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Steformer: Efficient Stereo Image Super-Resolution
with Transformer

Jianxin Lin, Lianying Yin, Yijun Wang

Abstract—With the rapid development of stereoscopic vision
applications, stereo image processing techniques have attracted
increasing attention in both academic and industrial communi-
ties. In this paper, we study the fundamental stereo image super-
resolution (SR) problem, which aims to recover high-resolution
stereo images from low-resolution (LR) stereo images. Since
disparities between stereo images vary significantly, convolutional
network-based stereo image SR methods show a limitation in
capturing long-range dependencies. To address this problem, this
paper proposes to leverage the capability of self-attention in
Transformers to efficiently capture reliable stereo correspondence
and incorporate cross-view information for stereo image SR.
Our model, named Steformer, consists of three parts: cross
attentive feature extraction, cross-to-intra information integra-
tion and high-quality image reconstruction. In particular, the
cross attentive feature extraction module employs residual cross
Steformer blocks (RCSB) for long-range cross-view information
extraction. Then, the cross-to-intra information integration mod-
ule exploits cross-view and intra-view information using cross-to-
intra attention mechanism (C2IAM). Finally, residual Steformer
blocks (RSB) are designed for feature pre-processing in high-
quality image reconstruction. Extensive experiments show that
Steformer achieves significant improvements over state-of-the-
art approaches on both quantitative and qualitative evaluations,
while the total number of parameters can be reduced by up to
40.71%.

Index Terms—Stereo Image Processing, Image Super-
Resolution, Transformer.

I. INTRODUCTION

Single image super-resolution (SISR) aims at reconstruct-
ing natural and realistic textures for a high-resolution (HR)
image from its degraded low-resolution (LR) counterpart.
SISR has been an active area [17, 22, 51, 50] for a long
time because it offers the promise of overcoming resolution
limitations in many applications, such as medical imaging
[14], satellite imaging [34], and so on. Recently, with the wide
use of dual-lens smartphones, unmanned aerial vehicles, and
autonomous robots, the stereoscopic vision has attracted in-
creasing attention from researchers. Therefore, studying stereo
image super-resolution is quite important to the new emerging
applications. There have been several works demonstrating
that the spatial dependency contained in LR stereo images
could help to improve super-resolution performance [40, 42].
However, different objects at different depths and different
stereo images can have significantly different parallaxes. In
addition, incorporating information from both overlapped and
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Fig. 1: PSNR results on Middlebury [33] testing set v.s the
total number of parameters of different stereo image SR (×2
and ×4) methods.

non-overlapped regions could be crucial for stereo image SR
performance boosting.

Due to the ill-posed nature, SR is a highly challenging
problem that usually requires strong image priors for effec-
tive restoration. Since convolutional neural networks (CNNs)
perform well at learning generalizable priors from large-
scale data, several CNN based works [15, 40, 47, 45, 4,
42, 8] have been developed for stereo image SR. Although
the performance is significantly improved compared with
single image-based solutions, the convolution operator has a
limited receptive field, thus preventing it from modeling long-
range pixel dependencies in stereo images. In addition, the
convolution kernels are content-independent, thus lacking the
flexibility to model the varying parallax relationship in stereo
images. Recently, Transformers [39] have shown a significant
performance on natural language processing tasks [2, 9, 30, 31,
32], high-level and low-level vision problems [3, 11, 24, 37,
21, 5, 49]. Transformer-based network structures are naturally
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good at capturing long-range dependencies in the data by the
global self-attention. However, few efforts are made to explore
its role in stereoscopic vision to address the limitations of CNN
based methods.

In this paper, we propose an efficient Transformer based
structure for stereo image super-resolution, namely Steformer,
which consists of three modules: cross attentive feature extrac-
tion, cross-to-intra information integration, and high-quality
image reconstruction. Cross attentive feature extraction mod-
ule is composed of several residual cross Steformer blocks
(RCSB), each of which employs multi-Dconv interactive at-
tention (MDIA) layers for long-range cross-view information
extraction, reducing the impact of the hardship that parallax
varies with content position. After extracting hierarchical fea-
tures with a consequence of RCSBs, a 1×1 convolutional layer
for feature aggregation and a residual connection for providing
a shortcut bypassing the abundant low-frequency informa-
tion are employed to facilitate the flow of information. The
cross-to-intra information integration module exploits cross-
view and intra-view information using cross-to-intra attention
mechanism (C2IAM). C2IAM firstly utilizes parallax-attention
between the stereo image features to capture the cross-view
correlation information as well as convert both left and right
features to the other side. Then, interactive-attention between
original and predicted monocular image features are applied
to effectively aggregate intra-view supplementary informa-
tion, hence providing comprehensive features for high-quality
image reconstruction. In high quality reconstruction module,
residual Steformer blocks (RSB), which use multi-Dconv self-
attention (MDSA) to capture the internal feature correlation,
are utilized for high-quality feature pre-processing. Finally,
RCSBs are used to reconstruct high-quality stereo images
jointly to adequately incorporate different levels of cross-view
information.

This study conductes comprehensive experiments and
demonstrate the superior performance of our Steformer on
Flickr1024 [40], KITTI2012 [12], KITTI2015 [27] and
Middlebury [33] datasets. For example, Steformer derives
a numerical gain of 0.14 dB for PSNR with 38.28% fewer
network parameters than the state-of-the-art method on the
Middlebury testing set as shown in Fig. 1. We expect our
work will encourage further research to explore Transformer-
based architectures for stereo image SR.

Our contributions can be summarized as follows:

• This work proposes Steformer, an efficient Transformer
architecture for stereo image super-resolution.

• The residual Steformer block (RSB) and residual cross
Steformer block (RCSB) along with multi-Dconv inter-
active attention (MDIA) are proposed to better extract
long range cross-view information and reconstruct high
quality stereo super-resolution images.

• We introduce Cross-to-Intra Attention Mechanism
(C2IAM) to further capture cross-view and intra-view
information in stereo images.

