Risk Management for Mitigating Benchmark Failure Modes: BenchRisk

Sean McGregor, \$^{1,2,*}\$ Victor Lu, \$^{3,\dagger}\$ Vassil Tashev, \$^{3,\dagger}\$ Armstrong Foundjem, \$^{4,\ddagger}\$ Aishwarya Ramasethu, \$^{5,\ddagger}\$ Mahdi Kazemi, \$^{10,\ddagger}\$ Chris Knotz, \$^{3,\ddagger}\$ Kongtao Chen, \$^{6,\ddagger}\$ Alicia Parrish, \$^{7,\circ}\$ Anka Reuel, \$^{8,\P}\$ Heather Frase \$^{9,2,\P}\$

¹AI Verification and Evaluation Research Institute, ²Responsible AI Collaborative, ³Independent, ⁴Polytechnique Montreal, ⁵Prediction Guard, ⁶Google, ⁷Google Deepmind, ⁸Stanford University, ⁹Veraitech, ¹⁰University of Houston

Contribution equivalence classes $(*, \dagger, \ddagger, \circ, \P)$ detailed in acknowledgments

Abstract

Large language model (LLM) benchmarks inform LLM use decisions (e.g., "is this LLM safe to deploy for my use case and context?"). However, benchmarks may be rendered unreliable by various failure modes that impact benchmark bias, variance, coverage, or people's capacity to understand benchmark evidence. Using the National Institute of Standards and Technology's risk management process as a foundation, this research iteratively analyzed 26 popular benchmarks, identifying 57 potential failure modes and 196 corresponding mitigation strategies. The mitigations reduce failure likelihood and/or severity, providing a frame for evaluating "benchmark risk," which is scored to provide a metaevaluation benchmark: BenchRisk. Higher scores indicate that benchmark users are less likely to reach an incorrect or unsupported conclusion about an LLM. All 26 scored benchmarks present significant risk within one or more of the five scored dimensions (comprehensiveness, intelligibility, consistency, correctness, and longevity), which points to important open research directions for the field of LLM benchmarking. The BenchRisk workflow allows for comparison between benchmarks; as an open-source tool, it also facilitates the identification and sharing of risks and their mitigations.

1 Introduction

Benchmarks have played a central role in the rapid advancement of large language models (LLMs), both in terms of driving their capabilities and capturing their risks (Srivastava et al. [2023]). Now with a wealth of new use cases supported by general-purpose models, LLM benchmark authors are proposing to evidence safety and regulatory decisions (e.g., ML Commons [2024], Guldimann et al. [2025], Zeng et al. [2024]). However, users are hesitant to rely on current benchmarks for real-world decisions (Hardy et al. [2025]), including those presented by frontier model release documentation (Röttger et al. [2024], Bommasani et al. [2024]). Skepticism of benchmark use outside the research and development communities is well-founded. Previous research has identified broad types of benchmark deficiencies, as outlined in Section 2. This work treats benchmark deficiencies as a tool for benchmarking benchmark reliability. Through an iterative process analyzing 26 benchmarks, we collected and classified 57 LLM benchmark failure modes (Definition 1) with a corresponding set of 196 mitigations. Proceeding within the context of a risk management framework, we produced a benchmark reliability benchmark to 1) help benchmark users know when they should avoid relying on a benchmark, 2) assist benchmark authors in prioritizing failure mode mitigations, 3) motivate

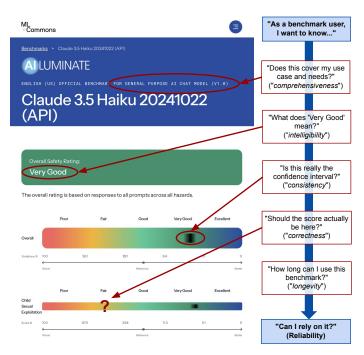


Figure 1: The five dimensions of benchmark reliability (comprehensiveness, intelligibility, consistency, correctness, and longevity) mapped to a user's decision-making process. The questions illustrate how a user determines overall reliability ("Can I rely on it?") from an interface like AILuminate (ML Commons [2024]).

additional research in making benchmarks more reliable, 4) support the comparison of different benchmarks according to their reliability.

Definition 1: Benchmark Failure Mode

The way in which a benchmark could potentially provide the user with faulty real-world decision-making information. *Adapted from National Security Agency* [2015] and Rausand and Høyland [2004].

Users who rely on benchmarks that exhibit failure modes (e.g., by making a decision about what is a "safe" use case for a specific model) may arrive at unsupported or erroneous deployment decisions, potentially leading to real-world harm. Although benchmarks may serve an important informational purpose for understanding and comparing LLMs, benchmark users lack a means of understanding the reliability of benchmarks without dedicating considerable time and resources to evaluating each benchmark. The aim of this paper is to close this gap.

The framework for benchmark reliability is based on the evaluation of failure risk. For users, it is difficult to understand how failure modes may render a benchmark unreliable (see Figure 1). For benchmark developers, it is similarly difficult to identify and prioritize risks posed by different benchmark design, development, and operational decisions and select mitigation strategies that balance risks and benefits. Just as the only way to ensure an airplane doesn't crash is to never leave the ground, the only benchmark that is always 100 percent reliable is one that is never used. Assessing benchmark reliability requires a means to reason about priorities and allocating resources accordingly. Risk management processes enable structured reasoning for such a triage process. To address the multiplicity of benchmark failures, we take inspiration from the reliability engineering community, which explicitly models failures of both the technology (e.g., a plane) and the human factors (e.g., its pilot) to estimate risk.

We are concerned with measuring and reporting on the questions of Figure 2 for benchmark users and for providing a means of efficiently aligning benchmark development to minimize risks implied by those questions. A benchmark that a user does not understand is not reliable for that user,

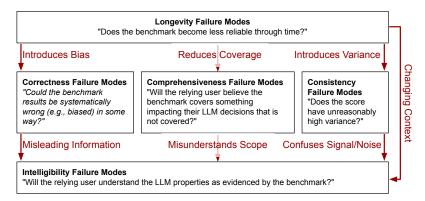


Figure 2: Assessed reliability dimensions and their relationships. Longevity failures degrade a benchmark over time, impacting correctness, comprehensiveness, and consistency. These properties, in turn, are foundational to a user's ability to understand the results (intelligibility).

which places benchmark and documentation "intelligibility" downstream from bias, variance, and coverage properties. These properties degrade through time (e.g., when developers train to the evaluation set). The user-centered dimensions and their relationship to concepts found within the research communities of reliability engineering, information security, and statistical validity are further explored in Section 2.

We note that many benchmarks are not produced for the purpose of evidencing real-world decisions. These benchmarks can still be groundbreaking for scientific and optimization purposes, but we show how they could be changed to support real-world decision-making. Regardless of benchmark author intent, benchmarks are often reported for commercial products (Röttger et al. [2024]).

In this paper, we're estimating benchmark reliability risks by combining the efforts of benchmark validity research (e.g., Wallach et al. [2025]) with interventions from reliability engineering and information security risk management (e.g., National Institute of Standards and Technology [2012]). Processing each benchmark's publicly available documentation in turn, we captured failure modes risking benchmark reliability.

Definition 2: Benchmark Reliability

The ability for a benchmark to inform real-world decision-making in a stated operating context for a specified amount of time and with no failures.

