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Abstract
A/B Testing or Randomized Control Trials (RCTs) are a keystone of

data-driven decision making. However RCT’s can be expensive to

implement and often need to be run for a long time to get credible es-

timates. This is especially problematic in online A/B testing, where

businesses often run thousands of such experiments in parallel. In

this context, large language models with their ability to generalize

across tasks might serve as useful proxies for real user behaviour.

In this work, we present a framework to leverage blackbox LLMs to

augment data from real A/B tests to estimate treatment effects. Our

method is guaranteed to reduce estimators asymptotic variance

irrespective of the LLM quality. We support our theoretical analysis

with experiments on multiple real datasets.

CCS Concepts
• Applied computing→ Electronic commerce;Marketing; •
Computing methodologies → Machine learning algorithms; •
General and reference→ Evaluation; Experimentation.
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1 Introduction
The increasing amount of digital content consumption has inten-

sified competition among businesses to capture and retain user

attention. In this landscape, optimizing content and user experience

is critical for driving engagement and achieving business objec-

tives. For instance, e-commerce platforms and streaming services

continuously experiment with personalized recommendations and

interface designs to enhance user satisfaction and retention [Li

et al., 2010]. Online bandit based approaches are also used [Larsen

et al., 2024] Schwartz et al. .

While randomized A/B tests remain the gold standard for evalu-

ating such interventions, this is inefficient for many media applica-

tions. This is because as news and trends have short lifetimes and

might become irrelevant by the time a standard A/B test finishes.

This problem is further aggravated due to significant democratiza-

tion of content creation, which has led to shorter feedback cycles

and increasing amount of content which needs to be experimented.
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As a simple numerical example, consider the clickthrough rates

(CTRs) for display ads. Consider algorithm A which leads to CTRs

of 0.5% and algorithm B with CTRs of 0.525%. A test with 90% p-

value and 80% power would require around 300k displays to assess

that B has a higher CTR than A.

In this context, large language models (LLMs) and other founda-

tion models can provide powerful tools for improving the efficiency

of these methods. LLMs have been demonstrated to have significant

potential for processing natural language text, following human

instructions and generating high-quality responses [OpenAI, 2024].

This has spurred their use in many applications such as tool learn-

ing [Qu et al., 2024] and information retrieval [Zhu et al., 2024b].

LLMs can also provide useful responses for evaluating content. For

example, Li et al. [2024] have investigated similarity between LLM-

generated perceptual maps and human survey responses produce

in car branding analysis. Their study shows a high agreement rate

of over 75%. Such methods can provide rapid, low-cost simulations

of user behavior and intervention outcomes. However, the relia-

bility of these experiments hinges on the accuracy of the model’s

predictions, which must faithfully match real-world user responses.

For example, a foundation model trained on user reviews may not

be very good at predicting news attractiveness. Improving align-

ment[Goli and Singh, 2024] and calibration [Xiong et al., 2023, Wei

et al., 2024] between AI-generated and real-world user behaviour

is an active area of research. This trade-off between cost-efficiency

and predictive validity underscores the need for robust method-

ologies that provide valid results while benefiting with integration

with such models.

Contribution. In this paper, we propose a framework that can in-

corporate ratings or other related responses provided by foundation

models on A/B tests along with real experimental data to provide

efficient estimates of treatment effects. Our proposed method can

handle domain shift between the foundation model and experimen-

tal data. Our method provides consistent estimators by leveraging

the ideas behind ’prediction-powered inference’ [Angelopoulos

et al., 2023a]. Empirical results on real A/B test datasets shows that

estimator is significantly more efficient than the standard estimator

using only experimental data.

2 Preliminaries
2.1 Notation
We are given a population of 𝑛 units. At each unit 𝑖 we have a treat-

ment assignment 𝑍𝑖 ∈= {0, 1} which represents whether the unit is

treated or not. We use the Neyman potential outcome framework

[Neyman, 1923, Rubin, 1974], and denote by 𝑌𝑖 (𝑧) the potential

outcome for each 𝑧 ∈ {0, 1}.
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Figure 1: We illustrate two datasets, one real and one obtain using in-silico simulation with LLM. Normally one estimates 𝜏 with
only real data. We develop a method to use the additional synthetic data to improve estimation. For this we learn an auxiliary
function ℎ which is optimized to minimize the variance of the estimator.

We will consider that the data has been obtained via randomized

design, each unit 𝑖 gets allotted the treatment 𝑧𝑖 = 1 independently

with probability 𝑝 ∈ (0, 1). For a website performing A/B tests on

visitors, this easy to implement, and satisfies standard randomiza-

tion and positivity assumption in causal inference.

The desired causal effect is the mean difference between the

outcomes when 𝑧𝑖 = 1∀𝑖 and when 𝑧𝑖 = 0∀𝑖 . Under the aforemen-

tioned notations, this causal effect is given by:

𝜏 =
1

𝑛

𝑛∑︁
𝑖=1

𝑌𝑖 (1) −
1

𝑛

𝑛∑︁
𝑖=1

𝑌𝑖 (0) (1)

A straightforward estimate of 𝜏 is

∑
𝑖
1

𝑛𝑌𝑖 (
𝑍𝑖
𝑝 −

1−𝑍𝑖
1−𝑝 ). This is

effectively just the mean outcome for the treated units minus the

mean outcome for untreated units, hence it is also called the DM es-

timate. While the above estimate is unbiased and consistent, usually

estimator is done via a regression model using additional covari-

ates available for the units. Let the covariates be denoted by 𝑋𝑖 , a

common model is the following ANCOVA model

𝑌𝑖 ∼ 𝛽0 + 𝛽𝑋𝑋𝑖 + 𝜏𝑍𝑖 + 𝜖.
If randomization is perfect, then the estimate 𝜏 is a consistent esti-

mate of the effect. Usually this method is preferred over DM because

of significantly reduced variance.

