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Abstract

Generative models such as Generative Adversarial Networks (GANs), Variational
Autoencoders (VAEs), and diffusion models often suffer from mode collapse,
failing to reproduce the full diversity of their training data. While this problem
has been extensively studied in image generation, it remains largely unaddressed
for time series. We introduce a formal definition of mode collapse for time series
and propose DMD-GEN, a geometry-aware metric that quantifies its severity.
DMD-GEN leverages Dynamic Mode Decomposition (DMD) to extract coherent
temporal structures and uses Optimal Transport between DMD eigenvectors to
measure discrepancies in underlying dynamics. By representing the subspaces
spanned by the DMD eigenvectors as point structures on a Grassmann manifold,
and comparing them via Wasserstein distances computed from principal angles,
DMD-GEN enables a principled geometric comparison between real and generated
sequences. The metric is efficient, requiring no additional training, supports mini-
batch evaluation, and is easily parallelizable. Beyond quantification, DMD-GEN
offers interpretability by revealing which dynamical modes are distorted or missing
in the generated data. Experiments on synthetic and real-world datasets using
TimeGAN, TimeVAE, and DiffusionTS show that DMD-GEN aligns with existing
metrics while providing the first principled framework for detecting and interpreting
mode collapse in time series. Our code is available at: here.

1 Introduction

Generative models have gained significant attention in recent years, driven by recent advancements
in computational power, the availability of extensive datasets, and breakthrough developments in
machine learning algorithms. Notably, models like GANs and VAEs excel at capturing rich and
meaningful latent representations of data [17, 23, 38, 41, 45]. These models are applied in various
ways, such as generating realistic samples that mimic real-world data distributions [51], modeling
complex probability distributions through density estimation [59], and augmenting datasets with
synthetic data to improve model generalization [25, 61], among others. However, recent studies
have revealed that generative models sometimes fail to produce diverse samples, leading to reduced
effectiveness in applications that require a broad spectrum of variations [1, 6, 40]. An illustration of
this challenge can be seen in GANs, which often experience mode collapse, a phenomenon where the
generator focuses on a limited subset of the data distribution, leading to the production of repetitive
or similar samples rather than capturing the full diversity of the training data [3, 4, 15, 42]. VAEs
also face a phenomenon called posterior collapse, where the model tends to generate outputs that are
similar or indistinguishable for different inputs. This limitation reduces the model’s ability to produce
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diverse samples [18, 56]. Diffusion models, while generally robust against mode collapse compared
to GANs and VAEs, are not entirely immune to difficulties in covering the full data distribution. These
challenges often emerge under strong classifier-free guidance or limited data regimes [20, 46, 50].

The issue of diversity in generative models has received significant attention in fields such as
computer vision and natural language processing [11, 21, 29, 32, 49], however, it remains relatively
underexplored for time series data. The inherently time-dependent and dynamic nature of time series
makes traditional definitions of mode collapse insufficient, highlighting the need for a framework
tailored to time-dependent data. Defining modes in time series is particularly challenging, as
it requires capturing evolving temporal patterns rather than simply avoiding repetitive or static
sequences. A natural way to determine if a generative model preserves the diversity is to evaluate
the similarity between original and generated time series. However, widely used existing evaluation
metrics, such as, Predictive and Discriminative Scores [60], and Contextual FID [22], suffer from
key limitations. They are often computationally expensive, since they rely on training auxiliary
models that capture temporal dependencies in the data. More importantly, these metrics provide only
aggregate performance indicators and fail to reveal which dynamic modes have been preserved or
lost in the generated sequences.

To address these challenges, we introduce a time-series-specific definition of a mode. Our approach
is based on Dynamic Mode Decomposition (DMD) [52], a spectral method that identifies dominant
coherent structures in temporal dynamics. This allows to develop a new metric that is interpretable,
training-free, and explicitly quantifies the preservation of temporal modes in generative models. The
main contributions of this work are as follows,

• New Definition of Mode Collapse for Time Series: We introduce a new definition of mode
collapse specifically for time series data, leveraging DMD to capture and analyze coherent
dynamic patterns.

• Development of DMD-GEN Metric: We propose DMD-GEN, a new metric to detect mode
collapse, which consistently aligns with traditional generative model evaluation metrics
while offering unique insights into time series dynamics.

• Enhanced Interpretability: The DMD-GEN metric provides increased interpretability by
decomposing the underlying dynamics into distinct modes, allowing for a clearer under-
standing of the preservation of essential time series characteristics.

• Efficiency in Time Complexity: Our approach offers significant computational efficiency
as it requires no additional training, making it highly scalable for real-time applications.

2 Background and Related Work

Mode Collapse for Time Series. Before delving into the details of our new evaluation metric that
incorporates the concepts mentioned above, it is worth highlighting the challenges to be addressed in
order to measure mode collapse when dealing with time series. (i) Capturing Modes: For time series,
we need to consider modes that represent different evolving patterns over time. Real-world time series
data rarely exhibit a single clean pattern [26, 30]. Instead, time series data often exhibit multiple
patterns simultaneously, e.g. layered over long-term trends and shorter-term fluctuations representing
evolving modes. This makes it difficult to isolate and identify the specific mode of interest. Moreover,
in contrast to data modalities with well-defined discrete structures, such as images or text, time series
data exhibit inherent temporal continuity. This makes it challenging to determine the beginning and
end of a specific evolving pattern (mode). (ii) Similarity Measurement: Time series data often have
different characteristics that make standard distance metrics such as Euclidean distance less effective
as a similarity measure. For instance, Euclidean distance is sensitive to variations in feature scales
across dimensions. In high-dimensional spaces, this can cause a few dimensions to dominate, leading
to distorted similarity measurements. In addition, Euclidean distance does not take into account the
temporal dependencies present in the time series data. It assumes that each timestamp is independent,
which is inappropriate for time series data where the ordering and temporal dependencies between
observations are essential. More advanced similarity measures, such as Dynamic Time Warping
(DTW) [37], address temporal dependencies by aligning sequences to minimize distance. However, if
fails to capture the underlying modes or coherent dynamic patterns present in the data. This inability
to recognize and preserve the essential modes means DTW falls short in assessing mode collapse.
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Unlike in images, the mode collapse issue in time series cannot be easily distinguished with human
eyes. Therefore, this area remains relatively under-explored. Few studies have formally addressed this
problem and proposed solutions within the time series domain. [31] introduced an auto-normalization
heuristic that normalizes each time series separately rather than the dataset as a whole. However, the
custom auto-normalization heuristic addresses only mode collapse resulting from offset differences
between time series, without considering whether the model captures the global trends and seasonality
of the dataset. Additionally, DC-GAN [36] is the first time series GAN capable of generating all
temporal features within a multimodal distributed time series. Based on directed chain stochastic
differential equations (DC-SDEs) [13], the model introduces an approach to temporal generation.
Although the authors did not explicitly discuss mode collapse, it would be valuable to investigate
whether DC-GAN successfully captures the full range of trends and seasonal patterns present in the
dataset.

