
Dimension reduction via score ratio matching

Ricardo Baptista∗
California Institute of Technology

Pasadena, CA 91125 USA
rsb@caltech.edu

Michael C. Brennan∗ Youssef Marzouk
Massachusetts Institute of Technology

Cambridge, MA 02139 USA
{mcbrenn,ymarz}@mit.edu

Abstract

We propose a method to detect a low-dimensional subspace where a non-Gaussian
target distribution departs from a known reference distribution (e.g., a standard
Gaussian). We identify this subspace from gradients of the log-ratio between the
target and reference densities, which we call the score ratio. Given only samples
from the target distribution, we estimate these gradients via score ratio matching,
with a tailored parameterization and a regularization method that expose the low-
dimensional structure we seek. We show that our approach outperforms standard
score matching for dimension reduction of in-class distributions, and that several
benchmark UCI datasets in fact exhibit this type of low dimensionality.

1 Introduction and motivation

Dimension reduction methods are ubiquitous in large-scale data science, statistical modeling, and
machine learning. The computational burdens of many common analyses and algorithms may scale
poorly with the dimension of the problem, and accurately capturing complex dependence structure in
high-dimensional problems may require massive sample sizes. Many such tasks involve characterizing
an unknown target distribution π given only a representative set of samples {xi}ni=1 ∼ π. Both
generative modeling and density estimation are examples of these tasks [9, 15].

When one has access to the (unnormalized) target density and its gradients, dimension reduction
methods are well-explored [19, 5, 20, 1, 2]. One such method, certified dimension reduction [20],
uses gradients of the log-density to expose a low-dimensional subspace where the target distribution
departs most strongly from a reference distribution. In the context of Bayesian inference, this structure
has been used to accelerate MCMC sampling methods [3, 4] or flow-based variational approximations
[2], with error guarantees. Here, the target is the posterior distribution and a natural choice for the
reference is the prior distribution.

In this work, we develop an analogous dimension reduction method for when one is given a set of
samples {xi}ni=1 ∼ π, but the target density is unavailable. We propose an algorithm for uncovering
this low-dimensional structure based on score ratio matching (§3), rather than direct score matching.
Our algorithm employs a training objective, a network parameterization, and a regularization penalty
all tailored to our dimension reduction goal. We demonstrate that our score ratio matching method
better reveals low-dimensional structure compared to standard score matching, and that several
common benchmark datasets in fact exhibit this kind of low-dimensional structure (§4).

2 Background

Score matching overview Score matching has recently appeared as a powerful framework with
applications to generative modeling [16, 17, 10, 6] and Bayesian inference [21, 13]. The core task
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is approximating the score function ∇x log π(x) with a neural network sθ(x), referred to as the
score network [17]. We direct readers to [16, 17] for an overview of score matching, especially
the derivation of the objective function for learning the score, network training strategies, and its
application to generative modeling using Langevin sampling.

Low-dimensional subspace hypothesis We begin by defining a class of target distributions that
depart from a known reference distribution only in a few directions.
Definition 1. Let ρ be a chosen reference density on Rd. Given a unitary matrix U ∈ Rd×d and an
integer r ≤ d, let Dr(U) be the set of distributions with densities of the form

πr(x) ∝ f(U⊤
r x)ρ(x),

for some f : Rr → R>0, where Ur ∈ Rd×r contains the first r columns of U .

Such structure can be exploited in several ways. Let U = [Ur U⊥] be unitary and denote xr = U⊤
r x

and x⊥ = U⊤
⊥x. Then, the target distribution rotated into the basis of U decomposes as

π(xr, x⊥) ∝ f(xr)ρr(xr)ρ⊥|r(x⊥|xr) = νr(xr)ρ⊥|r(x⊥|xr)

where νr(xr) := f(xr)ρr(xr) and ρ⊥|r is known (and can be evaluated and simulated). Hence, gen-
erative modeling and density estimation tasks are reduced to learning the r-dimensional distribution
νr using projected samples {U⊤

r xi}ni=1. Leveraging such structure requires identifying both the basis
U and the minimal reduced dimension r needed to accurately approximate π within the set Dr(U).

Methods that exploit this structure are popular in Bayesian inference, where π is the posterior
distribution. There it is typical to take ρ to be the prior distribution; f is then an approximation to
the likelihood function. This assumption is natural in situations where we expect the data to only be
partially informative of the parameter. Such structure has been leveraged in both MCMC methods [5,
3] and variational inference [2].