• Steformer significantly exceeds SOTA methods on vari-
ous stereo SR datasets with much fewer network param-
eters.

In summary, we propose a Transformer based stereo image
super-resolution model, Steformer. Steformer can address the
limitation of CNNs in capturing long-range dependencies and
is computationally efficient to handle high-resolution images.
The remainder of this paper is organized as follows. Section
II reviews the related work while Section III introduces the
proposed method. The experimental results are presented in
Section IV. Section V discusses the dilemma of stereo image
super-resolution task and room for improvement. Finally,
section VI presents a summary for the proposed framework.

II. RELATED WORK

A. Single Image SR

In recent decades, it has already been demonstrated that
data-driven CNN based architectures surpass traditional single
image super-resolution (SISR) approaches. Specifically, the
seminal CNN-based work, SRCNN [10], employs a relatively
shallow network to learn a mapping from low-resolution (LR)
to high-resolution (HR). Kim et al. [17] found that increasing
the network depth can significantly improve the reconstruction
quality and proposed a very deep super-resolution network
(VDSR) for SISR. Inspired by VDSR, a deep recursive net-
work [18] which improves performance without introducing
new parameters was soon proposed. Lim et al. [22] proposed
an enhanced deep super-resolution network (EDSR) by using
simplified residual blocks. Zhang et al. [51] proposed a very
deep residual dense network (RDN), in which residual dense
block (RDB) is employed as the essential block to fully exploit
the hierarchical features of all convolutional layers. More
recently, the concept of attention mechanism was introduced to
SISR. Zhang et al. [50] proposed a very deep residual channel
attention network (RCAN) to better utilize the rich low-
frequency information contained in the LR input and features.
Kim et al. [19] introduced several specially designed attention
mechanisms by proposing a residual attention module (RAM)
and an SR network using RAM (SRRAM). Anwar et al. [1]
proposed a densely residual laplacian network (DRLN), using
a pyramid level to weigh the different sub-band features. To
fully utilize the hierarchical features on the residual branches,
Liu et al. [23] proposed a novel residual feature aggregation
(RFA) network, which combines several residual modules and
forwards features directly on each local residual branch by
adding skip connections. Although deeply stacked convolu-
tional neural networks can provide considerable performance
boosts for SISR, their huge parameters and computational load
are impractical for real-world applications. Park et al. [28] de-
signed a lightweight model to balance the computational load
and reconstruction performance. More recently, Zou et al. [54]
argued that most CNN-based methods ignore the importance
of frequency information which can reflect the semantic infor-
mation of the images in different wavebands, they used WT
to separate the different frequency information of the image
and used a multi-branch network to recover this information.
Li et al. [20] thought that deep learning-based methods ignore
the relationship between L1 and perceptual minimization, they
proposed a real-world image super-resolution by exclusionary
dual-learning (RWSR-EDL) to troubleshoot feature diversity
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in perceptual and L1 cooperative learning. Simply processing
stereo images separately does not work well since the corre-
lation between the left and right views is ignored, which has
prompted the community to explore a method that can fuse
information from the other view to achieve a better stereo
super-resolution performance.

B. Stereo Image SR

The pioneering work for stereo image SR based on CNNs
was presented by Jeon et al. [15], in which a StereoSR
network was proposed to learn a parallax prior from stereo
image datasets by jointly training two-stage networks with
pre-setting the maximum parallax. Wang et al. [40] noted that
the parallax attention mechanism can correlate information in
the global range of dual-view image polar directions without
pre-setting the maximum parallax, which has more flexibil-
ity and robustness. Song et al. [36] combined the parallax
attention mechanism with the self-attention mechanism to
enhance the utilization of non-local context information within
a single view based on setting up the association between a
stereo image pair. Ying et al. [47] proposed a stereo image
super-resolution algorithm based on a generic stereo attention
module (SAM). Xu et al. [45] presented the BSSRnet that
introduces the concept of bilateral filtering to stereo image SR.
Chen et al. [4] proposed a cross parallax attention stereo super-
resolution network (CPASSRnet), which can produce multi-
scale results simultaneously without a maximum disparity
limit or epipolar line limit. Wang et al. [42] proposed a net-
work named iPASSR which further leverages the symmetry in
stereo image SR based on PASSRnet [40]. iPASSR utilizes the
Bi-directional Parallax Attention Module (BiPAM) to interact
with the information of stereo input images simultaneously.
Ma et al. [26] proposed a perception-oriented stereo image
super-resolution method based on StereoSR [15] by using the
feedback guidance to improve perceptual performance. zhu et
al. [53] proposed a cross view capture network (CVCnet) to
fully capture the global contextual features from cross view
images. More recently, Dai et al. [8] considered that stereo
super-resolution reconstruction and parallax estimation can
be mutually reinforcing, and constructed the HR disparity
using HR features produced by the SR process to refine
the SR image reconstruction. With the enormous structure,
its specially designed network costs large computational and
memory resources. The aforementioned methods are CNN-
based architecture which has a limiting receptive field. By
contrast, we propose an efficient Transformer-based network
with great performance on extensive experiments. At the same
time, Chu et al. [7] won the 1st place on the NTIRE 2022
Stereo Image Super-resolution Challenge [41] and proposed a
CNN-based baseline, which achieves comparable results with
Steformer, by adding cross attention module to NAFNet [6]
(a network without nonlinear activation functions).