We scored the failure modes based on expert estimates of their severity and identified potential mitigations. Similarly, we used expert judgment to estimate each mitigation's reduction in risk severity or likelihood. Going forward, these estimates will be subject to a dynamic community-driven adjustment process to update and improve the scores over time. A higher score in our framework indicates that the scored benchmark mitigates more risk and thus may be more reliable for evidencing real-world decision-making. We followed an iterative process (see Appendix B) of reading benchmark documentation for 26 benchmarks to produce a list of 57 failure modes and 196 mitigations.

The contributions of this work are as follows:

- 1) We present a risk management process for designing more reliable benchmarks.
- 2) We score 26 benchmarks to identify the state of practice of reliable benchmarking: **BenchRisk**
- 3) We provide a means for benchmark authors to update scores and submit additional benchmarks by revealing additional details not apparent to outside assessment
- 4) We publish all the materials associated with this process (see https://benchrisk.ai/)
- 5) We provide infrastructure, including a publicly accessible GitHub repository (BenchRisk Team [2024]), to establish a community-driven consensus process to identify, share, mitigate, and score benchmarks according to their reliability properties.

Mitigations increasing benchmark reliability may reduce the benchmark's scientific utility. For example, a benchmark that is downloadable by researchers may advance the state of the art in LLM capabilities more quickly than a benchmark that is more private for the purpose of protecting its longevity. Therefore, we do not believe that all benchmarks should be reformed per our mitigations, but those that seek to inform real-world decisions should seek to mitigate the failure modes we identify.

2 Related work

AI safety benchmarks are being used to influence decision making (Röttger et al. [2024], Bommasani et al. [2024]), but the reliability of these benchmarks is being called into question, for example as a result of developers training (intentionally or inadvertently) on test data (Li et al. [2024], Magar and Schwartz [2022], Zhou et al. [2023], Balloccu et al. [2024]), unclear benchmark scope (Raji et al. [2021]), application of benchmarks contrary to their published purposes, etc. (see, e.g., Liao and Xiao [2023], McIntosh et al. [2024], Banerjee et al. [2024], Roose [2024], Hardy et al. [2025], Keegan [2024], Anthropic [2024]).

Towards improving the scientific reliability of LLM benchmarks, a variety of recent studies examined the gaps in benchmark quality giving rise to these issues. BetterBench from Reuel et al. [2024] focused on how well a benchmark was designed, implemented, documented and how well it will be maintained. BetterBench adopts the definition of Raji et al. [2021] for "benchmark," which calls benchmarks "...a particular combination of a dataset or sets of datasets (at least test data, sometimes also training data), and a metric, conceptualized as representing one or more specific tasks or sets of abilities, picked up by a community of researchers as a shared framework for the comparison of methods." BenchRisk changes the bolded text to "consumed by users to inform their decision making." The modification substantially expands the responsibilities of benchmark authors to examine how reliably a benchmark informs a decision maker of model properties of interest.

The definitions differ on who's using the benchmark (researcher vs. end-user) as much as it does on the purpose (measuring scientific progress vs. supporting decision making). For a researcher to progress the science of training LLMs, their chosen benchmarks must be well documented and widely shared so advances in the state of the art will be comparable. Instance-level data availability inform where the model might be improved through either model architecture or training set changes. However, while sharing supports transparency and replicability it also increases the contamination risk of future systems under test ("SUTs", i.e., the system being benchmarked), resulting in a gap between benchmark scores and actual capabilities (Haimes et al. [2024]). Still, the objectives of measuring research progress and supporting real-world decision making are only partially in tension. The audience and aim of researchers diverge in the BenchRisk dimension scoring temporal failure modes related to the longevity of the benchmark, but they are aligned in the other four of Figure 2.

Benchmark reliability for each of the dimensions (comprehensiveness, intelligibility, consistency, correctness, and longevity, see Figures 1 and 2) can be enhanced by the adoption of best practices introduced in other works (e.g., Reuel et al. [2024], Cao et al. [2025]). These works identify what should be done, but the risks these best practices are addressing remain informal without quantifying risk in terms of likelihood (Definition 3) and severity (Definition 4). Such a framing is required for understanding real-world, use-case specific risks to benchmark reliability and for triaging and prioritizing corresponding risk mitigation efforts.

Definition 3: Likelihood.

A factor based on a subjective estimate of the probability that a given failure mode will materialize and impact reliability. *Adapted from National Security Agency [2015] and Rausand and Høyland [2004]*)

Definition 4: Severity

An assessment of the relative consequence of mitigating/remediating the failure mode. Adapted from National Institute of Standards and Technology [2012]

Table 1: The severity rankings with descriptions. These are adapted from United States of America Department of Defense [2012], which establish four levels of severity.

Severity	Interpretation
<= 1.00	catastrophic: Could result in the immediate irreversible full loss of utility of the benchmark
< 0.75	<i>critical</i> : Could result in significant reduction in a benchmark's comprehensiveness, intelligibility, consistency, correctness, or longevity.
< 0.50	degraded: Could result in moderate reduction in a benchmark's comprehensiveness, intelligibility, consistency, correctness, or longevity.
< 0.25	<i>marginally degraded</i> : Could result in minor reduction in at least one benchmark dimension of comprehensiveness, intelligibility, consistency, correctness, or longevity.

The reliability analysis frame extends beyond statistical consistency to encompass broader systemic considerations (see: Rausand and Høyland [2004], McLinn [2011]). In safety-critical domains like aviation, reliability is not defined by singular outcomes but by the capacity of a system to prevent harm under uncertain and evolving conditions. For example, while pilot error is often cited as a cause of accidents, safety engineering instead seeks to trace such failures to latent factors – design flaws, inadequate training, or insufficient warning systems – underscoring the importance of systems that anticipate and mitigate foreseeable risks. In the context of AI, and particularly in the use of LLM benchmarks, similar principles apply. Misleading or incomplete benchmark results can lead to inappropriate deployment decisions, with serious downstream consequences. However, benchmark quality is often treated narrowly, focused on reproducibility or statistical rigor alone. This underappreciates the complexity of how benchmark evidence is generated, interpreted, and applied. BenchRisk expands the scope of reliability to include dimensions such as comprehensiveness, intelligibility, and longevity – reflecting the need for benchmarks to actively mitigate risks of misinterpretation or misuse.

3 Risk Assessment with BenchRisk

Risk assessment is a process that determines possible failure modes, along with their likelihood and consequences (Rausand and Haugen [2020]). Such assessments help decision makers develop mitigations and formulate response priorities. They are used as a tool across sectors (e.g., International Organization for Standardization [2018]) to elicit in-house severity and likelihood values for identified risks, which can then be used to score the total risk faced by an organization. Such analyses are established in the context of NIST information security practices, but they have yet to be adopted for AI evaluation risks. Our work is aiming to bridge this gap by applying an external, structured means of risk scoring benchmarks as outside parties, from which the benchmark authors may subsequently engage in a consensus process to refine those scores (see Appendix A).

In adapting the NIST framework, BenchRisk replaces the "threats" of information security with the "failure modes" of reliability engineering. "Threats" implies the involvement of a threat actor (e.g., a company working to exploit a benchmark). "Failure mode" aligns with reliability engineering and doesn't presume the existence of a threat actor. Each failure mode represents a condition under which a user might misinterpret benchmark results, potentially leading to unsupported or harmful conclusions about an LLM's fitness for a given application context. Benchmarks receive higher BenchRisk scores when they demonstrate strong, targeted mitigations to such failure modes.

Established information security practices (National Institute of Standards and Technology [2012]) require explicitly specifying the purpose, scope, assumptions, information sources, and analysis models. A corresponding specification for BenchRisk can be found in Appendix B.