Another common method when dealing with outcomes like

click-through rates (CTRs) is to use logistic regression of the form

𝑌𝑖 ∼ 𝜎 (𝛽0 + 𝛽𝑋𝑋𝑖 + 𝜏𝑍𝑖 ) where sigma is the sigmoid function.

This also generalizes to a multi-category testing via a multinomial

logit model. In such cases the effect corresponds to the change in

log-odds of clicking.

General Estimation. The above mentioned models ( and many

others) can be written in terms of an optimization objective The

parameter of interest 𝜃∗ is usually defined as

𝜃★ = argmin

𝜃 ∈Θ
E[𝑙𝜃 (𝑋,𝑌 )], (2)

where for practical estimation, the expectation is replaced by em-

pirical mean. In the case of the ANCOVA model we have 𝑙 =

| |𝑌 − (𝛽0 + 𝛽𝑋𝑋 + 𝜏𝑍 ) | |2; whereas for logistic regression it is the

likelihood loss. We will assume that 𝑙 is a convex loss function so

that 𝜃∗ is unique and well defined. We will refer to gradients of a

function with respect to estimating parameters 𝜃 as ∇𝜃 𝑓 . When

clear in context we will skip the 𝜃 on the gradient operator for

notational convenience. However our framework also extends to

the general estimating equation approach, as described later.

As mentioned earlier, we want to use simulations or treatment

ratings by LLMs instead of conducting an actual test on users.

Thus along with the 𝑛 real units for which we observe 𝑋𝑖 , 𝑌𝑖 , we

have an additional 𝑁 synthetic units which are obtained by using

an LLM to act as users. In other applications it might be using a

foundation model to annotate or rate certain inputs. We shall label

these synthetic outcomes as 𝑌 . Thus we have 𝑁 samples of 𝑋𝑖 , 𝑌𝑖
for 𝑖 ∈ {𝑛, · · · , 𝑁 }. We will also assume that we can ask the LLM

to also provide 𝑌 on the real data as well.

2.2 Residual Learning and Control Variates
Since data collection can be costly or time-consuming, leveraging

additional variables 𝑌 that are correlated with the true outcome

𝑌 provides a practical strategy to increase the effective sample

size. This has become an increasingly important research direc-

tion as powerful general purpose ML models have been devel-

oped [Angelopoulos et al., 2023c, Wasserman and Lafferty, 2007,

Chakrabortty et al., 2022].

A straightforward method is to replace 𝑌 by 𝑌 in Equation (2) ;

however, unless 𝑌 and 𝑌 are perfectly correlated, this need not pro-

vide a statistically valid answer. A more technically sound approach

will account for the relationship between 𝑌 and 𝑌 . For instance,

a standard method is to model the joint distribution of 𝑌 and 𝑌

conditional on XX and use this model to impute missing 𝑌 values

[Tang and Qin, 2012]. Another common technique is residual learn-

ing [Galpin and Hawkins, 1984, Pierce and Schafer, 1986]. These

methods leverage 𝑌 in the regression model with the idea that

𝑌 − 𝑌 ( or more generally the residual unexplained by 𝑌 ) is likely

easier to model than 𝑌 itself. This can be extended to doubly robust
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estimation methods [Lin et al., 2012, Han and Wang, 2013]. One

weakness of these residual methods, was that these need both the

true outcome 𝑌 , and predicted values 𝑌 on all points, i.e. they in

general cannot utilize synthetic units.

2.3 Prediction Powered Inference
With the advent of powerful ML models, researchers are working

on methods to leverage purely synthetic data obtained with ML

models along with real data [Wang et al., 2020, Gronsbell et al., 2024,

Motwani and Witten, 2023]. These approaches called Prediction

Based Inference (PBI) [Wang et al., 2020] or Prediction Powered

Inference ( PPI) [Angelopoulos et al., 2023a] date back to [Robins

et al., 1994, Chen and Chen, 2000]. These can be considered to be

related to residual learning and doubly robust methods, in that

they rely on using a mean zero variable to reduce variance of the

estimator. A key difference however arises between these methods

and residual or doubly robust methods, in that PPI usually include

additional data.

Similar to our setting, PPI methods assume access to two datasets

of i.i.d points, one labeled another unlabeled. An ML model 𝑓 then

provides additional predictions 𝑌 . In general , 𝑓 is used to capture

information about 𝑌 which is available to us, but is hard to model

with statistical guarantees.

While [Angelopoulos et al., 2023a] defined PPI in terms of resid-

uals, many methods in current PPI literature [Angelopoulos et al.,

2023c,b, Gronsbell et al., 2024] can be written in the following form:

ˆ𝜃 PPI = argmin

𝜃

1

𝑛

𝑛∑︁
𝑖=1

𝑙𝜃 (𝑋𝑖 , 𝑌𝑖 )−(
1

𝑛

𝑛∑︁
𝑖=1

𝑙𝜃 (𝑋𝑖 , 𝑌𝑖 ) −
1

𝑁

𝑛+𝑁∑︁
𝑖=𝑛+1

𝑙𝜃 (𝑋𝑖 , 𝑌𝑖 )
)

︸                                             ︷︷                                             ︸
𝑓 -dependent

.
(3)

Intuitively, since 𝑋𝑖 , 𝑌𝑖 are iid between 𝑖 ∈ {1, · · · , 𝑛} and 𝑖 ∈
{𝑛+1, · · · , 𝑁 }, the terms in is amean zero term. Thus if𝑛/𝑁 remains

constant and 𝑁 →∞, the additional term has zero influence and

the objective is the same as E[𝑙𝜃 (𝑋,𝑌 )]. Thus ˆ𝜃 PPI

is asymptotically

convergent to 𝜃∗. For more details on the behaviour of
ˆ𝜃 PPI

, we refer

the readers to Angelopoulos et al. [2023b].

