

000 001 LOST IN THE MAZE: OVERCOMING CONTEXT LIMITA- 002 TIONS IN LONG-HORIZON AGENTIC SEARCH 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Long-horizon agentic search requires iteratively exploring the web over long tra-
012 jectories and synthesizing information across many sources, and is the foundation
013 for enabling powerful applications like deep research systems. In this work, we
014 show that popular agentic search frameworks struggle to scale to long trajectories
015 primarily due to context limitations—they accumulate long, noisy content, hit
016 context window and tool budgets, or stop early. Then, we introduce **SLIM** (**S**imple
017 **L**ightweight **I**nformation **M**anagement), a simple framework that separates re-
018 trieval into distinct search and browse tools, and periodically summarizes the
019 trajectory, keeping context concise while enabling longer, more focused searches.
020 On long-horizon tasks, **SLIM** achieves comparable performance at substantially
021 lower cost and with far fewer tool calls than strong open-source baselines across
022 multiple base models. Specifically, with o3 as the base model, **SLIM** achieves 56%
023 on BrowseComp and 31% on HLE, outperforming all open-source frameworks by
024 8 and 4 absolute points, respectively, while incurring 4–6x fewer tool calls. Finally,
025 we release an automated fine-grained trajectory analysis pipeline and error taxon-
026 omy for characterizing long-horizon agentic search frameworks; **SLIM** exhibits
027 fewer hallucinations than prior systems. We hope our analysis framework and
028 simple tool design inform future long-horizon agents¹.
029

030 1 INTRODUCTION 031

032 Long-horizon agentic search involves performing searches over long trajectories and reasoning
033 over many sources, and requires powerful systems that can explore diverse sources and leverage
034 tools effectively. The ability to reason over long trajectories serves as the foundation for exciting
035 applications such as deep research (OpenAI, 2025; Google, 2025; xAI, 2025). Due to its immense
036 potential in solving complex tasks, long-horizon systems have been a key focus in the community,
037 eliciting the development of many proprietary and open-source frameworks. Among open-source
038 systems, HuggingFace Open Deep Research (Roucher et al., 2025) and GPT Researcher (Elovic,
039 2023) opt for complex multi-agent orchestration while SEARCH-O1 (Li et al., 2025b) uses a single
040 agent. However, despite the numerous approaches, they still fail in complex long-trajectory settings,
041 and there are no systematic approaches to analyze their trajectories and identify the failure modes.

042 In this work, we first analyze existing frameworks by examining their trajectory outcomes on
043 BrowseComp (Wei et al., 2025), a challenging long-horizon agentic search benchmark. Our analysis
044 shows that these frameworks still struggle with long-trajectory tasks, failing on more than 50% of the
045 samples—most of the failures are due to hitting the context window limit, running out of tool budget,
046 or stopping too early.

047 We attribute these failure modes to poor context management that can fill the context window with
048 noisy information that derails long search trajectories. The limited context restricts the number of
049 turns in each trajectory, resulting in incomplete information gathering. To overcome these limitations,
050 we design **SLIM** (**S**imple **L**ightweight **I**nformation **M**anagement), a framework with three simple yet
051 powerful components—search, browse, and summarization—that effectively manage the context size
052 of long-horizon systems. The simple tool design allows LLMs to interleave searching for diverse
053 information and browsing promising pages without spending unnecessary tool calls on noisy search

¹Our code will be made publicly available.

Figure 1: With o3 as the base model, SLIM achieves better performance than existing frameworks on both BrowseComp and HLE while using more than 4-6x fewer tool calls and lower overall costs, which account for LLM token usage and tool costs.

results. Furthermore, the summarization module acts as a general-purpose context manager that can reduce long trajectories into more condensed summaries. These design choices combine to allow the system to scale to longer trajectories while maintaining a concise context and reduced tool costs. Under a comparable cost budget, with o3 as the base model, SLIM significantly outperforms the previous best open-source frameworks by 8 and 4 absolute points on BrowseComp and HLE, respectively, while requiring only 15-25% of the tool calls (Figure 1).

Finally, we introduce an automated trajectory-level analysis pipeline that provides fine-grained insights into long-horizon frameworks. To characterize mistakes made by these systems, we develop an error taxonomy identifying common failure modes. Our analysis reveals that SLIM’s advantage stems from its robustness to failure modes such as hallucinations and unfocused and generic searches. We hope our analysis pipeline, error taxonomy, and careful design choices in SLIM can serve as a foundation for understanding and improving long-horizon agentic search systems.

2 PRELIMINARIES: LONG-HORIZON AGENTIC SEARCH

Previous information-seeking tasks, such as open-domain question answering, are simpler, as they typically involve factoid questions that are easy to answer with a single source (Joshi et al., 2017; Kwiatkowski et al., 2019; Petroni et al., 2021). As a result, these tasks can be mostly solved with static retrieval-augmented generation (RAG) systems that leverage at most a few retrieval steps (Lewis et al., 2020; Izacard et al., 2023; Shi et al., 2024), and do not showcase the challenges of realistic, long-horizon agentic search settings. In contrast, we study long-horizon tasks with complex queries that require extensive searches to gather the necessary information and reasoning over different sources to synthesize the answer. In this section, we formalize the task, describe the datasets for studying long-horizon agentic search, and review some previous long-horizon systems.

2.1 TASK FORMULATION

We formalize long-horizon agentic search tasks as follows: given a query q , a corpus of documents \mathcal{D} , the system needs to perform a sequence of tool calls to find relevant information from \mathcal{D} and output a final answer o , which is checked against the annotated groundtruth answer a . A critical component of the system is the design of its tools and how it interacts with the corpus; each tool is a function $\mathcal{T}_i(x) \rightarrow y$ that maps arbitrary system-generated inputs x to arbitrary outputs y .

Furthermore, agentic systems are often controlled by a tool budget T , the maximum number of tool calls they are allowed to use in any trajectory. The tool budget T also corresponds to the maximum number of turns in a trajectory, as each turn corresponds to one tool call². Thus, how to manage the input context to the underlying LLM across many tool uses and turns is another critical design choice in long-horizon systems. Finally, the final step where the system outputs its final answer does not count towards the tool budget.

²Some architectures, such as the CodeAgent (Wang et al., 2024) used in HF-ODR, allow for parallel tool calls in one step (e.g., using for loops), but we found that the models we tested do not use this capability.

Figure 2: Example queries and their relevant documents for BrowseComp (Wei et al., 2025) and HLE (Phan et al., 2025).

In long-horizon agentic search settings, the web is most often used as the corpus \mathcal{D} due to the diversity and complexity of the queries, and each document $d_i = (u_i, t_i, c_i)$ comprises a URL, title, and content. In practice, long-horizon systems typically use search engines $\mathcal{R}(q) \rightarrow \{(u_i, t_i)\}_1^n$ to obtain a list of n web pages with their titles and URLs most relevant to the search query q . Furthermore, a scraping operation $\mathcal{C}(u_i) \rightarrow c_i$ is necessary to obtain the full content of any URL as search engines only provide a list of URLs, but scraping is slow and noisy in practice.

In traditional QA settings, since the retrieval tool only needs to be called once due to the simplicity of the queries and the small size of the corpus (i.e., Wikipedia), retrieval returns the full list of documents and their contents $\mathcal{R}_{\text{wiki}}(q) \rightarrow \{(t_i, c_i)\}_1^n$. As a result, many long-horizon systems follow a similar design, where the retrieval tool is a single search engine call followed by scraping all returned URLs. However, the complexity of long-horizon agentic search requires many tool calls to gather the necessary information (Li et al., 2025b; Jin et al., 2025b). As we demonstrate empirically later, this naive tool design leads to severe context limitations, where the system is overwhelmed by long, noisy content, motivating the design of more efficient tool interfaces for long-horizon systems.

2.2 DATASETS

We select two datasets with naturally difficult queries that require long-trajectory searches and verifiable answers, which ensures the reliability of subsequent analyses. For evaluation, we sample a random subset of 300 instances from each dataset due to the high costs of running long-horizon systems. An example query from each dataset is shown in Figure 2.

BrowseComp (Wei et al., 2025) consists of challenging queries targeting hard-to-find information. BrowseComp tests one of the core capabilities of long-horizon systems—the ability to exhaustively search the web over long trajectories and collect the necessary information. These queries were rigorously validated by humans to require > 10 minutes of searching on the open web. As a result, BrowseComp is extremely challenging for long-horizon systems.

Humanity's Last Exam (HLE) (Phan et al., 2025) tests across multiple domains and often requires domain-specific knowledge and reasoning skills. These expert domains span across a wide range of topics, such as biology, mathematics, and physics. HLE tests the ability of long-horizon systems to leverage the web to find helpful information that can aid reasoning-heavy problems. These questions are rigorously vetted by domain experts, and most existing systems fail to achieve high accuracy. We use the text-only subset to allow for evaluation of text-only systems.

162
 163 Table 1: Comparison of SLIM with existing frameworks. In contrast to single-agent works that
 164 bundle search and browsing search results into *one* retrieval tool, we separate it into two distinct tools.

165 Framework	166 Architecture	167 # Tools	168 Tools	169 Input to LLM Context	170 Summarization
166 REACT	167 Single-agent	168 1	169 Retrieval	170 All search results	-
166 SEARCH-O1	167 Single-agent	168 1	169 Retrieval	170 All search results	171 Retrieved content
166 HF-ODR	167 Multi-agent	168 11	169 Search, Browse, Python, ...	170 Selected search results	171 Search agent result
166 GPT-R	167 Multi-agent	168 1	169 Retrieval	170 All search results	171 Retrieved content
166 SLIM (ours)	167 Single-agent	168 2	169 Search, Browse	170 Selected search results	171 Task trajectory

172 **2.3 EXISTING APPROACHES**

173 We briefly describe some popular approaches to agentic search, ranging from simple single-LLM
 174 frameworks to complex multi-agent systems. We summarize the differences between these frame-
 175 works in Table 1; more details are in §A.1.

176 **REACT** (Yao et al., 2023) is a simple framework that allows an LLM agent to alternate between
 177 thinking and acting, allowing tool calling across many turns. Following the original work, our
 178 implementation gives the LLM access to a single retrieval tool—given a query, the tool returns a list
 179 of top 10 results along with their web contents. All search results are then concatenated to the agent’s
 180 context for subsequent steps. When the LLM chooses not to use the search tool, the final output is
 181 used for evaluation. Our experiments vary the maximum number of turns in each trajectory.

182 **SEARCH-O1** (Li et al., 2025b) builds upon REACT with an additional “reason-in-document” step,
 183 where an LLM summarizes the search results and their contents before appending the results to the
 184 agent’s input context. Although the summary step reduces context length for the main LLM compared
 185 to REACT, this approach still uses many scraping operations in each search step (one for each search
 186 result), and summarization incurs a large amount of LLM token usage.

187 **HuggingFace OpenDeepResearch** (HF-ODR; Roucher et al., 2025) leverages a hierarchical struc-
 188 ture consisting of a manager agent and a search agent. The manager agent calls the search agent to
 189 perform detailed searches. The search agent iteratively interacts with a search engine, a browser, and
 190 other tools (detailed in §A.2), and returns a summary of its searches. The manager agent may use the
 191 summary to issue more queries or output a final answer. We use the default settings, which fixes the
 192 maximum number of turns $T = 20$ for the manager and search agent.

193 **GPT-Researcher** (GPT-R; Elovic, 2023) is a complex multi-agent system where each agent has
 194 distinct roles: a research conductor that orchestrates the search process, a report generator that creates
 195 the report, a context manager that summarizes search results, and a source curator that selects relevant
 196 sources from scraped pages. The system uses a deep researcher agent that acts as a search tree node,
 197 spawning multiple children nodes with these same components. We use the default setting, which
 198 fixes the depth of the search tree = 2 and the breadth of search at each depth = 4.

203 **3 FAILURE MODES OF EXISTING APPROACHES**

204 Despite recent progress, we still know little about how individual components in these systems
 205 perform, or fail. To study behavior on long-horizon tasks, we focus on BrowseComp, which naturally
 206 induces extended, multi-step search trajectories. For this task, the final outcome can reveal the overall
 207 performance of each framework as well as its relationship with the context window limitation and
 208 tool budget constraints. For this analysis, we let the framework run up to a fixed number of turns and
 209 output an answer. We categorize the final outcome in Table 2.

210 For this analysis, we consider different tool budgets for REACT and SEARCH-O1, and use the default
 211 20 turns for HF-ODR. We observe that context window limitations and tool budgets are the main
 212 bottlenecks for existing approaches in Figure 3, and each framework exhibits distinct patterns.

213 Specifically, REACT often hits the context window limit over a long trajectory due to the large amount
 214 of text returned by each search call. As a result, it cannot effectively scale to long trajectories and

216

217

Table 2: Categorization of different search outcomes and their descriptions.

218 Outcome	219 Description
220 Correct	The system outputs the correct answer
221 Exceed context	The system exceeds LLM’s context window, falling back to not using any tools
222 Exceed budget	The system exceeds the tool calling or iteration budget
223 Early stopping	The system outputs an incorrect answer before reaching the iteration budget
224 No tool used	A special case of early stopping where the system does not use any tools
Misc. error	Due to uncontrollable factors (e.g., API content filters) the system outputs an error message

225

226

231

232

233 Figure 3: Each framework exhibits distinct outcome trends—REACT predominantly runs out of
 234 context window, while SEARCH-O1 is often limited by the tool budget (T). We exclude GPT-R due
 235 to its predefined workflow—the outcome can only be either correct or incorrect.

236

237

238 make full use of its tool budgets. SEARCH-O1 failure cases are almost entirely due to exceeding the
 239 tool budget, which suggests increasing the tool budget may potentially lead to better performance.
 240 However, such an increase is non-trivial without incurring a significant amount of cost—each retrieval
 241 step in SEARCH-O1 involves scraping all search results, even though only a fraction of these results
 242 are relevant, leading to a large amount of LLM token consumption during the summarization step.

243

244

245 Finally, we observe that HF-ODR often prematurely terminates due to the manager agent’s inability
 246 to leverage its search agent across multiple steps. Furthermore, HF-ODR is the only framework that
 247 do not use any tools in a significant percentage of the trajectories (10%), suggesting that complex
 248 prompt-engineered workflows may be prone to reducing the tool calling capabilities of the base
 249 model. The root cause of these failure modes is poor context management—exceeding context and
 250 tool budgets, or stopping too early. In the next section, we explore how to substantially improve
 251 agentic search frameworks through better context management.