Dynamic Mode Decomposition (DMD). DMD [43, 52] is a data-driven and model-free method
used for analyzing the underlying dynamics of complex systems such as fluid dynamics. It is
used to extract modal representations of a nonlinear dynamical system directly from data, without
requiring prior knowledge of the system. Given a dynamical system ẋ(t) = f(x(t), t;µ), where
x(t) ∈ Rn denotes the n-dimensional state vector, µ ∈ Rp represents the system parameters,
and f : Rn × R × Rp → Rn defines the dynamics, DMD approximates the system locally by
ẋ ≈ Ax, where A is the best-fit linear operator obtained via regression to approximate f . This linear
approximation allows for the representation of the system’s behavior in a simplified framework and
helps construct reduced-order models that capture the essential dynamics of the systems. This is
particularly useful for systems with large state spaces, such as fluid dynamics [24, 28]. Analogously,
we consider a discrete-time approximation of the dynamical system. Given x : t ∈ R 7→ x(t) ∈ Rn,
we collect m consecutive snapshots to construct two data matrices X,X′ ∈ Rn×m defined as

X =

[
x0 x1 · · · xm−1

]
, X′ =

[
x1 x2 · · · xm

]
.

These snapshots are taken with a time-step ∆t small enough to capture the highest frequencies
in the system’s dynamics, i.e., ∀k ∈ N, xk = x(k∆t). Assuming uniform sampling in time, we
approximate the dynamical system linearly as xk+1 ≈ A⋆xk, where A⋆ ∈ Rn×n is the best-fit
operator, i.e., A⋆ = argminA ∥X′ −AX∥F = X′X†, where ∥.∥F is the Frobenius norm and X† is
the Moore-Penrose generalized inverse of X. The optimal discrete-time operator A⋆ is related to the
continuous-time operator A, defined earlier, through the exponential mapping A⋆ = exp(A∆t); see
Appendix A. The DMD operator A⋆ is deeply rooted in Koopman operator theory [9, 33, 39, 47],
which provides a linear perspective on nonlinear dynamical systems. Specifically, DMD can be
viewed as a finite-dimensional approximation of the infinite-dimensional Koopman operator that
advances observables of the system forward in time. This connection, originally established by [48],
enables spectral analysis of nonlinear dynamics through linear algebraic techniques. In essence,
Koopman theory offers a principled framework for globally linearizing nonlinear dynamics, allowing
DMD to capture coherent spatiotemporal structures and their evolution through the system’s spectrum
[12, 34, 35]. By analyzing the eigenvalues Λ = diag(λ1, . . . , λr) and the corresponding eigenvectors
Φ = [ϕ1, . . . ,ϕr] ∈ Rn×r of the DMD operator A⋆, where r denotes the rank of X, we can capture
the dominant dynamic patterns that govern the system’s evolution. These spectral components, the
eigenvalues encoding temporal behavior and the eigenvectors capturing spatial coherence, together
provide a compact yet expressive representation of the underlying dynamics. Conventionally, the
eigenvectors and their corresponding eigenvalues are arranged in descending order based on the
magnitude of the eigenvalues, i.e., |λ1| ≥ . . . ≥ |λr|.
Throughout this paper, we distinguish between two related quantities: r denotes the full numerical
rank of the snapshot matrix X, corresponding to the total number of available DMD modes obtained
from the spectral decomposition of A⋆. In contrast, k ≤ r denotes the number of dominant modes
retained for reduced-order approximation or comparison. Hence, r characterizes the complete
spectral dimension of the system, while k represents the truncated subspace capturing the most
significant dynamics. This distinction will be maintained consistently in subsequent sections, where
all definitions and metrics involving Mk(X) refer to the k leading DMD modes.

For a high-dimensional state vector x ∈ Rn, the matrix A⋆ comprises n2 elements, making its
representation and spectral decomposition computationally challenging. To address this, we apply

3



dimensionality reduction to efficiently compute the dominant eigenvalues and eigenvectors of A⋆ by
constructing a reduced-order approximation Ã ∈ Rr×r. The DMD approximation at each time step
can be expressed as follows,

∀t, xt =

r∑
j=1

ϕjλ
t
jbj = ΦΛtb, (1)

where ϕj are the DMD modes (eigenvectors of the matrix A), λj are the corresponding DMD
eigenvalues, and bj denotes the mode amplitude, given by b = Φ†x0 in matrix form. The detailed
steps for this process are provided in the Appendix A.3. DMD modes can be interpreted as basis
vectors spanning a subspace that captures coherent spatiotemporal patterns among the components
of x(t). It decomposes a complex time series into a collection of simpler, coherent modes, where
each of them captures a specific aspect of the system’s behavior, e.g., an oscillation, an exponential
growth/decay, or a traveling wave [58]. The DMD modes are spatial fields that often reveal coherent
structures within the flow. These structures are fully characterized by the DMD eigenvalues Λ
and eigenvectors Φ, which respectively encode the temporal frequencies and spatial patterns of
the underlying dynamics. Specifically, the imaginary part of the eigenvalues Λ determines the
oscillation frequency, while the real part indicates the rate of exponential growth or decay [10, 54].
The corresponding DMD eigenvectors Φ capture the spatial coherence associated with each mode,
providing an interpretable link between the system’s temporal evolution and its spatial distribution.

3 Quantifying Mode Collapse in Time Series

Notations. We denote by G a generative model specific to time series. This model is trained on
a dataset comprising N time series, each with a fixed length, represented as {Xi}Ni=1. During the
inference phase, we synthetically generate a set of Ñ time series, denoted as {X̃j}Ñj=1 using G. Both
the original and generated time series are assumed to have a consistent length, denoted as ℓ, and
dimensionality, represented as n. Formally, for any pair of indices i and j, the original and generated
time series Xi and X̃j are elements of the Euclidean space Rn×ℓ.

3.1 Defining Temporal Modes

In this section, we formalize the notion of temporal modes. Definition 3.1 captures the essence of a
mode in terms of the dominant eigenvalues and eigenvectors of the DMD operator, highlighting the
significant dynamic structures in the time series data.

Definition 3.1 (Temporal Modes). Given a time series X = [x1, . . . ,xℓ] ∈ Rℓ×n, we define the
set of temporal modes Mk(X) as the k dominant eigenvectors {ϕ1, . . . , ϕk} of the associated DMD
operator. These capture the primary dynamic patterns in the time series. We represent Mk(X) as,

Mk(X) =

[
ϕ1 ϕ2 · · · ϕk

]⊤
∈ Rk×n.

Selecting the number of retained modes k involves a classical bias–variance trade-off: a smaller k
yields robustness to noise but may underrepresent the full system dynamics, whereas a larger k enables
more accurate reconstruction at the risk of overfitting. To formalize this trade-off, let r = rank(Φ)
denote the rank of Φ, i.e., the concatenation of all DMD eigenmodes. The approximation error can
then be quantified using the Frobenius norm ∥Φ−Mk(X)∥F . The exact expression for this error
term is provided in Proposition 3.2.

Proposition 3.2 (Eckart–Young–Mirsky theorem [14]). Let σ1 ≥ σ2 ≥ · · · ≥ σr be the sin-
gular values of Φ. Then the DMD eigenmodes Mk(X) that uses the first k modes satisfies,
∥Φ−Mk(X)∥F =

(
σ2
k+1 + . . .+ σ2

r

)1/2
.

