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Abstract

In human-written articles, we often leverage the subtleties of text style, such as
bold and italics, to guide the attention of readers. These textual emphases are
vital for the readers to grasp the conveyed information. When interacting with
large language models (LLMs), we have a similar need – steering the model to pay
closer attention to user-specified information, e.g., an instruction. Existing methods,
however, are constrained to process plain text and do not support such a mechanism.
This motivates us to introduce PASTA – Post-hoc Attention STeering Approach,
a method that allows LLMs to read text with user-specified emphasis marks. To
this end, PASTA identifies a small subset of attention heads and applies precise
attention reweighting on them, directing the model attention to user-specified parts.
Like prompting, PASTA is applied at inference time and does not require changing
any model parameters. Experiments demonstrate that PASTA can substantially
enhance an LLM’s ability to follow user instructions or integrate new knowledge
from user inputs, leading to a significant performance improvement on a variety of
tasks, e.g., an average accuracy improvement of 22% for LLAMA-7B. Our code is
publicly available at https://github.com/QingruZhang/PASTA.

1 Introduction
The advent of large language models (LLMs) has marked a significant milestone in natural language
processing (NLP) and artificial intelligence (AI), showcasing exceptional performance across a wide
range of tasks [Vaswani et al., 2017, Brown et al., 2020a, OpenAI, 2023]. Efforts to further refine
these models have been relentless, aiming to enable them to process and respond to natural and
programming languages with human-like expertise [Stiennon et al., 2020, Yao et al., 2023].

Despite their remarkable achievements, LLMs often encounter challenges in understanding their
contextual inputs during interactions with users [Shen et al., 2023, Lu et al., 2021]. This difficulty
becomes particular evident when they are presented prompts2 containing extensive background
contexts or complex user instructions. Lengthy contexts can overwhelm LLMs, as their attention
modules, learned from data, are unable to fully capture crucial details [Liu et al., 2023]. Complex
instructions can further inhibit the model from focusing on the user’s intentions, resulting in undesired
outputs [Wei et al., 2022]. Additionally, for time-sensitive data, such as news articles, there can exist
factual knowledge within contexts, which contradicts with model prior beliefs induced from outdated
pre-training. As a result, a model may generate outputs conditioned on its pre-existing belief instead
of attending to new facts within the contexts [Meng et al., 2022a,b, Mitchell et al., 2022, Hernandez
et al., 2023]. All of these challenges contribute to LLMs struggling to comprehend user intentions.

∗Work is done during Qingru Zhang’s internship at Microsoft Research.
2We use prompts to refer to all LLM text inputs, including user instructions, and the other background

information (which we refer to as context).
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Figure 1: PASTA uses a user-specified part of the input to steer the model generation aligning with user
intentions. PASTA modifies the attention scores generated during inference, by emphasizing the scores generated
at token positions corresponding to the user-specified part of the context.

Compared to LLMs, human readers rarely struggle to understand the emphases of articles and
intentions of writers. Writers often leverage a variety of text styles, such as bold and italics, to
emphasize specific contents. This mechanism enables writers to direct and maintain the attention of
human readers, ensuring that the intended information is accurately captured. In interactions between
users and LLMs, it is users also need to highlight specific information for the model. Consequently,
model generation can be effectively biased in accordance with user guidance, thus addressing the
challenges mentioned earlier. This feature is particularly essential when designing user-AI interfaces,
and can be frequently applied in extensive conversations between users and models. Existing methods,
however, do not support such a mechanism. LLMs are inherently limited to processing plain texts,
devoid of any stylistic cues or emphasis markers [Brown et al., 2020b, Liu et al., 2021, Wei et al.,
2022]. Even when emphasis markers are added to prompts, state-of-the-art LLMs often struggle to
discern weak signals from a couple of marker tokens (See evidence in Section 5.1).

Motivated by the need to convey user emphasis, we introduce PASTA (Post-hoc Attention STeering
Approach), a post-hoc method3 that enables users to highlight specific information, e.g., an instruction
as in Figure 1, and steer models to interpret emphasized texts like human readers. Specifically,
PASTA selects a small subset of attention heads and applies precise attention reweighting on them.
As illustrated in Figure 1, PASTA upweights the attention scores of the user-specified tokens while
downweighting the other tokens at specific attention heads. Our method is inspired by the observation
that attention modules exhibit various token-attending patterns across different heads [Michel et al.,
2019, Voita et al., 2019, Clark et al., 2019]. These attention patterns can be interpreted as encoding
diverse semantic or syntactic information, and altering them can substantially influence model
behaviors [Shi et al., 2023a, Hu et al., 2021b]. Through steering attention modules, PASTA directs
the model to pay close attention to the user-specified parts and hence generate the desired output
aligning with the highlighted contents. Notably, PASTA is applied after training and does not require
changing any model parameters; PASTA only requires access to the attention scores of specific heads
of an LLM.

Since attention heads can serve different functions [Tenney et al., 2019, Deb et al., 2023], we introduce
an efficient model profiling algorithm to identify which heads are effective for steering. Specifically,
we subsample small training sets from multiple tasks and evaluate the performance of attention
steering for each individual head across these tasks. PASTA selects the attention heads that, when
steered, generally improve the multi-task performance. We empirically observe that steering these
heads not only benefits the existing tasks but also enhances the performance on unseen tasks. Notably,
the model profiling is performed only once for an LLM. The selected attention heads can be regarded
as a model-level profile, effective for steering the LLM on unseen tasks.