For the purpose of BenchRisk, we differentiate severities according to the levels of Table 1. This approach for severity rankings is a common risk assessment process across sectors and is found in systems reliability theory (Rausand and Høyland [2004]), information security (National Institute of Standards and Technology [2012]), and for natural disasters (Caldera and Wirasinghe [2021])

Risk assessors do not define a likelihood function in the statistical sense. Rather, they assign a likelihood score (or risk level) based on available evidence, expert judgment, and professional experience.

For BenchRisk, all failure modes are assigned an initial likelihood of 1.0. The assumed starting likelihood takes a worst case viewpoint; the likelihood may be reduced for each benchmark, depending on mitigations implemented by benchmark authors (see Algorithm 1). Benchmark authors can then score points by mitigating severity or likelihood, which jointly determine "risk."

Definition 5: Risk to Benchmark Reliability

A composite measure of a failure mode's probability of occurring and the magnitude or degree of the consequences of the corresponding failure. Adapted from National Institute of Standards and Technology [2024]). BenchRisk expresses risk as (severity * likelihood), as is commonplace in risk management.

Definition 6: Risk Mitigation

Accepting, avoiding, reducing, sharing, or transferring risk. From Raji et al. [2021].

Mitigations reduce either the failure mode severity, the failure mode likelihood, or both. The risk reduction is aggregated for each reliability dimension for each benchmark, which is shown as the BenchRisk score. Stated formally, let d be a reliability dimension within the set of reliability dimensions defined in Figure 2. A dimension d is degraded by failure mode f in the set of failure modes F_d . Each failure mode has a severity $f_s \in [0,1]$ and an associated likelihood f_l of 1.0 prior to any mitigation(s) implemented. Mitigation m is among the set of possible mitigations $M_{d,f}$ to failure mode f and it reduces a failure mode's likelihood by m_l and severity by m_s . Each mitigation stacks, such that if each of two mitigations reduces a failure mode's likelihood by 0.5, the resulting likelihood is 0.25. The calculation for BenchRisk is now given in Algorithm 1 and several example calculations are given in Figure 3.

Algorithm 1 BenchRisk for dimension d

```
1: Initialize F_d \leftarrow [\{ \text{ failure modes to dimension d } \}]
 2: Initialize M_d \leftarrow [\{ \text{ adopted mitigations to } F_d \}]
 3: Initialize score \leftarrow 0.0
 4: for all f \in F_d do
         likelihood \leftarrow 1.0
 5:
         severity \leftarrow f_s
 6:
 7:
         for all m \in M_{d,f} do
 8:
              likelihood \leftarrow likelihood - likelihood \times m_l
 9:
              severity \leftarrow severity - severity \times m_s
10:
         score \leftarrow score + |(likelihood \times severity) - (f_l \times f_s)|
11:
12: end for
13: return score
```

We seeded BenchRisk iteratively, from the ground up, by processing a series of benchmark research papers and their supporting documentation. We selected benchmarks to score from the BetterBench list of models along with several arbitrarily chosen by co-authors based on professional interest. At each iteration, new failure modes and mitigations were identified, added, and scored across the growing collection of benchmarks. All scores presented within this work were subject to a primary and secondary reviewer, who discussed and eventually reached agreement on the appropriateness of affirming a mitigation given publicly known information about each benchmark. Reaching agreement sometimes involved clarifying descriptions of failure modes and their mitigations, which were captured and applied for all scores. The complete set of risks and mitigations are available via appendices A and B along with additional resources detailing the initial set of failure modes and mitigations.

Failure Mode #46 (Longevity): Developers can run the benchmark an unlimited number of times

(Severity 0.8)*(Likelihood 1.0) = 0.8 Points

Failure Mode #25 (Correctness): Developers place evaluator or other test ground truth within system chain (Severity 0.9)*(Likelihood 1.0) = 0.9 Points

Mitigation #67: Do you restrict or avoid evaluation on demand to preserve benchmark integrity?

No Yes

WinoGrande

0.0 Points

0.6 Points

Severity Mitigation: 0.0
Likelihood Mitigation: 0.7
Risk Reduction by Mitigation:
|(1.0 - 0.7)*(0.8 - 0.0) - (1.0 * 0.8)| = ~0.6

the evaluator or ground truth publicly available?

WinoGrande AlLuminate-1.0

Mitigation #28: Do you refrain from making

WinoGrande 0.0 Points 0.7 Points

Mitigation #93: Is the evaluator strictly algorithmic (i.e., applying a list of correct answers) with no legitimate reason to be embedded in the system-under-test (SUT) chain?

WinoGrande 0.8 Points 0.0 Points

Figure 3: Example risk reduction calculations for two benchmarks against two different failure modes. **Left (Longevity)**: AlLuminate-1.0 gains 0.6 points by applying Mitigation 67, which reduces the likelihood of Failure Mode 46. The "severity" of failure mode 46 is not reduced by mitigation 67 because severity and likelihood are considered separately. **Right (Correctness)**: WinoGrande and AlLuminate-1.0 apply different mitigations for Failure Mode 25, earning 0.8 and 0.7 points respectively. Additional failure modes and mitigations are available at *BenchRisk.ai*

After applying BenchRisk, five co-authors not including the most frequent secondary reviewer separately scored the BBQ benchmark. 117 of the mitigations were scored consistently between the five reviewers, while 33 and 46 had one or two disagreements, respectively. This produced a Fleiss' kappa of 0.53 (moderate agreement). A review of disagreements showed they most commonly arose either from a reviewer error or disagreements over subjective assessments. These failure modes are less likely when a benchmark self-scores since they have the benefit of deep knowledge about their benchmark, including non-public details.

We scored each of the 26 benchmarks using their publicly available materials. Each benchmark extended the failure mode and mitigation list. However, we did not extend the failure modes for three benchmarks (see Figure 4), which we assessed to test BenchRiskcoverage. These benchmarks involved simulators at evaluation time and similar benchmark variations requiring additional examination. For another three of the benchmarks (annotated in Table 4), the scores were entered by the benchmark authors and confirmed by BenchRisk authors. Future versions of BenchRisk will be updated to present the assertions of the benchmark authors directly affirming a mitigation has been applied and has not been invalidated through subsequent actions (e.g., sharing the data with a paying partner). We will not require benchmark authors to provide evidence of their practices – as maintainers of BenchRisk, we rely on the representations made by the benchmark authors. A research paper written by benchmark authors is not stronger evidence of a mitigation than the benchmark authors directly asserting the mitigation within the context of a risk assessment. We expect the release-time BenchRisk scores to be superseded by benchmark self-scores, as these can be more accurate than outside assessment.