A common practical guideline is to select the smallest k such that a prescribed proportion τ ∈ [0, 1]

of the total energy is retained, i.e.,
∑k

j=1 σ
2
j ≥ τ

∑r
j=1 σ

2
j . In practice, a typical choice is τ = 0.95.
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3.2 Measuring the Similarity Between Time Series Using Their Respective DMD Modes

We are interested in quantifying the similarity of the underlying dynamics between Xi and X̃j .
Comparing their respective DMD eigenvectors provides a principled way to assess this similarity
over time, as these eigenvectors capture and reveal the dominant dynamic patterns of the system.
According to Equation 1, the dominant modes can be identified from the eigenvectors associated
with the largest DMD eigenvalues. Consequently, we focus on comparing the similarity between
the corresponding temporal mode subspaces, Mk(X) and Mk(X̃). However, directly measuring
the distance between these two subspaces is mathematically challenging, as their bases are not
necessarily aligned. Although Mk(X) and Mk(X̃) have the same dimensionality, their respective
eigenvector subspaces are not necessarily aligned and may be expressed in different bases, making
direct comparison nontrivial. To address this, we draw upon the concept of Grassmann manifolds
from Information Geometry [2], which provides a natural and principled framework for comparing
subspaces [27].
Definition 3.3 (Grassmann manifold). Let V be an n−dimensional vector space The Grassmann
manifold Gr(k, n) is the set of all k−dimensional subspaces of V , where 1 ≤ k ≤ n. Mathematically,
it can be expressed as Gr(k, n) = {W ⊆ V : dim(W ) = k}.

The Riemannian distance between two subspaces on a Grassmann manifold is defined as the length
of the shortest geodesic connecting them. This distance can be computed using the principal angles
between the subspaces, which in our case correspond to the temporal modes.
Definition 3.4 (Principal Angles Between Temporal Modes). Let the columns of Mk(X) and
Mk(X̃) represent two linear subspaces U and V, respectively. The principal angles 0 ≤ θ1 ≤ · · · ≤
θr ≤ π/2 between the two subspaces are defined recursively as follows:

cos θk = max
u∈U

max
v∈V

u⊤v s.t.

{
u⊤u = v⊤v = 1
u⊤ui = v⊤vi = 0, i = 1, . . . , k − 1

(2)

The work of [8] has shown that the principal angles can be efficiently computed via the Singular Value
Decomposition (SVD) of Q⊤Q̃, where QR and Q̃R̃ denote the QR factorizations of Mk(X) and
Mk(X̃), respectively. The SVD of Q⊤Q̃ can then be written as Q⊤Q̃ = UangΣangV

⊤
ang, where

Uang and Vang are orthogonal matrices containing the left and right singular vectors, respectively, and
Σang is a diagonal matrix whose entries correspond to the singular values associated with the principal
angles between the two subspaces. If s denotes the rank of Σang, then the principal angles correspond
to the arccosine of the first s singular values of Σang, i.e., Θ = diag

(
cos−1 σ1, . . . , cos

−1 σs

)
.

Following [7], these principal angles can be used to define several Grassmannian metrics. One such
metric is the projection distance, defined as the Frobenius norm of the matrix sinΘ, i.e.,

dproj

(
Mk(X),Mk(X̃)

)
= ∥sin(Θ)∥F =

(
s∑

k=1

sin2 θk

)1/2

. (3)

The projection distance serves as a similarity metric between the temporal mode subspaces Mk(X)

and Mk(X̃). Smaller principal angles indicate that the subspaces are closer to each other, reflecting a
higher degree of dynamical similarity. It is known that multiple geodesics can connect two points on
the Grassmann manifold Gr(k, n). However, when all principal angles lie within the interval [0, π/2],
the corresponding geodesic is unique [53, 57].

3.3 Robustness of the DMD Mode Geodesic Distance

To verify that the proposed geodesic distance effectively captures mode collapse, it is essential to
assess its stability under small perturbations in the system dynamics. Theorem 3.5 establishes an
upper bound on this distance, showing that minor perturbations in the time series result in only small
deviations in the subspace of DMD eigenvectors, thereby reinforcing the stability and reliability of
the proposed metric.

Theorem 3.5 (DMD reconstruction consistency). Let X = [x1, . . . ,xℓ] ∈ Rn×ℓ and X̃ =

[x̃1, . . . , x̃ℓ] ∈ Rn×ℓ be two sequences of state snapshots. Assume that both X and X̃ admit
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a DMD representation with the same initial condition x0 = x̃0. Let Mk(X) ∈ Cn×k and
Mk(X̃) ∈ Cn×k denote the respective DMD mode matrices, associated with diagonal eigenvalue
matrices Λ, Λ̃ ∈ Ck×k. Then, for all time steps t, the reconstructed states satisfy

xt = Mk(X) Λt Mk(X)†x0, x̃t = Mk(X̃) Λ̃t Mk(X̃)†x0.

Let Et denote the difference in dynamics between X and X̃, i.e., ∀t, xt − x̃t = Etx0. Then, for
all time steps t, the projection distance between the corresponding temporal mode subspaces satisfies
dproj

(
Mk(X),Mk(X̃)

)
≤ ∥Et∥F

δt
, where δt denotes the spectral gap of Λt, and ∥ · ∥F represents

the Frobenius norm. The proof of Theorem 3.5 is provided in Appendix C. This result demonstrates
that small perturbations in the system dynamics lead to only minor variations in the subspace of DMD
eigenvectors, ensuring that the geodesic distance remains a stable and reliable measure of dynamical
similarity. In simpler terms, small differences in the time series translate into proportionally small
differences in their DMD-based representations, making the proposed metric particularly well-suited
for evaluating time-series generative models.

3.4 Measuring Mode Collapse For Time Series

To quantify mode collapse in generative models for time-series data, we propose a new approach
based on Optimal Transport (OT) to assess the similarity and preservation of modes between real
and generated samples. In this framework, DMD is first applied to both real and generated time
series to extract their dominant modes, therefore capturing the key dynamical patterns underlying
each dataset. For a given set of L sampled batches of real time series X = {X1,X2, . . . ,XL}
and generated time series X̃ = {X̃1, X̃2, . . . , X̃L}, we compute the corresponding sets of DMD
modes {Mk(Xi)}Li=1 and {Mk(X̃j)}Lj=1, which encapsulate the dominant temporal dynamics of
each sequence. We then construct a cost matrix C, where each entry Cij quantifies the dissimilarity
between the mode subspaces Mk(Xi) and Mk(X̃j) using a principal-angle-based metric. The OT
problem is subsequently solved to obtain the transport plan γ⋆ that minimizes the total transportation
cost, therefore identifying the optimal mapping between real and generated modes via the Wasserstein
distance defined as follows:

dDMD(X , X̃ ) = Ei,j

[
Wp

(
Mk(Xi), Mk(X̃j)

)]
= Ei,j

[
min
γ∈Π

⟨γ,C⟩p
]
, (4)

where p denotes the order of the Wasserstein distance, Π represents the set of all joint probability
distributions, and ⟨·, ·⟩p denotes the p-order cost-weighted inner product used to compute the transport
cost. The resulting distance provides a robust measure of mode collapse: a smaller Wasserstein
distance indicates better preservation of the original modes in the generated data, hence reflecting
the effectiveness of the generative model in maintaining the intrinsic dynamical patterns of the time
series. The geodesic γ in Equation 4 is defined formally in Theorem 3.6.

Theorem 3.6 (DMD Mode Geodesic). Let Mk(X),Mk(X̃) ∈ Rn×k be matrices whose columns
form orthonormal bases of two k-dimensional subspaces of Rn. Let Θ = diag(θ1, θ2, . . . , θk) denote
the diagonal matrix of principal angles between the subspaces spanned by Mk(X) and Mk(X̃).
Further, let ∆ ∈ Rn×k be an orthonormal matrix such that Mk(X̃) = Mk(X) cos(Θ)+∆ sin(Θ).