We conduct experiments on diverse tasks to demonstrate the effectiveness of PASTA. Specifically,
we evaluate PASTA using GPT-J-6B [Wang and Komatsuzaki, 2021] and LLAMA-7B [Touvron
et al., 2023] on tasks that span complex instructions, lengthy contexts, and knowledge conflicts
within contexts. The results demonstrate that PASTA consistently provides a significant performance

3Post-hoc means that our method does not update the model weights.
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improvement over baseline prompting strategies. For example, PASTA achieve an average accuracy
improvement of 22% over few-shot prompting for LLAMA-7B across 4 challenging tasks.

2 Background
Problem description In standard LLM prompting, we are given a pre-trained LLM and a text
prompt x. In our setting, we additionally require (i) access to attention scores produced by attention
modules in the LLM4 and (ii) we are provided a user-specified subset of the prompt xg ⊂ x to be
emphasized.

As in the example in Figure 1, x can be a string that ends in an instruction, such as Mary is a doctor
but used to be a nurse...Return her occupation in json format. If a user emphasizes the instruction, xg

can simply be the final instruction Return her occupation in json format. In evaluation datasets, we
assume that the user-specified part of each example is already provided by enclosing at its both ends
in some emphasis markers, like ‘∗’ marker in Markdown. Generating these well-structured data often
incurs little overhead. For example, in the dataset tailored for evaluting model ability to follow user
instruction, we can simply mark the final instruction for every example, which are fixed and shared
across examples. When it comes to user-LLM interface, users can specify xg by enclosing it with the
same emphasis markers. xg can be specified flexibly. Namely, it need not be a continuous span, and
can be used to emphasize diverse information.

Multi-Head Attention. A typical transformer model consists of L stacked layers, where each layer
contains two submodules: a multi-head attention (MHA) and a fully connected feed-forward network
(FFN). Given the input X ∈ Rn×d, MHA of the layer l performs the attention function in parallel H
heads: MHA(l) (X) = Concat(H(l,1), ...,H(l,H))Wo where

H(l,h) = A(l,h)V = Softmax
(
QK⊤/

√
dh

)
V (1)

where Q = XWqh ,K = XWkh
,V = XWvh and Wqh ,Wkh

,Wvh ∈ Rd×dh are learnable
projection matrices of head h. dh is typically set to d/H . Specifically, denote the attention scores at
the head h of the l-th layer as A(l,h).

3 Method

PASTA (Algorithm 1) consists of two components: (i) post-hoc attention steering, which emphasizes
the user-specified parts of the input during inference, see Section 3.1 and (ii) multi-task model
profiling, which selects the effective attention heads for steering, see Section 3.2.

Algorithm 1 PASTA: Post-hoc Attention Steering Approach

Multi-task model profiling (Section 3.2)
1: Input: small training sets {D(i)}mi=1, the hyperparameters α, k;
2: for 1 ≤ i ≤ m do
3: for 1 ≤ l ≤ L, 1 ≤ h ≤ H do
4: Evaluate the model performance on D(i) when steering the head (l, h) by (2);
5: Return the evaluation result of steering (l, h) on D(i);
6: end for
7: Collect the steering results of all heads and return the task profiling R(i);
8: end for
9: Output: The attention head set H = ∩m

i=1R
(i)
1:k.

Inference-time steering (Section 3.1)
1: Input: text inputs x, user-underlined segments G, coefficient α;
2: Output: the model generations while steering every head (l, h) in H by (2).

3.1 Post-hoc Attention Steering

PASTA emphasizes the user-specified input subset by downweighting the attention scores of tokens
that are not specified by the user. Specifically, given the index set of highlighted input spans as G,

4We do not need access model weights nor intermediate outputs from the other modules like FFNs.
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PASTA emphasizes these user-specified tokens by an attention projection T :

H(l,h) = T (A(l,h))V , where [T (A)]ij =

{
αAij/Ci if j ∈ G−

Aij/Ci otherwise. (2)

where 0 ≤ α < 1 is a scaling coefficient and G− = [n]− G is the index set of tokens that are not in
G. The term Ci =

∑
j∈G Aij +

∑
j∈G− αAij normalizes the scores so that they sum to one. The

attention steering (2) is conducted during the inference time and does not require any training.

(2) steers the model attention by scaling down the scores of tokens that are not highlighted by the user.
When the coefficient α is set very small, user-specified segments are highlighted given their increased
attention scores after renormalization. Consequently, we can direct the model to concentrate more on
the user-specified tokens, biasing the generation to align with the specified contents.

PASTA scales down the attention scores of non-specified tokens by α. As renormalization is followed,
it is equivalent to scaling up the attention scores of user-specified tokens by 1/α. The reason of
selecting (2) is that it can be more numerically stable compared to scaling up scores. Alternatively,
one can also scale the attention scores by adding a positive constant to the underlined tokens G.
The reason of we select multiplication in (2) instead of addition is that it preserves the difference
on attention magnitude among the highlighted tokens. As such, the steering operation only adjusts
overall attention scales of two groups of tokens. In contrast, addition by a large constant to the
highlighted tokens results in their attention scores almost uniformly distributed, leading to unnecessary
information loss and performance degeneration.

