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Abstract
We propose a design for a continual reinforcement learning (CRL) benchmark called
GHAIA, centered on human-AI alignment of learning trajectories in structured video
game environments. Using Super Mario Bros. as a case study, gameplay is decom-
posed into short, annotated scenes organized into diverse task sequences based on game-
play patterns and difficulty. Evaluation protocols measure both plasticity and stability,
with flexible revisit and pacing schedules. A key innovation is the inclusion of high-
resolution human gameplay data collected under controlled conditions, enabling direct
comparison of human and agent learning. In addition to adapting classical CRL metrics
like forgetting and backward transfer, we introduce semantic transfer metrics capturing
learning over groups of scenes sharing similar game patterns. We demonstrate the fea-
sibility of our approach on human and agent data, and discuss key aspects of the first
release for community input.

1 Introduction

There is increasing interest in continual reinforcement learning (CRL) scenarios, where even the
best agents can continue improving indefinitely in their environment (Abel et al., 2023). Effective
CRL is an important stepping stone towards artificial general intelligence (AGI), with the potential
to match or exceed human-level adaptability. However, despite humans representing a de facto gold
standard of adaptive intelligence, CRL benchmarks rarely establish where human learning trajecto-
ries lie. We propose here a video Game Human-AI Alignment (GHAIA) benchmark grounded in
extensive, high-quality longitudinal human data. Video game environments can be used to train RL
agents (Nichol et al., 2018), are amenable to controlled manipulation (Delfosse et al., 2024), and are
engaging enough to collect large amounts of human gameplay (Sharma et al., 2024). Using a staple
environment for RL research as a case study (the Super Mario Bros. videogame (Nintendo, 1985)),
we outline a GHAIA benchmark with two distinguishing features:

1. Annotated elementary tasks: The videogame is decomposed into hundreds of short, seman-
tically annotated tasks (scenes), which can be procedurally rearranged into different task se-
quences. This large combinatorial space allows precise control over task transitions—gradual
or abrupt—and difficulty progression, enabling the study of transfer, forgetting, and stability in
various conditions.
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2. Human learning trajectories: Extensive behavioural and physiological data were collected
from human players undergoing a controlled sequence of tasks comparable to that of a CRL
agent. This enables not only comparison to final human performance, but also direct alignment
with human learning trajectories across the task sequence.

After a short review of prior art on CRL benchmarks, we outline the general design of the GHAIA
benchmark. We then present the human dataset on Super Mario Bros., and describe how the game
can be decomposed into scenes to characterize human learning trajectories. We also show how
human trajectories can be contrasted with that of a traditional RL agent to provide measures of
human alignment. As we aim for a first release of the GHAIA benchmark and associated competition
in 2026, the discussion section outlines several directions of short-term and long-term development.
Community input will be critical to shape the benchmark to ensure it is relevant to current research
priorities and impactful for the future of human-aligned, lifelong-learning AI.

2 Prior art

Video games have long been a staple of RL research. A pioneering effort, based on an open-source
version of Super Mario Bros. (Nintendo, 1985), built a RL benchmark by adding an API for rein-
forcement learning and the generation of procedural levels to the game (Karakovskiy & Togelius,
2012). Retro games have been further leveraged in the Arcade Learning Environment (ALE) (Belle-
mare et al., 2013), offering a large collection of distinct games. However, these collections were
not designed with cross-task transfer in mind: mastering one game typically provides little advan-
tage in another. Even in the Gym Retro competition (Nichol et al., 2018), where levels from the
same franchise (e.g., Sonic the Hedgehog; SEGA, 1991) were used, transferring knowledge proved
challenging. This limited potential for generalization makes these benchmarks suboptimal to study
continual learning. While rich environments like Minecraft have demonstrated potential for trans-
fer, the complex nature of the game makes it difficult to characterize what aspects of task similarity
promote or hinder reuse (Tessler et al., 2017).

More recent efforts have shifted toward environments specifically designed to enable controlled
studies of continual learning under environment shifts, often starting with an existing videogame RL
environment and adding an explicit manipulation of certain characteristics of the game. For example,
CRLMaze (Lomonaco et al., 2020) used a 3D game engine to create visually distinct maze tasks
organized into task sequences. HackAtari (Delfosse et al., 2024) introduced both visual and physical
modifications to classic Atari games through memory manipulation. While these benchmarks can
help understand learning under perceptual change, it is unclear how they manage to capture continual
learning of new behaviour, which is a key aspect of RL.