252

253

254 **4 OUR FRAMEWORK: SLIM**
 255 A key takeaway from our analysis is that long-trajectory tasks require **scaling up the number of**
 256 **turns and tool calls while keeping the context concise to avoid hitting the context window limit**.
 257 Specifically, search results are often noisy and irrelevant to the answer, so filling up the context with
 258 content from all search results can lead to noisy context and unnecessary tool costs. Motivated by
 259 these observations, we introduce SLIM (Simple Lightweight Information Management) with two
 260 key principles: (1) using simple and flexible tools for LLMs to interact with, and (2) minimizing
 261 the amount of noisy information presented to the model and keeping the context concise during
 262 exploration. An overview of SLIM in comparison to existing frameworks is shown in Figure 4.

263

264 Concretely, SLIM adopts three simple yet powerful components—search, browse, and
 265 summarization—to effectively manage the context and scale the number of turns.

266

267

268

269

270 **Search tool \mathcal{R} .** As the main vehicle for exploring the web, SLIM uses a simple and fast interface
 271 for the search tool. Specifically, the search tool only returns the top k search results from a search
 272 engine, where each search result consists of a title, a URL, and a short snippet of its content. A crucial
 273 difference from previous frameworks is that previous work often bundles the search and browse
 274 functionality and returns the full content for all search results, and relies on the main LLM to discern
 275 relevant context. In comparison, our search tool only returns a short snippet of each result, keeping
 276 the output concise and avoiding wasting context and tool calls on irrelevant content.

Figure 4: Compared to REACT and SEARCH-O1, the cooperation between search, browse, and summarization modules allows SLIM to accumulate shorter contexts and less noisy information after exploring the same amount of searches.

Browse tool \mathcal{B} . Our browse tool is designed to complement the search tool by allowing the LLM to dig deeper into promising search results. Specifically, the browse tool $\mathcal{B}(u, q) \rightarrow \max_{c_i \in c} \text{sim}(c_i, q)$ returns the most relevant section of the content c from the URL u to the query q . Notably, this design enables the LLM to select the most relevant search result and choose a subset of the content that best matches the specific information it is looking for. As a result, our browse tool is significantly more efficient and cheaper than previous frameworks that exhaustively browse all search results in terms of both the scraping operations and the amount of new tokens introduced to the context.

Summarization module \mathcal{S} . Despite the brevity of each tool response, agent context inevitably grows as it explores over a long horizon of searches. To maintain a concise context while retaining the effective exploration history, we introduce a summarization module that periodically compresses the LLM context. We find a simple heuristic sufficient: we summarize the entire conversation history after every n turns of tool calls and replace the trajectory with the summary. This crucially differs from previous works where summarization is solely applied to search results at each turn.

Finally, we combine these components into a single framework by allowing the underlying LLM to call either the search or the browse tools at every turn. Then, the summarization module compresses the entire conversation every n turns to reduce the amount of noise. Our implementation uses Google³ as the search tool, crawl4ai⁴ as the browse tool, and the same LLM as the agent model for summarization. More details, an example trajectory, and ablations on the search tool, browse tool, and summarization module are shown in §A.4.

5 RESULTS

We use o3, o4-mini, and Claude-4-Sonnet as our base models. For each instance, we evaluate the system’s performance as well as the number of tool calls and tokens used. The number of tool calls is the sum of the search API and browse/scraping operations. For the number of tokens, we take a weighted sum of the LLM input and output tokens across all turns. We exclude cached input tokens from the total tokens count since practical systems are typically implemented with caching mechanisms in long-trajectory tasks with shared context. For each dataset we report results averaged over all instances. More details on the experimental setup can be found in §A.5.

We present the main results with o3 as the base model in Table 12. Under the same cost, SLIM achieves significant improvements over SEARCH-O1, the best performing open-source framework,

³<https://serper.dev/>

⁴<https://github.com/unclecode/crawl4ai>

Figure 5: With o4-mini as the base model, SLIM consistently outperforms other baselines on BrowseComp while using fewer tool calls and lower overall costs. On HLE, SLIM can achieve overall higher performance and use fewer tool calls.

Figure 6: With Claude-4-Sonnet as the base model, SLIM consistently outperforms other baselines on BrowseComp while using fewer tool calls and lower overall costs. On HLE, SLIM can achieve overall higher performance and use fewer tool calls.

by 8 and 4 points on BrowseComp and HLE, respectively. The difference is more pronounced when controlling for cost: on BrowseComp, SLIM can scale to 150 turns while using less total cost and reaching higher performance than the corresponding SEARCH-O1 setting (50 turns). Furthermore, SLIM uses significantly fewer tool calls—less than 25% of the tool calls used by SEARCH-O1—suggesting that SLIM can leverage tools much more efficiently. The performance-cost comparisons of these systems are shown in Figure 1, and the detailed numbers and comparisons are shown in Table 12. **We also conduct statistical tests to compare the performance of SLIM with the baselines, as shown in Table 13.**

We also show results with different base models—o4-mini in Figure 5 and Claude-4-Sonnet in Figure 6. SLIM consistently achieves the highest performance across these models and all datasets compared to other frameworks, suggesting that our simple design generalizes well to models of different sizes and training strategies. Furthermore, our effective context management also results in fewer tool calls and often lower overall costs compared to the baselines. SLIM also shows consistent trends across all three base models whereas certain frameworks only work well under certain models; for instance, HF-ODR only achieves competitive performance with Claude, where the engineered prompts are more effective. Overall, this is strong evidence that SLIM serves as an effective framework for long-horizon tasks. We show tables with full results and ablations on the baselines in §A.6.

6 FINE-GRAINED TRAJECTORY-LEVEL ANALYSIS

6.1 TRAJECTORY-LEVEL ERROR TAXONOMY

To understand how SLIM improves over other systems at a deeper level, we extend the analysis beyond the task outcome, and focus on characterizing the mistakes that a system makes over the course of its

378	Question: Provide the birth name of a certain individual:	Groundtruth Answer: Nicholas Munene
379	1. hired for a coordinator position in 2012 and later promoted	
380	2. has a child that was born in the United States.	
381	3. released their debut single between 2010 and 2015.	
382	Search queries:	(1) Unfocused searches: overly generic queries that do not narrow down search space
383	1: debut single 2012 filipina actress model business administration	
384	2: "child born in the United States" singer actress	
385	3: "promoted to manager" "debut single" 2014	
386	...	
387	19: Filipina actress gave birth in the United States 2015	
388	20: Filipina actress debut single 2013	
389	...	
390	48: "marketing coordinator" 2012 Philippines	
391	49: "children born in the United States" actress "Philippines"	
392	Search results:	(2) Confirmation bias: $\geq 50\%$ search queries focus on a wrong candidates due to early noisy signals.
393	1: wikipedia/Maja_Salvador, imbd/Filipina_Beauty	
394	2: timenote/Virginia_Weidler, wikipedia/Sharon_Pierre-Louis	
395	...	
396	20: timenote/Virginia_Weidler, wikipedia/Maja_Salvador	
397	21: wikipedia/Nick_Mutuma	
398	Example Output 1:	(3) Inefficient search: search repetitive information/URLs
399	Explanation: I was unable to reliably identify...	
400	Exact Answer: Unable to determine from the information available	
401	Example Output 2:	(4) Answer ignored: correct answer found in trajectory but not used
402	Explanation: Angeline Quinto satisfies every clue:	
403	1. Angeline is a Filipino singer with a child born in the US.	
404	2. Angeline's debut single was released in 2012.	
405	3. Angeline was promoted from coordinator to manager at 1FM	
406		(5) Abstention: do not attempt to answer a question.
407		(6) Hallucination: generated statements are not supported by contents from the trajectory.
408		Cross check with search results → 2/4 unsupported statements
409		

Figure 7: Examples of each trajectory-level failure mode on a BrowseComp sample.

long search *trajectories*. To this end, we first develop a shared taxonomy of common failure modes by manually examining individual trajectories from the compared systems on BrowseComp. We present examples of each failure mode in the taxonomy in Figure 7, and detailed definitions in §A.3. Our taxonomy covers possible failure modes for long-horizon search agents in the information gathering process (e.g., unfocused searches, confirmation bias, and inefficient search) as well as the answer synthesis stage (e.g., ignoring the answer, abstention, and hallucination).

Based on the taxonomy, we develop an automated error analysis pipeline that annotates each trajectory with the failure modes using a mix of rule-based heuristics and LLM-as-a-judge approaches. Our pipeline carefully examines all parts of each trajectory—the search queries and results, the browsed contents, and the final answer—to identify the failure modes. We describe the pipeline more in §A.3.

6.2 ANALYSIS OF TRAJECTORY-LEVEL FAILURE MODES

For fair comparison, we analyze all frameworks under a similar cost budget⁵. For each framework we choose the setting with the closest cost to SLIM with tool budget $T = 150$, according to Table 12. The distribution of trajectory-level errors are shown in Table 3, where we show the percentage of correct answer and each failure mode across all samples. We first observe that SLIM’s advantage in performance could be attributed to the notably reduced hallucination rate compared to other frameworks. This is likely due to the fact that SLIM can choose what URLs to browse based on the search results, allowing it to reduce the amount of noise in the context. In contrast, the other frameworks observe significantly higher hallucination rates compared to SLIM, suggesting that they often resort to their parametric knowledge to answer the question when they cannot find the correct answer through tool calls.

Moreover, SEARCH-O1 and SLIM observe higher percentages of answer ignored than other frameworks. One explanation is that these frameworks tend to encounter more search results across their longer trajectories, which leads to a higher chance of finding the answer, but also a higher chance of ignoring it. In contrast, REACT and HF-ODR do not scale well to longer trajectories, which means they are unlikely to encounter the correct answer. Our analysis reveals that a promising direction for

⁵We exclude GPT-R because their implementation do not return the contents of the search results.

432 Table 3: The percentage of trajectory over all samples that observe each failure mode. For
 433 hallucination only, we report the percentage of hallucinations for samples that ends with an incorrect
 434 answer and do not abstain.

435 Framework	436 Turn Budget	437 Correct	438 Confirm Bias	439 Unfocused Search	440 Inefficient Search	441 Abstention	442 Answer Ignored	443 Hallucinate
437 REACT	438 10	439 7.0	440 9.3	441 44.0	442 3.9	443 1.0	444 0.7	445 56.7
438 SEARCH-O1	439 50	440 48.3	441 9.3	442 33.7	443 7.2	444 4.3	445 26.0	446 46.8
439 HF-ODR	440 20	441 20.0	442 6.7	443 58.7	444 43.9	445 32.3	446 1.7	447 96.2
440 SLIM	441 150	442 56.0	443 9.7	444 34.0	445 7.6	446 27.7	447 30.7	448 19.0

440
 441 improving long-horizon agentic search frameworks is to enable language models to better identify
 442 the correct answer from long trajectories.

443 Notably, despite the improvements on hallucination, SLIM still suffers from high abstention rates,
 444 and is more prone to ignoring the groundtruth answers. We leave these improvements to future work,
 445 and hope that our trajectory-level analysis can be a useful tool for improving long-horizon systems in
 446 more interpretable and concrete ways.

449 7 RELATED WORK

450
 451 **Deep research.** Recently, the community has taken great interests in deep research systems due to
 452 their potential to solve complex tasks—there have been efforts across both industry (OpenAI, 2025;
 453 Google, 2025; xAI, 2025; Nguyen et al., 2025) and open-source communities (Wu et al., 2025a;
 454 Du et al., 2025; Sun et al., 2025, *inter alia*). They are often evaluated through long-horizon search
 455 trajectories tasks that also require complex reasoning (Wei et al., 2025; Phan et al., 2025). Other
 456 benchmarks evaluate the long-form generation capabilities of systems (Du et al., 2025).

457 Furthermore, between the opaque proprietary systems and increasingly complex open-source systems,
 458 there is little understanding on the underlying behavior of long-horizon systems and how they fail
 459 in practice. In this work, we aim to fill this gap by introducing an error taxonomy for long-horizon
 460 systems and an automatic error analysis pipeline. **We design our automated analysis pipeline to**
 461 **conduct fine-grained analysis across a search trajectory, while previous works study more general**
 462 **multi-agent interaction (Pan et al., 2025; Deshpande et al., 2025).** The two approaches, general
 463 and specific, are complementary to each other in gaining a better understanding of agentic systems.
 464 Finally, in contrast to existing open-source approaches that are growing increasingly more complex,
 465 we show that a simple approach with carefully designed tools can achieve better performance with
 466 fewer tool calls.

467 **Reinforcement learning for long-horizon systems.** There have been considerable efforts in improving
 468 search agents through reinforcement learning (Li et al., 2025c; Zheng et al., 2025; Chen et al.,
 469 2025; Li et al., 2025a; Wu et al., 2025b, *inter alia*). A popular approach is to synthetically generate
 470 question-answer pairs that require long-horizon search trajectories (Xia et al., 2025; Tao et al., 2025).
 471 Other works focus on comparing different training objectives (Jin et al., 2025b;a). However, critical
 472 analysis of the error modes and comparison of different frameworks are still lacking.

474 8 CONCLUSION

475 In this work, we propose SLIM, a simple yet effective long-horizon agentic search framework that
 476 addresses context limitations prevalent in existing systems. We show that SLIM consistently achieves
 477 the highest performance across different base models and datasets compared to other frameworks
 478 while using fewer tool calls and lower overall costs, suggesting that our simple design enables better
 479 long-horizon agentic search.

480 We then develop an automated error analysis pipeline to characterize the failure modes of long-horizon
 481 systems. Our analysis shows that SLIM is more resistant to failure modes such as hallucination. We
 482 hope our framework and analysis pipeline can serve as a useful tool for the community to understand
 483 and improve long-horizon agentic search systems.