3.2 Multi-Task Model Profiling

Empirically, we find that applying attention steering in (2) to all attention heads performs worse than
applying it only to specific heads (see Section 5.3). It is important to specify the correct attention
heads, given that different heads serve distinctive roles in encoding semantic/syntactic information.
To this end, we propose a multi-task model profiling algorithm to identify the effective attention heads
for steering. Specifically, given m tasks involving user emphases, we subsample a small training set
D(i) (e.g., |D(i)| = 1000) from each task i. Then, we evaluate the performance of steering every
individual attention head (l, h) (1 ≤ l ≤ L, 1 ≤ h ≤ H) on each small subset D(i) (1 ≤ i ≤ m).
For every task i, we rank all of heads according to their steering performance on D(i) and regard
the ranking R(i) = [(l1, h1), (l2, h2), . . . ] as the profiling of task i. We then set the attention head
set H for steering as the intersection of top-k performing heads, H = ∩m

i=1R
(i)
1:k (see Section 5.3

for alternative choices). Intuitively, we expect performance to improve as the number of tasks m
increases.

Like attention steering, model profiling requires only access to attention scores, in addition to its
inputs and outputs (model weights and gradients are not required). Importantly, this process needs to
be performed only once for a LLM, similar to finetuning. However, unlike finetuning, model steering
does not modify model weights and, more importantly, generalizes to new tasks. The resulting head
set H can be regarded as a model-level profile. Once it is determined, we can apply the attention
steering on H to both existing tasks and unseen tasks to enhance model contextual understanding and
benefit downstream performance.

4 Experimental setup
Evaluation tasks and metrics. We implement PASTA for two pre-trained models: GPT-J (6
billion parameters, [Wang and Komatsuzaki, 2021]) and LLaMA-7B (7 billion parameters, [Touvron
et al., 2023]). We evaluate the effectiveness of PASTA at (i) handling complex user instructions,
(ii) interpreting lengthy contexts, and (iii) resolving in-context knowledge conflicts. For (i), we
introduce two new tasks: JSON formatting and Pronouns changing. For (ii) and (iii), we study Bias
in Bios [De-Arteaga et al., 2019] and CounterFact [Meng et al., 2022a]. For each task, we provide a
description, describing which part of the input we emphasize, and what metrics we use for evaluation
(see Appendix B for full dataset details).

• JSON Formatting is a new task that evaluates an LLM’s ability to produce outputs in a user-
desired format (JSON). This is an important usecase for LLMs when their output is being used in
a downstream process. This task utilizes the biographical data from BiasBios (described below)
but appends a different instruction to the end of contexts: answer the occupation of {person} and
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generate the answer as JSON format. The instruction prompts models to generate outputs in JSON
format.

 We emphasize the final instruction

Metrics: (a) Format accuracy (F. Acc.) measures the accuracy at generating valid JSON. (b)
Prediction accuracy (P. Acc.) measures the accuracy at generating the correct target in JSON
values after loading the JSON-formatted generations.

• Pronouns changing is a new task that evaluates an LLM’s ability to follow a difficult user instruction.
It again uses the biographical contexts from BiasBios but instead instructs models to: substitute ‘she’
and ‘he’ with ‘they’ and generate the occupation of {person} after changing pronouns.

 We emphasize the final instruction.

Metrics: (a) Accuracy evaluates the ratio that ‘she/he’ are successfully changed to ‘they’ in model
generations. (b) All-changed accuracy (A. Acc.) is the ratio that models replace all corresponding
pronouns, i.e., changing she/he/her/him/hers/his to they/them/their/theirs.

• CounterFact measures an LLM’s ability to generate text consistent with a new fact. Each example
consists of (subject, relation, old target, new target), e.g., (Kevin Garnett, is a professional, basketball
player, baseball player). We present the model both old and new facts following the prompt:
Previously, {old fact}, but currently, {new fact}. {question}. This change in facts over time often
confuses LLMs, resulting in random guesses on two of them when answering the {question}.

 We emphasize the input span containing the new fact.

Metrics: we evaluate metrics following [Meng et al., 2022a]: (a) Efficacy score (ES) is the portion
of cases for which the model has PLLM(new target) > PLLM(old target); (b) Paraphrase score
(PS) is the same as ES but changes the {question} with a set of rephrased questions to assess the
generalization

• BiasBios consists of professional biographies of non-famous people, originally introduced to
investigate gender bias in occupations. Each example includes biographical context and a label of
target occupation. The first sentence mentions the person’s occupation, and subsequent sentences
describe the individual’s career history but may not be directly related to the prediction, potentially
distracting the model attention. At the end of the context, we append the question: {person} has the
occupation of .

 We emphasize the first sentence, as it carries the most information about the occupation.

Metrics: following [Hernandez et al., 2023], we compute Accuracy by checking whether the
probability assigned to the target occupation in the highest among the 28 candidate occupations.