The Continual Doom (COOM) benchmark (Tomilin et al., 2023) partly addresses this gap, by
generating a series of tasks inspired by the game Doom (id Software, 1993), and proposing a series
of task sequences designed to systematically test not only shift in the perception of the game, but
also in terms of game objectives as well as difficulty. The COOM benchmark still investigated a
limited number of tasks and task sequences. Importantly, none of the continual RL benchmarks
reviewed here included human baselines.

Recent work has emphasized simply optimizing a reward may not lead to human-aligned behavior
and fall short of human levels of adaptability and generalizability (Sharma et al., 2024), which are
highly desirable qualities for CRL. In order to measure human-AI alignment, Sharma et al. (2024)
proposed a series of manually annotated tasks and situations, with a clear taxonomy of behaviors,
within a complex multi-player game. Although promising, this environment is not amenable to
controlled task sequence manipulations which are ideal for a CRL benchmark, and human behaviour
was also collected outside any controlled sequence, making it impossible to compare human and AI
learning trajectories. Our proposed GHAIA benchmark aims to fill this gap by modifying a classic
game environment to support a vast space of interpretable task sequences, grounded in meaningful
human learning trajectories as baselines.
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3 GHAIA benchmark design for CRL

3.1 Scene and level segmentation

The core design idea behind the GHAIA benchmark for CRL is to treat a series of levels in a
retro videogame such as Super Mario Bros. (Nintendo, 1985) as a task sequence. We propose to
segment all levels into short scenes, each associated with detailed annotations of game patterns. For
example, valid annotations would be the presence of groups of enemies, gaps, or stairs. A given
AI agent would be trained sequentially on each level independently, possibly circling through this
sequence multiple times, with a set number of attempts per scene and per level. After being trained
on a given level, the agent would be evaluated on previous and future tasks to assess behavioral
metrics such as forgetting and transfer. Scene segmentation would allow for the creation of new
level compositions and corresponding task sequences. Moreover, detailed pattern annotations would
provide fine control on the characteristics of a given task sequence along a number of dimensions.

3.2 Procedural Task Sequence Generation

To design diverse and principled task sequences, we implement a procedural generation procedure
based on inter-scene pattern distances. Let n denote the number of scenes that have been obtained
after segmenting the levels of a videogame. Each of the n scenes is annotated with a binary vector
encoding the presence of specific gameplay patterns considered. From this annotation, we define a
pairwise distance matrix between scenes using the Jaccard distance over their pattern vectors. We
define a task sequence as a partition of the n scenes into m disjoint pseudo-levels S = {T1, . . . , Tm},
each Ti comprising about n/m scenes, and presented in a fixed order. The number of possible such
task sequences S is immense, due to combinatorial explosion, enabling exploration of highly diverse
task sequences. To construct a task sequence procedurally, we define objective functions over the
set of candidate partitions. These objectives include:

• Smoothness: minimizing the average pattern distance between successive pseudo-levels and
within each pseudo-level;

• Contrast: maximizing inter-level dissimilarity to increase transitions between gameplay patterns;

• Coverage: maximizing the diversity of patterns observed across the entire curriculum;

• Difficulty Pacing: imposing a monotonic increase in average scene difficulty across pseudo-
levels, using human performance as a proxy.

We can implement greedy and stochastic generation procedures to sample task sequences under var-
ious regimes for each objective (or combination of objectives). This procedural framework lays the
foundation for benchmark variants that target specific combination of learning challenges, including
stability under high shifts in game patterns or incremental generalization across similar patterns of
varying difficulty.

3.3 AI training and performance metrics

To evaluate CRL in a GHAIA benchmark, we adopt standard metrics from the CL literature, specif-
ically (Woł czyk et al., 2021), tailored to the structure of short annotated scenes. These metrics aim
to assess not only retention and forgetting, but also adaptation and learning dynamics over scene
curricula. The agent is trained in successive steps i on each of the task sequence (Ti)mi=1, with a
fixed number of training steps ∆, uniformly assigned to the n/m scenes included in the task set.
Note that for a given scene, the agent spawns in one of the available human savestates available at
that scene.