In this work, we take ρ to be the standard Gaussian density N (0, Id) and identify a subspace where
π departs from ρ. We note that our results can be generalized to other reference distributions;
see Appendix A. A similar structure was exploited for diffusion models in [11] by hand-selecting
the low-dimensional subspace. Here, we find this subspace by measuring the error incurred from
approximating π with some πr ∈ Dr(U) for a given basis U and reduced dimension r. The following
results provide a strategy to find a suitable U and r based on an upper bound for the KL divergence
from π to its closest approximation within Dr(U).
Proposition 1 (Modified Proposition 2.12 of [20]). Let ρ be the standard Gaussian density, and let

H = Eπ

[
∇x log

(
π(x)

ρ(x)

)
∇x log

(
π(x)

ρ(x)

)⊤
]

(1)

be the so-called diagnostic matrix of size d× d. Then,

1. For any r ≤ d and unitary matrix U ∈ Rd×d there exists πr ∈ Dr(U) such that

DKL(π||πr) ≤
1

2
tr(UrU

⊤
r H) =: Er(U). (2)

2. Let (λi, ui) ∈ R≥0 × Rd be the i-th eigenpair of the eigenvalue problem Hui = λiui,
λ1 ≥ · · · ≥ λd and take U = [u1, . . . , ud] to be the matrix containing the eigenvectors of
H . Then, Er(U) is minimized for any r ≤ d, and there exists πr ∈ Dr(U) such that

DKL(π||πr) ≤
1

2
(λr+1 + · · ·+ λd). (3)

The results of Proposition 1 have several practical implications. First, given the ability to compute
the diagnostic matrix H , one obtains an upper bound on the error (in KL divergence) induced by
approximating π with a distribution in the class Dr(U), for any choice of U . Second, a natural choice
for U is the eigenbasis of H , and one may choose r based on the decay of the eigenvalues of H; that
is, given a KL error tolerance ε > 0, one can pick r so that 1

2 (λr+1 + · · ·+ λd) < ε. Indeed, if the
rank of H is r, then π ∈ Dr(U) and thus the marginal of x⊥ must be standard Gaussian.
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3 Score ratio matching

We now describe how to approximate the score ratio function ∇x log (π(x)/ρ(x)) using score ratio
matching, enabling us to perform analogous dimension reduction given only samples xi from π.

A naïve strategy would be to directly approximate the score of π and use it to compute the score ratio
as ∇x log (π(x)/ρ(x)) = ∇x log π(x) − ∇x log ρ(x). Instead, we take a different approach that
leverages the (possible) low-dimensional structure of π in Definition 1. We approximate the score
ratio directly using a score ratio network sθ : Rd → Rd by minimizing an objective function that
does not require access to the score of the target density π. This is made possible by the following
proposition, whose proof is in Appendix B.

Proposition 2. Let sθ be differentiable. Then we have the following equivalence of objectives:

1

2
Eπ

∥∥∥∥sθ(x)−∇x log

(
π(x)

ρ(x)

)∥∥∥∥2
2

= Eπ

[
1

2
sθ(x)

⊤sθ(x) + tr(∇xsθ(x)) +∇x log ρ(x)
⊤sθ(x)

]
+C

where C is a constant that only depends on the densities π and ρ.

In practice, we replace the expectation above with the empirical sum over the dataset to obtain a key
term of our optimization objective,

J(sθ) :=

n∑
i=1

1

2
sθ(xi)

⊤sθ(xi) + tr(∇xsθ(xi)) +∇x log ρ(xi)
⊤sθ(xi).

Under our hypothesis on the target density in Definition 1, we expect the score ratio, rather than
the score itself, to be well approximated by a ridge function [14], i.e., a function that is constant for
x ∈ Im(U⊥). Next, we describe a parameterization for sθ(x) and a regularization method that are
tailored to learning this low-dimensional structure.

Score-ratio network parameterization and regularization For πr ∈ Dr(U), the score ratio takes
the specific form

∇x log

(
πr(x)

ρ(x)

)
= Ur∇ log f(U⊤

r x).

We see that the range of the score ratio lies within the subspace spanned by Ur. We encode this
observation into our score ratio network in two ways. First, we parameterize the network as

sθ(x) = V s̃θ(V
⊤x)

where V ∈ Rd×d, is the first and last layer’s weight matrix and s̃θ : Rd → Rd is a typical score
network as described in [17]. This parameterization enforces that if V converges to a low (effective)
rank during optimization, the range of sθ(x) is restricted accordingly.