For Pronouns changing, CounterFact, and BiasBios, we additionally measure Fluency as the average
bi-gram and tri-gram entropy of generations, designed to be low for degenerated or repetitive
texts [Meng et al., 2022a]. We filter out any results receiving a fluency below 3.0 (see full results
including fluency in Appendix D).

Baselines. We compare PASTA to the following baselines:

• Zero-shot prompting is the most common approach to interact with LLMs, in which a user feeds
models a prompt containing background context and a user instruction or question.

• Marked prompting alters the prompts used in zero-shot prompting by surrounding user-specified
input spans with emphasis markers, e.g. asterisks, as is done in markdown files for emphasis, or
quotes, as is done in natural languages.

• Few-shot prompting includes demonstrations (example inputs and target outputs) at the beginning
of the prompt fed to the LLM. Few-shot prompting often improves performance in new tasks, but
increases the computational cost of inference due to the increased prompt length, particularly when
demonstrations are lengthy [Dong et al., 2023]; here we use 3 demonstrations in context.

PASTA settings We study PASTA in 2 settings: multi-task and task-agnostic. In the multi-task
setting, the evaluation task j is included for profiling, whereas in the task-agnostic setting, the
evaluation task is excluded (instead, we profile on the 3 datasets besides j). The multi-task setting
improves performance but requires labeled training samples for the task which is evaluated, which
can be difficult to obtain in practice.
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Table 1: Main results of LLAMA-7B to demonstrate that PASTA can improve the model ability to (i) follow
user instruction (JSON Format and Prons. Changing); (ii) interpret contextual information (BiasBios); (iii)
resolving knowledge conflicts (CounterFact). For all scores, higher is better. The best results are in bold.

Method JSON Format Prons. Changing BiasBios CounterFact All
F. Acc / P. Acc Acc / A.Acc Acc ES / PS Ave.

Prompting

Zero-shot 60.00 / 54.94 71.84 / 66.28 87.36 58.50 / 52.03 67.29
∗-marked 18.55 / 12.71 39.14 / 35.17 90.62 57.74 / 50.52 49.38
“"-marked 4.56 / 4.20 20.55 / 18.19 89.82 58.14 / 51.70 42.15
Few-shot 84.85 / 73.58 59.06 / 55.27 88.79 87.45 / 49.82 73.45

PASTA Task-agnostic 88.16 / 49.08 83.65 / 81.31 93.54 98.82 / 99.03 85.89
Multi-task 96.64 / 85.09 96.42 / 95.84 95.28 99.60 / 99.57 95.46

Table 2: Main results of GPT-J to demonstrate that PASTA can improve the model ability to (i) follow user
instruction (JSON Format and Prons. Changing); (ii) interpret contextual information (BiasBios); (iii) resolving
knowledge conflicts (CounterFact). For all scores, higher is better. The best results are in bold.

Method JSON Format Prons. Changing BiasBios CounterFact All
F. Acc / P. Acc Acc / A.Acc Acc ES / PS Ave.

Prompting

Zero-shot 28.83 / 25.09 39.88 / 36.19 72.76 42.14 / 42.02 44.96
∗-marked 4.44 / 4.10 41.25 / 37.57 74.14 44.50 / 45.09 40.63
“”-marked 8.81 / 5.62 6.12 / 5.72 78.64 45.54 / 41.84 33.87
Few-shot 84.15 / 72.65 35.77 / 32.08 72.98 68.34 / 38.23 59.65

PASTA Task-agnostic 46.68 / 34.71 91.62 / 88.60 80.84 99.54 / 99.57 77.80
Multi-task 91.50 / 18.63 92.96 / 91.34 94.96 98.62 / 98.79 85.22

Empirically, we find that PASTA is not sensitive to the scaling coefficient α (see Section 5.3) and
fix it to 0.01 in our experiments. We select 1000 training samples from each of the 4 tasks above
for model profiling. After model profiling, we select k from {300, 400, 500} for LLAMA-7B
to have the number of steered heads |H| as {25, 53, 86}. We find that PASTA achieves the best
performance on LLAMA-7B when 50 ≤ |H| ≤ 100, i.e., k = 400 or k = 500. For GPT-J, we select
k from {250, 275, 300, 350} to have |H| as {52, 72, 111, 153}. For every task, we split data into
train/validation/test sets following [Hernandez et al., 2023] (See Appendix B) and select |H| by cross
validation when evaluating on test sets. For all tasks, model outputs are generated with greedy search.

5 Results
5.1 Main result: PASTA improves model generation
Tables 1 and 2 present the main results for PASTA applied to LLAMA-7B and GPT-J respectively.
Few-shot prompting is the strongest baseline, and task-agnostic PASTA outperforms it on the
main metric for each task for all settings except JSON Formatting with GPT-J. Multi-task PASTA
outperforms all baselines across all settings.