There are other extensions to this basic framework of PPI which

we discuss later in related work.

3 Our Method
In this section, we provide an extension to the basic PPI method.

We will then show how to adjust the method to provide asymptoti-

cally efficient estimators. Finally we will use this insight to provide

a more practical estimation method. We will use the ANCOVA

equation as our running example, but the result is more general.

3.1 Extending PPI
The fundamental insight of PPI is the addition of a mean zero

term (to the loss or the estimating equation). Thus we suggest the

following more general PPI framework

ˆ𝜃𝑔 = argmin

𝜃

1

𝑛

𝑛∑︁
𝑖=1

𝑙𝜃 (𝑋𝑖 , 𝑌𝑖 )−(
1

𝑛

𝑛∑︁
𝑖=1

ℎ𝜃 (𝑋𝑖 , 𝑌𝑖 ) −
1

𝑁

𝑛+𝑁∑︁
𝑖=𝑛+1

ℎ𝜃 (𝑋𝑖 , 𝑌𝑖 )
)

︸                                               ︷︷                                               ︸
𝑓 -dependent

.
(4)

The key difference from PPI approach is not to have the mean

zero term be dependent on 𝑙 but instead to have an arbitrary func-

tionℎ. Placingℎ = 𝑙 recovers the PPI objective, but for a wide family

of functions ℎ, the above estimator is consistent
1
. If the overall

objective is convex, the optimal solution to the above equation is

identified and can be obtained by solving the following first order

optimality condition:

1

𝑛

𝑛∑︁
𝑖=1

∇𝑙𝜃 (𝑋𝑖 , 𝑌𝑖 ) =
1

𝑛

𝑛∑︁
𝑖=1

∇ℎ(𝑋𝑖 , 𝑌𝑖 ) −
1

𝑁

𝑁+𝑛∑︁
𝑖=𝑛+1

∇ℎ(𝑋𝑖 , 𝑌𝑖 ) (5)

Based on classical results from M-estimation methods, if 𝜃∗ is
the unique solution to E[∇𝑙𝜃 (𝑋,𝑌 )] = 0, and some mild conditions

on 𝑙 and ℎ, the solution ˆ𝜃ℎ to empirical FOC condition converges

to 𝜃∗ and is asymptotically normal. Its distributional properties are

summarized in the following result

Proposition 1. Assume that 𝑛/𝑁 = 𝑟 and that both the com-
bined objective function in (3) as well as 𝑙 are strictly convex. Then,√
𝑛( ˆ𝜃ℎ − 𝜃★) converges in distribution to a mean zero Gaussian ran-

dom variable with covariance Σℎgiven by

𝐻 −1
(
𝑟Var(∇ℎ (𝑋,𝑌 ) ) + Var(∇𝑙 (𝑋,𝑌 ) − ∇ℎ (𝑋,𝑌 ) )

)
𝐻 −1 .

where 𝐻 = E[∇2𝑙𝜃★ (𝑋,𝑌 )].

Proof. The estimating equation is:

𝐺𝑛 (𝜃 ) =
1

𝑛

𝑛∑︁
𝑖=1

(
∇𝑙𝜃 (𝑋𝑖 , 𝑌𝑖 ) − ∇ℎ𝜃 (𝑋𝑖 , 𝑌𝑖 )

)
+ 1

𝑁

𝑛+𝑁∑︁
𝑖=𝑛+1

∇ℎ𝜃 (𝑋𝑖 , 𝑌𝑖 ) = 0.

Taking expectations, we get:

E[𝐺𝑛 (𝜃 ) ] = E[∇𝑙𝜃 (𝑋,𝑌 ) ] −�����
E[ℎ𝜃 (𝑋,𝑌 ) ] +�����

E[ℎ𝜃 (𝑋,𝑌 ) ]
= E[∇𝑙𝜃 (𝑋,𝑌 ) ] .

At 𝜃 = 𝜃∗, E[∇𝑙𝜃 ∗ (𝑋,𝑌 )] = 0. Thus under weak regularity condi-

tions (see [Ross, 2011] )
ˆ𝜃
𝑝
−→ 𝜃∗.

Now expanding𝐺𝑛 ( ˆ𝜃 ) around 𝜃∗ and applying Taylor’s theorem:

0 = 𝐺𝑛 (𝜃∗) + ∇𝐺𝑛 (𝜃∗) ( ˆ𝜃 − 𝜃∗) + 𝑜 (1),
which gives

√
𝑛( ˆ𝜃 − 𝜃∗) ≈ −

(
∇𝐺𝑛 (𝜃∗)

)−1 √
𝑛𝐺𝑛 (𝜃∗) .

Further as 𝑛 →∞:

∇𝐺𝑛 (𝜃∗)
𝑝
−→ E[∇2𝑙𝜃 ∗ (𝑋,𝑌 )] = 𝐻,

since the ℎ𝜃 terms cancel in expectation.

1
Difference choice of ℎ leads to different estimators proposed in PPI literature
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The variance of 𝐺𝑛 (𝜃∗) is:

Var(𝐺𝑛 (𝜃∗)) =
1

𝑛
Var(∇𝑙𝜃 ∗ − ∇ℎ𝜃 ∗ ) +

1

𝑁
Var(∇ℎ𝜃 ∗ )

=
1

𝑛
(Var(∇𝑙𝜃 ∗ − ∇ℎ𝜃 ∗ ) + 𝑟 Var(∇ℎ𝜃 ∗ )) .