4 Results and Discussion

The vast majority of benchmarks perform poorly in the **longevity** dimension, which we believe to result more from the goals of the benchmark authors than poor design decisions. Specifically, most of these benchmarks were produced by academic researchers who are strongly encouraged (e.g., by the NeurIPS Datasets & Benchmarks track), to publish data for reproducibility. The two outliers of AILuminate and ARC-AGI-Private are noteworthy because they do not seek to enable replication. First, the stated purpose of AILuminate includes evidencing real world decisions including

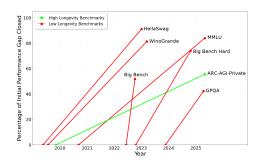
					~1	ess	
		الماد	rectnes	55 ne	asive.	Killin K	
		cevit;	ecting	Drein	isten	ligib	
Benchmarks	Lor	gevity	, Con	Conf	Inte	Higibility Mean	Min
* AILuminate	75	77	51	81	86	74	51
ARC-AGI-Private	52	76	44	62	69	61	44
WinoGrande	4	68	33	86	65	51	4
ARC-AGI-Public	9	69	44	62	63	49	9
HumanEval	6	71	47	82	40	49	6
Toxigen	10	52	34	82	66	49	10
* BBQ	0	66	51	81	47	49	0
BigBenchHard	28	53	24	65	44	43	24
GPQA	5	70	42	36	60	43	5
HellaSwag	5	43	59	68	34	42	5
BigBenchExtraHard	28	54	24	65	39	42	24
* MLC 0.5	21	34	48	36	66	41	21
HumanitysLastExam	11	41	52	37	61	40	11
DecodingTrustToxicity	5	34	57	57	48	40	5
MMLU	11	36	50	62	39	40	11
TruthfulQA	0	42	31	79	37	38	0
Ethics	0	48	47	47	43	37	0
BigBench	22	46	24	43	39	35	22
AIRBench	4	33	43	43	45	34	4
GSM8K	5	41	17	60	34	31	5
Machiavelli	0	22	31	65	37	31	0
AnthropicRedTeam	5	28	26	36	55	30	5
DecodingTrustPrivacy	0	38	42	21	39	28	0
BOLDBias	8	17	47	22	36	26	8
RealToxicityPrompts	0	12	59	20	35	25	0
Wordcraft	8	30	8	0	21	13	0

Figure 4: BenchRisk scores for 26 benchmarks normalized to 0–100, where no risk is mitigated at zero and all known risk is mitigated at 100. "*" indicates a BenchRisk author is among the authors of the scored benchmark. A strikethrough indicates benchmarks whose unique failure modes (e.g., simulator calibration) were deemed out of scope for the current failure mode list.

"deliver[ing] valuable insights to help enterprises deploy reliable systems that deliver business value" (ML Commons [2024]). There is no "business value" to a benchmark that is immediately saturated, which meant many of the BenchRisk longevity-related mitigations are business imperatives. For example, if the LLM-as-a-judge used for AILuminate is used by SUT developers (Failure Mode #025, "SUT developers place evaluator or other test ground truth within system chain"), then any system developer will immediately be able to score a perfect safety score by filtering all true and false safe outputs. Consequently, AILuminate adopted Mitigation 28 ("Do you refrain from making the evaluator or ground truth publicly available?") and scored highly on longevity.

The second-highest longevity benchmark, ARC-AGI-Private, was the basis for a series of competitions beginning in 2019. Competitions have distinctive practices motivated by making scores more robust to exploitation. For example, Failure Mode #015: "Prompts have known properties allowing for achieving an unrealistic (i.e., non-generalizing) performance..." has mitigation 145, "Do you avoid releasing the test set to SUT developers?" Competitions must adopt mitigation 145 to maintain competition integrity, thus they likely score highly for longevity. However, competitions often terminate on a definite timeline, so not all competition practices are consistent with benchmark longevity. All low-longevity benchmarks scored in BenchRisk would substantially increase their longevity by adopting more confidential practices.

Although we found few high-longevity benchmarks, we examined the relationship between BenchRisk longevity and how benchmark scores evolved through time. We selected all benchmarks that 1) report a human baseline performance (i.e., we found they reported mitigation 108 requiring a human baseline) (R0bk [2025]), and 2) are at least a year post-publication. We then found a pair of performance points for each of the remaining seven benchmarks. The first entry of the pair gives the top performance at release normalized to zero, while the second value represents the first SUT performance exceeding the human baseline. Both values are normalized so that the



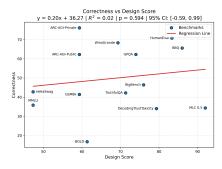


Figure 5: Exploring the properties of time-to-saturation and benchmark quality. **Left**: Time to saturation for selected benchmarks. The y-axis shows the percentage of the performance gap (between initial SOTA and a perfect score) that has been closed. 0% represents the SOTA at benchmark release; 100% represents a perfect score. Benchmarks with high BenchRisk longevity scores (green) show a slower saturation rate. **Right:** BenchRisk correctness (y-axis) and BetterBench design (x-axis) scores plotted with a regression line. The two features appear to be independent of one another.

minimum on the y-axis corresponds to the top performing SUT at the time of the benchark's release, and the maximum corresponds to a perfect score. ARC-AGI-Private presents comparatively little improvement between its release in 2019 and the middle of 2024 (See Chollet et al. [2025], Chollet [2024], Kamradt [2025] for an exploration of how the original ARC challenge has recently met its end). All the other benchmarks showed faster performance improvement, but the sample size is far too small to make conclusions. More high-longevity benchmarks are required before we can empirically build the case for BenchRisk's estimation of longevity.

We expected the longevity dimension of BenchRisk to be uncorrelated with BetterBench's measure of benchmark usability. At least one BetterBench question, "The evaluation data or generation mechanism is accessible" is in direct tension with several longevity failure modes. However, we found that BetterBench and BenchRisk may be independent of one another across all dimensions. We did not find any significant relationship between the two and provide an illustrative example in Figure 5, which shows that BetterBench's design score and BenchRisk's correctness scores are independent. The independence arises from measuring different things. BetterBench does not presume an adversarial relationship with SUT developers (correctness/longevity), less qualified users failing to read documentation (intelligibility), and safety-critical needs for a wide variety of contexts (comprehensiveness).

Poor performance on **correctness** is often associated with failure modes that may substantially bias the results in pernicious ways, such as using LLMs to produce benchmark data (Failure Mode #003: "Input prompt writers produce prompts with LLMs."). LLM-produced benchmark data *may* privilege or punish SUT scores (e.g., Panickssery et al. [2024]), but the impact is often unknown absent experimentation. Risks posed by such unknowns can be accounted for in risk management. We produced eight candidate mitigations for Failure Mode #003. While Mitigation 89 ("Are all prompts authored by the benchmark creators themselves, without using data vendors, LLMs, or crowd workers whose identities are unknown to the authors?") is rated to be the most effective and is true of some benchmarks (e.g., BBQ), most scored benchmarks use publicly available data that may be produced by an LLM (e.g., BOLD), use crowd workers that may use LLMs undisclosed to the benchmark authors (e.g., GPQA), or intentionally make use of LLMs (e.g., AILuminate, AirBench, ToxiGen). Authors may put into place Mitigation 4 ("Do you run a study on any SUT that may have been privileged during prompt generation, and compare its performance to SUTs not involved in prompt generation? If an unfair advantage is found, do you drop the LLM-generated instances?") to reduce the uncertainty.

The generality provided by LLMs challenges **Comprehensiveness** to be among the worst-performing dimensions across all benchmarks. Any benchmark could score highly on BenchRisk by limiting benchmark scope to match the coverage of the evaluation prompts. However, general-purpose models make complete coverage of their scope impossible, so benchmarks must provide statements scoping the space they rigorously cover. Failure mode #002, "The task is defined too broadly to achieve any reasonable degree of coverage over the use case," was unmitigated by 16 of the scored benchmarks.

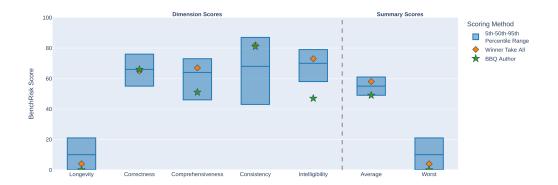


Figure 6: Agreement analysis of rater error. For each dimension, mitigations were sampled according to the probability that a single rater operating without a secondary reviewer would indicate the mitigation is present on the BBQ benchmark. We report the 5th, 50th, and 95th values of 100 Monte Carlo resamplings and a deterministic winner-take-all independent vote among the 5 raters. The winner-take-all measure shows the consensus is generally closer to the findings of the BBQ benchmark author.