C. Vision Transformers

Inspired by the success of Transformer [39] in the field of
natural language processing (NLP), there have been numerous

attempts to explore the benefits of Transformer in both high-
level and low-level computer vision problems such as object
detection [3, 24], image recognition [43, 21, 48], segmentation
[24, 44, 52], super-resolution [43, 21, 46], denoising [43,
21, 5] and deraining [5]. However, the Transformer design
faces great challenges in processing high-resolution images,
especially in SR problems, as the computational complexity
of self-attention increases quadratically with the number of
image patches, resulting in a large number of parameters and
huge computational costs. Recently, some methods have tried
to alleviate this dilemma. Liu et al. [24] limited self-attention
computation to non-overlapping local windows and employed
a shifted windowing scheme for greater efficiency. Liang et al.
and Wang et al. [21, 43] used the Swin Transformer design for
different image super-resolution and restoration tasks. Zamir
et al. [49] further boosted the efficiency of the Transformer
by modifying the multi-head self-attention and feed-forward
network. Although the Transformer-based method has shown
great performance on different tasks including SISR, there
has not been a Transformer-based method that is specially
designed for stereo image SR tasks which combine dual-
views images. To address this problem, this paper proposes
to leverage the capability of self-attention in Transformers to
efficiently capture reliable stereo correspondence and incorpo-
rate cross-view information for stereo image SR.

III. APPROACH

A. Network architecture

As shown in Fig. 2, Steformer accepts a pair of stereo LR
images and super-resolves them. To effectively exploit and ag-
gregate the intra-view and cross-view information, the pipeline
is symmetrically constructed and mainly consists of (1) cross
attentive feature extraction, (2) cross-to-intra information
integration and (3) high quality image reconstruction.

Steformer first applies a convolution to obtain low-level
feature embedding from a low-resolution stereo image pair.
Then, the cross attentive feature extraction module uses resid-
ual cross Steformer blocks (RCSB) to extract hierarchical fea-
tures involving long-range cross-view information. Next, the
cross-to-intra information integration module exploits cross-
view information of stereo features and aggregates intra-view
supplementary information using the cross-to-intra attention
mechanism (C2IAM). In high quality reconstruction module,
residual Steformer blocks (RSB) are utilized for high-quality
feature pre-processing, and RCSBs are used to reconstruct
high-quality stereo images jointly to incorporate different
levels of cross-view information. Finally, a convolution layer
is applied to the refined features to generate a residual image
to which bicubic interpolated images are added to obtain the
left and right super-resolution images.

B. Cross attentive feature extraction

Given a low-resolution stereo image pair (ILR
left, I

LR
right) ∈

RH×W×3, a 3×3 convolutional layer HF (·) is first applied to
extract initial shallow features (FL0 , FR0) ∈ RH×W×C as

FL0/R0
= HF (I

LR
left/right). (1)
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Fig. 2: Steformer network architecture. Steformer consists of three modules: (1) cross attentive feature extraction module for
long-range cross-view information extraction; (2) cross-to-intra information integration module for cross-view correlation and
supplementary information aggregation; (3) high quality image reconstruction module for SR images reconstruction, the gray
dotted rectangle is the process of upsampling the features into high resolution image.

Then, the cross features (FL, FR) ∈ RH×W×C are extracted
by

FL = HCF (FL0
, FR0

), (2)

FR = HCF (FR0 , FL0), (3)

where HCF (·) represents the cross attentive feature extraction
module which is constructed by cascading N residual cross
Steformer blocks (RCSBs) and a 1×1 convolutional layer
which helps to bring the inductive bias of the convolution op-
eration into the Transformer-based network. More concretely,
as shown in Fig. 2, intermediate features FL1,...,N

, FR1,...,N

and output features FL, FR are extracted as

FLi
, FRi

= HRCSBi
(FLi−1

, FRi−1
), i = 1, 2, ..., N, (4)

F conc
L = Concat(FL1

, FL2
, ..., FLN

), (5)

F conc
R = Concat(FR1

, FR2
, ..., FRN

), (6)

FL = Haggr(F
conc
L ), (7)

FR = Haggr(F
conc
R ), (8)

where HRCSBi
(·) represents the i-th residual cross Steformer

block and Haggr(·) denotes the 1×1 convolutional layer for
dense connection and mapping the features into the original
number of channels.
Residual cross Steformer block. As shown in Fig. 3 (b),
the residual cross Steformer block (RCSB) is a residual block
with cross Steformer layers (CSL) and convolutional layers.

Specifically, given the input features
(
FLi,0 , FRi,0

)
of the i-

th RCSB, the intermediate features extracted by M cross
Steformer layers are

FLi,j
, FRi,j

= HCSLi,j
(FLi,j−1

, FRi,j−1
), j = 1, 2, ...,M,

(9)
where HCSLi,j

(·) is the j-th cross Steformer layer in the
i-th RCSB. Then, a convolutional layer is employed before
being concatenated with input features FLi ,FRi by residual
connection. The output of RCSB is formulated as

FLi/Ri
= H1×1(FLi,M/Ri,M

) + FLi,0/Ri,0
, (10)

where H1×1 is 1×1 convolutional layer.
Cross Steformer layer. The cross Steformer layer (CSL) is
designed based on the multi-head self-attention of Transformer
layer [39]. As shown in Fig. 3 (b), the core modules of cross
Steformer layer are multi-Dconv interactive attention (MDIA)
and the Gated Dconv Feed-Forward Network (GDFN) [49].

Due to the heavy computation and memory burden in
conventional Transformer design, this study proposes multi-
Dconv interactive attention (MDIA) which can explore deep
feature correspondences and has linear complexity. Specif-
ically, the input features FLi

,FRi
are first processed with

layer normalization, then it generates the key and value
matrices K and V by employing a 1×1 convolutional layer
and a 3×3 depth-wise convolutional layer to enhance the local
region feature. Meanwhile, similar to K and V , this study
utilizes the same convolutional layers while the input feature
incorporates left and right views to generate the query matrix
Q. Q,K, V ∈ RH×W×C are computed as

Q = H3×3(H1×1(Concat(LN(FLi
), LN(FRi

)))), (11)
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Fig. 3: (a), (b) are the structure of Residual Steformer Block, Cross Residual Steformer Block, (c) is the Multi-Dconv Interactive
Attention block in Cross Steformer layer.