Then, the geodesic connecting Mk(X) and Mk(X̃) on the Grassmann manifold Gr(k, n) is given by
γ(t) = Mk(X) cos(tΘ) +∆ sin(tΘ), for t ∈ [0, 1], and the length of this geodesic corresponds
exactly to the projection distance:

d̃proj

(
Mk(X),Mk(X̃)

)
=

(
k∑

i=1

θ2i

)1/2

. (5)

Theorem 3.6 characterizes the geodesic path between two sets of temporal modes in time series
data, showing that the transformation between these modes can be expressed precisely through
trigonometric combinations of the principal angles (see proof in Appendix B). The distance d̃proj in
Equation 5 is positively correlated with dproj in Equation 3, since all principal angles lie within the
interval [0, π/2]. This approach provides a quantitative and interpretable framework for evaluating
the performance of generative models on time series data. We approximate the metric in Equation 4
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Algorithm 1 Computation of DMD-GEN Metric
Input: Number of batches B
Initialize: dDMD ← 0

foreach l = 1, . . . , B do
Sample a batch of real time series X and generated time series X̃ .
foreach Xi ∈ X do

foreach X̃j ∈ X̃ do
Step 1. Extract temporal modesMk(Xi) from Xi.
Step 2. Extract temporal modesMk(X̃j) from X̃j .
Step 3. Compute orthonormal bases via QR factorization:
Mk(Xi) = QiRi, Mk(X̃j) = Q̃jR̃j .
Step 4. Compute principal angles from the SVD:
Q⊤

i Q̃j = Uang cos(Θ)V⊤
ang,

where cos(Θ) = diag(cos θ1, . . . , cos θr) and the principal angles are given by θℓ = cos−1(σℓ),
with {σℓ}rℓ=1 being the singular values of Q⊤

i Q̃j .
Step 5. Compute dissimilarity entry:
Cij = d̃proj

(
Mk(Xi),Mk(X̃j)

)
.

end foreach
end foreach
Update metric estimate:
dDMD ← dDMD + 1

B
minγ∈Π⟨γ,C⟩p.

end foreach
Output: dDMD

using the law of large numbers, and the detailed computational procedure is outlined in Algorithm 1.
The values of the optimal transport matrix γ⋆ = argminγ∈Π⟨γ,C⟩p in Equation 4 quantify the
extent to which the modes of each training time series are preserved in the generated samples.

Time Complexity. We analyze the computational complexity of Algorithm 1. Let B be the number
of batches, Sb be the batch size, n be the data dimensionality, m be the time series length, k be the
number of modes, and ϵ be the OT solver precision. We assume n,m ≥ k. The total complexity is
driven by the B outer loop iterations. In each iteration, we compute an Sb × Sb cost matrix C and
solve the Optimal Transport (OT) problem. Computing C requires S2

b pairwise comparisons. The
cost for each pair (Xi, X̃j) is dominated by the two DMD extractions (Steps 1-2), which, as detailed
in Appendix A.3 (Algorithm 2), have a complexity of TDMD = O(nmk + nk2 +mk2 + k3). This
cost is higher than the subsequent QR factorization (Step 3: O(nk2)) and geodesic computation (Step
4: O(k2n+ k3)). After building the matrix, solving the OT problem with Sinkhorn’s algorithm [44]
costs O(S2

b /ϵ). Therefore, the cost per batch is O(S2
b · TDMD + S2

b /ϵ). The total complexity for B
batches is: O(B · S2

b · (nmk + nk2 +mk2 + k3 + 1/ϵ)).

4 Experiments

We evaluate the diversity of generative models across one synthetic dataset and three real-world
datasets. The statistics of each dataset as well as the baselines metrics can be found in Appendix D.

Consistency of DMD-GEN with Established Metrics. Table 1 demonstrates that DMD-GEN
produces results consistent with established evaluation metrics such as the Predictive Score, Dis-
criminative Score, and Context-FID across all datasets. In each case, the rankings induced by
DMD-GEN align closely with those from other metrics, effectively distinguishing between generative
models based on their performance. A key advantage of DMD-GEN, however, lies in its efficiency:
unlike other metrics, it requires no additional training to evaluate the generated time series. This
makes DMD-GEN computationally efficient while maintaining consistent and reliable assessments
of generative model quality.

As part of our ablation study, we also evaluated generic metrics not originally designed for time-series
data but potentially applicable, such as MTopDiv [5], which measures divergence between original and
generated samples by comparing data manifolds approximated as point clouds. Applying MTopDiv
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Table 1: Comparison of generative model performance across multiple time series datasets using four
evaluation metrics. Highlighted values indicate the best performance for each dataset. All metrics,
including DMD-GEN, consistently identify the same best performing model, demonstrating strong
agreement among evaluation methods. The symbol ‘–’ denotes cases where computation failed or
was not applicable.

Metric Model Sines ETTh Stock Energy

Disc. Score
TimeGAN 0.03±0.01 0.20±0.03 0.08±0.04 0.27±0.04

TimeVAE 0.33±0.02 0.50±0.00 0.50±0.00 0.50±0.00

DiffusionTS 0.02±0.01 0.50±0.00 0.50±0.00 0.50±0.00

Pred. Score
TimeGAN 0.09±0.00 12.39±0.00 6.40±0.30 24.01±0.00

TimeVAE 0.12±0.00 13.05±0.03 27.12±0.57 24.61±0.06

DiffusionTS 0.09±0.00 13.18±0.01 17.78±0.08 24.49±0.07

Context-FID
TimeGAN 0.04±0.01 0.40±0.05 - 11.92±1.95

TimeVAE 5.01±1.04 12.22±1.15 - 135.27±22.83

DiffusionTS 0.01±0.00 11.65±0.76 - 127.02±13.68

DMD-GEN
TimeGAN 33.91±1.75 20.96±1.10 0.73±0.19 44.57±7.34

TimeVAE 31.65±0.51 98.91±0.68 4.02±0.08 164.48±0.44

DiffusionTS 29.66±0.34 105.46±0.82 13.62±2.53 150.67±0.97

to time series requires flattening the sequences into independent samples, thereby discarding the
essential temporal structure and feature dependencies. Nonetheless, for completeness, we conducted
experiments using MTopDiv on the Energy, ETTh, and Sines datasets to compare the performance of
TimeVAE, TimeGAN, and DiffusionTS (see Appendix F). The results revealed substantial variability
in standard deviations across models and datasets, making meaningful comparison difficult. This
instability suggests that MTopDiv is not a reliable metric for evaluating multivariate time-series
generative models, as it fails to capture the intrinsic temporal dependencies of the data.

Evaluating Metric Robustness Under Controlled Mode Collapse. To study how different eval-
uation metrics behave under varying degrees of mode collapse, we created a synthetic dataset that
allows direct control over the collapse severity. Specifically, we generated N = 1000 time series,
each drawn from one of two distinct generators, G1 and G2, defined in Appendix E. Time series
produced by the same generator are considered to belong to the same mode. The generator is chosen
using a Bernoulli random variable with parameter λ ∈ [0, 1]: G1 is selected if λ < λref, and G2

otherwise. The reference value λref = 0.5 corresponds to a balanced mixture, where both modes are
equally likely (co-exist) and no collapse occurs. We denote the resulting dataset by DN (λ).