486 ETHICS STATEMENT
487488 This work studies the behavior of long-horizon agentic search systems, and how to improve them
489 through better design choices. Although there are no direct ethical concerns, we acknowledge that
490 the web and LLMs are complex systems that can be used for harmful purposes.
491492 REPRODUCIBILITY STATEMENT
493494 All of our experiments were conducted between August 2025 and October 2025, and we release
495 the output files for all of our experiments. Although we release the code and results publicly, the
496 stochastic nature of LLMs and search engines makes it difficult to exactly reproduce the results
497 shown. While we try to control for this by running all experiments around the same time, there may
498 still be slight differences in the results (e.g., same search query may yield different search results due
499 to search engine updates and indexing).
500501 REFERENCES
502503 Peter Belcak and Pavlo Molchanov. Universal deep research: Bring your own model and strategy,
504 2025. URL <https://arxiv.org/abs/2509.00244>.505 Bernd Bohnet, Vinh Q Tran, Pat Verga, Roee Aharoni, Daniel Andor, Livio Baldini Soares, Jacob
506 Eisenstein, Kuzman Ganchev, Jonathan Herzig, Kai Hui, et al. Attributed question answering:
507 Evaluation and modeling for attributed large language models. *arXiv preprint arXiv:2212.08037*,
508 2022. URL <https://arxiv.org/pdf/2212.08037.pdf>.510 Mingyang Chen, Linzhuang Sun, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen
511 Wang, Jeff Z. Pan, Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen.
512 Research: Learning to reason with search for llms via reinforcement learning, 2025. URL
513 <https://arxiv.org/abs/2503.19470>.514 Darshan Deshpande, Varun Gangal, Hersh Mehta, Jitin Krishnan, Anand Kannappan, and Rebecca
515 Qian. Trail: Trace reasoning and agentic issue localization, 2025. URL <https://arxiv.org/abs/2505.08638>.517 Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench: A
518 comprehensive benchmark for deep research agents, 2025. URL <https://arxiv.org/abs/2506.11763>.521 Assaf Elovic. gpt-researcher, July 2023. URL <https://github.com/assafelovic/gpt-researcher>.523 Revanth Gangi Reddy, Sagnik Mukherjee, Jeonghwan Kim, Zhenhailong Wang, Dilek Hakkani-
524 Tür, and Heng Ji. Infogent: An agent-based framework for web information aggregation. In
525 Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational
526 Linguistics: NAACL 2025*, pp. 5745–5758, Albuquerque, New Mexico, April 2025. Association for
527 Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.318.
528 URL <https://aclanthology.org/2025.findings-naacl.318/>.530 Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. Enabling large language models to generate
531 text with citations. In *Empirical Methods in Natural Language Processing (EMNLP)*, 2023.532 Google. Gemini deep research — your personal research assistant, September 2025. URL <https://gemini.google/overview/deep-research/>.534 Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
535 Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: few-shot learning with
536 retrieval augmented language models. *J. Mach. Learn. Res.*, 24(1), January 2023. ISSN 1532-4435.538 Bowen Jin, Jinsung Yoon, Priyanka Kargupta, Sercan O. Arik, and Jiawei Han. An empirical study
539 on reinforcement learning for reasoning-search interleaved llm agents, 2025a. URL <https://arxiv.org/abs/2505.15117>.

540 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan O Arik, Dong Wang, Hamed Zamani, and
 541 Jiawei Han. Search-r1: Training LLMs to reason and leverage search engines with reinforcement
 542 learning. In *Second Conference on Language Modeling*, 2025b. URL <https://openreview.net/forum?id=Rwhi91ideu>.

543

544 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly su-
 545 pervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan (eds.),
 546 *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume*
 547 *1: Long Papers)*, pp. 1601–1611, Vancouver, Canada, July 2017. Association for Computational
 548 Linguistics. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147>.

549

550 Ryo Kamoi, Tanya Goyal, Juan Diego Rodriguez, and Greg Durrett. WiCE: Real-World Entailment
 551 for Claims in Wikipedia. *arXiv preprint arXiv:2303.01432*, 2023. URL <https://arxiv.org/abs/2303.01432>.

552

553 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 554 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 555 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 556 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the*
 557 *Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 558 <https://aclanthology.org/Q19-1026>.

559

560 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 561 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
 562 Retrieval-augmented generation for knowledge-intensive nlp tasks. In *Proceedings of the 34th*
 563 *International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook, NY,
 564 USA, 2020. Curran Associates Inc. ISBN 9781713829546.

565 Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
 566 Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu, Yong
 567 Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. Websailor: Navigating super-human
 568 reasoning for web agent, 2025a. URL <https://arxiv.org/abs/2507.02592>.

569

570 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 571 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models, 2025b. URL
 572 <https://arxiv.org/abs/2501.05366>.

573

574 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
 575 Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
 576 *CoRR*, abs/2504.21776, 2025c. doi: 10.48550/ARXIV.2504.21776. URL <https://doi.org/10.48550/arXiv.2504.21776>.

577

578 Xuan-Phi Nguyen, Shrey Pandit, Revanth Gangi Reddy, Austin Xu, Silvio Savarese, Caiming Xiong,
 579 and Shafiq Joty. Sfr-depresearch: Towards effective reinforcement learning for autonomously
 580 reasoning single agents, 2025. URL <https://arxiv.org/abs/2509.06283>.

581

582 OpenAI. Introducing deep research, February 2025. URL <https://openai.com/index/introducing-deep-research/>.

583

584 OpenAI, :, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin
 585 Arbus, Rahul K. Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler
 586 Bertao, Nivedita Brett, Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai Chen,
 587 Mark Chen, Enoch Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin Fives,
 588 Vlad Fomenko, Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam Goucher,
 589 Lukas Gross, Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec Helyar,
 590 Haitang Hu, Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina Kofman,
 591 Dominik Kundel, Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc, James Park
 592 Lennon, Scott Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin, Jordan Liss, Lily,
 593 Liu, Jiancheng Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCallum, Josh McGrath,
 Scott McKinney, Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu, Gideon Myles,
 Alexander Neitz, Alex Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ashley Pantuliano,
 Giambattista Parascandolo, Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic Peran, Dmitry

594 Pimenov, Michelle Pokrass, Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo Raso, Hongyu
 595 Ren, Kimmy Richardson, David Robinson, Bob Rotsted, Hadi Salman, Suvansh Sanjeev, Max
 596 Schwarzer, D. Sculley, Harshit Sikchi, Kendal Simon, Karan Singhal, Yang Song, Dane Stuckey,
 597 Zhiqing Sun, Philippe Tillet, Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric Wallace, Xin
 598 Wang, Miles Wang, Olivia Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery, Cedric Whitney,
 599 Hannah Wong, Lin Yang, Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech Zaremba, Wenting
 600 Zhan, Cyril Zhang, Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-120b & gpt-oss-20b
 601 Model Card, 2025. URL <https://arxiv.org/abs/2508.10925>.

602 Melissa Z Pan, Mert Cemri, Lakshya A Agrawal, Shuyi Yang, Bhavya Chopra, Rishabh Tiwari,
 603 Kurt Keutzer, Aditya Parameswaran, Kannan Ramchandran, Dan Klein, Joseph E. Gonzalez,
 604 Matei Zaharia, and Ion Stoica. Why do multiagent systems fail? In *ICLR 2025 Workshop on*
 605 *Building Trust in Language Models and Applications*, 2025. URL <https://openreview.net/forum?id=wM521FqPvI>.

606 Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao,
 607 James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, Vassilis Plachouras, Tim
 608 Rocktäschel, and Sebastian Riedel. KILT: a benchmark for knowledge intensive language tasks.
 609 In *Proceedings of the 2021 Conference of the North American Chapter of the Association for*
 610 *Computational Linguistics: Human Language Technologies*, pp. 2523–2544, Online, June 2021.
 611 Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.200. URL <https://aclanthology.org/2021.naacl-main.200>.

612 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 613 Zhang, Mohamed Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra,
 614 Adam Khoja, Ryan Kim, Richard Ren, Jason Hausenloy, Oliver Zhang, Mantas Mazeika, Dmitry
 615 Dodonov, Tung Nguyen, Jaeho Lee, Daron Anderson, Mikhail Doroshenko, Alun Cennyth Stokes,
 616 Mobeen Mahmood, Oleksandr Pokutnyi, Oleg Iskra, Jessica P. Wang, John-Clark Levin, Mstyslav
 617 Kazakov, Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael Yu, Varun Gangal, Chelsea Zou,
 618 Zihan Wang, Serguei Popov, Robert Gerbicz, Geoff Galgon, Johannes Schmitt, Will Yeadon,
 619 Yongki Lee, Scott Sauers, Alvaro Sanchez, Fabian Giska, Marc Roth, Søren Riis, Saiteja Utpala,
 620 Noah Burns, Gashaw M. Goshu, Mohinder Maheshbhai Naiya, Chidozie Agu, Zachary Giboney,
 621 Antrell Cheatom, Francesco Fournier-Facio, Sarah-Jane Crowson, Lennart Finke, Zerui Cheng,
 622 Jennifer Zampese, Ryan G. Hoerr, Mark Nandor, Hyunwoo Park, Tim Gehrunger, Jiaqi Cai, Ben
 623 McCarty, Alexis C Garretson, Edwin Taylor, Damien Sileo, Qiuyu Ren, Usman Qazi, Lianghui
 624 Li, Jungbae Nam, John B. Wydallis, Pavel Arkhipov, Jack Wei Lun Shi, Aras Bacho, Chris G.
 625 Willcocks, Hangrui Cao, Sumeet Motwani, Emily de Oliveira Santos, Johannes Veith, Edward
 626 Vendrow, Doru Cojoc, Kengo Zenitani, Joshua Robinson, Longke Tang, Yuqi Li, Joshua Vendrow,
 627 Natanael Wildner Fraga, Vladyslav Kuchkin, Andrey Pupasov Maksimov, Pierre Marion, Denis
 628 Efremov, Jayson Lynch, Kaiqu Liang, Aleksandar Mikov, Andrew Gritsevskiy, Julien Guillod,
 629 Gözdenur Demir, Dakotah Martinez, Ben Pageler, Kevin Zhou, Saeed Soori, Ori Press, Henry Tang,
 630 Paolo Rissone, Sean R. Green, Lina Brüssel, Moon Twayana, Aymeric Dieuleveut, Joseph Marvin
 631 Imperial, Ameya Prabhu, Jinzhou Yang, Nick Crispino, Arun Rao, Dimitri Zvonkine, Gabriel
 632 Loiseau, Mikhail Kalinin, Marco Lukas, Ciprian Manolescu, Nate Stambaugh, Subrata Mishra, Tad
 633 Hogg, Carlo Bosio, Brian P Coppola, Julian Salazar, Jaehyeok Jin, Rafael Sayous, Stefan Ivanov,
 634 Philippe Schwaller, Shaipranesh Senthilkuma, Andres M Bran, Andres Algaba, Kelsey Van den
 635 Houte, Lynn Van Der Sypt, Brecht Verbeken, David Noever, Alexei Kopylov, Benjamin Myklebust,
 636 Bikun Li, Lisa Schut, Evgenii Zheltonozhskii, Qiaochu Yuan, Derek Lim, Richard Stanley, Tong
 637 Yang, John Maar, Julian Wykowski, Martí Oller, Anmol Sahu, Cesare Giulio Ardito, Yuzheng Hu,
 638 Ariel Ghislain Kemogne Kamdoum, Alvin Jin, Tobias Garcia Vilchis, Yuexuan Zu, Martin Lackner,
 639 James Koppel, Gongbo Sun, Daniil S. Antonenko, Steffi Chern, Bingchen Zhao, Pierrot Arsene,
 640 Joseph M Cavanagh, Daofeng Li, Jiawei Shen, Donato Crisostomi, Wenjin Zhang, Ali Dehghan,
 641 Sergey Ivanov, David Perrella, Nurdin Kaparov, Allen Zang, Ilia Sucholutsky, Arina Kharlamova,
 642 Daniil Orel, Vladislav Poritski, Shalev Ben-David, Zachary Berger, Parker Whitfill, Michael Foster,
 643 Daniel Munro, Linh Ho, Shankar Sivarajan, Dan Bar Hava, Aleksey Kuchkin, David Holmes,
 644 Alexandra Rodriguez-Romero, Frank Sommerhage, Anji Zhang, Richard Moat, Keith Schneider,
 645 Zakayo Kazibwe, Don Clarke, Dae Hyun Kim, Felipe Meneguitti Dias, Sara Fish, Veit Elser,
 646 Tobias Kreiman, Victor Efren Guadarrama Vilchis, Immo Klose, Ujjwala Anantheswaran, Adam
 647 Zweiger, Kaivalya Rawal, Jeffery Li, Jeremy Nguyen, Nicolas Daans, Haline Heidinger, Maksim
 Radionov, Václav Rozhoň, Vincent Ginis, Christian Stump, Niv Cohen, Rafał Poświata, Josef