By CLT we have,

√
𝑛𝐺𝑛 (𝜃∗)

𝑑−→ N(0, Σ), where:
Σ = Var(∇𝑙𝜃 ∗ − ∇ℎ𝜃 ∗ ) + 𝑟 Var(∇ℎ𝜃 ∗ ).

Thus:

√
𝑛( ˆ𝜃 − 𝜃∗) 𝑑−→ 𝐻−1

√
𝑛𝐺𝑛 (𝜃∗)

𝑑−→ N
(
0, 𝐻−1Σ(𝐻−1)

)
.

where in the last line we use the fact that 𝐻 being a hessian is

symmetric. □

One advantage of moving from the common PPI-variants to

Equation 4 is important when considering using LLMs for synthetic

simulations. LLMs primarily provide textual outputs, and in most

cases 𝑌 is not text. While LLMs can be prompted to produce numer-

ical scores it can be very biased [Xiong et al., 2023]. On the other

hand LLM as a judge framework [Zheng et al., 2023] has shown

promise in directly choosing answers or rating options [Huang

et al., 2024a]. Thus as long as we can choose a suitable ℎ, we can

input a non-numeric 𝑌 such as text based or discrete values.

3.2 Optimal Estimation
Another key advantage of replacing 𝑙𝑖 in the 𝑓 −dependent term
with ℎ, is that it provides a handle to influence different properties

of the estimator
ˆ𝜃 . We propose to choose ℎ so as to minimize the

variance of the estimator. For this purpose we can use the asymp-

totic variance structure of the estimator from 2 and minimize this

asymptotic variance.

One point to note here is that the asymptotic variance depends

on ℎ via its gradient ∇ℎ and not directly on ℎ itself. This implies

that ℎ need not be uniquely determined, and it is not immediately

clear whether such an optimal function ℎ will even exist. However,

as we will demonstrate, a specific form of ℎ can be constructed to

satisfy our requirement of minimizing variance. Before introducing

this form, we first extend our approach to the general estimating

equation (GEE) framework to provide motivation and context for

our choice of ℎ.

Extension to GEE framework. Our approach remains applicable

even in the generalized estimating equation (GEE) or generalized

method of moments (GMM) framework. In such a framework case

the optimal 𝜃 (labeled 𝜃∗
𝐸𝐸

)is defined as the parameter satisfying

the following equation:

E[𝑈𝜃 (𝑋,𝑌 )] = 0⇒ 1

𝑛

𝑛∑︁
𝑖

𝑈𝜃 (𝑋𝑖 , 𝑌𝑖 ) = 0 (6)

In practice, estimation is done by replacing true expectations

with empirical means, and solving the (6) for 𝜃 . For the standard

loss optimization method𝑈 is given by ∇𝑙𝜃 .
Under our proposed framework, estimating equation is modified

as follows

1

𝑛

𝑛∑︁
𝑖=1

(
𝑈𝜃 (𝑋𝑖 , 𝑌𝑖 ) − 𝜂𝜃 (𝑋𝑖 , 𝑌𝑖 )

)
+ 1

𝑁

𝑛+𝑁∑︁
𝑖=𝑛+1

𝜂𝜃 (𝑋𝑖 , 𝑌𝑖 ) = 0, (7)

where 𝜂𝜃 is a suitably chosen vector valued function. Let the opti-

mal solution to be given by 𝜃∗
𝐸𝐸

and the empirical estimate be
ˆ𝜃𝐸𝐸 .

Then similar to Proposition 1, the asymptotic variance of the
ˆ𝜃𝐸𝐸

is given by

Σ𝜂 = 𝐻 −1
(
𝑟Var(𝜂 (𝑋,𝑌 ) ) + Var(𝑈 (𝑋,𝑌 ) − 𝜂 (𝑋,𝑌 ) )

)
(𝐻 −⊤ )

where 𝐻 = E[∇𝑈 ] is the Jacobian of𝑈 and is assumed to be non-

singular definite matrix.

Returning to the optimization-based case, we note that the GEE

framework allows for arbitrary vector functions 𝜂 (𝑋𝑖 , 𝑌𝑖 ) as free
variables. Motivating from this we propose take ℎ to be ℎ(𝑋𝑖 , 𝑌𝑖 ) =
𝜃𝑇𝜂𝜙 (𝑋𝑖 , 𝑌𝑖 ), where 𝜂 is another function. Since in such a case ℎ

is a linear function, as long 𝑙 is convex the overall objective in 4

remains convex.

While our primary goal is to minimize the variance of the desired

estimator, the unique structure of Σℎ allows us to simultaneously

minimize the variance of all the parameters/components of 𝜃 . Ad-

ditionally for this choice, there is indeed a well defined function ℎ

which will attain this optimum value. We make this formal in the

following proposition

Proposition 2. Assume the conditions for Proposition 1. Next set
ℎ(𝑋,𝑌 ) = 1

𝑟+1𝜃
𝑇E[∇𝑙 (𝑋,𝑌 ) |𝑋,𝑌 ] = ℎ∗. Then the asymptotic vari-

ance of𝜃∗ (Σℎ∗ ) is given by 𝐻 −1𝜃★

(
Var(∇𝑙𝜃★ (𝑋,𝑌 ) ) − 1

1+𝑟 Var(E[∇𝑙𝜃★ (𝑋,𝑌 ) |𝑋,𝑌 ] )
)
𝐻 −1
𝜃★

Additionally, Σℎ∗ ⪯ Σℎ for any other function ℎ, where ⪯ is the
Loewner order [Bhatia, 2013] among positive semi definite matrices.