PASTA can improve LLM instruction following. The results from JSON Formatting and Pronouns
Changing tasks indicate that, by highlighting the user instruction at the end of inputs, PASTA
effectively steers models to focus on user intentions, thereby biasing their generation to fulfill specific
requirements or formats. For example, while GPT-J only achieves 39.9% of its zero-shot generations
complying the user requirement on the Pronouns Changing task, PASTA yields a remarkable 53%
accuracy improvement by emphasizing the instruction. Moreover, PASTA achieves an impressive
96.64% format accuracy and 85.09% prediction accuracy when applied to LLAMA-7B on the
JSON Formatting task. This performance exceeds that of few-shot prompting by 11%, even though
few-shot prompting explicitly provides the model with correct JSON examples through additional
demonstrations. Table 3 presents a few examples generated by LLAMA-7B when applying PASTA.

PASTA can help models capture crucial contextual information. In the case of BiasBios and
CounterFact tasks, we apply PASTA to emphasize specific context spans for LLMs. Consequently,
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Table 3: Generation examples of LLAMA-7B on JSON Formatting and Pronouns Changing tasks.

Task Prompt Zero-shot Generation PASTA Generation
JSON
Format

Winnie is an American photographer
living in New York. Specialized in fash-
ion photography and portrait, she ap-
plies her talent on both humans and ani-
mals . . . {instruction}

✗ Winnie is a fashion and portrait pho-
tographer living in New York, special-
ized in fashion photography and portrait,
who applies her talent on both humans
and animals.

✓ {“name”: “Winnie”, “occupation”:
“photographer” }

Prons.
Change

Mary is an Associate Professor in the
Department of Curriculum Instruction
at St. John University; she holds a doc-
torate in Reading/Writing/Literacy from
the University of Pennsylvania. She re-
cently published an article in “Urban
Education” with . . . {instruction}

✗ Mary is a professor in the Depart-
ment of Curriculum Instruction at St.
John University; she holds a doctor-
ate in Reading/Writing/Literacy from
the University of Pennsylvania. She re-
cently published an article in “Urban
Education” with . . .

✓ Mary is an associate profes-
sor in the department of curriculum
and instruction at St. John’s Univer-
sity; they hold a doctorate in read-
ing/writing/literacy from the University
of Pennsylvania. They recently pub-
lished an article in . . .

the models are guided to pay close attention to the specific contextual information or new facts within
contexts. The results from these two tasks illustrate that PASTA can direct the models to interpret
the crucial information or resolve the knowledge conflicts within contexts, yielding significant
improvement in prediction performance of both tasks. For example, PASTA achieves a prediction
accuracy of 94.96% for GPT-J on the BiasBios task, which is 16.32% higher than the best baseline.

Tables 1 and 2 also suggest that marked prompting, a baseline that highlights specific texts akin
to human writers, struggles to effectively convey emphasis to LLMs. One possible reason is that
these emphasis markers rarely appear in the massive pre-training data. In contrast, few-shot prompt-
ing sometimes leads to improvements in model performance. However, a drawback of few-shot
prompting is its instability, i.e. its performance exhibits high variance across different samples in the
demonstration (See Appendix E).

5.2 PASTA can mitigate the sensitivity of prompts

Table 4: Results about sensitivity of model performance to prompt rephrasing on the JSON Formatting task.
Given rephrased instructions in prompt template, PASTA can imporve zero-shot performance for all prompts.

Instruction Method
LLAMA-7B GPT-J

AverageJSON Format
F. Acc / P. Acc

Prons. Changing
Acc / A. Acc

JSON Format
F. Acc / P. Acc

Prons. Changing
Acc / A. Acc

Original
Zero-shot 60.0 / 54.9 71.8 / 66.3 28.8 / 25.1 39.9 / 36.2 47.9
PASTA 96.6 / 85.1 96.4 / 95.8 91.5 / 18.6 93.0 / 91.3 83.5

Shortened
Zero-shot 36.0 / 32.4 49.2 / 42.6 25.4 / 17.1 56.5 / 54.8 39.3
PASTA 87.4 / 65.9 89.0 / 86.9 54.1 / 37.0 94.0 / 93.7 76.0

Rephrased
Zero-shot 57.9 / 54.2 82.3 / 79.6 63.3 / 50.3 76.0 / 72.8 67.1
PASTA 97.1 / 87.1 89.6 / 89.0 77.5 / 68.1 94.8 / 92.3 86.9

It is well-known that the the performance of LLMs can be sensitive to minor changes in prompts,
such as rephrasing and reformatting, even when these prompts convey the same meaning [Reynolds
and McDonell, 2021, Liu et al., 2021]. We find that PASTA can alleviate the sensitivity of model
performance to varying prompts. Specifically, Table 4 evaluates the performance of LLAMA-7B and
GPT-J on JSON Formatting and Pronouns Changing task given different instructions in the prompt
template, all of which convey the same meaning (see precise prompts in Appendix C.1). The results
show that zero-shot performance is sensitive to different prompts and can significantly deteriorate
with poorly crafted templates. In contrast, PASTA consistently improves model performance over
zero-shot prompting for all prompts, effectively mitigating sensitivity to variations in the prompts.

5.3 Analysis and Ablations

In this section, we investigate different hyperparameter choices and modeling decisions that affect
the performance of PASTA.

Model profiling Figure 2 presents the results on the importance of model profiling introduced in
Section 3.2. We compare PASTA when steering the selected heads versus other reasonable choices:
steering (i) all heads, (ii) entire layers, or (iii) individual heads on the JSON Formatting task (See
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Figure 2: The performance of LLAMA-7B on the JSON Formatting task when we steer (i) all heads
(green); (ii) an entire layer (yellow); and (iii) an individual head within a layer (blue violin plot). The
performance varies dramatically across layers and across heads of a layer.