648 Tkadlec, Alan Goldfarb, Chenguang Wang, Piotr Padlewski, Stanislaw Barzowski, Kyle Mont-
 649 gomery, Ryan Stendall, Jamie Tucker-Foltz, Jack Stade, T. Ryan Rogers, Tom Goertzen, Declan
 650 Grabb, Abhishek Shukla, Alan Givré, John Arnold Ambay, Archan Sen, Muhammad Fayez Aziz,
 651 Mark H Inlow, Hao He, Ling Zhang, Younesse Kaddar, Ivar Ångquist, Yanxu Chen, Harrison K
 652 Wang, Kalyan Ramakrishnan, Elliott Thornley, Antonio Terpin, Hailey Schoelkopf, Eric Zheng,
 653 Avishy Carmi, Ethan D. L. Brown, Kelin Zhu, Max Bartolo, Richard Wheeler, Martin Stehberger,
 654 Peter Bradshaw, JP Heimonen, Kaustubh Sridhar, Ido Akov, Jennifer Sandlin, Yury Makarychev,
 655 Joanna Tam, Hieu Hoang, David M. Cunningham, Vladimir Goryachev, Demosthenes Patramanis,
 656 Michael Krause, Andrew Redenti, David Aldous, Jesyin Lai, Shannon Coleman, Jiangnan Xu,
 657 Sangwon Lee, Ilias Magoulas, Sandy Zhao, Ning Tang, Michael K. Cohen, Orr Paradise, Jan Hen-
 658 drick Kirchner, Maksym Ovchinnikov, Jason O. Matos, Adithya Shenoy, Michael Wang, Yuzhou
 659 Nie, Anna Sztyber-Betley, Paolo Faraboschi, Robin Riblet, Jonathan Crozier, Shiv Halasyamani,
 660 Shreyas Verma, Prashant Joshi, Eli Meril, Ziqiao Ma, Jérémie Andréeoletti, Raghav Singhal, Jacob
 661 Platnick, Volodymyr Nevirkovets, Luke Basler, Alexander Ivanov, Seri Khoury, Nils Gustafsson,
 662 Marco Piccardo, Hamid Mostaghimi, Qijia Chen, Virendra Singh, Tran Quoc Khánh, Paul Rosu,
 663 Hannah Szlyk, Zachary Brown, Himanshu Narayan, Aline Menezes, Jonathan Roberts, William
 664 Alley, Kunyang Sun, Arkil Patel, Max Lamparth, Anka Reuel, Linwei Xin, Hanmeng Xu, Jacob
 665 Loader, Freddie Martin, Zixuan Wang, Andrea Achilleos, Thomas Preu, Tomek Korbak, Ida Bosio,
 666 Fereshteh Kazemi, Ziye Chen, Biró Bálint, Eve J. Y. Lo, Jiaqi Wang, Maria Inês S. Nunes, Jeremiah
 667 Milbauer, M Saiful Bari, Zihao Wang, Behzad Ansarinejad, Yewen Sun, Stephane Durand, Hossam
 668 Elgnainy, Guillaume Douville, Daniel Tordera, George Balabanian, Hew Wolff, Lynna Kvistad,
 669 Hsiaoyun Milliron, Ahmad Sakor, Murat Eron, Andrew Favre D. O., Shailesh Shah, Xiaoxiang
 670 Zhou, Firuz Kamalov, Sherwin Abdoli, Tim Santens, Shaul Barkan, Allison Tee, Robin Zhang,
 671 Alessandro Tomasiello, G. Bruno De Luca, Shi-Zhuo Looi, Vinh-Kha Le, Noam Kolt, Jiayi Pan,
 672 Emma Rodman, Jacob Drori, Carl J Fossum, Niklas Muennighoff, Milind Jagota, Ronak Pradeep,
 673 Honglu Fan, Jonathan Eicher, Michael Chen, Kushal Thaman, William Merrill, Moritz Firsching,
 674 Carter Harris, Stefan Ciobâcă, Jason Gross, Rohan Pandey, Ilya Gusev, Adam Jones, Shashank
 675 Agnihotri, Pavel Zhelnov, Mohammadreza Mofayzei, Alexander Piperski, David K. Zhang, Kos-
 676 tiantyn Dobarskyi, Roman Leventov, Ignat Soroko, Joshua Duersch, Vage Taamazyan, Andrew Ho,
 677 Wenjie Ma, William Held, Ruicheng Xian, Armel Randy Zebaze, Mohanad Mohamed, Julian Noah
 678 Leser, Michelle X Yuan, Laila Yacar, Johannes Lengler, Katarzyna Olszewska, Claudio Di Fratta,
 679 Edson Oliveira, Joseph W. Jackson, Andy Zou, Muthu Chidambaram, Timothy Manik, Hector
 680 Haffenden, Dashiell Stander, Ali Dasouqi, Alexander Shen, Bita Golshani, David Stap, Egor
 681 Kretov, Mikalai Uzhou, Alina Borisovna Zhdikovskaya, Nick Winter, Miguel Orbegozo Rodriguez,
 682 Robert Lauff, Dustin Wehr, Colin Tang, Zaki Hossain, Shaun Phillips, Fortuna Samuele, Fredrik
 683 Ekström, Angela Hammon, Oam Patel, Faraz Farhidi, George Medley, Forough Mohammadzadeh,
 684 Madellene Peñaflor, Haile Kassahun, Alena Friedrich, Rayner Hernandez Perez, Daniel Pyda,
 685 Taom Sakal, Omkar Dhamane, Ali Khajegili Mirabadi, Eric Hallman, Kenchi Okutsu, Mike
 686 Battaglia, Mohammad Maghsoudimehrabani, Alon Amit, Dave Hulbert, Roberto Pereira, Simon
 687 Weber, Handoko, Anton Peristyy, Stephen Malina, Mustafa Mehkary, Rami Aly, Frank Reidegeld,
 688 Anna-Katharina Dick, Cary Friday, Mukhwinder Singh, Hassan Shapourian, Wanyoung Kim, Mar-
 689 iana Costa, Hubeyb Gurdogan, Harsh Kumar, Chiara Ceconello, Chao Zhuang, Haon Park, Micah
 690 Carroll, Andrew R. Tawfeek, Stefan Steinerberger, Daattavya Aggarwal, Michael Kirchhof, Linjie
 691 Dai, Evan Kim, Johan Ferret, Jainam Shah, Yuzhou Wang, Minghao Yan, Krzysztof Burdzy, Lixin
 692 Zhang, Antonio Franca, Diana T. Pham, Kang Yong Loh, Joshua Robinson, Abram Jackson, Paolo
 693 Giordano, Philipp Petersen, Adrian Cosma, Jesus Colino, Colin White, Jacob Votava, Vladimir
 694 Vinnikov, Ethan Delaney, Petr Spelda, Vit Stritecky, Syed M. Shahid, Jean-Christophe Mourrat,
 695 Lavr Vetroshkin, Koen Sponselee, Renas Bacho, Zheng-Xin Yong, Florencia de la Rosa, Nathan
 696 Cho, Xiuyu Li, Guillaume Malod, Orion Weller, Guglielmo Albani, Leon Lang, Julien Laurendeau,
 697 Dmitry Kazakov, Fatimah Adesanya, Julien Portier, Lawrence Hollom, Victor Souza, Yuchen Anna
 698 Zhou, Julien Degorre, Yiğit Yalın, Gbenga Daniel Obikoya, Rai, Filippo Bigi, M. C. Boscá, Oleg
 699 Shumar, Kaniuar Bacho, Gabriel Recchia, Mara Popescu, Nikita Shulga, Ngefor Mildred Tanwie,
 700 Thomas C. H. Lux, Ben Rank, Colin Ni, Matthew Brooks, Alesia Yakimchyk, Huanxu, Liu,
 701 Stefano Cavalleri, Olle Häggström, Emil Verkama, Joshua Newbould, Hans Gundlach, Leonor
 Brito-Santana, Brian Amaro, Vivek Vajipey, Rynaa Grover, Ting Wang, Yosi Kratish, Wen-Ding
 Li, Sivakanth Gopi, Andrea Caciolai, Christian Schroeder de Witt, Pablo Hernández-Cámarra,
 Emanuele Rodolà, Jules Robins, Dominic Williamson, Vincent Cheng, Brad Raynor, Hao Qi, Ben
 Segev, Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Michael P. Brenner,
 Mao Mao, Christoph Demian, Peyman Kassani, Xinyu Zhang, David Avagian, Eshawn Jessica

702 Scipio, Alon Ragoler, Justin Tan, Blake Sims, Rebeka Plecnik, Aaron Kirtland, Omer Faruk
 703 Bodur, D. P. Shinde, Yan Carlos Leyva Labrador, Zahra Adoul, Mohamed Zekry, Ali Karakoc,
 704 Tania C. B. Santos, Samir Shamseldeen, Loukmene Karim, Anna Liakhovitskaia, Nate Resman,
 705 Nicholas Farina, Juan Carlos Gonzalez, Gabe Maayan, Earth Anderson, Rodrigo De Oliveira
 706 Pena, Elizabeth Kelley, Hodjat Mariji, Rasoul Pouriamanesh, Wentao Wu, Ross Finocchio, Ismail
 707 Alarab, Joshua Cole, Danyelle Ferreira, Bryan Johnson, Mohammad Safdari, Liangti Dai, Siriphan
 708 Arthornthurasuk, Isaac C. McAlister, Alejandro José Moyano, Alexey Pronin, Jing Fan, Angel
 709 Ramirez-Trinidad, Yana Malyshева, Daphny Pottmaier, Omid Taheri, Stanley Stepanic, Samuel
 710 Perry, Luke Askew, Raúl Adrián Huerta Rodríguez, Ali M. R. Minissi, Ricardo Lorena, Krishnamurthy
 711 Iyer, Arshad Anil Fasiludeen, Ronald Clark, Josh Ducey, Matheus Piza, Maja Somrak, Eric
 712 Vergo, Juehang Qin, Benjamín Borbás, Eric Chu, Jack Lindsey, Antoine Jallon, I. M. J. McInnis,
 713 Evan Chen, Avi Semler, Luk Gloor, Tej Shah, Marc Carauleanu, Pascal Lauer, Tran Duc Huy,
 714 Hossein Shahrtash, Emilien Duc, Lukas Lewark, Assaf Brown, Samuel Albanie, Brian Weber,
 715 Warren S. Vaz, Pierre Clavier, Yiyang Fan, Gabriel Poesia Reis e Silva, Long, Lian, Marcus
 716 Abramovitch, Xi Jiang, Sandra Mendoza, Murat Islam, Juan Gonzalez, Vasilios Mavroudis, Justin
 717 Xu, Pawan Kumar, Laxman Prasad Goswami, Daniel Bugas, Nasser Heydari, Ferenc Jeanplong,
 718 Thorben Jansen, Antonella Pinto, Archimedes Apronti, Abdallah Galal, Ng Ze-An, Ankit Singh,
 719 Tong Jiang, Joan of Arc Xavier, Kanu Priya Agarwal, Mohammed Berkani, Gang Zhang, Zhehang
 720 Du, Benedito Alves de Oliveira Junior, Dmitry Malishev, Nicolas Remy, Taylor D. Hartman, Tim
 721 Tarver, Stephen Mensah, Gautier Abou Loume, Wiktor Morak, Farzad Habibi, Sarah Hoback, Will
 722 Cai, Javier Gimenez, Roselynn Grace Montecillo, Jakub Łucki, Russell Campbell, Asankhaya
 723 Sharma, Khalida Meer, Shreen Gul, Daniel Espinosa Gonzalez, Xavier Alapont, Alex Hoover, Gunjan
 724 Chhablani, Freddie Vargus, Arunim Agarwal, Yibo Jiang, Deepakkumar Patil, David Outevsky,
 725 Kevin Joseph Scaria, Rajat Maheshwari, Abdelkader Dendane, Priti Shukla, Ashley Cartwright,
 726 Sergei Bogdanov, Niels Mündler, Sören Möller, Luca Arnaboldi, Kunvar Thaman, Muhammad Rehan
 727 Siddiqi, Prajvi Saxena, Himanshu Gupta, Tony Fruhauff, Glen Sherman, Mátyás Vincze,
 728 Siranut Usawasutsakorn, Dylan Ler, Anil Radhakrishnan, Innocent Enyekwe, Sk Md Salauddin,
 729 Jiang Muzhen, Aleksandr Maksapetyan, Vivien Rossbach, Chris Harjadi, Mohsen Bahalooohoreh,
 730 Claire Sparrow, Jasdeep Sidhu, Sam Ali, Song Bian, John Lai, Eric Singer, Justine Leon Uro,
 731 Greg Bateman, Mohamed Sayed, Ahmed Menshawy, Darling Duclosel, Dario Bezzi, Yashaswini
 732 Jain, Ashley Aaron, Murat Tiryakioglu, Sheeshram Siddh, Keith Krenek, Imad Ali Shah, Jun Jin,
 733 Scott Creighton, Denis Peskoff, Zienab EL-Wasif, Ragavendran P V, Michael Richmond, Joseph
 734 McGowan, Tejal Patwardhan, Hao-Yu Sun, Ting Sun, Nikola Zubić, Samuele Sala, Stephen Ebert,
 735 Jean Kaddour, Manuel Schottdorf, Dianzhuo Wang, Gerol Petruzella, Alex Meiburg, Tilen Medved,
 736 Ali ElSheikh, S Ashwin Hebbar, Lorenzo Vaquero, Xianjun Yang, Jason Poulos, Vilém Zouhar,
 737 Sergey Bogdanik, Mingfang Zhang, Jorge Sanz-Ros, David Anugraha, Yinwei Dai, Anh N. Nhu,
 738 Xue Wang, Ali Anil Demircali, Zhibai Jia, Yuyin Zhou, Juncheng Wu, Mike He, Nitin Chandok,
 739 Aarush Sinha, Gaoxiang Luo, Long Le, Mickaël Noyé, Michał Perełkiewicz, Ioannis Pantidis,
 740 Tianbo Qi, Soham Sachin Purohit, Letitia Parcalabescu, Thai-Hoa Nguyen, Genta Indra Winata,
 741 Edoardo M. Ponti, Hanchen Li, Kaustubh Dhole, Jongee Park, Dario Abbondanza, Yuanli Wang,
 742 Anupam Nayak, Diogo M. Caetano, Antonio A. W. L. Wong, Maria del Rio-Chanona, Dániel
 743 Kondor, Pieter Francois, Ed Chalstrey, Jakob Zsambok, Dan Hoyer, Jenny Reddish, Jakob Hauser,
 744 Francisco-Javier Rodrigo-Ginés, Suchandra Datta, Maxwell Shepherd, Thom Kamphuis, Qizheng
 745 Zhang, Hyunjun Kim, Ruiji Sun, Jianzhu Yao, Franck Dernoncourt, Satyapriya Krishna, Sina
 746 Rismanchian, Bonan Pu, Francesco Pinto, Yingheng Wang, Kumar Shridhar, Kalon J. Overholt,
 747 Glib Briia, Hieu Nguyen, David, Soler Bartomeu, Tony CY Pang, Adam Wecker, Yifan Xiong,
 748 Fanfei Li, Lukas S. Huber, Joshua Jaeger, Romano De Maddalena, Xing Han Lù, Yuhui Zhang,
 749 Claas Beger, Patrick Tser Jern Kon, Sean Li, Vivek Sanker, Ming Yin, Yihao Liang, Xinlu Zhang,
 750 Ankit Agrawal, Li S. Yifei, Zechen Zhang, Mu Cai, Yasin Sonmez, Costin Cozianu, Changhao
 751 Li, Alex Slen, Shoubin Yu, Hyun Kyu Park, Gabriele Sarti, Marcin Briański, Alessandro Stolfo,
 752 Truong An Nguyen, Mike Zhang, Yotam Perlitz, Jose Hernandez-Orallo, Runjia Li, Amin Shabani,
 753 Felix Juefei-Xu, Shikhar Dhingra, Orr Zohar, My Chiffon Nguyen, Alexander Pondaven,
 754 Abdurrahim Yilmaz, Xuandong Zhao, Chuanyang Jin, Muyan Jiang, Stefan Todoran, Xinyao
 755 Han, Jules Kreuer, Brian Rabern, Anna Plassart, Martino Maggetti, Luther Yap, Robert Geirhos,
 Jonathon Kean, Dingsu Wang, Sina Mollaei, Chenkai Sun, Yifan Yin, Shiqi Wang, Rui Li, Yaowen
 Chang, Anjiang Wei, Alice Bizeul, Xiaohan Wang, Alexandre Oliveira Arrais, Kushin Mukherjee,
 Jorge Chamorro-Padial, Jiachen Liu, Xingyu Qu, Junyi Guan, Adam Bouyamoun, Shuyu Wu,
 Martyna Plomecka, Junda Chen, Mengze Tang, Jiaqi Deng, Shreyas Subramanian, Haocheng Xi,
 Haoxuan Chen, Weizhi Zhang, Yinuo Ren, Haoqin Tu, Sejong Kim, Yushun Chen, Sara Vera