KL/R = H3×3(H1×1(LN(FLi/Ri
))), (12)

VL/R = H3×3(H1×1(LN(FLi/Ri
))), (13)

where LN, H1×1 and H3×3 represent the layer normalization,
the 1×1 convolutional layer and the 3×3 depth-wise convolu-
tional layer, respectively. Then, Q,K, V are reshaped as size
RHW×C to obtain attention maps AL→R, AR→L ∈ RC×C as
shown in Fig. 3 (c). The process of multi-Dconv interactive
attention is noted as

Attention(Q,KL/R, VL/R) = softmax(Q ·KT
L/R/ω) · VL/R,

X ′
L/R = H1×1(Attention(Q,KL/R, VL/R)) +XL/R,

(14)
where ω is a learnable argument; XL/R and X ′

L/R are the
input and output feature maps. Following [49], the Gated
Dconv Feed-Forward Network (GDFN) which encodes the
information from the location of spatially adjacent pixels and
helps to learn local image structure is used to replace the feed-
forward network in conventional Transformer design.

The design of CSL can effectively integrate the informa-
tion from a stereo image pair, since it employs multi-Dconv
interactive attention (MDIA) layers for long-range cross-view
information extraction, reducing the impact of the hardship
that parallax varies with content position.

C. Cross-to-intra information integration

In cross-to-intra information integration module, this study
proposes a Cross-to-Intra Attention Mechanism (C2IAM) to
further capture cross-view and intra-view information in stereo
images. The architecture of C2IAM is illustrated in Fig. 4.
Firstly, calculate the bi-directional parallax-attention (biPA) as
iPASSR [42] between the stereo image features, which is used
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Fig. 4: Cross-to-Intra Attention Mechanism (C2IAM).

for capturing the cross-view correlation information, as well
as converting both left and right features to the other side.
Then, it adopts an RCSB which computes interactive attention
between original and predicted monocular image features
to aggregate intra-view supplementary information, providing
comprehensive features for high-quality image reconstruction.

Specifically, since hierarchical feature representations con-
tribute to stereo correspondence learning [40], all intermediate
cross-features (the up and down arrows pointing to the orange
biPA block in Fig. 4) obtained in cross attentive feature
extraction module are concatenated with FR, FL as the inputs
fed to biPA to obtain the parallax-attention maps ML→R and
MR→L. Then, the initial conversion features F

′

L→R, F
′

R→L

are generated by multiplying the attention maps and FL, FR,
respectively. Finally, C2IAM constructs the final conversion
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feature FL→R using an RCSB by the co-action of initial
conversion feature F

′

L→R and FR to get more texture from
another view. FR→L is generated with the same process.

D. High quality image reconstruction

In high quality image reconstruction module, this study
first proposes a residual Steformer block (RSB) which
cascades M Steformer layers (SL) and a 1×1 convolution
layer with a residual connection. As shown in Fig. 3 (a),
each SL is composed of multi-Dconv self-attention (MDSA)
and the Gated Dconv Feed-Forward Network (GDFN) [49].
To fuse the features preliminarily, features FL→R, FR→L are
first fed to NRSB cascaded RSBs. Next, the output features
F init
L , F init

R ∈ RH×W×2C are fed to a channel attention layer
(CAL) [50] to fully exploit contextual information beyond
the local region in convolutional kernel. After a 1×1 con-
volutional layer for feature integration, pre-processed F pre

L ,
F pre
R ∈ RH×W×C are obtained.
Then, similar to the cross attentive feature extraction mod-

ule, this study utilizes RCSB as the base unit for high quality
image reconstruction. The fusion features F pre

L and F pre
R

are fed to NRCSB cascaded RCSBs, which can adequately
incorporate different levels of cross-view information in the
reconstruction stage. Then, a convolutional layer and a sub-
pixel convolution layer [35] are used to upsample the features
and obtain the final super-resolved feature F fin

L and F fin
R .

Meanwhile, using bicubic interpolation [16], the input LR
stereo image pair is upscaled to the desired resolution, denoted
as

FLS = H↑
(
ILR
left

)
, (15)

FRS = H↑
(
ILR
right

)
, (16)

where H↑(·) represents the bicubic upsampling. Then, to
facilitate model learning and reuse higher level features, a long
skip connection is performed, which element-wise summed
FLS , FRS with F fin

L , F fin
R to produce the super-resolution

images respectively:

ISR
left = F fin

L + FLS , (17)

ISR
right = F fin

R + FRS , (18)

E. Loss function

In this section, the loss functions are introduced to optimize
Steformer network. The overall loss function can be formu-
lated as

L = LSR + λ(Lphoto + Lsmooth + Lcycle + Lconsist),
(19)

where LSR, Lphoto, Lsmooth, Lcycle, Lconsist represent the
SR loss, photometric loss, smooth loss, cycle loss and consis-
tency loss, respectively. λ is the weight of the regularization
term.
SR Loss. This study uses the L1 distance between the recon-
structed images and corresponding ground-truth images as SR
loss:

LSR =
∥∥ISR

left − IHR
left

∥∥
1
+
∥∥ISR

right − IHR
right

∥∥
1
, (20)

where IHR
left, I

HR
right are high quality ground-truth stereo images.