Appendix F for comparisons on the remaining tasks). Selecting heads via model profiling in PASTA
(red line) significantly outperforms other approaches. Steering all heads (dashed green line) degrades
performance compared to the baseline zero-shot performance (dashed black line). This is likely
because steering all heads over-amplifies the user-specified information at the expense of other
essential information required for effective generation and prediction. Interestingly, we find that
the performance varies significantly when steering different layers (yellow) or heads (blue violin
plot). As mentioned in Section 1, attention heads play distinct roles in encoding diverse semantic and
syntactic information [Tenney et al., 2019]. When steering heads, which are appropriately involved
in encoding of user-specified information, the model can be guided to capture and reinforce these
specific signals. Conversely, modifying the attention of unrelated heads not only fails to emphasize
the desired information but also interferes with their original functions, resulting in performance
deterioration. Therefore, it is important to identify the effective heads through model profiling prior
to applying the steering.

Varying strategies for selecting heads during profiling. As described in Sec. 5.3, our model profil-
ing selects the Intersection of the top-k performing heads to steer across multiple tasks. Alternatively,
when evaluating on task j, we can select heads for steering with different strategies: (i) Task-specific –
steer the top-k2 performing heads of only the task j, i.e., R(j)

1:k2
; or (ii) Union – the union of these

heads across multiple tasks, i.e., ∪m
i=1R

(i)
1:k2

. Table 5 compares their performance. Using task-specific
heads rather than intersection-selected heads sometimes yields improved performance, but requires
selecting a different set of heads for each new task.

Table 5: Varying head selection strategies between top task-specific heads, union across multiple
tasks, and intersection (the default used in PASTA).

PASTA JSON Format Prons. Changing BiasBios CounterFact All
F. Acc / P. Acc Acc / A.Acc Acc ES / PS Avg.

LLAMA
Task-specific 95.56 / 86.83 98.52 / 98.02 97.62 99.18 / 99.24 96.57
Union 88.42 / 74.49 92.12 / 91.44 96.36 99.24 / 99.35 92.22
Intersection 96.64 / 85.09 96.42 / 95.84 95.28 99.60 / 99.57 95.46

GPT-J
Task-specific 85.71 / 79.39 94.74 / 92.54 97.64 99.26 / 99.34 93.29
Union 72.61 / 64.89 89.68 / 87.76 95.56 99.82 / 99.83 88.21
Intersection 91.50 / 18.63 92.96 / 91.34 94.96 98.62 / 98.79 85.22

Varying the number of heads to be steered. Figures 3a and 3b illustrate the performance of PASTA
when steering different number of heads on two tasks. The results suggest that as more heads are
included for steering, the model follows the user ever more closely, achieving higher efficacy (JSON
Format Acc. and Pron. Change Acc.). However, at some point, this it results in a decrease in the
metrics reflecting the generation quality (JSON Pred. Acc and Fluency). Thus, there is a trade-off
between emphasizing efficacy and generation quality, requiring choosing the number of heads during
model profiling.

Varying the scaling coefficient α. Figure 3c presents the performance of PASTA on two tasks
when we change the scaling coefficient α. The results indicate that PASTA is fairly robust to this
hyperparameter; in practice, we fix it as 0.01. Notice that setting α to zero should be avoided, as this
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Figure 3: The performance of applying PASTA to LLAMA-7B on JSON Formating and Pronouns Changing
tasks when varying the number of steered heads |H| (3a,3b); and changing the scaling coefficient α (3c).

leads to the complete removal of other crucial contexts at the steered heads, resulting in performance
degeneration.

6 Related work

The primary method for controlling LLMs has been through prompting, often yielding impressive
improvements in performance [Brown et al., 2020b, Liu et al., 2021, Wei et al., 2022] and spurring a
line of work aiming to make prompting easier, e.g. [Strobelt et al., 2022, Bach et al., 2022, Shin et al.,
2020, Deng et al., 2022, Singh et al., 2023b]. However, LLMs remain extremely sensitive to nuances
in prompts [Webson and Pavlick, 2021, Lu et al., 2021]; PASTA complements these approaches by
making it easier for a user to specify a prompt in difficult scenarios.

Another line of work aims to make LLMs more amenable to prompting by modifying them during
training. Most prominent among these approaches are instruction finetuning [Wei et al., 2021, Chung
et al., 2022], Reinforcement Learning from Human Feedback [Ziegler et al., 2019, Ouyang et al.,
2022], and other related methods, e.g. [Lee et al., 2023]. There are also a few methods for directly
specifying which parts on an input are important during training, e.g. [Ross et al., 2017, Rieger
et al., 2019, Schramowski et al., 2020, Krishna et al., 2023]. PASTA can be used in addition to these
approaches to improve some aspects of model steerability (e.g. instruction following).