756 Marjanović, Junwoo Ha, Grzegorz Luczyna, Jeff J. Ma, Zewen Shen, Dawn Song, Cedegao E.
 757 Zhang, Zhun Wang, Gaël Gendron, Yunze Xiao, Leo Smucker, Erica Weng, Kwok Hao Lee,
 758 Zhe Ye, Stefano Ermon, Ignacio D. Lopez-Miguel, Theo Knights, Anthony Gitter, Namkyu Park,
 759 Boyi Wei, Hongzheng Chen, Kunal Pai, Ahmed Elkhannany, Han Lin, Philipp D. Siedler, Jichao
 760 Fang, Ritwik Mishra, Károly Zsolnai-Fehér, Xilin Jiang, Shadab Khan, Jun Yuan, Rishab Kumar
 761 Jain, Xi Lin, Mike Peterson, Zhe Wang, Aditya Malusare, Maosen Tang, Isha Gupta, Ivan Fosin,
 762 Timothy Kang, Barbara Dworakowska, Kazuki Matsumoto, Guangyao Zheng, Gerben Sewuster,
 763 Jorge Pretel Villanueva, Ivan Rannev, Igor Chernyavsky, Jiale Chen, Deepayan Banik, Ben Racz,
 764 Wenchao Dong, Jianxin Wang, Laila Bashmal, Duarte V. Gonçalves, Wei Hu, Kaushik Bar, Ondrej
 765 Bohdal, Atharv Singh Patlan, Shehzaad Dhuliawala, Caroline Geirhos, Julien Wist, Yuval Kansal,
 766 Bingsen Chen, Kutay Tire, Atak Talay Yücel, Brandon Christof, Veerupaksh Singla, Zijian Song,
 767 Sanxing Chen, Jiaxin Ge, Kaustubh Ponkshe, Isaac Park, Tianneng Shi, Martin Q. Ma, Joshua
 768 Mak, Sherwin Lai, Antoine Moulin, Zhuo Cheng, Zhanda Zhu, Ziyi Zhang, Vaidehi Patil, Ketan
 769 Jha, Qiutong Men, Jiaxuan Wu, Tianchi Zhang, Bruno Hebling Vieira, Alham Fikri Aji, Jae-Won
 770 Chung, Mohammed Mahfoud, Ha Thi Hoang, Marc Sperzel, Wei Hao, Kristof Meding, Sihan
 771 Xu, Vassilis Kostakos, Davide Manini, Yueying Liu, Christopher Toukmaji, Jay Paek, Eunmi Yu,
 772 Arif Engin Demircali, Zhiyi Sun, Ivan Dewerpe, Hongsen Qin, Roman Pflugfelder, James Bailey,
 773 Johnathan Morris, Ville Heilala, Sybille Rosset, Zishun Yu, Peter E. Chen, Woongyeong Yeo,
 774 Eeshaan Jain, Ryan Yang, Sreekar Chigurupati, Julia Chernyavsky, Sai Prajwal Reddy, Subhashini
 775 Venugopalan, Hunar Batra, Core Francisco Park, Hieu Tran, Guilherme Maximiano, Genghan
 776 Zhang, Yizhuo Liang, Hu Shiyu, Rongwu Xu, Rui Pan, Siddharth Suresh, Ziqi Liu, Samaksh Gu-
 777 lati, Songyang Zhang, Peter Turchin, Christopher W. Bartlett, Christopher R. Scotese, Phuong M.
 778 Cao, Aakaash Nattanmai, Gordon McKellips, Anish Cheraku, Asim Suhail, Ethan Luo, Marvin
 779 Deng, Jason Luo, Ashley Zhang, Kavin Jindel, Jay Paek, Kasper Halevy, Allen Baranov, Michael
 780 Liu, Advaith Avadhanam, David Zhang, Vincent Cheng, Brad Ma, Evan Fu, Liam Do, Joshua
 781 Lass, Hubert Yang, Surya Sunkari, Vishruth Bharath, Violet Ai, James Leung, Rishit Agrawal,
 782 Alan Zhou, Kevin Chen, Tejas Kalpathi, Ziqi Xu, Gavin Wang, Tyler Xiao, Erik Maung, Sam
 783 Lee, Ryan Yang, Roy Yue, Ben Zhao, Julia Yoon, Sunny Sun, Aryan Singh, Ethan Luo, Clark
 784 Peng, Tyler Osbey, Taozhi Wang, Daryl Echeazu, Hubert Yang, Timothy Wu, Spandan Patel, Vidhi
 785 Kulkarni, Vijaykaarti Sundarapandiyan, Ashley Zhang, Andrew Le, Zafir Nasim, Srikanth Yalam,
 786 Ritesh Kasamsetty, Soham Samal, Hubert Yang, David Sun, Nihar Shah, Abhijeet Saha, Alex
 787 Zhang, Leon Nguyen, Laasya Nagumalli, Kaixin Wang, Alan Zhou, Aidan Wu, Jason Luo, Anwith
 Telluri, Summer Yue, Alexandr Wang, and Dan Hendrycks. Humanity’s last exam, 2025. URL
<https://arxiv.org/abs/2501.14249>.

788 Zile Qiao, Guoxin Chen, Xuanzhong Chen, Donglei Yu, Wenbiao Yin, Xinyu Wang, Zhen Zhang,
 789 Baixuan Li, Hufeng Yin, Kuan Li, Rui Min, Minpeng Liao, Yong Jiang, Pengjun Xie, Fei Huang,
 790 and Jingren Zhou. Webresearcher: Unleashing unbounded reasoning capability in long-horizon
 791 agents, 2025. URL <https://arxiv.org/abs/2509.13309>.

792 Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm, Lora Aroyo, Michael Collins, Dipanjan Das,
 793 Slav Petrov, Gaurav Singh Tomar, Iulia Turc, and David Reitter. Measuring Attribution in Natural
 794 Language Generation Models. *Computational Linguistics*, pp. 1–64, 08 2023. ISSN 0891-2017.
 795 doi: 10.1162/coli_a_00486. URL https://doi.org/10.1162/coli_a_00486.

796 Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
 797 *Found. Trends Inf. Retr.*, 3(4):333–389, apr 2009. ISSN 1554-0669. doi: 10.1561/1500000019.
 798 URL <https://doi.org/10.1561/1500000019>.

799 Aymeric Roucher, Albert Villanova del Moral, Merve Noyan, Thomas Wolf, and Clémentine
 800 Fourrier. Open-source DeepResearch – Freeing our search agents, January 2025. URL
<https://huggingface.co/blog/open-deep-research>.

801 Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike Lewis, Luke
 802 Zettlemoyer, and Wen-tau Yih. REPLUG: Retrieval-augmented black-box language models.
 803 In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Confer-
 804 ence of the North American Chapter of the Association for Computational Linguistics: Human
 805 Language Technologies (Volume 1: Long Papers)*, pp. 8371–8384, Mexico City, Mexico, June
 806 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.nacl-long.463. URL
<https://aclanthology.org/2024.nacl-long.463/>.

810 Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia Deng,
 811 Wayne Xin Zhao, Zheng Liu, Lei Fang, Zhongyuan Wang, and Ji-Rong Wen. Simpledeepsearcher:
 812 Deep information seeking via web-powered reasoning trajectory synthesis, 2025. URL <https://arxiv.org/abs/2505.16834>.

813

814 Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
 815 Liwen Zhang, Xinyu Wang, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webshaper:
 816 Agentically data synthesizing via information-seeking formalization, 2025. URL <https://arxiv.org/abs/2507.15061>.

817

818

819 Tongyi DeepResearch Team. Tongyi deepresearch: A new era of open-source ai researchers. <https://github.com/Alibaba-NLP/DeepResearch>, 2025.

820

821 Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
 822 Executable code actions elicit better llm agents. In *Proceedings of the 41st International Conference
 823 on Machine Learning*, ICML'24. JMLR.org, 2024.

824

825 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 826 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 827 challenging benchmark for browsing agents, 2025. URL <https://arxiv.org/abs/2504.12516>.

828

829 Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
 830 Yulan He, Deyu Zhou, Pengjun Xie, and Fei Huang. WebWalker: Benchmarking LLMs in
 831 web traversal. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
 832 Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational
 833 Linguistics (Volume 1: Long Papers)*, pp. 10290–10305, Vienna, Austria, July 2025a. Association
 834 for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.508.
 835 URL <https://aclanthology.org/2025.acl-long.508>.

836

837 Xixi Wu, Kuan Li, Yida Zhao, Liwen Zhang, Litu Ou, Huifeng Yin, Zhongwang Zhang, Yong
 838 Jiang, Pengjun Xie, Fei Huang, Minhao Cheng, Shuai Wang, Hong Cheng, and Jingren Zhou.
 839 Resum: Unlocking long-horizon search intelligence via context summarization, 2025b. URL
 840 <https://arxiv.org/abs/2509.13313>.

841

842 xAI. Grok 3 beta — the age of reasoning agents, February 2025. URL <https://x.ai/news/grok-3>.

843

844 Ziyi Xia, Kun Luo, Hongjin Qian, and Zheng Liu. Open data synthesis for deep research, 2025. URL
 845 <https://arxiv.org/abs/2509.00375>.

846

847 Renjun Xu and Jingwen Peng. A comprehensive survey of deep research: Systems, methodologies,
 848 and applications, 2025. URL <https://arxiv.org/abs/2506.12594>.

849

850 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 851 ReAct: Synergizing reasoning and acting in language models. In *International Conference on
 852 Learning Representations (ICLR)*, 2023. URL <https://arxiv.org/abs/2210.03629>.

853

854 Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
 855 and Danqi Chen. Helmet: How to evaluate long-context language models effectively and thoroughly.
 856 In *International Conference on Learning Representations (ICLR)*, 2025.

857

858 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 859 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments,
 860 2025. URL <https://arxiv.org/abs/2504.03160>.

861

862

863

864 **A APPENDIX**
865866 **A.1 EXISTING FRAMEWORKS**
867868
869 **REACT** (Yao et al., 2023) is a simple framework that allows an LLM agent to alternate between
870 thinking and acting. This framework allows the agent to use tool calls across many turns. Following
871 the original work’s knowledge-intensive task settings, our implementation gives the LLM access to a
872 single search tool—given a query, the tool returns a list of top 10 search results, from a search engine,
873 along with their web contents. The search results are then concatenated and appended to the agent
874 context for subsequent steps. When the LLM chooses not to use the search tool, the final output is
875 used for evaluation.
876877 In our implementation, we vary the maximum number of turns in each trajectory from 1 to 10.
878 Consistent with **SLIM**, we use Google as the search engine, accessed through the Serper API, which
879 returns a list of top 10 search results. Each search result contains a title, a URL, and a short snippet
880 of the content. After obtaining the top 10 search results, we emulate previous RAG approaches by
881 scraping all search result URLs and concatenate their content. Similar to **SLIM**, we use crawl4ai
882 to scrape web pages. We truncate each scraped document to at most 10,000 characters, which
883 corresponds to roughly 1,000 tokens.
884885 We notice that **REACT** often hits the context window limit as the retrieval results are often too long.
886 When the LLM API call fails due to the context window limit, we fallback to not using any tools
887 and just ask the base LLM to answer the question. As a result, we only experiment with up to 10
888 turns, where the framework already falls back to not using any tools for most queries. A sketch of the
889 framework is shown in Alg. 1.
890891 **SEARCH-O1** (Li et al., 2025b) builds upon **REACT** with an additional “reason-in-document” step,
892 where an LLM summarizes the list of top 10 search results and their contents before appending the
893 results to the agent’s input context. Although the summary added to the agent context is relatively
894 short compared to the full search result, this approach still uses a large amount of browse calls in each
895 search step, and the summarization steps incur a large amount of LLM token usage. In our setting,
896 we vary the maximum number of turns in each trajectory from 1 to up to 100 turns.
897898 Similar to **REACT**, the retrieval tool at each step consists of a single Serper API call, followed by
899 multiple scraping operations. We adopt the code from the original implementation⁶, which uses
900 BeautifulSoup⁷ to scrape the search result URLs. In this implementation, the scraping operation will
901 extract part of the web content that best matches the short snippet returned by the search engine.
902 The matching is done by simply computing the F1 scores between the snippet and sentences in the
903 web page. Subsequently, the context is filled up with at most 2,500 characters from the web page.
904 Then, all context from the search results are concatenated and appended to the agent context for the
905 summarization step.
906907 It is important to note that the scraping operation is relatively expensive due to the network latency,
908 resulting in long running time for the framework. A sketch of the framework is shown in Alg. 2.
909910 **HuggingFace OpenDeepResearch** (HF-ODR; Roucher et al., 2025) leverages a hierarchical struc-
911 ture consisting of a manager agent and a search agent. The manager agent calls the search agent
912 to perform detailed searches, and the search agent iteratively interacts with the search engine and a
913 simulated browser to gather information. When the search agent concludes its searches, it generates a
914 summary of its searches and returns it to the manager agent. The manager agent may use the summary
915 to issue additional queries or output the final answer. Furthermore, another key feature of HF-ODR
916 is its access to additional tools, such as a Python interpreter. We use the default settings⁸, which fixes
917 the maximum number of turns for the manager and search agent to be 20. A sketch of the framework
918 is shown in Alg. 3. Specific descriptions of each tool can be found in Section A.2.
919920 ⁶<https://github.com/RUC-NLP/IR/Search-o1>921 ⁷<https://beautiful-soup-4.readthedocs.io/en/latest/>922 ⁸https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research

918 **GPT-Researcher** (GPT-R; Elovc, 2023) is a complex multi-agent system where each agent has
 919 distinct roles. Specifically, the system consists of a researcher conductor that orchestrates the search
 920 process, a report generator that generates the final report at the end of the search process, a context
 921 manager that summarizes search results, and a source curator that selects relevant sources from
 922 scraped web pages. Finally, GPT-R uses a deep researcher agent that acts as the node of a search tree,
 923 where each node is able to spawn multiple child nodes, each of which is a system with the previously
 924 described components. We use the default settings of the framework⁹, which fixes the depth of the
 925 search tree to be 2 and the breadth of search at each depth to be 4. A sketch of the framework is
 926 shown in Alg. 4.