Smooth Loss. This study employs smooth loss to reduce the
amount of undesired noise which implies faulty correspon-
dence in the attention map by minimizing the divergence of
neighboring pixel values in textureless regions:

Lsmooth =
∑
M

∑
i,j,k

(∥M(i, j, k)−M(i+ 1, j, k)∥1

+ ∥M(i, j, k)−M(i, j + 1, k + 1)∥1),
(21)

where M ∈ {ML→R,MR→L}. ML→R(i, j, k)
represents the correspondence between ILR

left(i, j)

and ILR
right(i, k). ∥M(i, j, k)−M(i+ 1, j, k))∥1 and

∥M(i, j, k)−M(i, j + 1, k + 1)∥1 are used to achieve
vertical and horizontal attention consistency [40], respectively.
Residual Losses. Due to the nature of stereo image acquisi-
tion, i.e. the cameras are located in different directions and
at different angles, the luminous intensity may be different
between a pair of stereo images. This problem can lead to
an inability to obtain accurate correspondence. To avoid these
cases, we follow [42] using the residual images to calculate
the photometric loss, the cycle loss, and the consistency
loss. Specifically, the low-resolution images are replaced with
residual images Rleft and Rright, noted as

RLR
left = H↓(|IHR

left −H↑(I
LR
left)|), (22)

RLR
right = H↓(|IHR

right −H↑(I
LR
right)|), (23)

where H↓(·) represents the down-sampling. Therefore, the
photometric loss and cycle loss can be defined as

Lphoto =
∑

p∈VL→R

∥RLR
left(p)−MR→L ⊗RLR

right(p)∥1

+
∑

p∈VR→L

∥RLR
right(p)−ML→R ⊗RLR

left(p)∥1,
(24)

Lcycle =
∑

p∈VL→R

∥RLR
left(p)−ML→R→L ⊗RLR

left(p)∥1

+
∑

p∈VR→L

∥RLR
right(p)−MR→L→R ⊗RLR

right(p)∥1,

(25)
where ML→R→L = ML→R⊗MR→L, MR→L→R = MR→L⊗
ML→R, V is the mask of attention map and p represents the
valid mask value. Note that Lphoto is only calculated in non-
occluded regions. To further achieve stereo consistency, we use
the residual high quality images RSR

left = H↓(|IHR
left − ISR

left|)
and RSR

right = H↓(|IHR
right−ISR

right|) to calculate residual stereo
consistency loss. That is

Lconsist =
∑

p∈VL→R

∥RSR
left(p)−MR→L ⊗RSR

right(p)∥1

+
∑

p∈VR→L

∥RSR
right(p)−ML→R ⊗RSR

left(p)∥1.
(26)

IV. EXPERIMENTS

In this section, we first introduce the datasets and imple-
mentation details. Then, we compare the proposed Steformer
to several state-of-the-art single image SR and stereo image
SR approaches. Finally, we perform comprehensive ablation
studies to validate each component of the proposed Steformer.
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A. Datasets

To evaluate the effectiveness of the proposed method,
we constructed training set by merging 60 images from
Middlebury [33] and 800 images from Flickr1024 [40]
following the experimental setting of iPASSR [42]. In ad-
dition, we collected testing set by selecting 5 images from
Middlebury [33], 20 images from KITTI2012 [12], 20
images from KITTI2015 [27] and all testing images from
Flickr1024, following [15, 40, 42]. The LR images were
generated by bicubic downsampling. In the training set, the
generated LR images were cropped into 30×90 patches with
a stride of 20, and their HR counterparts were cropped
accordingly. Randomly flipping horizontally and vertically was
applied for data augmentation. There were 49,020 and 298,143
patches for ×4 SR and ×2 SR training respectively.

B. Implementation details

To trade-off the efficiency and effectiveness of Steformer,
the number of RCSBs and RSBs in each module, which are
denoted as NRCSB and NRSB respectively, were set to 3
and 2. In each RCSB or RSB, there were two cascaded cross
Steformer layers or Steformer layers. Table I and II present
the specific architecture of Cross Steformer Layer (CSL) and
Steformer Layer (SL) respectively.

The coefficient λ in the loss function was set to 0.1 to
achieve the balance of different loss terms. Steformer was
implemented in PyTorch [29] and trained with one NVIDIA
RTX 3090 GPU. Following the common training strategy [40,
42], we trained Steformer using the Adam optimizer [25] with
the momentum terms (β1, β2) of (0.9, 0.999) and a batch size
of 16 for 120 epochs since more epochs do not provide further
improvement. The learning rate was determined experimen-
tally and initially set to 2 × 10−4 and reduced to half for
every 30 epochs until it was reduced to 5× 10−5.

We utilized the commonly-used peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) metrics to evaluate
the performance of the proposed method. To be consistent with
the comparison methods [15, 40, 47, 42], we cropped the left
borders by 64 pixels when calculating PSNR and SSIM on the
left views.

C. Results

1) Quantitative results: As the quantitative results shown
in Table III, Steformer achieves remarkable PSNR and SSIM
scores on test sets for ×2 and ×4 SR on both single and stereo
image SR tasks. More specifically, with 38.28% fewer network
parameters and FLOPs, the PSNR values of our method on the
Middlebury dataset are 0.14 dB higher than state-of-the-art
method SSRDE-FNet on ×2 stereo image SR, while the total
number of parameters can be reduced by 40.71% on ×4 stereo
image SR, which indicates that the Steformer architecture is
highly efficient on stereo image SR. Compare to the work
NAFSSR [7] in the same period, which is a excellent work that
won the 1st on NTIRE 2022 Stereo Image Super-resolution
Challenge [41], Steformer achieves comparable results for ×4
stereo image SR task with fewer parameters and FLOPs (i.e.

TABLE I: Cross Steformer Layer (CSL) configuration.

Layer name Input size Output size Configuration

Multi-Dconv Interactive Attention (MDIA)
LayerNormalize1 H ×W×64 H ×W×64 BiaFree LayerNorm()

Depth-wise-conv kv H ×W×128 H ×W×128 3×3

K/K′, V/V ′ H ×W×128
64×HW

64×HW
chunk(), rearrange

Depth-wise-conv q,Q H ×W×64 64×HW 3×3, rearrange

att map X

64×HW

64×HW

64×HW

64×64 Attention(Q,K, V )

att map X ′
64×HW

64×HW

64×HW

64×64 Attention(Q, K′, V ′)

conv0 H ×W×64 H ×W×64 1×1

Gated Dconv Feed-Forward Network (GDFN)
LayerNormalize2 H ×W×64 H ×W×64 BiaFree LayerNorm()

conv1 H ×W×64 H ×W×340 1×1
Depth-wise-conv1 H ×W×340 H ×W×340 3×3, chunk()

conv2 H ×W×170 H ×W×64 1×1

TABLE II: Steformer Layer (SL) configuration.