Among the best performing dimensions is **consistency**, which is generally made more reliable by sampling adequate prompts within the covered space to ensure the variance of the score is adequately small. For example, Failure Mode #31 "Evaluator(s) perform poorly across all SUTs" was mitigated by all but eight of the benchmarks by mitigations 55, 98, and/or 156. 55 provides for optimizing the evaluator (e.g., LLM-as-a-judge) until it is measured to perform adequately, while mitigations 98 and 156 force benchmark requirements to make evaluation easier (e.g., requiring a bit-exact solution). If these mitigations are not in place, then the evaluator model introduces error into the benchmark estimate, and the relying user will not know whether the measured property is a probabilistic artifact.

Finally, **intelligibility** scores are moderate due to documentation practices that generally serve the research community well, but neither document nor disclaim benchmarks for real-world decision making. So while many benchmarks scored points mitigating Failure Mode #36 "Presentation without uncertainty or confidence of the scores," only AILuminate scored points for Mitigation 75, "Do you perform design studies with potential users to understand presentation requirements for benchmark outputs?" for Failure Mode #038 "User does not understand visual representation of scores."

While the other dimensions showed agreement between BenchRisk authors and a BBQ author, the intelligibility dimension presented a stronger disagreement as shown by Table 6. We believe this disparity points to a need for greater efforts to refine documentation and criteria for mitigations defined on what is communicated about the benchmarks.

5 Conclusion

Benchmark reliability risk evolves through time with advancing technology, science, and society. As such, the repository hosting this paper includes a collection of issue templates for publicly submitting new failure modes, mitigations, and suggested amendments to these BenchRisk components. After discussion and acceptance by the BenchRisk maintainers, amendments and additions will be announced and a new version of BenchRisk will become available for scoring.

The Anna Karenina principle (Diamond [1997]) holds success requires satisfying many conditions, while failure requires few conditions to be met. Risk management provides a means to reason about the multitude of benchmark reliability conditions and can advance the field towards greater reliability.

Acknowledgments The following people gave significant comments and contributions during the course of this work: Daniel Reichert, Paul Röttger, Jesse Hostetler, Rebecca Weiss, Peter Mattson, Kurt Bollacker, and Ryan Tovcimak. Thanks to Joy Braithwaite, whose discussions on applying reliability engineering methods to AI-systems informed this effort.

Author Contributions All authors gave considerable contributions to this work, but the character of their contributions varied. Authors marked with † assessed a large number of benchmarks and contributed to the dataset analysis. Authors marked with ‡ assessed benchmarks and contributed to the metaevaluation science of BenchRisk. Authors marked with o are benchmark authors that were scored early in the BenchRisk development process and provided early advice regarding failure modes and mitigations. Authors marked with ¶ made substantial contributions to the interdisciplinary collaboration represented by this work, including a unified approach and presentation covering information risk, reliability, and statistical validity practices. All authors are permitted to reorder their names within their equivalence classes.

References

- Anthropic. Challenges in evaluating AI systems anthropic.com. https://www.anthropic.com/research/evaluating-ai-systems, 2024. [Accessed 29-01-2025].
- Simone Balloccu, Patrícia Schmidtová, Mateusz Lango, and Ondřej Dušek. Leak, cheat, repeat: Data contamination and evaluation malpractices in closed-source LLMs. *arXiv preprint arXiv:2402.03927*, 2024.
- Sourav Banerjee, Ayushi Agarwal, and Eishkaran Singh. The vulnerability of language model benchmarks: Do they accurately reflect true LLM performance? *arXiv preprint arXiv:2412.03597*, 2024.
- BenchRisk Team. Benchrisk: A benchmark for risk analysis of large language models. https://github.com/BenchRisk/BenchRisk, 2024. Accessed: 2025-05-11.
- Rishi Bommasani, Kevin Klyman, Sayash Kapoor, Shayne Longpre, Betty Xiong, Nestor Maslej, and Percy Liang. The foundation model transparency index v1.1: May 2024. *arXiv preprint arXiv:2407.12929*, 2024.
- H. J. Caldera and S. C. Wirasinghe. A universal severity classification for natural disasters. *Natural Hazards*, 111:1533–1573, 2021. doi: 10.1007/s11069-021-05106-9.
- Jialun Cao, Yuk-Kit Chan, Zixuan Ling, Wenxuan Wang, Shuqing Li, Mingwei Liu, Ruixi Qiao, Yuting Han, Chaozheng Wang, Boxi Yu, Pinjia He, Shuai Wang, Zibin Zheng, Michael R. Lyu, and Shing-Chi Cheung. How should I build a benchmark? 2025. URL https://arxiv.org/abs/2501.10711.
- Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code. 2021. URL https://arxiv.org/abs/2107.03374.
- François Chollet. On the measure of intelligence. *arXiv preprint arXiv:1911.01547*, 2019. URL http://arxiv.org/abs/1911.01547v2. ARC-AGI Public (ARC 1).
- François Chollet. OpenAI o3 breakthrough high score on ARC-AGI-Pub, December 2024. URL https://arcprize.org/blog/oai-o3-pub-breakthrough. Published on December 20, 2024.

- François Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. ARC prize 2024: Technical report. arXiv preprint arXiv:2412.04604, January 2025. URL https://arxiv.org/abs/2412.04604.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. 2021. URL https://arxiv.org/ abs/2110.14168.
- Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya Krishna, Yada Pruksachatkun, Kai-Wei Chang, and Rahul Gupta. BOLD: Dataset and metrics for measuring biases in open-ended language generation. arXiv preprint arXiv:2101.11718, 2021. URL http://arxiv.org/abs/2101.11718.
- Jared Diamond. Guns, Germs, and Steel: The Fates of Human Societies. W.W. Norton & Company, New York, 1997. ISBN 0-393-03891-2.
- Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, Andy Jones, Sam Bowman, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Nelson Elhage, Sheer El-Showk, Stanislav Fort, Zac Hatfield-Dodds, Tom Henighan, Danny Hernandez, Tristan Hume, Josh Jacobson, Scott Johnston, Shauna Kravec, Catherine Olsson, Sam Ringer, Eli Tran-Johnson, Dario Amodei, Tom Brown, Nicholas Joseph, Sam McCandlish, Chris Olah, Jared Kaplan, and Jack Clark. Red teaming language models to reduce harms: Methods, scaling behaviors, and lessons learned. 2022. URL https://arxiv.org/abs/2209.07858.
- Samuel Gehman, Maarten Sap, Saadia Gabriel, Yejin Choi, and Noah A. Smith. RealToxicityPrompts: Evaluating neural toxic degeneration in language models. *arXiv preprint arXiv:2009.11462*, 2020. URL http://arxiv.org/abs/2009.11462v2.
- Philipp Guldimann, Alexander Spiridonov, Robin Staab, Nikola Jovanović, Mark Vero, Velko Vechev, Anna-Maria Gueorguieva, Mislav Balunović, Nikola Konstantinov, Pavol Bielik, Petar Tsankov, and Martin Vechev. COMPL-AI framework: A technical interpretation and LLM benchmarking suite for the EU artificial intelligence act. 2025. URL https://arxiv.org/abs/2410.07959.
- Jacob Haimes, Cenny Wenner, Kunvar Thaman, Vassil Tashev, Clement Neo, Esben Kran, and Jason Schreiber. Benchmark inflation: Revealing LLM performance gaps using retro-holdouts, 2024. URL https://arxiv.org/abs/2410.09247.
- Amelia Hardy, Anka Reuel, Kiana Jafari Meimandi, Lisa Soder, Allie Griffith, Dylan M Asmar, Sanmi Koyejo, Michael S Bernstein, and Mykel John Kochenderfer. More than marketing? On the information value of AI benchmarks for practitioners. In *Proceedings of the 30th International Conference on Intelligent User Interfaces*, pages 1032–1047, 2025.
- Thomas Hartvigsen, Saadia Gabriel, Maarten Sap, Hamid Palangi, Dipankar Ray, and Ece Kamar. Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detection. arXiv preprint arXiv:2203.09509, 2022. URL http://arxiv.org/abs/2203.09509v4.
- Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob Steinhardt. Aligning AI with shared human values. *arXiv preprint arXiv:2008.02275*, 2020a. URL http://arxiv.org/abs/2008.02275v6.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Liang, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020b. URL http://arxiv.org/abs/2009.03300v3.
- International Organization for Standardization. Risk management guidelines. Standard, International Organization for Standardization, Geneva, Switzerland, 2018. URL https://www.iso.org/standard/65694.html. Second edition.
- Minqi Jiang, Jelena Luketina, Nantas Nardelli, Pasquale Minervini, Philip H. S. Torr, Shimon Whiteson, and Tim Rocktäschel. Wordcraft: An environment for benchmarking commonsense agents. arXiv preprint arXiv:2007.09185, 2020. URL http://arxiv.org/abs/2007.09185v1.