Other frameworks. There are many recent works on agentic search systems and memory-management frameworks (Gangi Reddy et al., 2025; Xu & Peng, 2025; Belcak & Molchanov, 2025). We chose the most popular open-source agentic search and deep research systems for comparison. These systems also span both simple single-agent and complex multi-agent systems, which we believe serve as a representative and fair group of baselines for the paper. Due to the high cost and long runtime of agentic systems, we only evaluate the representative baselines. Although there are explicit memory-management frameworks, we find that existing summarization models already do something similar to memory-selective mechanisms through qualitative analysis. In the example trajectory we show in Figure 8, the model summarizes the trajectory into several bullet points, such as “Investigation and findings so far”, “Current hypothesis”, and “Needed next”. The resulting summary is similar to many memory-selective mechanisms that only retain relevant facts to the current query. Thus, we find that allowing the model to compress the full trajectory naturally filters out irrelevant information while achieving simplicity and avoiding over-prompt-engineering.

Algorithm 1: ReAct

```

942 Data: Task input  $x$ , LLM  $\theta$ , maximum number of turns  $T$ 
943 Function  $search(q)$ :
944    $\downarrow$  return  $(title_i, url_i, snippet_i)_{i=1}^k$ ;
945 Function  $browse(u, q)$ :
946    $\downarrow$   $D \leftarrow \text{scrape}(u)$ ;
947    $\downarrow$  return  $D[:10000]$ ;
948 Result: Task output  $y$ 
949 Turn  $t \leftarrow 1$ ;
950 Context  $C \leftarrow \{x\}$ ;
951  $\mathcal{T} \leftarrow \{\text{search}\}$ ;
952 while  $t < T$  do
953    $o_t \leftarrow \theta(C; \mathcal{T})$ ; /* LLM may only call the search tool */
954   switch  $o_t$  do
955     case  $\text{search}$  do
956        $R \leftarrow \text{search}(o_t)$ ; /* Perform search */
957        $C \leftarrow C \cup \{o_t\}$ ; /* Browse every search result and append */
958       for  $(t_i, u_i, s_i) \in R$  do
959          $\downarrow$   $C \leftarrow C \cup \text{browse}(u_i, s_i)$ 
960     case  $\text{Final Answer}$  do
961        $\downarrow$  return  $o_t$ ;
962      $t \leftarrow t + 1$ ;
963   return  $\theta(C; \text{final answer})$ ;

```

A.2 HUGGINGFACE OPEN DEEP RESEARCH TOOLS

969 HF-ODR is a hierarchical framework that consists of a manager agent and a search agent. The
970 manager agent has access to the following tools:

⁹<https://github.com/assafelovic/qpt-researcher>

972 **Algorithm 2:** Search-o1

973 **Data:** Task input x , LLM θ , maximum number of turns T , summary interval n

974 **Function** $search(q)$:

975 $\boxed{\text{return } (title_i, url_i, snippet_i)_{i=1}^k;}$

976 **Function** $visit(u, q)$:

977 $\boxed{\begin{aligned} D &\leftarrow \text{scrape}(u); \\ D &\leftarrow \text{split}(D) = \{d_i\}_{i=1}^m; \\ \text{if } q = \emptyset \text{ then return } d' \leftarrow d_1; \\ \text{else } d' \leftarrow \arg \max_{d_i \in D} \text{F1}(d_i, q); \\ \text{return } d'; \end{aligned}}$

978 **Result:** Task output y

979 Turn $t \leftarrow 1$;

980 Context $C \leftarrow \{x\}$;

981 $\mathcal{T} \leftarrow \{\text{search}\}$;

982 **while** $t < T$ **do**

983 $o_t \leftarrow \theta(C; \mathcal{T})$; */* LLM may only call the search tool */*

984 **switch** o_t **do**

985 **case** search **do**

986 $R \leftarrow \text{search}(o_t)$; */* Perform search */*

987 $l \leftarrow \text{length}(C)$;

988 $D \leftarrow \{c_i\}_{i=l-5}^l$;

989 **for** $(t_i, u_i, s_i) \in R$ **do**

990 $\boxed{D \leftarrow D \cup \text{visit}(u_i, s_i)}$; */* Visit every search result */*

991 $C \leftarrow C \cup \{o_t, \theta(D; \text{summarize})\}$;

992 **case** Final Answer **do**

993 $\boxed{\text{return } o_t;}$

994 $t \leftarrow t + 1$;

995 **return** $\theta(C; \text{final answer})$;

1001

1002

1003 1. **Search Agent:** an agent that will search the internet to answer a question.

1004 2. **Visualizer:** given the path to a downloaded image, it will call an LLM to answer questions

1005 about the image.

1006 3. **Text Inspector:** given the path to a downloaded text file, it will call an LLM to answer

1007 questions about the text.

1009 The search agent has access to the following tools:

1010

1011 1. **Google Search:** a search engine that will search the internet to answer a question. This tool

1012 uses Serper API in the backend.

1013 2. **Visit Tool:** visit a URL and render the page in HTML as in a browser.

1014 3. **Page Up:** navigate the current page by scrolling up.

1015 4. **Page Down:** navigate the current page by scrolling down.

1016 5. **Finder Tool:** find a text in the current page.

1017 6. **Find Next:** find the next occurrence of the text in the current page.

1018 7. **Archive Search:** search the archives for information.

1019 8. **Text Inspector:** given the path to a downloaded text file, it will call an LLM to answer

1020 questions about the text.

1021

1023 Detailed descriptions of each tool can be found in the original implementation¹⁰.

1024

10¹⁰https://github.com/huggingface/smolagents/blob/main/src/smolagents/default_tools.py

1026
1027 **Algorithm 3:** HuggingFace Open Deep Research
1028 **Data:** Task input x , LLM θ , maximum number of turns for search and main agents T_s and T_m ,
1029 respectively, and planning interval p
1030 $\text{web_tools} \leftarrow \{\text{Search, Visit, Page Up, Page Down, Finder, Find Next, Archive Search, Text Inspector}\};$
1031 $\text{main_tools} \leftarrow \{\text{search_agent, Visualize, Text Inspector}\};$
1032 **Function** $\text{plan}(q, c)$:
1033 /* Prompt the LLM to generate a plan */
1034 **return** $\theta(q, c; \text{plan});$
1035 **Function** $\text{search_agent}(q)$:
1036 $P \leftarrow \text{plan}(q, \emptyset);$
1037 $C \leftarrow \{q, P\};$
1038 $t \leftarrow 1;$
1039 **while** $t < T_s$ **do**
1040 **if** $t \bmod p = 0$ **then**
1041 $P \leftarrow \text{plan}(q, C);$
1042 $C \leftarrow C \cup \{P\};$
1043 $o_t \leftarrow \theta(C; \text{web_tools});$
1044 **if** $\text{type}(o_t) = \text{final_answer}$ **then**
1045 **return** $o_t;$
1046 /* do the tool call, see A.2 for tool details */
1047 $C \leftarrow C \cup \{o_t, \text{tool}(o_t)\};$
1048 $t \leftarrow t + 1;$
1049 **return** $\theta(C; \text{final answer});$
1050 **Result:** Task output y
1051 Turn $t \leftarrow 1;$
1052 $P \leftarrow \text{plan}(x, \emptyset);$
1053 Context $C \leftarrow \{x, P\};$
1054 /* the main agent plans and calls the search agent */
1055 **while** $t < T_m$ **do**
1056 **if** $t \bmod p = 0$ **then**
1057 $P \leftarrow \text{plan}(x, C);$
1058 $C \leftarrow C \cup \{P\};$
1059 $o_t \leftarrow \theta(C; \text{main_tools});$
1060 **if** $\text{type}(o_t) = \text{final_answer}$ **then**
1061 **return** $o_t;$
1062 $C \leftarrow C \cup \{o_t, \text{tool}(o_t)\};$
1063 $t \leftarrow t + 1;$
1064 **return** $\theta(C; \text{final answer});$
1065
1066
1067

A.3 TRAJECTORY-LEVEL ANALYSIS DEFINITIONS

1069 In this subsection, we describe how we annotate each trajectory with the failure modes. For LLM-
1070 as-a-judge approaches, we use o3-2025-04-16 as the judge model. In each of the following
1071 LLM-as-a-judge approaches, we use the same judge model, and force the model to generate its
1072 response in a json format for easy parsing. We find that existing frontier LLMs are powerful enough
1073 to reliably check for simple yes/no questions and output them in a json format.

1074 **Confirmation bias.** Confirmation bias occurs when the system finds a potential candidate that is
1075 incorrect in its search process, and subsequently spends the majority of its search budget on the same
1076 candidate without considering other options, leading to a lack of exploration in the search space. To
1077 detect this, we first collect all the search queries that the system has made and then use an LLM to
1078 check if the search queries overly focus on a single wrong candidate. The judge model is given access
1079 to the groundtruth answer and the search queries, so it's able to determine if the search queries are

1080
1081 **Algorithm 4:** GPT-Researcher
1082 **Data:** Task input x , LLM θ , research depth D , research breadth B , summary interval n
1083 **Function** $search(q)$:
1084 $\leftarrow \text{return } (title_i, url_i, snippet_i)_{i=1}^k;$
1085 **Function** $visit(u, q)$:
1086 $D \leftarrow \text{scrape}(u);$
1087 $D \leftarrow \text{split}(D) = \{d_i\}_{i=1}^m;$
1088 $\text{if } q = \emptyset \text{ then } \text{return } d' \leftarrow d_1;$
1089 $\text{else } d' \leftarrow \arg \max_{d_i \in D} \text{F1}(d_i, q);$
1090 $\text{return } d';$
1091 **Function** $plan(q)$:
1092 $\leftarrow \text{Prompt the LLM to generate a list of queries} \quad */$
1093 $R \leftarrow \text{search}(q);$
1094 $\text{return } \theta(x, R; plan);$
1095 **Function** $conduct_research(q)$:
1096 $\leftarrow \text{Conduct research on one query by generating subqueries and} \quad */$
1097 $\text{retrieve and scrape}$
1098 $Q \leftarrow \text{plan}(q);$
1099 $R \leftarrow \emptyset;$
1100 $\text{for } q_i \in Q \text{ do}$
1101 $\leftarrow \text{for } t_i, u_i, s_i \in \text{search}(q_i) \text{ do} \quad */$
1102 $r_i \leftarrow \text{visit}(u_i, s_i);$
1103 $R \leftarrow R \cup r_i;$
1104 $\text{return } \theta(x, R; process);$
1105 **Function** $deep_research(q, d)$:
1106 $\leftarrow \text{Recursively plan and conduct research} \quad */$
1107 $Q \leftarrow \text{plan}(q);$
1108 $R \leftarrow \emptyset;$
1109 $\text{for } q_i \in Q \text{ do}$
1110 $r_i \leftarrow \text{conduct_research}(q_i);$
1111 $\leftarrow \text{Prompt the LLM to generate takeaways and follow up} \quad */$
1112 questions
1113 $q'_i \leftarrow \theta(r_i; process);$
1114 $\text{if } d < D \text{ then}$
1115 $R \leftarrow R \cup \text{deep_research}(q'_i, d + 1);$
1116 $\text{return } R;$
1117 **Result:** Task output y
1118 Turn $t \leftarrow 1$;
1119 Context $C \leftarrow \{x\}$;
1120 $P \leftarrow \text{plan}(x);$
1121 $R \leftarrow \text{deep_research}(P, 1);$
1122 $\text{return } \theta(R; write report);$

1123
1124
1125 relevant to the groundtruth answer and the similarities between different search queries. We consider
1126 a trajectory to have confirmation bias if a majority of the search queries are similar to each other, and
1127 focuses on a single wrong candidate. The prompt used for confirmation bias detection is shown in
1128 Table 4.

1129
1130 **Unfocused search.** Unfocused search occurs when the system generates overly generic search queries
1131 that are not useful for narrowing down the search space—the system cannot make any progress
1132 towards finding useful information. To detect this, we first collect all the search queries that the
1133 system has made and then use an LLM to check if the search queries are generic and not useful for
narrowing down the search space. We consider a trajectory to have unfocused search if a majority

1134	Prompt for Confirmation Bias Detection
1135	You are a helpful assistant that can analyze the trajectory of an information-seeking agent.
1136	You are given a question-answer pair and the search history of an agent that tried to answer
1137	the question. You should analyze the search history and determine if the agent spends
1138	more than half of the tool calls searching for the same incorrect answer. That is, the
1139	agent continues searching for the same topic even though it's not the correct answer to
1140	the question, and spends half or more of its tool calls on these searches. Output your final
1141	conclusion with your reasoning and a single word: 'yes' if the agent spends more than half
1142	of its tool calls on the same incorrect answer or 'no' if the agent does not.
1143	Reasoning: explain what the agent did, and if it did or did not focus its searches on a
1144	wrong answer.
1145	Conclusion: "yes" or "no".
1146	Search queries: <search-queries>
1147	Question: <question>
1148	Correct Answer: <correct-answer>

Table 4: System prompt used for detecting confirmation bias in agent trajectories

1151	Prompt for Unfocused Search Detection
1152	You are a helpful assistant that can analyze the trajectory of an information-seeking agent.
1153	You are given a question-answer pair and the search history of an agent that tried to answer
1154	the question. You should analyze the search history and determine if the search queries do
1155	not help the agent narrow down the search space. Consider the following cases:
1156	1. The agent searches for information relevant to the question and answer, but it's not
1157	specific enough to yield helpful results.
1158	2. The agent searches for queries that are not sufficiently relevant or specific to the question
1159	and answer, which does not narrow down the search space enough.
1160	3. The agent explores the search space with diverse queries but does not use enough tool
1161	calls to properly narrow down the search space by either eliminating wrong answers or
1162	verifying the correct answer.
1163	All of these cases are considered to be unfocused search. You should consider the whole
1164	trajectory of the agent, and not just some of the tool calls—only consider the trajectory to
1165	be unfocused if more than half of the searches are unfocused.
1166	Output your final conclusion with your reasoning and a single word: 'yes' if the searches
1167	are unfocused or 'no' if the searches are focused enough.
1168	Reasoning: explain what the agent did, and if it did or did not use tool calls to properly
1169	narrow down the search space.
1170	Conclusion: "yes" or "no".
1171	Search queries: <search-queries>
1172	Question: <question>
1173	Correct Answer: <correct-answer>

Table 5: System prompt used for detecting unfocused search in agent trajectories

1174
1175
1176 of the search queries are overly generic and not useful for narrowing down the search space. The
1177 prompt used for unfocused search detection is shown in Table 5.