The performance of an AI agent after finishing training on the j-th task is evaluated as the success
rate on a task i: pi(j) ∈ [0, 1]. The overall performance P (j) denotes the average success rate across
all tasks (including j). The overall performance after training on the last task (Tm), P (m), serves as
the main metric for tuning hyper-parameters and comparing overall effectiveness.
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We measure forgetting Fi in AI agent behaviour on task Ti as the drop in performance between the
end of its training and the end of the curriculum pi(i)− pi(m) ∈ [−1, 1], and the overall forgetting
F is the average over all tasks. Lower values indicate better memory retention. A forward transfer
metric can also be derived by comparing training curves of a reference, naive agent, with the agent
having completed all tasks, see (Woł czyk et al., 2021) for details. If the task sequence is repeated
more than once, backward transfer can also be tracked.

It should be noted that all CRL performance metrics presented here rely on evaluating agents with-
out training. This is impossible with humans: if an individual is asked to perform a task to evaluate
its performance, learning inevitably occurs. We now present how to administer a sequence of tasks
to humans in a controlled way that mimics a CRL benchmark, in order to extract proxy measures of
established CRL metrics.

4 Super Mario Bros.: A case study

We apply the proposed GHAIA design to generate a CRL benchmark using Super Mario Bros. (Nin-
tendo, 1985), an iconic 2D side-scrolling platformer released on Famicom and Nintendo Entertain-
ment System (NES). We implement the game using gym-retro (Nichol et al., 2018), a Python
library created to facilitate RL agent design and experiments within retro videogames environments.
This library features more than 10 console emulators, which allows the emulation of thousands
games of various genres. Super Mario Bros. consists of discrete levels structured around a set
of recurring gameplay mechanics, including running, jumping, avoiding or defeating enemies, and
navigating obstacles such as gaps, pipes, and moving platforms. Despite its apparent simplicity, the
game presents a rich variety of micro-challenges that demand fine motor coordination, temporal pre-
cision, and adaptive planning. Its level design has previously been studied in both game design and
AI research, making it an ideal candidate for systematic analysis of learning dynamics in artificial
agents and humans alike. We extend this design by decomposing the game into a library of short,
self-contained tasks, annotate them structurally, and analyze how both humans and agents learn to
solve them.

Figure 1: Scene annotations. (A) Visual layout of level 3-1 split into 13 short scenes (minus bonus
scenes 4 and 9). (B) One-hot encoding of annotated game patterns per scene. (C) Jaccard distance
matrix between pattern encoding of level 3-1 scenes. (D) Extended Jaccard distance matrix across
all 313 scenes of 22 levels in their original order, and (E) ordered in 25 pattern-driven clusters.
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4.1 Scene segmentation

To enable fine-grained analysis of learning dynamics, we segmented a subset m = 22 (see Supple-
mentary Material for a list) of the 32 original levels of Super Mario Bros. into s = 313 elementary
gameplay segments, hereafter referred to as scenes. Each scene captured a short, self-contained
challenge (mean duration ≈ 5 s) and was designed to isolate a distinct problem-solving context.

We defined scene boundaries manually, following level design principles from Smith et al. (2008).
Segmentation points were placed at transitions between semantically distinct gameplay elements,
e.g. after an enemy cluster or before a gap jump, with neutral traversal zones serving as natural
dividers, see Figure 1A. This ensured that each scene posed a specific micro-task, such as timing a
jump or navigating a staircase. Each scene was indexed by entry and exit coordinates derived from
emulator RAM, allowing consistent segmentation across human and agent gameplay.

4.2 Structural annotation of scenes

We annotated each scene using a structured taxonomy of 28 gameplay design patterns, adapted from
Dahlskog & Togelius (2012) and expanded to better capture the variety of challenges in Super Mario
Bros. These patterns describe recurring design elements such as enemy clusters, gaps of various
widths, multi-path layouts. All scene metadata, including pattern annotations and emulator memory
boundaries, is available in a publicly released CSV file1. This file enables automatic extraction of
gameplay in specific scenes for both humans and AI agents.

Figure 1B presents the binary annotation matrix for level 3-1, showing the presence or absence
of each pattern in the 13 scenes. This annotation scheme provides a semantic fingerprint for each
scene and supports a variety of downstream tasks, including curriculum design, difficulty estimation,
and interpretable performance evaluation. The Jaccard distance matrix between the annotations
of the scene shows a clear pattern of repetition, both within and across levels (Figure 1C-D). A
hierarchical clustering was applied to reorder the whole matrix into 25 clusters of scenes, shown in
Figure 1E. These clusters provide an interpretable low-dimensional organization of the scene space,
supporting procedurally generated task sequences with highly homogeneous scene composition and
sharp transitions across levels.