Layer name Input size Output size Configuration

Multi-Dconv Self Attention (MDSA)
LayerNormalize1 H ×W×64 H ×W×64 BiaFree LayerNorm()

Depth-wise-conv kv H ×W×128 H ×W×128 3×3

K,V H ×W×128
H ×W×64
H ×W×64

chunk(),rearrange

Depth-wise-conv q,Q H ×W×64 H ×W×64 3×3

att map X

64×HW

64×HW

64×HW

64×64 Attention(Q,K, V )

conv0 H ×W×64 H ×W×64 1×1

Gated Dconv Feed-Forward Network (GDFN)
LayerNormalize2 H ×W×64 H ×W×64 BiaFree LayerNorm()

conv1 H ×W×64 H ×W×340 1×1
Depth-wise-conv1 H ×W×340 H ×W×340 3×3,chunk()

conv2 H ×W×170 H ×W×64 1×1

+0.02db on Middlebry dataset and -0.05 to -0.01db on other
datasets). For the ×2 stereo image SR task, NAFSSR has
better performance than Steformer except for the KITTI2015
dataset, but Steformer still has fewer parameters and FLOPs
than NAFSSR.

The quantitative results demonstrate the superiority of our
proposed Steformer in modeling long-range pixel dependen-
cies and varying parallax relationships in stereo images and
promoting stereo image SR performance.

2) Qualitative results: Fig. 5 shows the qualitative results
for ×4 stereo image SR on KITTI2015 and Middlebury
dataset. Most CNN-based methods produce blurry images or
even incorrect textures since they only use spatial information.
In contrast, our proposed method has more details and sharper
edges, i.e., in Fig. 5 zoom-in regions, the textures of Steformer
is more close to ground-truth. These results demonstrate that
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TABLE III: Quantitative Comparison with PSNR/SSIM Metric on Flickr1024, KITTI2012, KITTI2015 and Middlebury
Datasets. Higher PSNR/SSIM Values Means Better Performance.

Left (Left+Right)/2
Method Scale #Params. #FLOPs

KITTI2012 KITTI2015 Middlebury F lickr1024 KITTI2012 KITTI2015 Middlebury

Bicubic ×2 - - 28.44/0.8808 27.81/0.8814 30.46/0.8979 24.94/0.8186 28.51/0.8842 28.61/0.8973 30.60/0.8990
VDSR [17] ×2 0.66M 10.77G 30.17/0.9062 28.99/0.9038 32.66/0.9101 25.60/0.8534 30.30/0.9089 29.78/0.9150 32.77/0.9102
EDSR [22] ×2 38.63M 208.73G 30.83/0.9199 29.94/0.9231 34.84/0.9489 28.66/0.9087 30.96/0.9228 30.73/0.9335 34.95/0.9492
RDN [51] ×2 21.99M 118.79G 30.81/0.9197 29.91/0.9224 34.85/0.9488 28.64/0.9084 30.94/0.9227 30.70/0.9330 34.94/0.9491
RCAN [50] ×2 15.31M 82.23G 30.88/0.9202 29.97/0.9231 34.80/0.9482 28.63/0.9082 31.02/0.9232 30.77/0.9336 34.90/0.9486
SwinIR [21] ×2 1.32M 7.89G 30.89/0.9206 29.98/0.9237 34.69/0.9475 28.67/0.9091 31.02/0.9235 30.77/0.9341 34.80/0.9478
StereoSR [15] ×2 1.08M 90.11G 29.42/0.9040 28.53/0.9038 33.15/0.9343 25.96/0.8599 29.51/0.9073 29.33/0.9168 33.23/0.9348
PASSRnet [40] ×2 1.37M 6.53G 30.68/0.9159 29.81/0.9191 34.13/0.9421 28.38/0.9038 30.81/0.9190 30.60/0.9300 34.23/0.9422
BSSRnet [45] ×2 1.89M 8.42G 30.99/0.9225 30.05/0.9256 34.73/0.9468 28.53/0.9090 31.03/0.9241 30.74/0.9344 34.74/0.9475
CPASSR [4] ×2 5.26M 7.73G 29.68/0.9079 29.69/0.9193 33.68/0.9433 28.12/0.9017 29.87/0.9113 30.39/0.9295 33.85/0.9436
iPASSR [42] ×2 1.38M 7.44G 30.97/0.9210 30.01/0.9234 34.41/0.9454 28.60/0.9097 31.11/0.9240 30.81/0.9340 34.51/0.9454
SSRDE-FNet [8] ×2 2.09M 27.60G 31.08/0.9224 30.10/0.9245 35.02/0.9508 28.85/0.9132 31.23/0.9254 30.90/0.9352 35.09/0.9511
NAFSSR [7] ×2 1.51M 12.04G 31.19/0.9247 30.17/0.9267 35.46/0.9549 29.24/0.9177 31.33/0.9277 30.98/0.9367 35.51/0.9547
Steformer (ours) ×2 1.29M 7.43G 31.16/0.9236 30.27/0.9271 35.15/0.9512 28.97/0.9141 31.29/0.9263 31.07/0.9371 35.23/0.9511
Bicubic ×4 - - 24.52/0.7310 23.79/0.7072 26.27/0.7553 21.82/0.6293 24.58/0.7372 24.38/0.7340 26.40/0.7572
VDSR [17] ×4 0.66M 10.77G 25.54/0.7662 24.68/0.7456 27.60/0.7933 22.46/0.6718 25.60/0.7722 25.32/0.7703 27.69/0.7941
EDSR [22] ×4 38.90M 214.86G 26.26/0.7954 25.38/0.7811 29.15/0.8383 23.46/0.7285 26.35/0.8015 26.04/0.8039 29.23/0.8397
RDN [51] ×4 22.04M 119.16G 26.23/0.7952 25.37/0.7813 29.15/0.8387 23.47/0.7295 26.32/0.8014 26.04/0.8043 29.27/0.8404
RCAN [50] ×4 15.36M 82.62G 26.36/0.7968 25.53/0.7836 29.20/0.8381 23.48/0.7286 26.44/0.8029 26.22/0.8068 29.30/0.8397
SwinIR [21] ×4 1.35M 7.89G 26.43/0.7996 25.60/0.7868 29.16/0.8379 23.53/0.7322 26.52/0.8058 26.29/0.8098 29.25/0.8385
StereoSR [15] ×4 1.08M 90.11G 24.49/0.7502 23.68/0.7273 27.70/0.8036 21.70/0.6460 24.53/0.7556 24.21/0.7511 27.64/0.8022
PASSRnet [40] ×4 1.42M 6.72G 26.26/0.7919 25.41/0.7772 28.61/0.8232 23.31/0.7195 26.34/0.7981 26.08/0.8002 28.72/0.8236
SRRes+SAM [47] ×4 1.73M 12.92G 26.35/0.7957 25.55/0.7825 28.76/0.8287 23.27/0.7233 26.44/0.8018 26.22/0.8054 28.83/0.8290
BSSRnet [45] ×4 1.91M 11.25G 26.45/0.8014 25.57/0.7872 29.12/0.8354 23.40/0.7289 26.47/0.8049 26.17/0.8075 29.08/0.8362
CPASSR [4] ×4 5.26M 7.73G 25.38/0.7753 25.05/0.7707 28.47/0.8245 23.12/0.7161 25.50/0.7818 25.63/0.7926 28.55/0.8251
iPASSR [42] ×4 1.43M 7.82G 26.47/0.7993 25.61/0.7850 29.07/0.8363 23.44/0.7287 26.56/0.8053 26.32/0.8084 29.16/0.8367
SSRDE-FNet [8] ×4 2.26M 70.21G 26.60/0.8031 25.73/0.7901 29.27/0.8416 23.55/0.7346 26.69/0.8091 26.46/0.8133 29.34/0.8411
NAFSSR [7] ×4 1.53M 12.26G 26.62/0.8051 25.78/0.7927 29.27/0.8447 23.63/0.7397 26.72/0.8113 26.49/0.8155 29.36/0.8447
Steformer (ours) ×4 1.34M 7.81G 26.61/0.8037 25.74/0.7906 29.29/0.8424 23.58/0.7376 26.70/0.8098 26.45/0.8134 29.38/0.8425