1178 **Inefficient tool usage.** Inefficient tool usage occurs when the system does not discover new infor-
1179 mation with its tool calls, and is therefore wasting its tool budget. Specifically, we use URLs as
1180 a proxy for the information discovered by the system—a tool call that only return URLs seen in
1181 previous search results is considered as a waste of tool budget. We use a simple heuristic for this
1182 analysis—iterate over all search calls made in the trajectory and keep track of seen URLs. Then, we
1183 report the percentage of search calls that only return URLs seen in previous search results.

1184
1185 **Answer ignored.** Answer ignored occurs when the system encounters the correct answer in its search
1186 process, but does not use it to answer the question. One possible explanation is that the system
1187 is distracted by other noisy information in its context, preventing it from correctly identifying the
1188 groundtruth. We employ a simple approach for this analysis—we check if the groundtruth answer is

1188	Prompt for Groundtruth Ignored Detection
1189	You are a helpful assistant that can analyze the trajectory of an information-seeking agent.
1190	You are given a question-answer pair and a list of webpages. You should analyze the web
1191	contents and determine if it contains the correct answer. The correct answer is considered
1192	to be found if there are some context in the search results that is either a direct or near-exact
1193	match to the correct answer. Output your final conclusion with your reasoning and a single
1194	word: 'yes' if the content contains the correct answer or 'no' if the content does not contain
1195	the correct answer.
1196	Reasoning: explain if the web content contains the correct answer.
1197	Conclusion: "yes" or "no".
1198	<tool-responses>
1199	Question: <question>
1200	Correct Answer: <correct-answer>

1201 Table 6: System prompt used for detecting groundtruth ignored in agent trajectories

1204	Prompt for Giving Up Detection
1205	You are a helpful assistant that can analyze the final output of an information-seeking agent.
1206	You are to check if the agent decides that it cannot find the correct answer. For example, if
1207	the explanation states that it cannot find enough relevant information to answer the question,
1208	or if the response is simply empty or "I don't know", then the agent did not attempt to
1209	answer the question. Output your final conclusion with a single word "yes" if the agent
1210	decides it did not find enough information to answer the question or "no" otherwise.
1211	Conclusion: "yes" or "no".
1212	Final output: <final-output>

1213 Table 7: System prompt used for detecting giving up in agent trajectories

1214
1215
1216
1217 present in any of the tool responses. We employ a LLM judge to enable fuzzy matching between
1218 the groundtruth answer and the tool responses. The prompt used for answer ignored detection is
1219 shown in Table 6. We iterate over all tool calls and use this check to determine if any tool responses
1220 contain the groundtruth answer. We terminate the iteration if we find a tool response that contains the
1221 groundtruth answer, and report the percentage trajectories where at least one tool response contains
1222 the groundtruth answer.

1223 **Abstention.** Abstention occurs when the system does not attempt to answer the question due to the
1224 lack of information in its context. Existing LLMs can often refuse to answer the question if it is not
1225 confident in answering the question, but this behavior is not desirable for search agents that could
1226 leverage additional tool calls to find the necessary information. We use a simple LLM judge to check
1227 if the system attempted to answer the question. The prompt used for giving up detection is shown in
1228 Table 7.

1229 **Hallucination.** Hallucination occurs when the system generates information that is not supported by
1230 the information it has discovered in its search process. In agentic search systems, it is not desirable
1231 to hallucinate information, as it could result in incorrect and misleading answers and thus affect the
1232 trustworthiness of the system. Inspired by previous works(Rashkin et al., 2023; Bohnet et al., 2022;
1233 Gao et al., 2023), we check if the system hallucinates information by first decomposing the model's
1234 explanation into a set of atomic claims. Then, we iterate through all the tool responses from the
1235 search process and check if the tool responses support all the claims. As long as one tool response
1236 support a claim, we consider the system to not have hallucinated that claim. In the end, we report
1237 the average percentage of unsupported claims across trajectories. The prompt used for decomposing
1238 the model's explanation into a set of atomic claims is shown in Table 8, and the prompt used for
1239 hallucination detection is shown in Table 9. These prompts are derived from previous works that show
1240 LLMs can reliably decompose texts into a set of atomic claims and check if claims are supported by
1241 a piece of text—they also achieve high agreement with human judges (Gao et al., 2023; Kamoi et al.,
2023; Yen et al., 2025).

1242	Prompt for Decomposing Explanation into Atomic Claims
1243	Read the given explanation and generate a list of atomic claims that are supported by
1244	the explanation. Atomic claims that are basic facts that cannot be further broken down.
1245	Generate at most 10 claims for the explanation.
1246	Use the following as an example:
1247	Explanation: Searching UFCStats for featherweight bouts
1248	where the loser landed 14 of 83 significant strikes (16.87 %)
1249	and went 0-for-4 on takedowns returns the fight Myles Jury
1250	vs. Ricky Glenn at UFC 219: Cyborg vs Holm (30 Dec 2017).
1251	• Ricky Glenn (nickname "The Gladiator" a synonym
1252	for swordsman)
1253	was the loser: sig. strikes 14/83 (16.87 %), takedowns 0/4.
1254	• Both fighters (Jury 29, Glenn 28) were under 35 and
1255	are American.
1256	• The referee was John McCarthy, whose first event for
1257	the UFC was in 1994.
1258	Thus, the MMA event is UFC 219: Cyborg vs Holm.
1259	Exact Answer: UFC 219: Cyborg vs Holm
1260	Confidence: 75%
1261	Atomic Claims:
1262	- Ricky Glenn was the loser
1263	- Ricky Glenn was nicknamed "The Gladiator"
1264	- The sig. strike rate of Ricky Glenn was 14/83 (16.87- The takedown rate of Ricky Glenn
1265	was 0/4
1266	- Jury was age 29
1267	- Glenn was age 28
1268	- Jury is American
1269	- Glenn is American
1270	- The referee was John McCarthy
1271	- John McCarthy's first event for the UFC was in 1994
1272	Output the atomic claims in the form of a json list.
1273	

Table 8: System prompt used for decomposing the model’s explanation into a set of atomic claims

1274	Prompt for Hallucination Detection
1275	You are a helpful assistant that can analyze the trajectory of an information-seeking agent.
1276	You are given a list of webpages and a list of claims made by the agent. You should analyze
1277	the web contents to determine if each claim is supported by the web content. A claim is
1278	supported by the web content if its factual information is mostly supported by the web
1279	content, and is not contradicted by the web content. Output your final conclusion with a list
1280	of claims that are supported by the web content. Output the list in the form of a json list,
1281	and you only need to write the index of the supported claims in the list and nothing else.
1282	Webpages: <webpages>
1283	Atomic Claims: <atomic-claims>
1284	

Table 9: System prompt used for detecting hallucination in agent trajectories

A.4 SLIM DETAILS AND ABLATIONS

We show an example of a SLIM trajectory in Figure 8. A sketch of the framework is also shown in Alg. 5. Furthermore, we ablate our design choices along the following dimensions:

- **Summarization frequency:** Instead of summarizing the trajectory every $n = 50$ turns, we summarize every $n = 25$ turns.

Figure 8: An example of a SLIM trajectory.

Algorithm 5: SLIM

Data: Task input x , LLM θ , maximum number of turns T , summary interval n

Function $search(q)$:

```

    ↳ return  $(title_i, url_i, snippet_i)_{i=1}^k$ ;
```

Function $browse(u, q)$:

```

     $D \leftarrow \text{scrape}(u);$ 
     $D \leftarrow \text{split}(D) = \{d_i\}_{i=1}^m;$ 
    if  $q = \emptyset$  then return  $d' \leftarrow d_1$ ;
    else  $d' \leftarrow \arg \max_{d_i \in D} \text{ROUGE-L}(d_i, q)$ ;
    return  $d'$ ;
```

Result: Task output y

Turn $t \leftarrow 1$;

Context $C \leftarrow \{x\}$;

$\mathcal{T} \leftarrow \{\text{search, browse}\}$;

while $t < T$ **do**

```

    if  $t \bmod n = 0$  then
         $C \leftarrow \theta(C; \text{summarize})$ ; /* Summarize every n turns */
     $o_t \leftarrow \theta(C; \mathcal{T})$ ;
    switch  $o_t$  do
        case  $\text{search}$  do
             $q_t \leftarrow o_t$ ;
             $C \leftarrow C \cup \{o_t, \text{search}(q_t)\}$ ;
        case  $\text{browse}$  do
             $u_t, s_t \leftarrow o_t$ ;
             $C \leftarrow C \cup \{o_t, \text{browse}(u_t, s_t)\}$ ;
        case  $\text{Final Answer}$  do
            return  $o_t$ ;
     $t \leftarrow t + 1$ ;
```

return $\theta(C; \text{final answer})$;

- **Summarization trigger:** Instead of summarizing the trajectory every n turns, we summarize the trajectory when the input length exceeds a threshold $\tau = \{32768, 65536\}$ tokens.
- **Search tool:** We vary the number of top search results $k = \{10, 20\}$.

1350
 1351 • **Browse tool:** We vary the maximum length of the scraped content $L =$
 1352 $\{3000, 10000, 20000\}$ characters. We also ablate the chunking and scoring strategy. By
 1353 default, we chunk by natural paragraphs (splitting at newlines) and use ROUGE-L as the
 1354 similarity metric. We also try using BM25 (Robertson & Zaragoza, 2009) as the similarity
 1355 metric and splitting the content into chunks of 100 words (splitting at any whitespace).

1356 For these ablations, we use o4-mini as the base model due to its cheaper cost and test on a smaller
 1357 subset of 50 samples for each dataset. The results are shown in Table 10.

1358
 1359 Table 10: Ablation results with o4-mini as the base model. The number of tokens is shown in
 1360 10,000s. The cost is shown in US dollars. We ablate design choices in the summarization module,
 1361 chunking strategy, and search and browse tool. For all settings, we set the tool budget to 100. The
 1362 default setting summarizes every $n = 50$ turns, chunks by newline, use ROUGE-L as the similarity
 1363 metric, and search returns the top $k = 10$ search results while browsing returns at most $L = 10,000$
 1364 characters. These experiments use a smaller subset of 100 samples for each dataset, so they are not
 1365 directly comparable to the main results. Each experiment is run with three random seeds and the
 1366 results are the mean and standard deviation.

BrowseComp				HLE					
		Score (\uparrow)	Tokens (\downarrow)	Tools (\downarrow)	Cost (\downarrow)	Score (\uparrow)	Tokens (\downarrow)	Tools (\downarrow)	Cost (\downarrow)
SLIM	Default	40.67 \pm 5.86	118.27 \pm 5.93	54.02 \pm 2.43	1.33 \pm 0.07	17.33 \pm 3.06	11.39 \pm 1.34	7.61 \pm 0.46	0.13 \pm 0.01
Summarization Module									
$n = 25$		30.33 \pm 4.51	57.64 \pm 4.87	35.47 \pm 1.04	0.65 \pm 0.05	21.67 \pm 4.04	8.53 \pm 1.68	6.09 \pm 0.96	0.1 \pm 0.02
Summarize at 32K tokens		29.67 \pm 2.89	46 \pm 3.23	32.7 \pm 0.79	0.53 \pm 0.04	17.67 \pm 6.51	9.22 \pm 1.34	6.62 \pm 0.69	0.11 \pm 0.02
Summarize at 64K tokens		42.67 \pm 2.08	126.2 \pm 5.69	57.23 \pm 2.14	1.42 \pm 0.06	19.67 \pm 4.51	11.67 \pm 0.74	7.83 \pm 0.34	0.13 \pm 0.01
Chunking									
Split newline, BM25		37.67 \pm 3.51	121.38 \pm 8.56	55.3 \pm 2.01	1.37 \pm 0.1	21.33 \pm 4.04	12.21 \pm 1.14	8.33 \pm 0.31	0.14 \pm 0.01
Split words, ROUGE		39.33 \pm 5.03	113.55 \pm 2.88	52.97 \pm 1.39	1.28 \pm 0.03	19.33 \pm 5.69	11.69 \pm 1.05	7.91 \pm 0.44	0.13 \pm 0.01
Split words, BM25		40.67 \pm 2.52	121.39 \pm 3.33	55.95 \pm 1.18	1.37 \pm 0.04	20.33 \pm 4.16	10.4 \pm 0.66	7.32 \pm 0.53	0.12 \pm 0.01
Search and Browse									
No visit		34.33 \pm 2.89	111.53 \pm 5.1	63.47 \pm 2.03	1.26 \pm 0.06	15.33 \pm 1.15	14.35 \pm 1.68	10.42 \pm 0.9	0.16 \pm 0.02
No query in visit		37.33 \pm 1.15	187.63 \pm 9.54	66.82 \pm 2.34	2.1 \pm 0.11	20.33 \pm 2.08	14.55 \pm 0.75	8.9 \pm 0.62	0.17 \pm 0.01
$k = 10, L = 3,000$		42 \pm 6.24	111.59 \pm 12.51	52.77 \pm 3.95	1.26 \pm 0.14	21.33 \pm 1.53	11.65 \pm 1.2	7.75 \pm 0.07	0.13 \pm 0.01
$k = 10, L = 20,000$		38.67 \pm 1.53	117.35 \pm 7.79	54.5 \pm 1.53	1.32 \pm 0.09	20.67 \pm 0.58	12.19 \pm 1.24	7.84 \pm 0.57	0.14 \pm 0.01

1380 1381 A.5 EXPERIMENTAL DETAILS 1382

1383 We use o3, o4-mini, and Claude-4-Sonnet as our base models. To calculate the cost, we use the prices
 1384 listed in Table 11, which are obtained from respective websites <https://platform.openai.com/docs/models/o3>, <https://platform.openai.com/docs/models/o4-mini>,
 1385 <https://claude.com/pricing#api>, <https://www.firecrawl.dev/pricing>.

1386 For all models, we use a temperature of 1.0 and a maximum output token of 32,768. For o3 and
 1387 o4-mini, we always use the default reasoning effort of "medium" and for Claude-4-Sonnet, we set the
 1388 maximum number of thinking tokens to 30,000.