- Greg Kamradt. Analyzing o3 and o4-mini with ARC-AGI, April 2025. URL https://arcprize.org/blog/analyzing-o3-with-arc-agi. Published on April 22, 2025.
- Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, Sanket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth Dikkala, Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay, Vinh Q. Tran, Quoc V. Le, and Orhan Firat. BIG-Bench extra hard. 2025. URL https://arxiv.org/abs/2502.19187.
- Jon Keegan. Everyone Is Judging AI by These Tests. But Experts Say They're Close to Meaningless The Markup themarkup.org. https://themarkup.org, 2024. [Accessed 29-01-2025].
- Yucheng Li, Frank Guerin, and Chenghua Lin. An open source data contamination report for large language models, 2024. URL https://arxiv.org/abs/2310.17589.
- Q Vera Liao and Ziang Xiao. Rethinking model evaluation as narrowing the socio-technical gap. arXiv preprint arXiv:2306.03100, 2023.
- Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.
- Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 157–165, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.18. URL https://aclanthology.org/2022.acl-short.18/.
- Timothy R McIntosh, Teo Susnjak, Nalin Arachchilage, Tong Liu, Paul Watters, and Malka N Halgamuge. Inadequacies of large language model benchmarks in the era of generative artificial intelligence. *arXiv preprint arXiv:2402.09880*, 2024.
- James McLinn. A short history of reliability. The Journal of Reliability Information, pages 8–15, 01 2011.
- ML Commons. AILuminate benchmark. https://ailuminate.mlcommons.org/benchmarks/, 2024. [Accessed 28-01-2025].
- National Institute of Standards and Technology. Guide for conducting risk assessments. NIST Special Publication 800-30 Revision 1, U.S. Department of Commerce, 2012. URL https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-30r1.pdf.
- National Institute of Standards and Technology. NIST artificial intelligence risk management framework. Technical Report NIST.AI.600-1, U.S. Department of Commerce, National Institute of Standards and Technology, 2024. URL https://nvlpubs.nist.gov/nistpubs/ai/NIST. AI.600-1.pdf. Accessed: 2024-11-20.
- National Security Agency. National information assurance glossary (CNSSI no. 4009). CNSSI 4009, Committee on National Security Systems, 2015. URL https://www.cnss.gov/CNSS/openDoc.cfm.
- Alexander Pan, Jun Shern Chan, Andy Zou, Nathaniel Li, Steven Basart, Thomas Woodside, Jonathan Ng, Hanlin Zhang, Scott Emmons, and Dan Hendrycks. Do the rewards justify the means? Measuring trade-offs between rewards and ethical behavior in the MACHIAVELLI benchmark. 2023. URL https://arxiv.org/abs/2304.03279.
- Arjun Panickssery, Samuel R. Bowman, and Shi Feng. LLM evaluators recognize and favor their own generations. In *Advances in Neural Information Processing Systems 37 (NeurIPS 2024)*, 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/7f1f0218e45f5414c79c0679633e47bc-Paper-Conference.pdf.
- Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Thompson, Phu Mon Htut, and Samuel R Bowman. BBQ: A hand-built bias benchmark for question answering. *Findings of the Association for Computational Linguistics*, 2022.

- Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra, Adam Khoja, Ryan Kim, Richard Ren, Jason Hausenloy, Oliver Zhang, Mantas Mazeika, ..., Anwith Telluri, Summer Yue, Alexandr Wang, and Dan Hendrycks. Humanity's last exam. 2025. URL https://arxiv.org/abs/2501.14249.
- R0bk. Killed by LLM. https://r0bk.github.io/killedbyllm/, 2025. Accessed: 2025-05-13.
- Inioluwa Deborah Raji, Emily M Bender, Amandalynne Paullada, Emily Denton, and Alex Hanna. AI and the everything in the whole wide world benchmark. *Advances in Neural Information Processing Systems*, 2021.
- M. Rausand and S. Haugen. *Risk Assessment: Theory, Methods, and Applications*. Statistics in Practice. Wiley, 2020. ISBN 9781119377238. URL https://books.google.com/books?id=4yrPDwAAQBAJ.
- Marvin Rausand and Arnljot Høyland. System Reliability Theory: Models, Statistical Methods and Applications. Wiley-Interscience, Hoboken, NJ, 2004.
- David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. GPQA: A graduate-level google-proof Q&A benchmark. *Conference on Language Modeling*, 2025.
- Anka Reuel, Amelia Hardy, Chandler Smith, Max Lamparth, Malcolm Hardy, and Mykel J Kochenderfer. Betterbench: Assessing AI benchmarks, uncovering issues, and establishing best practices. *Advances in Neural Information Processing Systems*, 2024.
- Kevin Roose. A.I. Has a Measurement Problem nytimes.com. https://www.nytimes.com/2024/04/15/technology/ai-models-measurement.html, 2024. [Accessed 29-01-2025].
- Paul Röttger, Fabio Pernisi, Bertie Vidgen, and Dirk Hovy. SafetyPrompts: A systematic review of open datasets for evaluating and improving large language model safety. *arXiv* preprint *arXiv*:2404.05399, 2024.
- Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: an adversarial winograd schema challenge at scale. *arXiv preprint arXiv:1907.10641*, 2019. URL http://arxiv.org/abs/1907.10641v2.
- Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, ..., Zijie J. Wang, Zirui Wang, and Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models, 2023. URL https://arxiv.org/abs/2206.04615.
- Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Jason Wei, Quoc V. Le, and Denny Zhou. Challenging BIG-Bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022. URL http://arxiv.org/abs/2210.09261v1.
- United States of America Department of Defense. Department of defense standard practice, system safety (mil-std-882e). *Department of Defence*, 2012.
- Bertie Vidgen, Adarsh Agrawal, Ahmed M. Ahmed, Victor Akinwande, Namir Al-Nuaimi, Najla Alfaraj, Elie Alhajjar, Lora Aroyo, Trupti Bavalatti, Max Bartolo, Borhane Blili-Hamelin, Kurt Bollacker, Rishi Bomassani, Marisa Ferrara Boston, Siméon Campos, Kal Chakra, Canyu Chen, Cody Coleman, Zacharie Delpierre Coudert, ..., Percy Liang, Peter Mattson, and Joaquin Vanschoren. Introducing v0.5 of the AI safety benchmark from MLCommons. 2024. URL https://arxiv.org/abs/2404.12241.
- Hanna Wallach, Meera Desai, A. Feder Cooper, Angelina Wang, Chad Atalla, Solon Barocas, Su Lin Blodgett, Alexandra Chouldechova, Emily Corvi, P. Alex Dow, Jean Garcia-Gathright, Alexandra Olteanu, Nicholas Pangakis, Stefanie Reed, Emily Sheng, Dan Vann, Jennifer Wortman Vaughan,