4.3 Human training

We use human gameplay data collected as part of the Courtois Neuromod Project (Boyle et al.,
2020). Five participants played Super Mario Bros. while undergoing simultaneous behavioral,
brain and physiological recording. Participants completed between 13 and 18 hours of gameplay
(totaling 84 hours), using a custom MRI-compatible gamepad replicating the layout of a classic
SNES controller (Harel et al., 2022). The videogame was presented via gym-retro (Nichol et al.,
2018), enabling real-time logging of player inputs and a posteriori reconstruction of internal game
state variables (e.g., position, score, lives) via the emulator’s RAM. A detailed description of the
dataset and acquisition parameters can be found in CNeuroMod (2025)

The participants were exposed to the original levels design without interruptions between scenes.
Players were exposed to each level in order and given as many attempts (each including up to three
lives) as necessary in order to complete the level once, before starting to practice the next level. So
instead of a fixed amount of gameplay steps ∆ provided to AI agents, human players were subject to
a form of early stopping. This sequence of task presentations, called here discovery phase, largely
mirrors the proposed CRL task sequences for a particular choice of levels. A notable difference
is that scenes situated at the end of a difficult level are typically repeated less than scenes at the
beginning. Once subjects had completed all m = 22 levels, a new practice phase begun, where
levels were presented in pseudo-random fashion (ensuring all levels were presented the same number
of times), mirroring traditional i.i.d. training in RL.

1will become available after the anonymous review period
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Figure 2: Human vs AI learning trajectories. Scene-level success rate across learning stages
for level 3-1 in humans (A) and PPO agent (B). (C-D) Same as A-B, but for scenes grouped into
patterns.

4.4 Human vs AI trajectories

To illustrate the comparison of AI and human learning, we trained a baseline agent using a traditional
i.i.d. RL and Proximal Policy Optimization (PPO) (Schulman et al., 2017) across 20 levels (see
Supplementary Material for details). Although the agent training does not follow the proposed
GHAIA RCL task sequences, we can still study how AI performance evolved throughout training
steps. The agent architecture consisted of a four-layer convolutional neural network with an actor-
critic head, receiving grayscale frame stacks as input (resolution: 84× 84; stack size: 4). The action
space corresponded to discrete button presses in gym-retro.

Training comprised 8000 PPO episodes, each consisting of 512 rollout steps per level followed by
policy updates. Rollouts were initialized by replaying a random number of actions from a human
.bk2 trajectory (sub-01), ensuring in-distribution but non-trivial starting states. One successful
reference trajectory was used per level. Each rollout got re-initialized after a game over or a level
completion. The reward function combined positive feedback for forward movement and in-game
score increase, with penalties for life loss and time spent. Policy checkpoints were saved at episodes
20, 2000, 4000, 6000, and 8000 in order to assess learning trajectories.

To compare human and AI learning trajectories, we further divided the gameplay of the discovery
and practice phases of human training into early and late, through median split of attempts. Note
that the late discovery measures can be used to generate a proxy of pi(i) for humans, and the early
practice phase to generate a proxy of P (m), although human learning continues to occur during
these phases as well. The average success rate is presented (averaged between subjects) across these
phases of training in Figure 2A, for i equal to level 3-1. High variability in the difficulty of scenes
is evident, with scenes 1 and 6-10 in particular in the early discovery phase. Clear learning effects
are also present on nearly all scenes, with notably a jump of nearly 20% in success rate for scene
1. By contrast, the PPO agent (Figure 2B) had markedly lower performance than humans on some
scenes, e.g. scene 8. While some scenes exhibited learning patterns analogous to humans, such as
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scene 1, others showed no learning effects (e.g. scene 8). Even worse, scene 11 for example showed
a negative impact of training on performance, suggesting interference between tasks.

Finally, Figure 2C and D summarize learning progress by design pattern over the full dataset, reveal-
ing distinct acquisition profiles for humans and artificial agents, with humans displaying consistent
improvements across patterns. These metrics can capture the transfer of learning across coherent
semantic groups that span multiple scenes and levels.

5 Discussion

This paper proposes a design for a GHAIA benchmark for CRL, using Super Mario Bros. as a
case study, and seeking input of the community. We have in particular not yet benchmarked CRL
models to establish what kind of computational budget is required in order to achieve meaningful
performance, both in terms of model type, model size and amounts of training data per level. We
discuss below several other potential use cases and extensions that may be prioritized for the first
release of the benchmark and competition.