1389 To calculate the token cost, we take a weighted sum of the token usage across all LLM calls: non-
 1390 cached input tokens plus 4 times the total output tokens, and multiply the results by price per token.
 1391 We exclude cached tokens from the calculation because in practice, long-horizon systems are expected
 1392 to have a large amount of cached tokens and system implementation that takes advantage of caching.
 1393 Then, for the total cost, we add in the number of search API and scrape URL operations, multiplied
 1394 by their respective prices. For the number of tool calls, we count the number of times the search API
 1395 and scrape operations, the two atomic tool operations, are called.

1396 We also include the results of other trained systems in Table 12. For OpenAI Deep Research (DR), the
 1397 HLE number from the original blog post¹¹ and the BrowseComp number is from the BrowseComp
 1398 paper (Wei et al., 2025). For Grok-4, the HLE number is from the original Grok 4 blog post¹² and
 1399 the BrowseComp number is from the Grok 4 Fast blog post¹³. The WebResearcher (WebR) numbers

1400
 1401 ¹¹<https://openai.com/index/introducing-deep-research/>

1402 ¹²<https://x.ai/news/grok-4>

1403 ¹³<https://x.ai/news/grok-4-fast>

1404 are from the original paper (Qiao et al., 2025), where we show the results of the main WebResearcher-
 1405 30B-A3B model; we exclude the heavy version since it uses multiple samples and aggregate the
 1406 results. The WebThinker (WebT) numbers are from the original paper (Li et al., 2025c), where we
 1407 show the results of the main WebThinker-32B model. They did not evaluate on BrowseComp, so we
 1408 only report the HLE number.

1410
1411 Table 11: Pricing for different components. Numbers are obtained from respective websites.

	Cost
o3	\$2.0 / M token
o4-mini	\$1.1 / M token
Claude-4-Sonnet	\$3.0 / M token
Google search	\$0.5 / K query
Scrape URL	\$0.83 / K query

1420 A.6 ADDITIONAL RESULTS
1421

1422 **Main Results.** We show the results of SLIM with o3 as the base model over three random seeds in
 1423 Table 13. Here we also provide the concrete results for SLIM with different base models—o4-mini is
 1424 shown in Table 14, and Claude-4-Sonnet is shown in Table 15.

1426 Table 12: Main results with o3 as the base model. All results are macro-averaged across test
 1427 instances. The number of tokens is shown in 10,000s. The cost is shown in US dollars. T denotes the
 1428 tool budget. For reference only, \dagger marks deep research systems that underwent task-specific training.
 1429 Numbers are from the original reports (OpenAI, 2025; xAI, 2025; Qiao et al., 2025; Li et al., 2025c),
 1430 and are not directly comparable due to different subsets of test instances used.

	T	BrowseComp				HLE			
		Score (\uparrow)	Tokens (\downarrow)	Tools (\downarrow)	Cost (\downarrow)	Score (\uparrow)	Tokens (\downarrow)	Tools (\downarrow)	Cost (\downarrow)
o3	0	17.0	3.8	0.0	0.08	18.3	2.7	0.0	0.05
REACT	1	4.3	3.6	1.0	0.07	16.0	4.6	0.6	0.09
	5	6.7	6.6	2.2	0.13	19.7	5.8	1.1	0.12
	10	7.0	8.0	2.8	0.16	21.3	7.0	1.2	0.14
SEARCH-O1	1	18.0	3.8	9.5	0.08	20.0	3.3	5.2	0.07
	5	24.0	8.0	46.9	0.20	20.7	5.4	18.7	0.12
	10	31.0	13.7	89.8	0.35	26.3	6.6	23.9	0.15
	25	40.0	27.8	183.2	0.70	25.0	10.9	44.2	0.25
	50	48.3	51.5	306.2	1.27	27.0	12.6	49.8	0.29
	100	55.7	93.3	456.7	2.23	27.0	14.5	52.2	0.33
HF-ODR	20	20.0	24.1	8.4	0.49	17.7	6.4	1.7	0.13
GPT-R	-	10.7	5.8	69.5	0.17	16.0	6.4	85.6	0.20
SLIM	10	17.7	2.7	8.7	0.06	22.7	4.2	3.8	0.09
	25	32.7	9.0	20.7	0.19	31.3	7.7	6.9	0.16
	50	45.0	25.0	36.0	0.52	31.0	13.6	9.7	0.28
	100	53.3	44.1	57.4	0.91	31.3	18.4	11.6	0.37
	150	56.0	59.8	75.9	1.24	30.7	17.9	12.0	0.37
OpenAI DR †	-	51.5	-	-	-	26.6	-	-	-
Grok-4 †	-	43.0	-	-	-	38.6	-	-	-
WebR-30B †	-	37.3	-	-	-	28.8	-	-	-
WebT-32B †	-	15.8	-	-	-	-	-	-	-

1452 **REACT Ablations.** We vary the number of search results k and the maximum length of the scraped
 1453 content L for REACT to see the effect of search tool design choices, as shown in Table 16. We found
 1454 that overall there aren't significant differences in the HLE results, but using fewer search results
 1455 $k = 5$ than the default $k = 10$ leads to a 2.7 points improvement in the BrowseComp results. This
 1456 is likely due to the fact that search results lower in the ranking are often noisy and irrelevant to the
 1457 question, and using fewer but more relevant search results leads to a more focused search process.
 Furthermore, fewer search results means less context is added to the LLM, preventing it from hitting

1458
 1459 Table 13: Statistical significance analysis with o3 as the base model. We run with three random
 1460 seeds for each experiment and report the mean and standard deviation.

		BrowseComp				HLE			
		Score (↑)	Tokens (↓)	Tools (↓)	Cost (↓)	Score (↑)	Tokens (↓)	Tools (↓)	Cost (↓)
o3	-	17.22±1.02	3.87±0.12	0±0	0.08±0	19.56±1.07	2.63±0.04	0±0	0.05±0
Search-o1	50	49.33±1.2	49.98±1.5	298.9±6.84	1.24±0.04	26.78±0.69	13.05±0.52	50.96±1.17	0.3±0.01
SLIM	150	53±1.2	54.77±5.23	50.84±0.44	1.12±0.1	32.11±1.84	16.44±1.15	10.3±0.98	0.33±0.02

1466
 1467 Table 14: Main results with o4-mini as the base model. All results are macro-averaged across test
 1468 instances. The number of tokens is shown in 10,000s. The cost is shown in US dollars. T denotes the
 1469 maximum number of turns in each trajectory.

		BrowseComp				HLE				
		T	Score (↑)	Tokens (↓)	Tools (↓)	Cost (↓)	Score (↑)	Tokens (↓)	Tools (↓)	Cost (↓)
o4-mini	-	5.0	5.1	0.0	0.06	15.0	2.2	0.0	0.02	
REACT	1	1.3	4.6	1.0	0.05	17.0	4.0	0.5	0.04	
	5	3.0	7.7	2.1	0.09	15.3	4.6	0.7	0.05	
	10	2.3	7.4	2.3	0.08	15.3	4.9	0.8	0.05	
SEARCH-O1	1	6.3	6.2	10.0	0.08	13.0	2.6	3.5	0.03	
	5	11.3	13.8	49.7	0.19	23.3	4.0	11.9	0.05	
	10	17.3	22.6	93.9	0.32	17.0	4.6	15.6	0.06	
	25	25.0	45.4	207.7	0.66	22.3	5.5	22.5	0.08	
	50	28.7	76.1	351.5	1.12	19.3	7.3	26.3	0.10	
	100	36.0	124.4	546.7	1.80	21.3	6.6	25.8	0.09	
HF-ODR	20	15.0	38.9	15.4	0.44	16.3	8.3	3.9	0.09	
GPT-R	-	4.0	8.5	82.5	0.16	11.3	9.7	100.8	0.19	
SLIM	10	14.0	5.7	8.8	0.07	21.0	3.6	3.1	0.04	
	25	24.3	24.0	23.2	0.28	23.7	7.2	5.9	0.08	
	50	31.0	73.7	40.1	0.83	25.7	10.0	7.0	0.11	
	100	34.0	92.9	45.2	1.05	26.7	12.2	7.7	0.14	
	150	37.0	107.8	49.5	1.22	24.7	14.4	8.6	0.16	

1487
 1488 Table 15: Main results with Claude-4-Sonnet as the base model. All results are macro-averaged
 1489 across test instances. The number of tokens is shown in 10,000s. The cost is shown in US dollars. T
 1490 denotes the maximum number of turns in each trajectory.

		BrowseComp				HLE				
		T	Score (↑)	Tokens (↓)	Tools (↓)	Cost (↓)	Score (↑)	Tokens (↓)	Tools (↓)	Cost (↓)
Claude-4-Sonnet	-	1.0	1.9	0.0	0.06	6.3	3.9	0.0	0.12	
REACT	1	0.3	0.0	0.0	0.00	8.3	0.0	0.0	0.00	
	5	0.3	0.0	0.0	0.00	8.3	0.0	0.0	0.00	
	10	0.3	0.0	0.0	0.00	8.0	0.0	0.0	0.00	
SEARCH-O1	1	2.0	1.5	9.0	0.05	10.0	2.9	10.0	0.09	
	5	3.7	6.0	44.1	0.21	11.7	5.3	29.5	0.18	
	10	7.0	10.7	79.5	0.38	16.0	6.3	35.6	0.22	
	25	8.0	20.1	149.9	0.72	13.0	6.8	41.1	0.24	
	50	10.0	22.9	170.3	0.82	12.7	7.0	40.7	0.24	
	100	10.0	19.4	148.3	0.70	12.3	6.4	38.5	0.22	
HF-ODR	20	6.7	98.8	30.4	2.98	17.3	105.0	26.5	3.16	
GPT-R	-	2.3	7.9	106.5	0.32	8.0	6.9	94.9	0.28	
SLIM	10	2.7	2.8	8.9	0.09	10.3	2.5	6.9	0.08	
	25	9.7	5.1	21.6	0.17	15.0	2.8	10.2	0.09	
	50	10.0	5.0	27.1	0.16	17.3	3.0	9.9	0.10	
	100	10.7	4.8	28.1	0.16	14.0	2.9	10.5	0.09	
	150	10.0	5.2	30.7	0.17	16.7	3.1	11.1	0.10	

1508
 1509
 1510
 1511 the context window limit as much. This is evident in more token and tool usage. However, we use
 $k = 10$ for the main experiments to stay consistent with the other baselines.

1512
1513 Table 16: REACT ablations with o3 as the base model, and the maximum number of turns is $T = 10$.
1514 We vary the number of search results k and the maximum length of the scraped content L .

	Parameters			BrowseComp				HLE			
	T	k	L	Score (\uparrow)	Tokens (\downarrow)	Tools (\downarrow)	Cost (\downarrow)	Score (\uparrow)	Tokens (\downarrow)	Tools (\downarrow)	Cost (\downarrow)
REACT	10	10	10k	7.0	8.0	2.8	0.16	21.3	7.0	1.2	0.14
REACT	10	5	10k	9.7	10.6	4.1	0.21	21.7	7.0	1.7	0.14
REACT	10	10	3k	5.0	8.7	2.8	0.18	22.7	6.5	1.2	0.13
REACT	10	5	3k	8.3	10.7	4.1	0.22	21.3	6.7	1.7	0.13

A.7 OPEN-WEIGHT MODELS

1523 In this subsection, we show the results of SLIM with open-weight models GPT-OSS-120B (OpenAI
1524 et al., 2025) and Tongyi-DeepResearch, an RL-trained model for deep research (Team, 2025). We
1525 compare against the SEARCH-O1 setting with similar total cost. The results are shown in Table 17
1526 and Table 18. We observe similar improvement with our framework SLIM over competitive baselines.
1527 Controlling for cost, SLIM achieves significant improvements on BrowseComp.

1528
1529 Table 17: Results with GPT-OSS-120B as the base model. We compare against the SEARCH-O1
1530 setting with similar total cost.

	BrowseComp				HLE			
	Score (\uparrow)	Tokens (\downarrow)	Tools (\downarrow)	Cost (\downarrow)	Score (\uparrow)	Tokens (\downarrow)	Tools (\downarrow)	Cost (\downarrow)
GPT-OSS-120B	-	2.67	1.35	0.00	0.00	7.00	1.07	0.00
SEARCH-O1	10	12.67	8.28	79.28	0.08	11.67	2.29	12.56
SLIM	150	15.33	3.37	22.28	0.02	20.33	1.72	5.32

1531
1532 Table 18: Results with Tongyi-DeepResearch-30B as the base model. We compare against the
1533 SEARCH-O1 setting with similar total cost.

	BrowseComp				HLE			
	Score (\uparrow)	Tokens (\downarrow)	Tools (\downarrow)	Cost (\downarrow)	Score (\uparrow)	Tokens (\downarrow)	Tools (\downarrow)	Cost (\downarrow)
Tongyi-DeepResearch-30B	-	2.33	7.07	0.00	0.03	11.00	5.58	0.00
SEARCH-O1	10	14.33	13.80	70.25	0.11	20.00	12.24	44.39
SLIM	150	19.67	12.35	61.59	0.08	19.67	10.10	23.12

A.8 ADDITIONAL ANALYSIS

1540 In this subsection, we provide additional analysis—we extend the initial outcome-based analysis to
1541 SLIM, and show the trajectory-level analysis on the more comprehensive baselines.

1542 In Table 19, we show the trajectory-level analysis where we report the failure modes as a percentage
1543 of trajectories that ends with an incorrect answer. The trends are consistent with the analysis in the
1544 main text, but we find that SLIM can often find the correct answer across its long trajectories—over
1545 69% of the incorrect trajectories encounters the correct answer, but the model is not able to identify
1546 and use it to answer the question. This could be attributed to the fact that modern LLMs still struggle
1547 at long-context settings where it may need to reason over many sources. We leave these improvements
1548 to future work.

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588

1589 Table 19: For correct, we report the percentage of trajectories across all samples. For each trajectory-
 1590 level failure mode, we report the percentage of trajectories that ends with an incorrect answer. For
 1591 hallucination only, we report the percentage of hallucinations for samples that ends with an incorrect
 1592 answer and do not abstain.

Framework	Turn Budget	Correct	Confirm Bias	Unfocused Search	Inefficient Search	Abstention	Answer Ignored	Hallucinate
REACT	10	7.0	10.0	47.3	4.2	1.1	0.7	56.7
SEARCH-O1	50	48.3	18.1	65.2	14.0	8.4	50.3	46.8
HF-ODR	20	20.0	8.6	75.5	56.5	41.6	2.1	96.2
SLIM	150	56.0	22.0	77.3	17.2	62.9	69.7	19.0

1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619