- Matthew Vogel, Hannah Washington, and Abigail Z. Jacobs. Position: Evaluating generative AI systems is a social science measurement challenge, 2025. URL https://arxiv.org/abs/2502.00561.
- Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and Bo Li. DecodingTrust: A comprehensive assessment of trustworthiness in GPT models, 2024. URL https://arxiv.org/abs/2306.11698.
- Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: can a machine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019. URL http://arxiv.org/abs/1905.07830v1.
- Yi Zeng, Yu Yang, Andy Zhou, Jeffrey Ziwei Tan, Yuheng Tu, Yifan Mai, Kevin Klyman, Minzhou Pan, Ruoxi Jia, Dawn Song, Percy Liang, and Bo Li. Air-bench 2024: A safety benchmark based on risk categories from regulations and policies. 2024. URL https://arxiv.org/abs/2407.17436.
- Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong Wen, and Jiawei Han. Don't make your LLM an evaluation benchmark cheater, 2023. URL https://arxiv.org/abs/2311.01964.

NeurIPS Paper Checklist

1) Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made, including the contributions made in the paper and important assumptions and limitations

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2) Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: One example, we indicate which benchmarks we scored that we believe are not an accurate reflection of the reliability of those benchmarks.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3) Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This is not a theory paper. We applied a method.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4) Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a full website containing all the data and definitions.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5) Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide a full website containing all the data and definitions.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6) Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide the qualitative coding information that determined all qualitative variables.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7) Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All statistical estimates have error bars or similar.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8) Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [NA]

Justification: We were not running models or experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9) Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have no violations inconsistent with the NeurIPS Code of Ethics as amended by the Datasets and Benchmarks track.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10) Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The greatest potential negative impact (a user relying on BenchRisk when BenchRisk is not reliable for their purpose) is discussed.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11) Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes]

Justification: Data about benchmarks poses little risk beyond a person potentially misinterpreting the results. We attempt to inform users about BenchRisk so they will not be misinformed about benchmarked benchmarks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12) Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Co-authors make no claims on the assets of the benchmarks we scored.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13) New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: See the website we created as a companion to the work.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14) Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects or crowdsourcing.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15) Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No human subjects research conducted.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16) Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

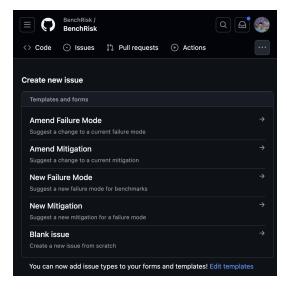
A Website

The community website (https://benchrisk.ai/) for BenchRisk includes the following.

- Detailed results for every scored benchmark. This provides a wealth of contextualized details regarding BenchRisk.
- 2) **Failure Mode Examples.** These help explain what each failure mode is and why you should care about them.
- 3) Failure mode submission processes. This details how new failure modes are added to BenchRisk. Anyone can submit failure modes and current BenchRisk maintainers process them.
- 4) **Mitigation submission process.** This details how new mitigations are added to BenchRisk. Anyone can submit failure modes and current BenchRisk maintainers process them.
- 5) **Severity and Mitigation Coding Guide.** This details how BenchRisk's qualitative choices were arrived at by committee decision.
- 6) **LLM Benchmark Production Stages.** This shows how the initial set of failure modes were produced by breaking benchmark production into steps and finding potential failure modes by detailing the activities involved in each step.
- Glossary. Definitions adopted for use in the production, maintenance, and application of BenchRisk.

To suggest amendments to BenchRisk as shown by Figure 7, log into GitHub and visit: https://github.com/BenchRisk/BenchRisk/issues/new/choose

Figure 7: A screen capture of the GitHub BenchRisk submission and amendment issue templates. This forum provides a space for BenchRisk and benchmark authors to discuss and score risks. Benchmark authors can follow the repository's announcements of accepted mitigations and failure modes and indicate whether their existing benchmarks conform to them.



B BenchRisk Iterative Development

BenchRisk Formalized within Information Security Practices. Established information security practices (National Institute of Standards and Technology [2012]) require explicitly specifying the following elements:

- 1) Identify the purpose [of the risk assessment]: to identify and mitigate failure modes presenting risks to the reliability of the LLM benchmark
- 2) **Identify the scope:** to identify: a) all failure modes likely to lead a person to make a false inference about the properties of an LLM along with b) failure-mode-specific mitigations.
- 3) **Identify the assumptions and constraints:** *the benchmark organization will faithfully indicate the properties of their benchmark program.*
- 4) Identify the sources of information to be used as inputs: public statements (when scored externally) and insider knowledge (when scored by benchmark authors) about the operations of the benchmarking organization and the properties of the benchmark.
- 5) Identify the risk model and analytic approaches (i.e., assessment and analysis approaches) to be employed [during the risk assessment]: Divide failure modes into dimensions relevant to users interpreting a benchmark's reliability. Score those failure modes by severity and their mitigations by their capacity to reduce severity and likelihood. Total mitigated risk and explore the resulting dataset.

BenchRisk was seeded prior to public contribution iteratively, from the ground up, by processing a series of benchmarks and research papers. At each iteration, new failure modes and mitigations were identified.

(1) ML Commons 0.5 - LLM Product Safety Benchmark

The first benchmark scored was also the inspiration for producing BenchRisk. Released in 2024, the ML Commons 0.5 safety benchmark (Vidgen et al. [2024]) was then a state of the art benchmark representing many best practices of the era, however, when producing the benchmark for real-world safety, the benchmark authors identified a collection of risks that would lead people to a false sense of safety. We therefore collected the list of what were then merely termed "issues" along with the "fixes" adopted, where possible.

(2) AILuminate (ML Commons 1.0) - LLM Product Safety Benchmark

The subsequent version of the ML Commons benchmark, "AILuminate" (ML Commons [2024]), then involved 100+ researchers and engineers working together to solve the failure modes identified during the production of ML Commons 0.5. Many additional failure modes were identified over the coming months and captured into BenchRisk regardless of whether mitigations were adopted or even identified.

(3) BBQ - Bias Benchmark

Having twice iterated BenchRisk within the ML Commons working groups, we then turned to scoring the BBQ bias benchmark (Parrish et al. [2022]). Differences in benchmark methodology highlighted where changes to failure mode descriptions were necessary for the sake of clarity and where new mitigations would need to be introduced consistent with BBQ practices.