our cross attentive feature extraction module and cross-to-intra
information integration module can explore more accurate
stereo correspondence, and high quality image reconstruction
module can recover more details and alleviate the blurring
artifacts in our super-resolved images.

3) Performance on real-captured images: To test the per-
formance of Steformer on real-world scenarios, we conducted
experiments by directly applying image SR methods to real-
captured images. As shown in Fig. 6, Steformer produces visu-
ally pleasing images with clear and sharp edges, whereas other
compared methods may suffer from unsatisfactory artifacts.
Single image SR methods cannot well recover the missing
details by using intra-view information only, while iPASSR
lacks the ability of capturing long-range dependencies. In
contrast, our Steformer benefits from the ability of capturing
cross-view and long-range information, thus producing images
with less blurring artifacts. Note that we have difficulty in
obtaining the results of SSRDE-FNet [8] since it needs a very
large amount of graphics memory coming from the influence
of the enormous structure in the network, e.g. processing a
real-world stereo image pair with a size of 640K requires
more than 40GB graphics memory, which also proves that
it is difficult to apply in industry.

4) Benefits to disparity estimation: Stereo image SR task is
tightly associated with parallax estimation since the accurate
stereo correspondence effectively boosts the SR performance.
Therefore, we investigated the ability to find stereo correspon-

TABLE IV: Quantitative Comparison Results Achieved by
GwcNet [13] on ×4 SR Stereo Images. All These Metrics
were Averaged on the Test Set of the KITTI2012 Dataset
[12].

Method EPE ↓ >1px(%) ↓ >2px(%) ↓ >3px(%) ↓
RDN [51] 0.4832 8.02 2.52 1.37
RCAN [50] 0.4820 7.90 2.50 1.40
SwinIR [21] 0.4763 7.73 2.44 1.35
iPASSR [42] 0.4673 7.36 2.36 1.31
SSRDE-FNet [8] 0.4556 7.09 2.26 1.24
Steformer (ours) 0.4584 7.17 2.29 1.28
Steformer L (ours) 0.4553 7.02 2.25 1.25
HR 0.3460 4.55 1.42 0.78

dence by performing disparity estimation on super-resolved
stereo image pair. We performed downsampling to obtain
low-resolution images on the KITTI2012 test set. Then,
we used the state-of-art stereo SR methods to obtain super-
resolved images, and performed parallax estimation [13] on
the obtained SR images. We calculated the end-point-error
(EPE) and t-pixel error (>t pixel) rate to compare the dis-
parity performance. Lower EPE and t-pixel error mean better
performance. As shown in Table IV, the standard Steformer
results are slightly inferior to SSRDE-FNet [8]. That is be-
cause SSFDE-FNet [8] was specifically designed for parallax
estimation and has twice the number of parameters as standard
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EDSR RCAN SwinIR StereoSR SRRes+SAMRDN

CPASSR iPASSR SSRDE-FNet Steformer(ours) GroundtruthBSSRnet

Fig. 5: Visual comparisons for ×4 SR by different methods on the KITTI2015 and Middlebury datasets. The yellow rectangle
marks zoom-in region.

Steformer. For additional comparison, we also train a large-
scale network, namely Steformer L, in which the number of
RCSBs and RSBs in each module were set to 5 and 3. Our
large Steformer with a comparable amount of parameters (i.e.
2.25M) has a superior performance. The visual comparison in
Fig. 7 demonstrates that Steformer has more accurate disparity
estimation performance and closer results to groundtruth.