PASTA is related to variety of methods for adapting to new tasks, including LoRA [Hu et al., 2021a],
AdaLoRA [Zhang et al., 2023], QLoRA [Dettmers et al., 2023], and TOAST [Shi et al., 2023b].
PASTA is also related to a variety of research on model editing, e.g. ROME [Meng et al., 2022a],
MEMIT [Meng et al., 2022b], MEND [Mitchell et al., 2022], and REMEDI [Hernandez et al., 2023].
Unlike these works, PASTA preserves an LLMs ability to transfer to new tasks using prompts and
human-selected info, rather than using new labeled examples.

Finally, PASTA is also motivated by works which have aimed to mechanistically understand attention
scores, e.g. by studying them through feature importance [Jain and Wallace, 2019, Wiegreffe and
Pinter, 2019, Deb et al., 2023], through probing [Conneau et al., 2018, Liu and Avci, 2019], through
visualization [Karpathy et al., 2015, Olah et al., 2017], localizing knowledge [Meng et al., 2022a, Dai
et al., 2021], categorizing directions in representation space [Kim et al., 2017, Schwettmann et al.,
2021], or through natural-language explanations [Bills et al., 2023, Singh et al., 2023a].

7 Conclusion

In this study, we propose PASTA, a novel approach aimed at enabling LLMs to move beyond the
limitations of plain text and effectively perceive user guidance embodied as highlighted parts of
prompts. By making precise adjustments to attention scores in selected heads, PASTA directs the
model’s focus to the relevant context, mirroring the way humans benefit from textual cues. Unlike
traditional fine-tuning methods, PASTA is applied at inference time and requires neither parameter
updates nor gradient computation; PASTA requires only selecting which attention heads to apply the
re-weighting to, a one-time profiling operation for a LLM. Experimental results show that PASTA
can significantly improve model performance on a variety of tasks. In the future, we plan to integrate
PASTA with various other methods, such as few-shot in-context learning, aiming to highlight effective
examples to enhance its stability.
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A Appendix

B Dataset details

In the following table, we provide the detailed statistics of datasets in our experiments.

Table 6: Statistics of datasets.

Task Train Valid Test

CounterFact 1000 1000 5000
BiasBios 1000 1000 5000

JSON Formatting 1000 1000 5000
Pronouns Changing 1000 1000 5000

C Experimental Details

We implement all algorithms using PyTorch [Paszke et al., 2019] and Huggingface [Wolf et al.,
2019] and run experiments on NVIDIA V100 GPUs and NVIDIA A6000 GPUs.

C.1 Detailed prompt templates of each task

For each task, the prompt templates in our results are as follows:

• JSON Formatting:

– (Original) {context}. Answer the occupation of {person} and generate the answer as
json format. Here is an example: {“name”: , “occupation”: ,}. Now generate the
answer.

– (Shortened one in Section 5.2) {context}. Answer the occupation of {person} and
generate the answer as json format.

– (Rephrased one in Section 5.2) Answer the occupation of {person} and generate the
answer as json format. Here is an example: {“name”: , “occupation”: ,}. {context}.
Now generate the answer.

• Pronouns Changing:
– (Original): {context}. For the aforementioned text, substitute ‘she’ and ‘he’ with ‘they’

and generate the occupation of {person} after changing pronouns.
– (Shortened one in Section 5.2): {context}. Change ‘she’ and ‘he’ with ‘they’ and

answer the occupation of {person} after replacing the pronouns
– (Rephrased one in Section 5.2): {context}. For the aforementioned descriptions, replace

‘she’ and ‘he’ with ‘they’ in the aformentioned text and generate the new text after
replacing the pronouns.

• BiasBios: {context}. {person} has the occupation of.

• CounterFact: Previously, {old fact}. Currently, {new fact}. {question}

C.2 The evaluation details of PASTA

We present the number of heads to be steered by PASTA for LLAMA-7B and GPT-J-6B on every
task in the following table.

Table 7: The number of heads to be steered by PASTA.

Task LLAMA-7B GPT-J-6B

JSON Formatting 53 153
Pronouns Changing 86 72
BiasBios 86 111
CounterFact 86 52
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D Extended results with fluency

In this section, we include extended results, including fluency metrics. Fluency score is the average bi-
gram and tri-gram entropy of generations, designed to be low for degenerated or repetitive texts [Meng
et al., 2022a]. This metric can be regarded as the reference metric of generation quality. Typically,
the generations of language models are reliable as long as their fluency score is not too low. Here, we
filter out any results receiving a fluency score below 3.0. Table 8, 9 and 10 include all results and
fluency evaluation.

Table 8: Main results of LLAMA-7B to demonstrate that PASTA can improve the model ability to (i) follow
user instruction (JSON Format and Prons. Changing); (ii) interpret contextual information (BiasBios); (iii)
resolving knowledge conflicts (CounterFact). For all scores, higher is better. The best results are in bold.

Method JSON Format Prons. Changing BiasBios CounterFact
F. Acc / P. Acc Acc / A.Acc / Flue. Acc / Flue. ES / PS /Flue.