For the ANCOVA model, ∇𝑙 (𝑋,𝑌 ) = (𝑌 − E[𝑌 |𝑋 ]) which is just

the residual of R of 𝑌 on 𝑋 . The optimal function ℎ is then the

same as E[R|𝑋,𝑌 ] which is also the form which sibling regression

models take [Shankar et al., 2020]. This is also true in a wider

family of models including GLM and Exponential family models.

For these family of models, our proposal takes the same form as

sibling regression [Schölkopf et al., 2016] and SUR frameworks

[Zellner, 1962], connecting these to a wider family of methods used

for variance reduction.

This form of optimal ℎ also provides a partial idea for why the

original PPI method [Angelopoulos et al., 2023a] can be very effec-

tive. Angelopoulos et al. [2023a] use ∇ℎ = ∇𝑙 (𝑋,𝑌 ) whereas the
optimal ∇ℎ = E[∇𝑙 (𝑋,𝑌 ) |𝑋,𝑌 ]. Thus both are of the form of the

gradient of 𝑙 . The difference arises from how 𝑌 effects the gradient.

We note that despite the easy to optimize objective, the actual

optimization is tricky because 𝜃∗ is unknown. To solve this issue,

we propose using a bootstrap like procedure, using an estimate of

ˆ𝜃0 obtained from the labeled data. This
ˆ𝜃0, is then used to compute

any quantity which depends on 𝜃∗ such as the Hessian 𝐻 and the

∇𝜃 𝑙 (𝑋𝑖 , 𝑌𝑖 ).
Additionally the parameterization of 𝜂 (or ℎ) should be powerful

enough to capture the optimal 𝜂∗ (𝑜𝑟ℎ∗). We use neural network

functions i.e. we represent 𝜂 by 𝜂𝜙 which is a neural network pa-

rameterized by parameters 𝜙 . While there is an optimal ℎ, as given

Proposition 2 and a sufficiently powerful neural network can learn

the optimalℎ; when the network cannot represent the optimalℎ, it is

not clear that learning E[∇𝑙 (𝑋,𝑌 ) |𝑋,𝑌 ] is the best choice for an ef-

ficiency improvement. Directly estimating E[∇𝑙 (𝑋,𝑌 ) |𝑋,𝑌 ] places
equal importance to all the parameters. Moreover it does not take

into account any scaling between them that the Hessian 𝐻 might
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Table 1: Accuracy for different LLM on the task of choosing
the better treatment arm on Upworthy. While not much bet-
ter than random, we can see that LLM responses still encode
some signal about user preferences without additional fine-
tuning

Model Accuracy

GPT-4 64.2

Claude 60.1

Llama-3-8b 60.7

induce. Hence instead of choosing 𝜙 to estimate E[∇𝑙 (𝑋,𝑌 ) |𝑋,𝑌 ]
we optimize the variance of the desired estimand directly.

The entire process is done in three phases viz estimate
ˆ𝜃0, esti-

mate𝜙 , estimate
ˆ𝜃 ; each stage depends on the output of the previous

stage. If these estimations are done on the exact same data, it can

lead to optimization bias and over-inflated statistics. To mitigate

these, we employ a cross-fitting procedure [Chernozhukov et al.,

2018, Newey and Robins, 2018], in which each stage is estimated

from a different subsets of data. The final answer is obtained by

averaging across different folds.

Remark 1. While we have presented the approach with having
only one 𝑌 per observation, this is not essential. One can trivially
extend our framework to use 𝑘 different synthetic outcomes by using
ℎ = 𝜃𝑇𝜂𝜙 (𝑋𝑖 , 𝑌 1

𝑖
, · · · , 𝑌𝑘

𝑖
).

4 Experiments
In this section, we provide experimental results on two different

tasks with real datasets to show the efficacy of our model.

Estimating Treatment Effect. We first experiment with the prob-

lem of estimating treatment effect in randomized tests.This dataset

of A/B tests conducted by Upworthy [Matias et al., 2021]. The data

consists of several versions of headlines created by an editorial

teams for various articles. Each user was exposed to only one of

these headlines article pair, and the clicks were recorded for each

pair.

Another dataset we considered was from a social science experi-

ment on Cancel Culture [Fahey et al., 2023]. This was a US based

representative survey experiment on assessing whether individuals

oppose certain rights of entities bases on their affinity to the entities

ideology.

We first consider whether an LLM can correctly evaluate treat-

ments/headlines. We used GPT-4 and Claude as closed source mod-

els, and compare them against Llama as an open source LLM. The

task here is simply given two treatments, select the one with higher

clicks.

These results are presented in Table 1. We see no model better

than (∼ 65%) accuracy unlike on general NLP tasks where LLMs

have strong performance[Kang et al., 2023, Dai et al., 2022]. This

is partly due to the fact that often standard ICL and COT based

tasks are concerned about facts or statements [Freestone and Santu,

2024, Kossen et al., 2024]. In this task however, all headlines are

generated by human experts and so consistent with a high-level

summary of the article. The differences arise from more nuanced

aspects of online user behaviour, which can be difficult to model

without additional information. However we do see that in general

they are more often than not right, highlighting that LLMs have
biased preferences but do contain signal.