(4) BetterBench - A benchmark quality benchmark

As a matter of literature review, we coded each of BetterBench's (Reuel et al. [2024]) questions according to whether they pertain to reliability (i.e., whether a user should rely on the benchmark for decision making) and/or scientific replication (i.e., whether a benchmark is of sufficient quality for a researcher to reproduce the benchmark results with a sampling of new data). Through this analysis, we identified five new design-related failure modes not identified previously within BenchRisk along

with 19 novel BetterBench best practices as mitigations to new and previously identified failure modes.

BetterBench also includes many mitigations required to facilitate the peer review process. Peer review is a mitigation capable of addressing many varied failure modes. Therefore we associated many of the best practices identified by BetterBench that facilitate peer review as addressing a catchall failure mode of "Benchmark production failed to account for an idiosyncratic failure mode." This makes peer review serve the function of "red teaming" the benchmark, which would tend to uncover novel failure modes.

(5,6) ARC-AGI - A benchmark for Artificial General Intelligence

Although inspired by the reliability requirements posed by safety benchmarks, we observed that those requirements could be extended to LLM benchmarking more broadly. Consequently, we did a test run of BenchRisk on the ARC AGI (Chollet et al. [2025]) benchmark, which measures skill acquisition efficiency as a proxy for artificial general intelligence. More interesting than its intended purpose, ARC AGI has two different versions. The public version presents as a benchmark, while a "private" (i.e., tightly controlled) version presents more as a competition. The existence of the competition version means few, if any, organizations report performance on the public dataset.

The ARC authors indicate (Chollet et al. [2025]) their 2024 competitors may have reached their scores by solving prompts that were solved by at least one model 4 years prior (i.e., 49 percent of prompts were solved by at least one model in 2020). The top 3 final scores in 2024 averaged 44.5 percent, which suggest progress has not exceeded the collective capacities of systems 5 years ago. However, in December of 2024 ARC and OpenAI announced highly publicized results for a newly produced dataset drawn from the same distribution as ARC-AGI-Private, which they label as "semi-private." An initial score of 88 percent was run with comparatively infinite inference-time compute budget. Since ARC challenge competitors had previously shown a relationship between solution search budget and performance, the OpenAI benchmark is not comparable to the earlier scores that operated with far less compute budget. When normalizing for compute budget, OpenAI produces an impressive but not revolutionary score of 53 percent. See Chollet [2024], Kamradt [2025] for details.

Further, the ARC authors speculate their benchmark has fallen to a new failure mode (Chollet et al. [2025]). Repeated competitions carried out over four years allowed for $\tilde{1}0,000$ benchmark evaluations. While this is not consistent with Failure Mode 46, "SUT developers can run the benchmark an unlimited number of times," 10,000 evaluations suggests, according to its authors, that ARC is now overfit. We have introduced a new candidate failure mode for addition to BenchRisk.

(7,8,9) TruthfulQA, AIRBench, GPQA - Other Benchmarks

Having scored 5 benchmarks and processed one research paper, the next three scored benchmarks (Lin et al. [2021], Zeng et al. [2024], Rein et al. [2025]) produced far fewer additions to the failure mode and mitigations registry. At this point, we were sufficiently confident to scale BenchRisk.

(9-26) Scaling - Many Additional Benchmarks

At this point we began processing many benchmarks in parallel from their publicly available documentation. We attempted to score several non-foundation model benchmarks at this point to test the boundaries of our failure mode list. While we found our definitions of failure mode concepts were robust to a broader class of LLMs, the number of additional candidate failure modes (e.g., for simulator failures) made it more expedient to leave those benchmarks to future work.

(?) Future and Meta-metaevaluation - Continuing improvement in response to the evolving science

When evaluating BenchRisk itself according to its own dimensions, we believe it would score highly on all dimensions except for its correctness due to the inevitable biases introduced by BenchRisk coauthors. Specifically, producing failure modes and their mitigations iteratively likely presents primacy biases because more time must be spent generating the initial failure mode and mitigation list. This introduces a variety of metaevaluation failure modes, including (1) a potential oversampling of failure modes for initial benchmarks, (2) greater coverage of initial mitigations, and (3) an under-sampling

¹ARC allows "semi-private" data to be run on servers the benchmark authors do not control, but ARC undertakes efforts to ensure the evaluation set is not logged or viewed by the SUT developers. It will provide at least one additional datapoint as time passes.

of failure modes for later benchmarks. We believe (1) and (2) will tend to bias BenchRisk in favor of early benchmarks, while (3) will tend to punish early benchmarks because we are less likely to identify failure modes placed out of scope by benchmark design choices (e.g., multimodal failure modes are not possible for non-multimodal benchmarks).

Until such time that benchmark authors have an opportunity to respond to BenchRisk scores by identifying mitigations not in evidence in their public documentation, the scores should be viewed as biased lower than what could be achieved through direct participation of the benchmark authors. However, this is how risk management processes proceed: you register risks then work to address them. When an LLM benchmark is meant to evidence real world decisions, we recommend its authors adopt a risk management approach and start with the list of failure modes detailed via Appendix A's resources.

C Scored Benchmarks

Benchmarks were scored from the following definitive research publications augmented by viewing publicly available information on websites and blogs where necessary.

Table 2: Benchmarks used in this study and their primary references.

Benchmark	Description — Primary citation					
AILuminate	MLCommons risk & reliability benchmark v1.0 — ML Commons [2024]					
AIRBench	Regulation-aligned AI-risk benchmark 2024 — Zeng et al. [2024]					
AnthropicRedTeam	Red-teaming prompts for harm reduction — Ganguli et al. [2022]					
ARC-AGI-Private	Private split of the ARC-AGI evaluation suite ² — Chollet [2019]					
ARC-AGI-Public	Original ARC intelligence measure (public split) — Chollet [2019]					
BBQ	Hand-built bias benchmark for QA — Parrish et al. [2022]					
Big Bench	General-purpose multitask evaluation suite — Srivastava et al. [2023]					
Big Bench Hard	Hard subset of BIG-Bench tasks — Suzgun et al. [2022]					
Big Bench Extra Hard	Extra-difficult subset of BIG-Bench — Kazemi et al. [2025]					
BOLD Bias	Open-ended generation bias dataset — Dhamala et al. [2021]					
DecodingTrustPrivacy	Training-set privacy slice of DecodingTrust — Wang et al. [2024]					
DecodingTrustToxicity	Trustworthiness suite (toxicity slice) — Wang et al. [2024]					
Ethics	Alignment with shared human-values corpus — Hendrycks et al. [2020a]					
GPQA	Graduate-level "Google-proof" QA dataset — Rein et al. [2025]					
GSM8K	Grade-school math word-problem set — Cobbe et al. [2021]					
HellaSwag	Commonsense sentence-completion challenge — Zellers et al. [2019]					
Humanity's Last Exam	Holistic AGI-oriented evaluation of LLMs — Phan et al. [2025]					
HumanEval	Function-level code-generation accuracy corpus — Chen et al. [2021]					
Machiavelli	Reward vs. ethical-behavior trade-off suite — Pan et al. [2023]					
MLC 0.5	MLCommons AI-Safety benchmark v0.5 — Vidgen et al. [2024]					
MMLU	Massive multitask language-understanding exam — Hendrycks et al. [2020b]					
RealToxicityPrompts	Prompt set for neural toxic-degeneration tests — Gehman et al. [2020]					
ToxiGen	Adversarial & implicit hate-speech detection dataset — Hartvigsen et al. [2022]					
TruthfulQA	Benchmark for truthful question-answering — Lin et al. [2021]					
WinoGrande	Large-scale adversarial Winograd-style coreference test — Sakaguchi et al. [2019]					
Wordcraft	Interactive story-writing environment — Jiang et al. [2020]					