For each metric m, the non-collapse case is given by m(DN (λref),DN (λref)), while the collapsed
cases correspond to m(DN (λref),DN (λ)) for λ ̸= λref. Since the metrics have different numerical
ranges, we compare them using a normalized performance measure:

Perf(λ) =
m(DN (λref),DN (λ))

m(DN (λref),DN (λref))
− 1.

Table 2 reports Perf(λ) for several metrics across different mode collapse levels. We observe that
the benchmark metrics exhibit large fluctuations in both magnitude and sign as λ varies, indicating
sensitivity to changes in mode balance. In contrast, DMD-GEN remains stable and robust, effectively
detecting even minor collapses. Both DMD-GEN and Context-FID increase rapidly as λ deviates
from λref, signaling their sensitivity to emerging imbalances. However, unlike metrics such as
Context-FID that can produce arbitrarily large values as discrepancies grow, DMD-GEN is naturally
bounded by the geometry of the Grassmann manifold: the principal angles that define its distance lie
within [0, π/2]. This bounded structure prevents extreme variations, ensuring numerical stability and
making DMD-GEN a reliable and computationally efficient metric for detecting mode collapse in
practice. Figure 1 illustrates the evolution of each evaluation metric as the mode collapse severity λ
increases. While Context-FID and DMD-GEN both exhibit a clear, monotonic increase reflecting
stronger detection of collapse, DMD-GEN remains numerically stable across the entire range due to
its bounded geometric formulation. In contrast, the Discriminative and Predictive Scores fluctuate
considerably and fail to provide consistent trends, highlighting their limited sensitivity to gradual
mode imbalances. These results confirm that DMD-GEN offers both sensitivity and robustness in
detecting varying degrees of mode collapse.
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Table 2: Relative performance of evaluation metrics in detecting increasing levels of synthetic mode
collapse. DMD-GEN and Context-FID demonstrate strong sensitivity to collapse while maintaining
stable behavior across severity levels.

Metric Mode Collapse Severity (λ)

10% 20% 30% 40% 60% 70%
Discr. Score +586.79% +443.40% +181.13% -20.75% -16.98% +143.40%
Pred. Score -0.54% -0.71% -0.83% -0.40% +0.35% +0.54%
Context-FID +36,796.45% +18,394.64% +8,210.25% +1,874.76% +1,855.58% +7,019.51%
DMD-GEN +681.03% +477.76% +312.22% +115.02% +114.92% +314.18%

Figure 1: Comparison of metric sensitivity to varying mode collapse severity levels λ in the
synthetic dataset. Shaded regions indicate when one mode dominates (blue or red) versus when both
modes coexist (gray). DMD-GEN and Context-FID show clear monotonic trends with λ, effectively
distinguishing increasing collapse severity, whereas Predictive and Discriminative Scores fluctuate,
indicating lower robustness to changes in mode balance.
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Figure 2: Mean DMD-GEN distance as
a function of bootstrap block size for
the Moving Block Bootstrap (MBB) ex-
periment. Error bars denote standard
deviations across trials. As block size
increases, the DMD-GEN distance de-
creases and stabilizes, indicating im-
proved preservation of temporal dynam-
ics.

Assessing DMD-GEN on Bootstrapped Time Series.
Previous experiments focused primarily on deep learning-
based generative models. To further validate the versatility
of DMD-GEN, we evaluate it on time series generated
through the classical non parametric Moving Block Boot-
strap (MBB) method [16]. MBB preserves short-term
temporal dependencies by resampling consecutive data
blocks rather than individual points. To study how the
choice of block size affects dynamic consistency, we apply
MBB with three configurations: small blocks (introduc-
ing high randomness and weaker temporal coherence),
medium blocks (partially retaining structure), and large
blocks (preserving most temporal dependencies). We then
compute the DMD-GEN distance between the original and
bootstrapped time series to quantify how well dynamic pat-
terns are maintained. As shown in Figure 2, increasing the
block size consistently reduces DMD-GEN distance and
stabilizes its variability, indicating that larger blocks bet-
ter preserve the underlying temporal dynamics, whereas
smaller blocks tend to distort them through excessive re-
sampling noise.
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Figure 3: Visual interpretability of DMD-GEN across three representative cases: (top) Complete
Mode Collapse, (middle) Dynamic Frequency Mismatch, and (bottom) Spurious Mode Injection.
Each row illustrates how DMD-GEN responds to progressively more complex distortions in temporal
structure, assigning higher distances to collapsed or over-generated modes and moderate, interpretable
values to frequency mismatches. These examples demonstrate DMD-GEN’s ability to quantify both
the degree and the nature of dynamical discrepancies, with the following measured scores: Complete
Mode Collapse = 0.7708, Dynamic Frequency Mismatch = 0.6833, and Spurious Mode Injection =
0.9114.

Interpreting Mode Behavior Through the DMD Spectrum. Figure 3 illustrates how the DMD
spectrum reveals interpretable changes in system dynamics. In the top row, mode collapse concentrates
dynamical activity into a few dominant components; the middle row shows frequency shifts indicating
mild temporal distortion; and the bottom row displays additional spurious modes caused by injected
noise. These spectral patterns provide a transparent view of how temporal structures deform across
different dynamic perturbations.

5 Conclusions and Limitations

We introduced DMD-GEN, a new metric for evaluating generative models of time series and detecting
mode collapse. By combining Dynamic Mode Decomposition with Optimal Transport, DMD-GEN
provides a principled way to measure the similarity of temporal dynamics between real and generated
data. Experiments show that DMD-GEN is more sensitive to mode collapse than existing metrics
such as the Discriminative and Predictive Scores, while remaining consistent with their rankings.
Unlike most existing metrics, DMD-GEN requires no additional training, making it computationally
efficient and easy to apply. Its mode-based formulation also enhances interpretability by showing how
key dynamical patterns are preserved or distorted in generated sequences. A current limitation is that
DMD provides only a linear approximation of nonlinear dynamics: although Koopman theory allows
such systems to be represented by an infinite-dimensional linear operator, practical approximations
rely on a finite number of modes. Capturing stronger nonlinearities would therefore require expanding
this set, increasing computational cost and reducing efficiency.
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[9] Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz. Modern koopman theory
for dynamical systems. arXiv preprint arXiv:2102.12086, 2021.

[10] Kevin K Chen, Jonathan H Tu, and Clarence W Rowley. Variants of dynamic mode decom-
position: boundary condition, koopman, and fourier analyses. Journal of nonlinear science,
22:887–915, 2012.

[11] John Joon Young Chung, Ece Kamar, and Saleema Amershi. Increasing diversity while
maintaining accuracy: Text data generation with large language models and human interventions.
arXiv preprint arXiv:2306.04140, 2023.

[12] Matthew J Colbrook and Alex Townsend. Rigorous data-driven computation of spectral
properties of koopman operators for dynamical systems. Communications on Pure and Applied
Mathematics, 77(1):221–283, 2024.

[13] Nils Detering, Jean-Pierre Fouque, and Tomoyuki Ichiba. Directed chain stochastic differential
equations. Stochastic Processes and their Applications, 130(4):2519–2551, 2020.

[14] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

[15] Aksel Wilhelm Wold Eide, Eilif Solberg, and Ingebjørg Kåsen. Sample weighting as an expla-
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Supplementary Material: A Geometry-Aware
Metric for Mode Collapse in Multivariate

Time Series Generative Models

A Dynamical Mode Decomposition: Details and Proofs

A.1 The Link Between the DMD operators in Continuous and Discrete Cases

Given a dynamical system ẋ(t) = f(x(t), t;µ), we linearly approximate the dynamics using DMD
using the operator A ∈ Rn×n, i.e.