Methodology Next we consider a setup as follows
2
: for each

A/B test, provide GPT-4 with all relevant information about the text

and treatments, and prompt it to generate two distinct user profiles,

each of which is likely to prefer a different arm. Additionally, we

request GPT-4 to specify the relative preference (e.g., CTR) of each

profile for their respective treatment arms. We then compute the

relative proportions 𝑝1 and 𝑝2 of the two profiles required to match

the ground truth CTRs observed in the real data. Then we obtain

the ’real’ dataset D𝑟 , by sampling 𝑛 users from a binomial distri-

bution with proportions 𝑝1 and 𝑝2. Then for each user, generate a

binary outcome variable 𝑌 (e.g., click or no click) based on the cor-

responding CTR. On the cancel culture dataset we have individual

attributes, and hence do not need to do such calibration step. Next

we construct the synthetic dataset D𝑠 of 𝑁 users. For each such

user we obtain a 𝑌 outcome based on LLM-generated preferences
3
.

Baselines As baselines we consider other recent methods de-

signed to use additional data with ml predictions, viz. PPI [An-

gelopoulos et al., 2023a] and PPI++ [Angelopoulos et al., 2023b].

For all the method we experiment with GPT, Claude and Llama

as the in-silico simulators, though we did not explore combining

different models. Furthermore since data generation for Upworthy

used GPT results were used for calibrating the profiles, we did not

experiment with GPT on it.

EvaluationWefix𝑁 , and then use different methods to compute

the treatment effect for different sizes of 𝑛. As metric we use the

mean average precision error (or MAPE), with the treatment effect

estimated from the real data as ground truth.

Results Our results are presented in Figure 2. These results

report MAPE difference between the no-additional data baseline

compared with other methods with the synthetic data. The x-axis

represents 𝑟 = 𝑛/𝑁 , the ratio of real to synthetic data. In Figure 2a,

we show results with Claude as the simulator on the Upworthy

dataset. Results with Llama are in the Appendix. Our results show

that in general PPI based methods can use the LLM generated re-

sponses to improve the treatment effect. This effect is consistent

across different LLMs. We also see that our approach is the overall

best, surpassing PPI and PPI++. This is intuitive as we choose the

ℎ function to minimize the estimator variance; and unlike PPI++

which uses a constrained form for ℎ, we choose the best ℎ possible.

We can see that for low amounts of real data we get large reduc-

tions in MAPE. Some of these correspond to upto 40% reduction in

sample size, highlighting the potential of using LLMs along with

our method to improve treatment effect estimation.

Conjoint Analysis. The previous task was concerned with esti-

mating a single parameters, the difference in click rates. Now we

broaden the design to consider estimation of multiple parameters.

For this we use a real choice-based conjoint dataset for sports cars

[Spencer, 2019]. The setup roughly follows a normal A/B test, ex-

cept instead of the options being shown to different cohorts, the

2
This setup was adopted as Upworthy provides aggregated A/B tests i.e. we know

average outcome for each treatment but not the features of the cohort over which the

experiment was conducted.

3
We do not need to query the LLM 𝑁 times, but simple create such data directly by

first querying the LLM for its preference and then sampling using the obtained values
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Algorithm 1 Algorithm for LLM assisted 𝜏 estimation

Require: Dataset D, Neural network model 𝜙

1: Split both the real and synthetic dataset into K folds [(D𝑟
1
,D𝑠

1
), · · · , (D𝑟

𝐾
,D𝑠

𝐾
)]

2:
ˆ𝜃𝑖
0
← argmin𝜃 ED𝑟

𝑖
𝑙 (𝑋,𝑌 ) # preliminary estimate on D𝑟

𝑖

3: Σℎ ← 𝐻−1
𝜃𝑖
0

(
𝑟VarD𝑠

𝑖+1
(𝜂𝜙 (𝑋,𝑌 )) + VarD𝑟

𝑖+1
(∇𝑙 (𝑋,𝑌 ) − 𝜂𝜙 (𝑋,𝑌 ))

)
𝐻−1
𝜃𝑖
0

on D𝑟
𝑖+1,D

𝑠
𝑖+1

4:
ˆ𝜙𝑖 ← argmin𝜙 Tr (Σℎ) or if only few parameters Σℎ [𝑑,𝑑]where d is index of desired parameters # optimize Σℎ

5: Estimate 𝜏𝑖 by solving Equation (5) with ℎ𝜃 = 𝜃𝜂𝜙𝑖 on D𝑟−(𝑖,𝑖+1) ,D
𝑠
−(𝑖,𝑖+1)# estimate on remaining folds combined

6: Return
1

𝐾

∑
𝑖 (𝜏𝑖 ) # average over folds
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Figure 2: Performance comparison of our method against baseline estimators on a) Upworthy, b) Cancel Culture and c) Cars
dataset. The x-axis we show 𝑟 = 𝑛/𝑁 (the ratio of real to synthetic data) data while the total amount of synthetic data remains
fixed. The y-axis plots change in MAPE compared to only real data reference, so negative numbers imply better results.

same user was asked to rate between multiple hypothetical sports

cars. Each car is described by a set of 5 attributes. We then follow

the procedure of Wang et al. [2024b] in instructing GPT to simulate

a random person’s preferences.

BaselineWe experiment with the PPI and PPI++ baselines men-

tioned earlier, along with AAE [Wang et al., 2024b], a recently

proposed transfer learning based method. Following the protocol

of Wang et al. [2024b], we too use 500 synthetic samples from GPT,

along with varying number of real data from the survey, and es-

timate the coefficient of each feature. As metric we consider the

average MAPE of all the coefficients together.

Results Similar to the previous experiment, we consider param-

eters estimated on the full set of real data as the true value. These

results are presented in Figure 2(c). Qualitatively we see the same

behaviour as in the treatment effect estimation scenario. We also

see that in this case PPI can benefit when real data is small, but

with sufficient real data it can be even worse than not using any

synthetic data at all. This is not surprising by itself and has been

noted before by Angelopoulos et al. [2023b].