We also use a regularization technique that helps reveal low-dimensional structure when it is present.
If Definition 1 holds, then we expect V to have (numerical) rank r. As r is unknown, we penalize the
nuclear norm of V V ⊤, as commonly used for low-rank matrix estimation [8]. This leads to the final
objective function

F (sθ) = J(V s̃θ ◦ V ⊤) + λ∥V V ⊤∥∗
where ∥ · ∥∗ is the nuclear norm.

Algorithm 1 Estimate low-dimensional subspace Ur

1: Input: Target data {xi}ni=1 ∼ π, and user tolerance ε > 0
2: Center the mean and scale data by the Cholesky factor of the empirical precision matrix.
3: Solve min

sθ
F (sθ) to obtain the score-ratio approximation sθ(x).

4: Estimate the diagnostic matrix Ĥ = 1
n

∑n
i=1 sθ(xi)sθ(xi)

⊤.

5: Compute the eigenpairs of Ĥ , (λi, ui) ∈ R≥0 × Rd.
6: Set U = [u1 . . . un] and pick r so that Êr(U) = 1

2 (λr+1 + · · ·+ λd) < ε
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4 Numerical results

We now present several numerical experiments showing that: (i) our score ratio method more
accurately captures the relevant low-dimensional subspace in a toy problem where this structure is
known to be present, and (ii) this structure is present in several datasets from the UCI repository [7].
Details on the score network parameterization and training procedure are in Appendix C.

Embedded banana distribution Consider the following “embedded banana” distribution, where
the data-generating process is defined by

y1 ∼ N (0, 1), y2 ∼ N (y21 , 1), y3:10 ∼ N (0, I), (4)

and x = Ry, where R ∈ R10×10 is a random rotation matrix that is sampled by computing the QR
factorization of a matrix with standard Gaussian entries. In this case, we have π ∈ Dr=2(R). Hence,
we expect our algorithm to find the subspace spanned by the two leading columns of R.

In this example, we compute the score ratio analytically and define a consistent estimator for the
true diagnostic matrix H . In Figure 1a we plot the error bound Er(U) = 1

2 tr(UrU
⊤
r H) for three

different bases U : (1) the eigenbasis of the true diagnostic matrix; (2) the eigenbasis of the diagnostic
matrix computed with our score ratio approximation; and (3) the eigenbasis of the diagnostic matrix
computed with a standard score approximation (as described at the beginning of §3). For our method,
we see that Er(U) sharply drops at r = 2 to less than 10−2. We also see that our method yields
considerably lower errors at each r compared to standard score matching. For a visual representation
of the results, Appendix C shows a scatter plot of additional held-out samples from π (which were
not used during training) and the samples rotated into our discovered basis U when taking d = 3.

UCI datasets We now report results for several datasets from the UCI repository [7], commonly
used as benchmarks for density estimation: POWER, GAS, and MINIBOONE. Since we take the
reference distribution to be standard normal, before applying our algorithm we whiten the data;
see Appendix A. For these datasets we do not have access to an analytic score function, and thus
can only report the estimated KL error bounds, Êr(U), for each example. In Figure 1b–d, we see
that low-dimensional structure seems to be present in each dataset, via the rapid decay in the error
bound for small r. For example, an r = 1 dimensional subspace for the POWER dataset yields an
approximation error on the order of 10−1.

0 3 6 9
r

101

10 2

10 5

E r

Our method Standard network Truth

0 3 6 9
r

101

10 2

10 5

E r

(a) Banana, d = 10

0 1 2 3 4 5
r

104

102

100

10 2

10 4

E r

(b) POWER, d = 6

0 1 2 3 4 5 6 7
r

104

102

100

10 2

10 4

E r

(c) GAS, d = 8

0 10 20 30 40
r

104

102

100

10 2

10 4

E r

(d) MINIBOONE, d = 43

Figure 1: Upper bounds on the KL divergence as a function of the subspace dimension r for the
embedded banana distribution, and the POWER, GAS, and MINIBOONE datasets. For the embedded
banana distribution, we plot the error bound computed with the true diagnostic matrix, Er, as an
analytic score ratio is available. For the UCI datasets, we report the estimated error bound Êr.