∀t, ẋ(t) = Ax.

Discretizing time into intervals of ∆t and capturing snapshots accordingly, we establish the relation-
ship between consecutive time steps in the following equation:

∀k, xk+1 = xk +Axk∆t = (I +∆tA)xk. (6)

For a time-step ∆t that is sufficiently small, we can employ the first-order Taylor expansion of the
matrix exp(∆tA), expressed as:

exp(∆tA) ≈ I +∆tA (7)
Therefore, from Equations 6 and 7, we conclude that:

∀k, xk+1 ≈ exp(∆tA)xk.

Thus,
A⋆ ≈ exp(∆tA).

A.2 Feasible Spectral Decomposition of the DMD Operator using Dimensionality Reduction

Algorithm 2 presents the steps to compute the eigenvectors and eigenvalues of the DMD operator A⋆

using Singular Value Decomposition (SVD) for dimensionality reduction.

A.3 DMD expansion

We prove the closed formula ∀k, xk =
∑r

j=1 ϕjλ
k
j bj = ΦΛkb, using recursion.

For k = 0, we have,

x0 = Ix0

= ΦΦ†x0

= Φb

= ΦΛ0b

Let’s now consider the equation hold for k = 0, . . . ,m, we have,
xk+1 = A⋆xk

= A⋆ΦΛkb

= ΦΛΛkb

= ΦΛk+1b.

Therefore, the equality holds for all k ∈ N.
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Algorithm 2 Dynamic Mode Decomposition
1. From collected snapshots of the system, build a pair of data matrices (X,X′).

X =

 x0 x1 · · · xm−1

 ,X′ =

 x1 x2 · · · xm


The closed formula of optimal DMD operator is

A⋆ = X′X†

2. Compute the compact singular value decomposition (SVD) of X:

X ≈ UΣV†

where U ∈ Cn×r,Σ ∈ Cr×r, V ∈ Cm×r and r ≤ min(m,n) is the rank of X. Therefore,

A⋆ = X′VΣ−1U†

3. Define a matrix
Ã = U†A⋆U = U†X′VΣ−1,

since U is a unitary matrix.
Ã ∈ Rr×r defines a low-dimensional linear model of the dynamical system on proper orthogonal
decomposition (POD) coordinates.

4. Compute the eigen-decomposition of Ã:

ÃW = WΛ,

where columns of W ∈ Rr×r are eigenvectors and Λ = diag(λ1, . . . , λr) ∈ Rr×r is a diagonal
matrix containing the corresponding eigenvalues.

5. Return DMD modes Φ:
Φ = X′VΣ−1W.

Each column of Φ is an eigenvector of A meaning a DMD mode ϕk corresponding to eigenvalue λk

B Proof of Theorem 3.6 - DMD Mode Geodesic

Theorem 3.6 [DMD Mode Geodesic]

Let Mk(X),Mk(X̃) ∈ Rn×k be matrices whose columns form orthonormal bases of two k-
dimensional subspaces of Rn. Let Θ = diag(θ1, θ2, . . . , θk) be the diagonal matrix of principal
angles between the subspaces spanned by Mk(X) and Mk(X̃). Let ∆ ∈ Rn×k be an orthonormal
matrix such that

Mk(X̃) = Mk(X) cos(Θ) + ∆sin(Θ).

Then, the geodesic linking Mk(X) and Mk(X̃) on the Grassmann manifold Gr(k, n) is given by

γ(t) = Mk(X) cos(tΘ) +∆sin(tΘ), for t ∈ [0, 1],

and the length of this geodesic corresponds exactly to the projection distance defined by

d̃proj(Mk(X),Mk(X̃)) =

(
k∑

i=1

θ2i

)1/2

.

Proof. Preliminaries and Definitions

1. Grassmann Manifold Gr(k, n): The set of all k-dimensional linear subspaces of Rn.

2. Orthonormal Bases: For a k-dimensional subspace S ⊂ Rn, an orthonormal basis is
represented by an n×k matrix Q with columns satisfying Q⊤Q = Ik, where Ik is the k×k
identity matrix.
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3. Principal Angles and Vectors: Given two subspaces S1 and S2 with orthonormal bases
Q1 and Q2, the principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θk ≤ π

2 between them are defined
recursively by

cos(θi) = max
u∈S1

∥u∥=1

max
v∈S2

∥v∥=1

u⊤v, subject to u⊤uj = 0, v⊤vj = 0, j = 1, . . . , i− 1. (8)

4. Projection Distance: The projection distance between S1 and S2 is defined as

d̃proj(S1,S2) =

(
k∑

i=1

θ2i

)1/2

. (9)

1. Computation of the Principal Angles

Let Q1 = Mk(X) and Q2 = Mk(X̃). Both Q1 and Q2 are n × k matrices with orthonormal
columns.

We construct the matrix C as follows:

C = Q⊤
1 Q2 ∈ Rk×k. (10)

Since Q⊤
1 Q1 = Ik and Q⊤

2 Q2 = Ik, C captures the pairwise inner products between the basis
vectors of Q1 and Q2.

We then perform the Singular Value Decomposition (SVD) of C:

C = UΣV ⊤, (11)

where

• U, V ∈ Rk×k are orthogonal matrices, i.e., U⊤U = V ⊤V = Ik.

• Σ = diag(σ1, σ2, . . . , σk) with σi ≥ 0.

The singular values σi of C are the cosines of the principal angles between the subspaces:

σi = cos(θi), θi ∈ [0, π/2], i = 1, . . . , k. (12)

This result stems from the fact that the SVD aligns the basis vectors of U and V to maximize the
projections in the directions of the principal angles, which correspond to the largest cosines.

Since principal angles θi are defined in the range [0, π/2], their cosines naturally lie in [0, 1], matching
the range of the singular values of C. Thus, the singular values encode the geometric relationship
between the subspaces U and V in terms of the principal angles. This connection is fundamental to
Grassmannian geometry, as it allows the distances and alignments between subspaces to be analyzed
using the principal angles and their cosines.

2. Construction of Orthonormal Bases Aligned with Principal Directions

Define new orthonormal bases:
A = Q1U, B = Q2V.

Verification of Orthonormality:

A⊤A = (Q1U)⊤(Q1U) = U⊤Q⊤
1 Q1U = U⊤IkU = U⊤U = Ik,

B⊤B = (Q2V )⊤(Q2V ) = V ⊤Q⊤
2 Q2V = V ⊤IkV = V ⊤V = Ik.

We then compute A⊤B:

A⊤B = (Q1U)⊤(Q2V ) = U⊤Q⊤
1 Q2V = U⊤CV = U⊤(UΣV ⊤)V

= U⊤UΣV ⊤V = IkΣIk = Σ.
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Thus, A⊤B = Σ = diag(cos(θ1), . . . , cos(θk)).

3. Decomposition of B in Terms of A and ∆

We aim to express B as a linear combination of A and another orthonormal matrix ∆ that is orthogonal
to A.

Let us define ∆:
∆ = (B −A cos(Θ)) sin(Θ)−1, (13)

where cos(Θ) = Σ and sin(Θ) = diag(sin(θ1), . . . , sin(θk)), and sin(Θ)−1 denotes the diagonal
matrix with entries sin(θi)−1.