5 Related Work
PPI Variants. have been proposed to further improve the statisti-

cal efficiency of the vanilla PPI model [Angelopoulos et al., 2023b,

Gronsbell et al., 2024, Fisch et al., 2024]. As discussed earlier optimal

form of ℎ in Proposition 2 provides a partial justification of using

the ∇𝑙 for the additional terms. However, using ∇ℎ = ∇𝑙 (𝑋,𝑌 )
(as PPI does) is not the most efficient choice. As such, variations

of the PPI method have been proposed that use modified forms

of ∇𝑙 (𝑋,𝑌 ). Angelopoulos et al. [2023b] propose using 𝜆∇𝑙 (𝑋,𝑌 )
while Miao et al. [2023] propose using Λ∇𝑙 (𝑋,𝑌 ) where 𝜆,Λ corre-

spond to a learnable scalar and diagonal matrix respectively. Similar

to our approach, both these methods tune the learnable parameter

to minimize the estimator variance. Both these methods are also

guaranteed to improve upon the asymptotic variance of the PPI

method.

Integrating additional unlabeled data. is the primary goal of semi-

supervised learning. In recent times, there is growing interest in

combining principles of semi-supervised learning and causal infer-

ence [Kügelgen et al., 2020, Alvari et al., 2019]. PPI based ideas have

been leveraged along with semi-supervised learning[Schmutz et al.,

2022, Song et al., 2024]. Karlsson et al. [2024] have investigated us-

ing an outcome regression estimated from additional observational

data as a control variate. Similarly, using patient outcome models

as an additional variable has been shown to improve efficiency in

randomized trials[Schuler et al., 2022, Liao et al., 2023]. Proximal

causal inference [Tchetgen et al., 2020, Cui et al., 2024], based ideas

have been applied for estimating average treatment effect (ATE)

by combining multiple data sources [Yang and Ding, 2019]. In a

related direction, works have explored the use of observational

data collected from different environments to improve ATE esti-

mation despite no-knowledge of confounders [Günther et al., 2024,

Perry et al., 2022]. More recently, ideas from PPI have also been

applied directly to causal inference [Demirel et al., 2024]. Wang

et al. [2024b] have proposed a transfer learning based approach
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to incorporate LLM based predictions into conjoint analysis for

marketing research.

Seemingly Unrelated Regression or SUR [Zellner, 1962] is a

powerful method for simultaneously estimating multiple regression

models that share correlated errors. Unlike traditional approaches

that estimate each model independently, SUR leverages the correla-

tion between the errors of different outcome variables to produce

more efficient estimates. SUR and related methods [Swamy and

Mehta, 1975, Fiebig, 2001] have been pretty commonly deployed in

econometrics [Schmidt, 1977, Foschi, 2004] and ecological applica-

tions [Goldberg, 1987, Fu et al., 2016]. A classic version of SUR from

Conniffe [1985] is analogous to PPI estimate and under specific

conditions, aligns with the method proposed by Chen and Chen

[2000]. Gronsbell et al. [2024] have also highlighted connections

between Chen and Chen [2000] and PPI methods. More recently,

SUR has found applications in PBI methods for genome-wide as-

sociation studies (GWAS), where researchers analyze large-scale

biobank data to identify genetic variants associated with traits or

phenotypes. Given the high cost and time required to collect com-

plete phenotypic data, predicted outcomes from pre-trained models

can be used in a SUR like fashion [McCaw et al., 2024, Miao et al.,

2024]. Both these estimators are variants of the PBI method of Chen

and Chen [2000].

LLM simulations. are an increasingly important venue of re-

search, particularly their ability to replicate human-like interactions

[Sekulić et al., 2022, Yang et al., 2024a]. These models are being used

to simulate human behavior, opening new venues in social and mar-

keting research[Brand et al., 2023, Argyle et al., 2023, Ziems et al.,

Kim and Lee, 2023, Park et al., 2023]. Many LLM simulations frame-

works often involve self-play mechanisms, where LLMs simulate

dialogues to study conversational dynamics without human involve-

ment [Wu et al., 2023, Ulmer et al., 2024, Abbasiantaeb et al., 2024].

Guo et al. [2023] compare the performance of ChatGPT against

human experts on related task and found LLMS to be quite coherent.

LLMs have shown promise as tools for simulating economic agents

[Chen et al., 2023, Horton, 2023]. However, their ability to faithfully

simulate human preferences is actively debated[Goli and Singh,

2024, Zhu et al., 2024a]. Furthermore, LLM-generated predictions

are often miscalibrated and overconfident [Xiong et al., 2023, Wei

et al., 2024, Hofer et al., 2024]. Our work shows a robust statistical

procedure by which LLMs can offer valuable insights without fully

replacing human input.

In addition to simulating user behavior, LLMs have been applied

to enhance recommendation systems and optimize A/B testing

methodologies. For instance, self-play between LLMs has been used

to refine recommendation algorithms [Chen et al., 2024], while

LLM-assisted approaches have been proposed to warm-start bandit-

based methods for online learning and experimentation [Ye et al.,

2024]. These applications demonstrate the versatility of LLMs in

modeling user interactions, though they often focus on specific

aspects such as event transitions or search patterns [Wang et al.,

2024a, Kasuga and Yonetani, 2024]. However, concerns persist about

their ability to incorporate contextual nuances [Huang et al., 2024b,

Yang et al., 2024b]. Additionally, challenges arise in using LLMs for

causal inference, as they often fail to account for the underlying

causality in decision-making processes [Gui and Toubia, 2023].