5) Steformer’s ability to obtain long-range dependencies :
To demonstrate that Transformer-based Steformer can extract
long-range dependencies across two-view images, we visualize
the attention map AR→L (Fig. 3 (c)). As shown in Fig. 8, a

higher score indicates a stronger correlation. The visual atten-
tion map where distant locations are attended to demonstrates
that the cross-attentive feature extraction module can extract
long-range information.

D. Ablation study

In this section, we investigate the effectiveness and necessity
of our method in terms of RCSB, RSB, and C2IAM. All
the ablation experiments were conducted on the ×4 stereo
image SR task on the KITTI2012 [12] dataset. The results
are shown in Table V.
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Bicubic RCAN iPASSR Steformer(ours)SwinIRRDN

Bicubic RCAN SwinIR iPASSR Steformer(ours)RDN

Bicubic RCAN SwinIR iPASSR Steformer(ours)RDN

Fig. 6: Visual comparisons for ×4 SR by different methods on real-captured images.

EDSR RDN iPASSR

Steformer(ours) GroundtruthSSRDE-FNet

KITTI_test_139_left

Steformer_L(ours)KITTI_test_139_right

SwinIR

Fig. 7: Visual disparity comparisons for ×4 SR by different
methods.

Fig. 8: The visual attention map about AR→L, a higher score
indicates a stronger correlation.

RCSBs are used in our Sterformer for both feature extrac-
tion and image reconstruction. Firstly, we replaced RCSBs
with the same number of Resblocks in feature extraction and
image reconstruction modules respectively. Using Resblocks
as the network backbone suffers a decrease of 0.07 dB and
0.16 dB in average PSNR respectively compared to using
RCSBs. Then, to further exploit the effectiveness of our

TABLE V: Ablation Studies on KITTI2012 [12] for ×4 SR.

Method #Params. PSNR SSIM

Steformer 1.34M 26.70 0.8098
w/o RCSBs in feature extraction 1.10M 26.63 0.8080
w/o RCSBs in reconstruction 1.10M 26.54 0.8044
w/o MDIA in RCSBs 1.34M 26.61 0.8075
w/o RSBs in reconstruction 1.23M 26.61 0.8068
w/o C2IAM 1.22M 26.52 0.8037

proposed MDIA in the cross Steformer layer, we replaced the
stereo image pair (L, R) with the monocular image pair (L,
L) or (R, R). With the equal quantity of parameters, there is
a 0.09 dB PSNR reduction. We argue that the cross attention
mechanism can treat different channels discriminatingly with
learnable weight, which can improve the feature extraction and
characterization capabilities of our method. Next, to exploit
the effectiveness of RSBs in the reconstruction module, we
replaced the RSBs with the same number of Resblocks.
Results in Table V demonstrate that Transformer-based RSBs
can effectively fuse single-view features to improve global
performance. Finally, we replaced the C2IAM with biPAM
proposed in [42] and ensured the parameters were similar to
our Steformer. When adopting C2IAM, the PSNR value is
improved from 26.52 dB to 26.70 dB. A similar phenomenon
also appears on the SSIM metric. The ablation experiments
demonstrate that our proposed modules are effective on the
stereo image SR task.

V. DISCUSSION

Since super-resolution reconstruction is an ill-posed inverse
process, the super-resolution methods have difficulty in re-
constructing the details of the image and are prone to the
problem of lack of hierarchy in the reconstructed image as well
as artifacts in the recovery of detailed textures. Some of the
earlier stereo image SR methods even have worse performance
than SISR methods, as the rich local feature layer information
within the original low-resolution image is not fully exploited.
This has prompted this study to focus on making full use of
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the intra-image information, like our proposed RSB. The lack
of hierarchical information in the image is mainly reflected
in the confused depth information of the reconstructed SR
image, which also generates the visual discomfort of the
result. Parallax is closely related to depth, as objects with
a larger depth of field will have larger parallax, and depth
can be estimated based on the disparity fields [38]. Therefore,
accurate parallax estimation by the stereo image SR method
can alleviate the lack of hierarchy in the reconstructed image
content. As shown in Table IV and Figure 7, our Steformer can
better estimate the disparity between the left and right views
than other stereo image SR methods, which demonstrates that
our model can produce more visually comfortable SR results.

There is room for improvements in present research. First,
since Steformer is trained on x2 or x4 SR tasks respectively,
the model is only suitable for one specific resolution. It would
be interesting to extend the current model to handle arbitrary
resolutions. Second, Better disparity estimation algorithms
should be studied since the correlation of the corresponding
positions of the left and right view images and the fusion of
information are vital to stereo image SR. Finally, the domain
gap across different datasets has hindered the generalizability
of existing methods. Due to the significant differences in
scene types and styles contained in different stereo image
datasets, existing stereo image SR methods only achieve
superior performance on a few datasets. Future research can
focus on exploring the generalization performance of super-
resolution algorithms on different types of stereo datasets and
solving the domain gap problem.

VI. CONCLUSION

In this paper, we proposed a Transformer based stereo image
super-resolution model, Steformer, which is computationally
efficient to handle high-resolution images and conquers the
limitation of CNNs in capturing long-range dependencies. We
introduced key designs to the core components of Steformer
for improved feature aggregation and transformation. Specifi-
cally, the cross attentive feature extraction module employs
residual cross Steformer blocks (RCSB) with multi-Dconv
interactive attention (MDIA) layers for long-range cross-view
information extraction, alleviating the problem of significant
disparity variation. Then, cross-to-intra information integration
module utilizes parallax-attention and interactive-attention to
capture cross-view and intra-view information respectively,
providing comprehensive features for high-quality image re-
construction. Finally, the high quality image reconstruction
module utilizes residual Steformer blocks (RSB) for feature
pre-processing, and RCSBs for cross-view information in-
corporation, thus reconstructing high-quality stereo images
jointly.
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