5.1 Curriculum learning

The large combinatorial space of scenes naturally lends itself to the procedural generation of task
sequences. This capability can be used in multiple ways. One option is to create a small number of
canonical task sequences varying in the abruptness of difficulty and gameplay pattern transitions, to
serve as standardized tracks in the benchmark. Another option is to generate random task sequences
as a basis for evaluation. A third possibility is to pose curriculum optimization itself as a learning
challenge—where the goal is to discover sequences that maximize the CRL performance of a given
agent. A complementary direction is to analyze which structural properties make a task sequence
more or less difficult, potentially under constraints (e.g., limited number of game patterns per se-
quence). While all these avenues are viable, a concrete choice will need to be made for the first
benchmark release and competition.

5.2 Quantitative human-AI alignment metrics

In this work, we presented the evolution of performance metrics pi(i) for human players. Because
our PPO agent was trained using standard i.i.d. reinforcement learning, direct comparisons between
human and agent metrics were not possible. However, we showed that introducing ad hoc training
phases for the agent enabled meaningful interpretation.

When training CRL agents on the canonical Mario level sequence, it becomes feasible to directly
compare pi(i) between humans and artificial agents. This comparison comes with caveats. For
example, AI agents are typically constrained by a fixed training budget ∆, whereas humans are
trained with early stopping. Humans are also evaluated on a single task sequence, while AI will be
exposed to different sequences. Beyond these differences, we would ideally compare P (m) across
agents and humans—but unlike agents, humans cannot be evaluated under “frozen weights.” As a
workaround, the early practice phase of human gameplay may serve as a proxy for such evaluation,
as well as for estimating forgetting.

Additionally, by contrasting the learning curves observed during the practice and discovery phases
in human gameplay, it may be possible to define a formal analogue of backward transfer. The only
classic CRL metric that appears fundamentally unapproximable with our current dataset is forward
transfer, as it is not feasible to collect data from a single individual performing simultaneously all
tasks in sequence or independently for the first time. However, we can define new measures of
progress at the level of game patterns, thus establishing metrics that are sensitive to the semantic
transfer of knowledge across tasks.
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5.3 Expanding beyond the case study

Our team has also collected data on two additional games: Super Mario All-Stars (a 16-bit remake
with altered visuals and physics) and Super Mario Bros. 3, which includes a combination of over-
lapping and novel game patterns compared with Super Mario Bros. (Thompson, 2015). Importantly,
the same participants who played the original Super Mario Bros. game also completed these games
under controlled conditions, enabling cross-game analysis of learning trajectories. These datasets
offer the potential to study generalization under more dramatic domain shifts, such as changes in
visual style and gameplay structure. A set of standardized annotations for game patterns that extend
across the Mario franchise has already been proposed. Creating scene cuts (with corresponding an-
notations) and integrating these games into the benchmark will require significant effort, but could
become a priority if supported by the community.

5.4 Expanding measures of human alignment with brain and physiological activity

While our case study focused on the behavioural component in Super Mario Bros., this human sam-
ple was designed first for applications in cognitive neuroscience, and also features a broad array of
physiological signals collected concurrently with gameplay. Specifically, brain activity was recorded
using functional magnetic resonance imaging (fMRI), which provides an indirect measure of neural
activation at high spatial but limited temporal resolution. Additional modalities include eye tracking
(attention and motor preparation), respiration, cardiac activity, and skin conductance (sympathetic
and parasympathetic indicators of arousal and emotion). A separate Mario-EEG dataset captures
neural activity at high temporal resolution, and another dataset is being collected using magnetoen-
cephalography (MEG), which offers a middle ground between EEG and fMRI.

Taken together, these signals offer a multidimensional view of human cognitive and affective state,
and make the mario human dataset the most detailed of its kind to date. This array of measure-
ments could be used to assess whether the internal representations of an RL agent align with distinct
human-derived latent spaces. It has been suggested that aligning latent representations with brain ac-
tivity may improve robustness and generalization in AI systems (Freteault et al., 2025). These mul-
timodal signals provide a promising complement to behavioural imitation and offer a more holistic
measure of human-likeness. However, incorporating them into the benchmark would require sub-
stantial engineering and may delay an initial competition.

