 6.3 35.6 0.22
25 8.0 20.1 149.9 0.72 13.0 6.8 41.1 0.24
50 10.0 22.9 170.3 0.82 12.7 7.0 40.7 0.24

100 10.0 19.4 148.3 0.70 12.3 6.4 38.5 0.22

HF-ODR 20 6.7 98.8 30.4 2.98 17.3 105.0 26.5 3.16
GPT-R - 2.3 7.9 106.5 0.32 8.0 6.9 94.9 0.28

SLIM

10 2.7 2.8 8.9 0.09 10.3 2.5 6.9 0.08
25 9.7 5.1 21.6 0.17 15.0 2.8 10.2 0.09
50 10.0 5.0 27.1 0.16 17.3 3.0 9.9 0.10

100 10.7 4.8 28.1 0.16 14.0 2.9 10.5 0.09
150 10.0 5.2 30.7 0.17 16.7 3.1 11.1 0.10

the context window limit as much. This is evident in more token and tool usage. However, we use
k = 10 for the main experiments to stay consistent with the other baselines.
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Table 16: REACT ablations with o3 as the base model, and the maximum number of turns is T = 10.
We vary the number of search results k and the maximum length of the scraped content L.

Parameters BrowseComp HLE

T k L Score (↑) Tokens (↓) Tools (↓) Cost (↓) Score (↑) Tokens (↓) Tools (↓) Cost (↓)

REACT 10 10 10k 7.0 8.0 2.8 0.16 21.3 7.0 1.2 0.14
REACT 10 5 10k 9.7 10.6 4.1 0.21 21.7 7.0 1.7 0.14
REACT 10 10 3k 5.0 8.7 2.8 0.18 22.7 6.5 1.2 0.13
REACT 10 5 3k 8.3 10.7 4.1 0.22 21.3 6.7 1.7 0.13

A.7 OPEN-WEIGHT MODELS

In this subsection, we show the results of SLIM with open-weight models GPT-OSS-120B (OpenAI
et al., 2025) and Tongyi-DeepResearch, an RL-trained model for deep research (Team, 2025). We
compare against the SEARCH-O1 setting with similar total cost. The results are shown in Table 17
and Table 18. We observe similar improvement with our framework SLIM over competitive baselines.
Controlling for cost, SLIM achieves significant improvements on BrowseComp.

Table 17: Results with GPT-OSS-120B as the base model. We compare against the SEARCH-O1
setting with similar total cost.

BrowseComp HLE

Score (↑) Tokens (↓) Tools (↓) Cost (↓) Score (↑) Tokens (↓) Tools (↓) Cost (↓)

GPT-OSS-120B - 2.67 1.35 0.00 0.00 7.00 1.07 0.00 0.00
SEARCH-O1 10 12.67 8.28 79.28 0.08 11.67 2.29 12.56 0.01
SLIM 150 15.33 3.37 22.28 0.02 20.33 1.72 5.32 0.01

Table 18: Results with Tongyi-DeepResearch-30B as the base model. We compare against the
SEARCH-O1 setting with similar total cost.

BrowseComp HLE

Score (↑) Tokens (↓) Tools (↓) Cost (↓) Score (↑) Tokens (↓) Tools (↓) Cost (↓)

Tongyi-DeepResearch-30B - 2.33 7.07 0.00 0.03 11.00 5.58 0.00 0.02
SEARCH-O1 10 14.33 13.80 70.25 0.11 20.00 12.24 44.39 0.08
SLIM 150 19.67 12.35 61.59 0.08 19.67 10.10 23.12 0.05

A.8 ADDITIONAL ANALYSIS

In this subsection, we provide additional analysis—we extend the initial outcome-based analysis to
SLIM, and show the trajectory-level analysis on the more comprehensive baselines.

In Table 19, we show the trajectory-level analysis where we report the failure modes as a percentage
of trajectories that ends with an incorrect answer. The trends are consistent with the analysis in the
main text, but we find that SLIM can often find the correct answer across its long trajectories—over
69% of the incorrect trajectories encounters the correct answer, but the model is not able to identify
and use it to answer the question. This could be attributed to the fact that modern LLMs still struggle
at long-context settings where it may need to reason over many sources. We leave these improvements
to future work.
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Table 19: For correct, we report the percentage of trajectories across all samples. For each trajectory-
level failure mode, we report the percentage of trajectories that ends with an incorrect answer. For
hallucination only, we report the percentage of hallucinations for samples that ends with an incorrect
answer and do not abstain.

Turn
Budget Correct Confirm

Bias
Unfocused

Search
Inefficient

Search Abstention Answer
Ignored HallucinateFramework

REACT 10 7.0 10.0 47.3 4.2 1.1 0.7 56.7
SEARCH-O1 50 48.3 18.1 65.2 14.0 8.4 50.3 46.8
HF-ODR 20 20.0 8.6 75.5 56.5 41.6 2.1 96.2
SLIM 150 56.0 22.0 77.3 17.2 62.9 69.7 19.0
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