5 Discussion

We have proposed a dimension reduction methodology based on score matching. Our framework
identifies a subspace that best captures the departure of the data-generating distribution from a
reference distribution. While such methods are well studied in the context of Bayesian inference,
our approach brings the benefits of dimension reduction with error guarantees to settings where
only samples are available. To aid in finding low dimensional structure, we introduced a network
parameterization that exploits the score ratio’s gradient structure, coupled with a low-rank matrix
recovery technique. Future work will utilize the proposed framework to accelerate and improve the
accuracy of density estimation and generative modeling by exploiting the discovered low-dimensional
structure. We also plan to investigate how the intrinsic dimension of the problem affects the number
of samples needed to learn the score ratio and its hyperparameters.
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A Choice of reference distribution and data pre-processing

In this work we choose the reference distribution ρ to be a standard Gaussian, though many other
choices are possible. The results in Proposition 1 depend on ρ satisfying a log-Sobolev inequality,
which allows for uniform, multivariate Gaussian, and mixture-of-Gaussian reference distributions,
among others; see [20] for more details and examples.

In practice, ρ should be taken to be comparable to the samples in location and scale. To implement
the algorithm presented in Section 3, it is only required that the score of the reference be known and
easily computable.

Since here the reference distribution chosen here is standard normal, we whiten the data before
applying our algorithm to datasets from the UCI repository, i.e., we standardize the data to have zero
mean and identity covariance matrix. Specifically, we shift the data by its sample mean and transform
it by the square root of a sample estimate of the precision matrix. This ensures that the data can be
meaningfully compared with the standard normal.

B Proof of Proposition 2

Let

J∗(θ) =
1

2
Eπ

∥∥∥∥sθ(x)−∇x log

(
π(x)

ρ(x)

)∥∥∥∥2
2

.

We expand the squared norm to obtain

J∗(sθ) =
1

2
Eπ

[
sθ(x)

⊤sθ(x) +∇x log

(
π(x)

ρ(x)

)⊤

∇x log

(
π(x)

ρ(x)

)
− 2sθ(x)

⊤∇x log

(
π(x)

ρ(x)

)]
.

Note the second term, ∇x log
(

π(x)
ρ(x)

)⊤
∇x log

(
π(x)
ρ(x)

)
, does not depend on the network parameters,

and thus need not be included in our optimization objective. The following steps rewrites the third
term into quantities we can evaluate:

Eπ

[
sθ(x)

⊤∇x log

(
π(x)

ρ(x)

)]
= Eπ

[
sθ(x)

⊤∇x

(
π(x)

ρ(x)

)
ρ(x)

π(x)

]
=

∫
π(x)sθ(x)

⊤∇x

(
π(x)

ρ(x)

)
ρ(x)

π(x)
dx

=

∫
ρ(x)sθ(x)

⊤∇x

(
π(x)

ρ(x)

)
dx

=

∫
tr(∇x(ρ(x)sθ(x))

⊤
(
π(x)

ρ(x)

)
dx

=

∫
π(x)

[
∇xρ(x)

ρ(x)
sθ(x) + tr(∇xsθ(x))

]
= Eπ∇x log ρ(x)

⊤sθ(x) + tr(∇xsθ(x)).

This leads to the final result that

J∗(sθ) = Eπ

[
1

2
sθ(x)

⊤sθ(x) + tr(∇xsθ(x)) +∇x log ρ(x)
⊤sθ(x)

]
+ Eπ

[
∇x log

(
π(x)

ρ(x)

)⊤

∇x log

(
π(x)

ρ(x)

)]
.
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C Implementation details and additional numerical results

(a) Histograms and 2D marginal scatter plots of the embedded banana distribution for
d = 3

(b) Histograms and 2D marginal scatter plots of the embedded banana distribution in the
basis U learned by our score-ratio matching method. Non-Gaussianity has been concen-
trated in the first two directions, and the third direction is now essentially independent of
the first two.

Figure 2: Histograms and scatter plots of held-out samples from the embedded banana distribution
before (a) and after (b) rotation by the learned basis U .

For each numerical example, we used 104 training samples. We use the Adam [12] optimizer with
learning rate 5× 10−3 and batch size 1000 to train the network for 500 epochs. We take the nuclear
norm regularization parameter to be λ = 0.8/d. As discussed in [18], directly evaluating the trace
operator in the objective function F is prohibitively expensive for even moderate dimensions d, and
so we also make use of the sliced-score matching method proposed in that work with 100 projections.
The network s̃θ had 1 fully connected hidden layer for the embedded banana example, and 2 hidden
layers for the UCI datasets with ReLU activation functions and width 128.
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