5.5 Limitations

One clear limitation is that only five individuals currently serve as human baselines for CRL. Captur-
ing human learning under tightly controlled conditions is resource-intensive, especially with phys-
iological data. Given the difficulty of collecting longitudinal highly controlled data, substantially
expanding the participant pool would likely require a coordinated, multi-lab effort, even for be-
havioural data alone.

Another limitation is the total number of scenes (313). While this allows for a vast number of pos-
sible sequences, many such permutations may differ only trivially. Some agents may eventually
saturate the benchmark. Nonetheless, the fact that human participants are still refining their per-
formance suggests nontrivial complexity remains. Moreover, integration of brain and physiological
data would increase alignment difficulty and mitigate the risk of trivial saturation. Expansion to
other games, as described above, also offers a clear path to increased benchmark complexity.

5.6 Broader Impact Statement

CRL has the potential to shape the development of AI agents capable of lifelong adaptation, and
this benchmark offers opportunities for cross-disciplinary inquiry. For instance, if optimal task
sequences emerge for AI agents, this may transfer to humans and may reveal shared principles of
effective learning curricula which can be applied to video games aimed at teaching skills over time.
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Supplementary Materials
The following content was not necessarily subject to peer review.

6 Taxonomy of game patterns in Super Mario Bros

Category Pattern Definition

Enemies
Enemy Single enemy.
2-Horde Two adjacent enemies.
3-Horde Three adjacent enemies.
4-Horde Four adjacent enemies.
Roof Enemy below low ceiling.

Gaps
Gap One terrain gap.
Multiple gaps Series of equal gaps.
Variable gaps Gaps of differing width.
Gap enemy Enemy flying above gap.
Pillar gap Pipe/block stands between gaps.

Valleys
Valley A valley surrounded by vertical obstacles, no Piranha pipes.
Pipe valley Valley with Piranha pipes.
Empty valley Valley without enemies.
Enemy valley Valley with enemies.
Roof valley Valley with overhead ceiling.

Multiple paths
2-Path One platform, two routes.
3-Path Two platforms, three routes.
Risk/Reward Hazardous path offering reward.

Stairs
Stair up Ascending block steps.
Stair down Descending block steps.
Empty stair valley Valley between stairs, no enemies.
Enemy stair valley Valley between stairs with enemies.
Gap stair valley Valley between stairs with floor gap.

Additions to Dahlskog & Togelius (2012)
Reward Isolated coin/power-up.
Moving platform Horizontally or vertically mobile platform.
Flagpole Level-end goal pole.
Beginning Initial segment after start.
Bonus zone Hidden area rich in collectibles.

Table 1: Taxonomy of Super Mario Bros. design patterns used to annotate scenes, adapted from
Dahlskog & Togelius (2012).

7 Selection of game levels in Super Mario Bros

We selected a subset of 22 levels composed of levels 1–1, 1–2, 1–3, 2–1, 2–3, 3–1, 3–2, 3–3, 4–1,
4–2, 4–3, 5–1, 5–2, 5–3, 6–1, 6–2, 6–3, 7–1, 7–3, 8–1, 8–2, and 8–3. We excluded boss levels (*-4)
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and underwater levels (2–2, 7–2), as these involve distinct game mechanics and design patterns not
addressed in the current taxonomy (Dahlskog & Togelius, 2012).

8 Difficulty of game patterns for humans

To examine broad structural trends, we aggregated performance by design pattern (Figure 3A) and
by scene cluster (Figure 3B), where clusters group scenes with similar pattern compositions. Our
results reveal stable difficulty gradients across structural categories and gameplay motifs, providing
a fine-grained behavioral reference for evaluating adaptation, difficulty pacing, and alignment in
agent-based continual learning. This structural framework serves as the foundation for analyzing
Super Mario Bros. gameplay at the scene level.

Figure 3: Human gameplay performance across scenes, patterns, and clusters. (A) Average
success rate per design pattern across participants, showing consistent differences in pattern diffi-
culty. (B) Average success rate per cluster (scene grouping based on pattern structure), highlighting
cluster-level variation in difficulty across players.

9 Scene selection for training the PPO agent

The agent was trained on 20 of the 22 levels included in the benchmark. Levels 5–1 and 6–3
were held out for evaluation to assess generalization, and are not used in this work. While level
5–1 primarily differs in visual style (except from level 7-1), level 6–3 introduces both aesthetic
and mechanical variations, including narrower platforms and altered player traction, posing a more
challenging domain shift.