Prompting

Zero-shot 60.00 / 54.94 71.84 / 66.28 / 6.10 87.36 / 3.98 58.50 / 52.03 / 4.96
∗-marked 18.55 / 12.71 39.14 / 35.17 / 6.03 90.62 / 3.89 57.74 / 50.52 / 5.12
“"-marked 4.56 / 4.20 20.55 / 18.19 / 5.13 89.82 / 3.97 58.14 / 51.70 / 5.13
Few-shot 84.85 / 73.58 59.06 / 55.27 / 5.95 88.79 / 4.19 87.45 / 49.82 / 5.68

PASTA Task-agnostic 88.16 / 49.08 83.65 / 81.31 / 4.62 93.54 / 3.03 98.82 / 99.03 / 4.78
Multi-task 96.64 / 85.09 96.42 / 95.84 / 5.43 95.28 / 4.05 99.60 / 99.57 / 4.89

Table 9: Main results of GPT-J to demonstrate that PASTA can improve the model ability to (i) follow user
instruction (JSON Format and Prons. Changing); (ii) interpret contextual information (BiasBios); (iii) resolving
knowledge conflicts (CounterFact). For all scores, higher is better. The best results are in bold.

Method JSON Format Prons. Changing BiasBios CounterFact
F. Acc / P. Acc Acc / A.Acc / Flue. Acc / Flue. ES / PS /Flue.

Prompting

Zero-shot 28.83 / 25.09 39.88 / 36.19 / 5.91 72.76 / 5.06 42.14 / 42.02 / 5.01
∗-marked 4.44 / 4.10 41.25 / 37.57 / 4.76 74.14 / 5.01 44.50 / 45.09 / 5.22
“”-marked 8.81 / 5.62 6.12 / 5.72 / 5.43 78.64 / 4.96 45.54 / 41.84 / 5.16
Few-shot 84.15 / 72.65 35.77 / 32.08 / 6.46 72.98 / 4.82 68.34 / 38.23 / 5.67

PASTA Task-agnostic 46.68 / 34.71 91.62 / 88.60 / 3.00 80.84 / 4.92 99.54 / 99.57 / 5.11
Multi-task 91.50 / 18.63 92.96 / 91.34 / 4.91 94.96 / 4.87 98.62 / 98.79 / 5.11

Table 10: Varying head selection strategies between top top task-specific heads, union across multiple
tasks, and intersection (the default used in PASTA).

PASTA JSON Format Prons. Changing BiasBios CounterFact
F. Acc / P. Acc Acc / A.Acc / Flue. Acc / Flue. ES / PS /Flue.

L
L

A
M

A Task-specific 95.56 / 86.83 98.52 / 98.02 / 5.92 97.62 / 4.18 99.18 / 99.24 / 4.93
union 88.42 / 74.49 92.12 / 91.44 / 4.88 96.36 / 4.13 99.24 / 99.35 / 4.53
intersection 96.64 / 85.09 96.42 / 95.84 / 5.43 95.28 / 4.05 99.60 / 99.57 / 4.89

G
PT

-J Task-specific 85.71 / 79.39 94.74 / 92.54 / 5.07 97.64 / 5.06 99.26 / 99.34 / 4.94
Union 72.61 / 64.89 89.68 / 87.76 / 3.92 95.56 / 5.02 99.82 / 99.83 / 5.03
Intersection 91.50 / 18.63 92.96 / 91.34 / 4.91 94.96 / 4.87 98.62 / 98.79 / 5.11

E Extended results

E.1 The variance of few-shot performance

Few-shot prompting sometimes leads to improvements in model performance. as explicitly providing
the examples in additional demonstrations. However, a drawback of few-shot prompting is its insta-
bility, meaning its performance exhibits high variance across different samples in the demonstratio.
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In this section, we present the results to show that the performance of few-shot prompting displays
high variance in terms of sampling different few-shot demonstrations.

Table 11: The few-shot performance (Acc. / A. Acc. / Fluency) on the Pronouns Changing task.

Few-shot examples LLAMA-7B GPT-J-6B

Demonstration 1 84.87 / 90.09 / 4.74 43.82 / 40.36 / 6.43
Demonstration 2 57.24 / 53.98 / 6.22 40.68 / 37.86 / 6.44
Demonstration 3 57.08 / 53.22 / 6.02 33.13 / 29.21 / 6.48
Demonstration 4 52.26 / 48.30 / 6.42 25.47 / 20.89 / 6.44
Demonstration 5 43.86 / 40.78 / 6.43 11.90 / 8.63 / 6.51

F Model Profiling Results

F.1 Steering performance on more datasets

In this Section, we provide more results of the performance of LLAMA-7B on all of tasks when
steering: (i) all heads; (ii) entire layer; (iii) a individual head of a layer.
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Figure 4: The performance of LLAMA-7B on Pronouns Changing task when we steer (i) all heads (green); (ii)
entrie layer (yellow); and (iii) individual head with a layer (blue violin plot). The performance varies dramatically
across layers and across heads of a layer.
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Figure 5: The performance of LLAMA-7B on BiasBios task when we steer (i) all heads (green); (ii) entrie
layer (yellow); and (iii) individual head with a layer (blue violin plot). The performance varies dramatically
across layers and across heads of a layer.
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Figure 6: The performance of LLAMA-7B on CounterFact task when we steer (i) all heads (green); (ii) entrie
layer (yellow); and (iii) individual head with a layer (blue violin plot). The performance varies dramatically
across layers and across heads of a layer.
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