6 Conclusion
Given the scale of digital content, speeding up experimentation

on digital platforms is an important challenge of better decision

making. We propose leveraging LLMs for content experimentation

on digital platforms. However, directly using LLMs as synthetic

users for this purpose is challenging. To address this challenge,

we propose a novel method to integrate LLM based predictions

in a PPI-based framework. We show consistency of our estimator,

and show that it is the ’least variance’ estimator in a wider family

of PPI-esque estimators. We then evaluate our approach using a

small synthetic dataset and then on two real-life A/B tests. Our

results show that our method can significantly improve efficiency

by integrating LLM based simulations.
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Residual Regression
For exponential family models 𝑝 (𝑌 |𝑋 ) ∝ 𝑔(𝑌 ) exp(𝑇 (𝑌 ) − 𝜃𝑇𝑋 )
where 𝑔 is a base measure, 𝑇 is a sufficient statistic for 𝑌 an. The

score function for such models is given by

𝑠𝜃 (𝑦, 𝑥) = ∇𝜃 log𝑝 (𝑌 |𝑋 ) = 𝑇 (𝑦) − E[𝑇 (𝑦) |𝑥, 𝜃 ]
Thus when trained using log-likelihood, the optimal ℎ takes the

same residual form as in ANCOVA models, with the residual com-

puted on 𝑇 (𝑌 ).
Similarly GLMs parameterize their means as a non-linear link

function applied on a linear model i.e. E[𝑌 ] = 𝑔(𝜃𝑇𝑋 ). A similar

argument applies in this case.

Proof
Proposition 3. Assume the conditions for Proposition 1. Next set

ℎ(𝑋,𝑌 ) = 1

𝑟+1𝜃
𝑇E[∇𝑙 (𝑋,𝑌 ) |𝑋,𝑌 ] = ℎ∗. Then the asymptotic vari-

ance of𝜃∗ (Σℎ∗ ) is given by 𝐻 −1𝜃★

(
Var(∇𝑙𝜃★ (𝑋,𝑌 ) ) − 1

1+𝑟 Var(E[∇𝑙𝜃★ (𝑋,𝑌 ) |𝑋,𝑌 ] )
)
𝐻 −1
𝜃★

Additionally, Σℎ∗ ⪯ Σℎ for any other function ℎ, where ⪯ is the
Loewner order among positive semi definite matrices.

Proof. Consider

𝐴 = 𝑟Var(∇ℎ (𝑋,𝑌 ) ) + Var(∇𝑙 (𝑋,𝑌 ) − ∇ℎ (𝑋,𝑌 ) )

= 𝑟Var(∇ℎ (𝑋,𝑌 ) ) + Var(∇𝑙 (𝑋,𝑌 ) ) + Var(∇ℎ (𝑋,𝑌 ) )

− 2Cov(∇𝑙 (𝑋,𝑌 ), ∇ℎ (𝑋,𝑌 ) )

= (𝑟 + 1)Var(∇ℎ (𝑋,𝑌 ) ) + Var(∇𝑙 (𝑋,𝑌 ) )

− 2Cov(∇𝑙 (𝑋,𝑌 ), ∇ℎ (𝑋,𝑌 ) )

= Var(
√
𝑟 + 1∇ℎ (𝑋,𝑌 ) − 1

√
𝑟 + 1

∇𝑙 (𝑋,𝑌 ) )

+ 𝑟

𝑟 + 1Var(∇𝑙 (𝑋,𝑌 ) )

Only the first term here depend on ℎ. Therefore we can focus

only on that. Moreover given its a Var termwhich is always positive

semi-definite, its minima is obtained by moment matching i.e. when

the learnable parameter takes the mean value. Thus the optimal ℎ

is given by

√
𝑟 + 1∇ℎ(𝑋,𝑌 ) = 1√

𝑟+1
E∇𝑙 (𝑋,𝑌 ), which gives

∇ℎ =
1

1 + 𝑟 E[∇𝑙 (𝑋,𝑌 ) ]

Plugging in this value of ℎ, in the expression for Σℎ , gives the final
value of Σℎ∗. □

A Additional Results

https://arxiv.org/abs/2308.07107
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Figure 3: Performance comparison of our method against baseline estimators on a) Upworthy, b) Cancel Culture and c) Cars
with Claude COT prompting. The x-axis we show 𝑟 = 𝑛/𝑁 (the ratio of real to synthetic data) data while the total amount of
synthetic data remains fixed. The y-axis plots change in MAPE compared to only real data reference, so negative numbers
imply better results.
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Figure 4: Performance comparison of our method against baseline estimators on a) Upworthy, b) Cancel Culture and c) Cars
dataset with Llama prompting. The x-axis we show 𝑟 = 𝑛/𝑁 (the ratio of real to synthetic data) data while the total amount of
synthetic data remains fixed. The y-axis plots change in MAPE compared to only real data reference, so negative numbers
imply better results.
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Figure 5: Variance comparison of different methods against baseline on Upworthy with different LLMs. The x-axis we show
𝑟 = 𝑛/𝑁 (the ratio of real to synthetic data) data while the total amount of synthetic data remains fixed. The y-axis plots the
ratio of variance between the estimator and the baseline of using only real data.
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Figure 6: Variance comparison of different methods against baseline on Cancel Culture with different LLMs. The x-axis we
show 𝑟 = 𝑛/𝑁 (the ratio of real to synthetic data) data while the total amount of synthetic data remains fixed. The y-axis plots
the ratio of variance between the estimator and the baseline of using only real data.
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Figure 7: Variance comparison of different methods against baseline on Cars with different LLMs. The x-axis we show 𝑟 = 𝑛/𝑁
(the ratio of real to synthetic data) data while the total amount of synthetic data remains fixed. The y-axis plots the ratio of
variance between the estimator and the baseline of using only real data.
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