Verification that ∆ is Orthogonal to A:

A⊤∆ = A⊤(B −A cos(Θ)) sin(Θ)−1

= (A⊤B −A⊤A cos(Θ)) sin(Θ)−1

= (Σ− Ik cos(Θ)) sin(Θ)−1

= (cos(Θ)− cos(Θ)) sin(Θ)−1 = 0.

Verification that ∆ is Orthonormal:

First, we compute ∆⊤∆:

∆⊤∆ =
(
(B −A cos(Θ)) sin(Θ)−1

)⊤ (
(B −A cos(Θ)) sin(Θ)−1

)
= sin(Θ)−1(B −A cos(Θ))⊤(B −A cos(Θ)) sin(Θ)−1.

We compute the inner term:

(B −A cos(Θ))⊤(B −A cos(Θ)) = (B⊤ − cos(Θ)A⊤)(B −A cos(Θ))

= B⊤B −B⊤A cos(Θ)− cos(Θ)A⊤B

+ cos(Θ)A⊤A cos(Θ).

Since A⊤A = Ik, B⊤B = Ik, and A⊤B = Σ = cos(Θ) = cos(Θ)⊤ = (A⊤B)⊤ = B⊤A:

(B −A cos(Θ))⊤(B −A cos(Θ)) = Ik − cos(Θ)⊤ cos(Θ)− cos(Θ)⊤ cos(Θ)

+ cos(Θ)(Ik) cos(Θ)

= Ik − cos2(Θ)− cos2(Θ) + cos2(Θ)

= Ik − cos2(Θ)

= sin2(Θ).

Since: sin2(Θ) + cos2(Θ) = Ik.

Thus,

∆⊤∆ = sin(Θ)−1 sin2(Θ) sin(Θ)−1 = (Ik).(Ik) = Ik.

Therefore, ∆ is orthonormal.

Expressing B in Terms of A and ∆:

Using Equation (13), we have:

B = A cos(Θ) + ∆sin(Θ). (14)

4. Define the Geodesic Path

On the Grassmann manifold, the geodesic γ(t) from A to B is given by:

γ(t) = A cos(tΘ) +∆sin(tΘ), t ∈ [0, 1]. (15)
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Verification of Endpoints:

At t = 0:

γ(0) = A cos(0 ·Θ) +∆sin(0 ·Θ) = AIk +∆ · 0 = A.

At t = 1:

γ(1) = A cos(Θ) + ∆sin(Θ) = B. (16)

Thus, γ(t) is a continuous path on Gr(k, n) connecting A and B.

Relate Back to Original Bases:

Recall that A = Q1U = Mk(X)U and B = Q2V = Mk(X̃)V .

Since U and V are orthogonal matrices, the subspaces spanned by Q1 and A, and by Q2 and B, are
identical. Therefore, we can express the geodesic in terms of Mk(X) and ∆.

Expressing the Geodesic in Original Terms:

Let us redefine ∆ accordingly to absorb U and V , so that we can write:

γ(t) = Mk(X) cos(tΘ) +∆sin(tΘ).

5. Compute the Length of the Geodesic

The length L of the geodesic γ(t) is given by:

L =

∫ 1

0

∥γ̇(t)∥F dt, (17)

where ∥·∥F denotes the Frobenius norm.

Compute the Derivative γ̇(t):

Since γ(t) = Mk(X) cos(tΘ) +∆sin(tΘ), we have:

γ̇(t) = −Mk(X)Θ sin(tΘ) +∆Θcos(tΘ),

where we used the fact that the derivative of cos(tΘ) with respect to t is −Θsin(tΘ), and similarly
for sin(tΘ).

Compute the Squared Norm ∥γ̇(t)∥2F :

∥γ̇(t)∥2F = Tr
(
γ̇(t)⊤γ̇(t)

)
= Tr

(
(−Mk(X)Θ sin(tΘ) +∆Θcos(tΘ))

⊤
(−Mk(X)Θ sin(tΘ) +∆Θcos(tΘ))

)
= Tr

(
Θ2
(
sin2(tΘ)Mk(X)⊤Mk(X) + cos2(tΘ)∆⊤∆− sin(tΘ) cos(tΘ)

(
Mk(X)⊤∆−∆⊤Mk(X)

)))
.

Since Mk(X)⊤Mk(X) = Ik, ∆⊤∆ = Ik, and Mk(X)⊤∆ = 0, the cross terms vanish, and we
have:

∥γ̇(t)∥2F = Tr
(
Θ2
(
sin2(tΘ)Ik + cos2(tΘ)Ik

))
= Tr

(
Θ2Ik

)
=

k∑
i=1

θ2i .
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Compute the Length L:

Since ∥γ̇(t)∥F is constant with respect to t, we have:

L =

∫ 1

0

∥γ̇(t)∥F dt = ∥γ̇(t)∥F
∫ 1

0

dt

=

(
k∑

i=1

θ2i

)1/2

· 1

=

(
k∑

i=1

θ2i

)1/2

.

6. Length Equals the Projection Distance

Comparing the computed length L with the projection distance defined in Equation (9), we find:

L = d̃proj(Mk(X),Mk(X̃)) =

(
k∑

i=1

θ2i

)1/2

. (18)

On the Grassmann manifold, the geodesic distance between two subspaces is given by the length of
the shortest path connecting them. This distance is intrinsically linked to the principal angles between
the subspaces. The projection distance quantifies the separation between subspaces in terms of these
principal angles.

By computing the squared norm of the derivative of the geodesic, we find that it equals the sum of
the squares of the principal angles, which is the squared projection distance. Since the derivative’s
norm is constant, the total length of the geodesic over the interval t ∈ [0, 1] is precisely the projection
distance.

Therefore, the length of the geodesic γ(t) connecting Mk(X) and Mk(X̃) on the Grassmann
manifold equals the projection distance between these two subspaces.

This completes the proof of Theorem 3.6.

C Proof of Theorem 3.5 - Metric Robustness

Theorem 3.5 Let X = [x1, . . . ,xℓ] ∈ Rℓ×n and X̃ = [x̃1, . . . , x̃ℓ] ∈ Rℓ×n be two sequences of
state snapshots. Suppose that both X and X̃ with Mk(X) ∈ Rn×k and Mk(X̃) ∈ Rn×k as the
respective DMD eigenvectors, Λ and Λ̃ as the respective DMD eigenvectors , and admit a DMD form
with the same initial condition x0 = x̃0, i.e.,

∀t, x̃t = Mk(X)ΛtMk(X)†x0, x̃t = Mk(X̃)Λ̃tMk(X̃)†x0.

Let Et be the difference in dynamics between X and X̃, i.e., ∀t, xt − x̃t = Etx0. We have,
∀t, dproj(Mk(X),Mk(X̃)) ≤ ∥Et∥F

δt
where δt is the spectral gap of Λt, and ∥·∥F is the Frobenius

Norm.

Proof. Let X = [x1, . . . , xℓ], X̃ = [x̃1, . . . , x̃ℓ] ∈ Rn×ℓ, and denote their k-dominant DMD
bases by Q := Mk(X) ∈ Rn×k, Q̃ := Mk(X̃) ∈ Rn×k. We define the time-t linear propagators
that generate the snapshots

At := QΛtQ†, Ãt := Q̃Λ̃tQ̃†, so that xt = Atx0, x̃t = Ãtx0.

Because x0 is arbitrary, we identify the perturbation matrix At − Ãt = Et.
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Wedin’s theorem for diagonalizable matrices states that if E perturbs a matrix A whose spectrum
splits into two clusters separated by a gap δ, then ∥ sinΘ∥F ≤ ∥E∥F

δ , where Θ collects the principal
angles between the invariant subspaces associated with the chosen spectral clusters.

Applying Wedin with A = At, E = Et, and the dominant invariant subspace span(Q), the gap is
δ = δt. The left-hand side is exactly the Grassmann projection distance dproj(Q, Q̃) = ∥ sinΘ∥F .
Hence dproj

(
Q, Q̃

)
≤ ∥Et∥F

δt
which is the desired bound.

D Datasets and Implementation Details

D.1 Basic Statistics on the Datasets

Sine waves. We generated a synthetic dataset consisting of two sets of sine waves to represent a
bimodal distributed data. The data were generated using the following formula:

y(t) = A · sin(2πft+ ϕ), (19)

where A is the amplitude, f is the frequency, t is the time variable and ϕ is the phase angle of the
sine wave. Each mode consists of 2000 samples with phases being randomly chosen between 0 and
2π. For all the samples, the duration is 2 seconds and the sample rate is 12, making the length of
each sequence be 24. A = 0.5 and f = 1 Hz for the first mode, and A = 5 and f = 0.5 Hz for the
second mode.

Stock price. To test our framework on a complex multimodal dataset, we used Google stocks data
from 2004 to 2019, which was used in [60]. The data consists of 6 features which are daily open,
high, low, close, adjusted close, and volume. The time series were then cut into sequences with length
24, following the setup in the work done by [60].

Energy. We conducted experiments on UCI’s air quality dataset [55] consisting of hourly averaged
responses from an array of 5 metal oxide chemical sensors embedded in an Air Quality Chemical
Multisensor Device in an Italian city. Data was recorded from March 2004 to February 2005 and
consists of 28 features. Unlike the previous datasets, this one has an unimodal distribution. The data
is cut into several sequences of length 7.

Electricity Transformer Temperature and humidity (ETTh). The ETTh dataset focuses on
temperature and humidity data from electricity transformers [62]. It includes 2 years of data at an
hourly granularity, providing detailed temporal information about transformer conditions.

Table 3 provides an overview of the datasets used in our experiments, including Sine, Stock, Energy,
and ETTh. These datasets vary in both the number of samples and feature dimensions, offering a
diverse evaluation setting for generative models.

Table 3: Statistics of the four datasets used in our experiments.

Dataset Sine Stock Energy ETTh

#Samples 10,000 3,773 19,711 17,420
Dimension 5 6 28 8

D.2 Baseline Metrics

We compared our proposed metric DMD-GEN with well-established time series evaluation metrics.
Specifically, this comparison includes three key metrics:

Predictive Score. [60] The predictive score evaluates how well a generative model captures the
temporal dynamics of the original data. It involves training a model on the generated data and
assessing its performance on a real dataset. A lower predictive score indicates that the generated data
contains patterns that are more representative of the temporal patterns found in the original data.

Discriminative Score. [60] The discriminative score measures the similarity between real and
generated time series data by training a binary classifier to distinguish between them.

21



Contextual Frechet Inception Distance (context-FID). [22] Context-FID is an adaptation of the
Frechet Inception Distance (FID), a metric used to assess the quality of images created by a generative
model [19]. For time series, context-FID measures the similarity between the real and generated data
distributions by computing the Frechet distance between feature representations extracted from a
time series feature encoder.

D.3 Implementation Details

The experiments were conducted on an NVIDIA A100 GPU. We utilized the pyDMD package 2

in Python to compute the DMD eigenvalues and eigenvectors. For generating synthetic time series,
we used the original settings and the official implementation of DiffusionTS3, TimeGAN4 and
TimeVAE5.

E Synthetic Generators

To evaluate the ability of DMD-GEN to detect Mode Collapse, we generate synthetic time series
using two parametric functions, denoted G1 and G2. These generators produce diverse temporal
patterns by incorporating nonlinear transformations and oscillatory components. Each function is
parameterized by randomly sampled variables from a uniform distribution, ensuring variability across
generated samples. Below, we give the expressions of these generators,

G1 =

{
(t, x) 7→ a

cosh(x+ b+ 3)
× cos ((c+ 2.3) · t) | x ∈ [−5, 5], t ∈ [0, 4π], (a, b, c) ∼ U

}
,

G2 =

{
(t, x) 7→ 2 + a

cosh(x)
× tanh(x)× sin ((2.8 + b) · t) | x ∈ [−5, 5], t ∈ [0, 4π], (a, b, c) ∼ U

}
,

where U denotes the uniform distribution over [0, 1]. Each time series is discretized to a length of
T = 129 and a dimensionality of d = 65. Figure 4 illustrates examples of time series generated using
G1 and G2. Generator G1 produces smooth, localized wave patterns with oscillations that gradually
decay in space, resulting in broader and less frequent peaks over time. In contrast, G2 generates
sharper, more structured wave patterns with higher frequency oscillations
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Figure 4: Examples of time series generated using the generators G1 and G2.

F Comparaison of Generative Models Using MTopDiv Metric

As part of our ablation study, we evaluated the MTopDiv metric, originally designed for general
generative models, on time series data (Table 4). The results show high variability in standard

2https://pydmd.github.io/PyDMD/
3https://github.com/Y-debug-sys/Diffusion-TS
4https://github.com/Y-debug-sys/Diffusion-TS
5https://github.com/zzw-zwzhang/TimeGAN-pytorch
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deviations, limiting meaningful comparisons and suggesting that MTopDiv is not well-suited for
evaluating time series generative models.

Dataset TimeVAE TimeGAN DiffusionTS

Energy 424.34 ±19.75 467.35 ±49.10 402.42 ±34.53±
ETTh 116.23 ±4.96± 130.85 ±8.80 116.51 ±5.52
Sines 7.72 ±0.18 4.92±0.32 4.53 ±0.13

Table 4: Comparison of different models on various datasets.

G Evolution of the DMD eigenvalues During Training

In Figures 5, and 6, we plot the imaginary and real parts of the DMD eigenvalues of a 500 sample
original and generated time series for datasets ETTh and Sines.

Figure 5: Comparison of DMD Eigenvalues between Original and Generated Time Series for
DiffusionTS through Epochs on the dataset ETTh.
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Figure 6: Comparison of DMD Eigenvalues between Original and Generated Time Series for
DiffusionTS through Epochs on the dataset Sines.

H Broader Impact

This work aims to advance research in machine learning, particularly in the evaluation of generative
models for time series data. Our goal is to improve the reliability and interpretability of such models,
promoting the development of more transparent and trustworthy generative systems. We encourage
responsible use of these methods and careful consideration of ethical implications in applied domains.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”,
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the abstract and the introduction, c.f., Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the main limitations of our method in Section 5.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The proofs were provided in the Appendices.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We released the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We released the code in the supplementary material, we also used public
datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided s details of the experimental setup, including details about 889
the train/val/test used folds and the values of all hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run each experiment 10 times, and we released the mean and standard
deviation of each value

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See the experimental setup section and the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work adheres to the NeurIPS Code of Ethics. We use public datasets and
publicly available models and report on the limitations of our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have included a Broader impacts section in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: Our paper does not release any data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets, models and repositories were cited appropriately
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets, only rely on public datasets and models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects,
all experiments are performed on publicly available datasets
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There is no potential risks incurred by study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLM was used in this work for the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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