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Abstract

Extending large language models to effectively001
handle long contexts requires instruction fine-002
tuning on input sequences of similar length. To003
address this, we present LongAlign—a recipe004
of the instruction data, training, and evalua-005
tion for long context alignment. First, we con-006
struct a long instruction-following dataset us-007
ing Self-Instruct. To ensure the data diversity,008
it covers a broad range of tasks from various009
long context sources. Second, we adopt the010
packing and sorted batching strategies to speed011
up supervised fine-tuning on data with varied012
length distributions. Additionally, we develop013
a loss weighting method to balance the contri-014
bution to the loss across different sequences015
during packing training. Third, we introduce016
the LongBench-Chat benchmark for evaluating017
instruction-following capabilities on queries of018
10k-100k in length. Experiments show that019
LongAlign outperforms existing recipes for020
LLMs in long context tasks by up to 30%, while021
also maintaining their proficiency in handling022
short, generic tasks.023

1 Introduction024

Large language models (LLMs) with large context025

windows facilitate tasks such as summarization,026

question answering on long text and code (Bai et al.,027

2023a). Importantly, they may form the founda-028

tional support for life-long conversations and com-029

plex agent scenarios (Xiao et al., 2023; Liu et al.,030

2023). Existing works to build long-context LLMs031

predominantly focus on context extension (Chen032

et al., 2023a; Xiong et al., 2023; Peng et al., 2023),033

that is, position encoding extension and continual034

training on long text.035

In this work, we instead focus on the perspec-036

tive of long context alignment, i.e., instruction037

fine-tuning LLMs to handle long user prompts.038

However, several challenges are required to ad-039

dress. First, there is an absence of long instruction-040

following datasets for supervised fine-tuning (SFT),041

Figure 1: Test results on LongBench-Chat, which con-
tains real-world queries of 10k-100k in length1.

and by extension the lack of methods for construct- 042

ing such data. Second, the varied length distribu- 043

tion of long-context data drastically reduces the 044

training efficiency of traditional batching methods 045

in a multi-GPU setup, as GPUs processing shorter 046

inputs have to stay idle until those handling longer 047

inputs complete their tasks. Third, there is a crucial 048

need for a robust benchmark to evaluate LLMs’ 049

long-context capacities against real-world queries. 050

To address them, we present the LongAlign 051

recipe, covering data, efficient training, and eval- 052

uation, respectively. Data-wise, to construct a di- 053

verse long instruction-following dataset, we collect 054

long sequences from nine sources and use Self- 055

Instruct (Wang et al., 2022) to generate 10k instruc- 056

tion data of 8k-64k length. 057

Training-wise, to address the inefficiency un- 058

der uneven batching, we adopt the packing strat- 059

egy (Krell et al., 2021) that packs sequences to- 060

gether up to the maximum length before dispatch- 061

ing them to GPUs. However, we identified a bias 062

in loss averaging during this packing training, as 063

1LongAlign-6B-64k, LongAlign-7B-64k and LongAlign-
13B-64k are trained based on ChatGLM3-6B, Llama-2-7B
and Llama-2-13B, respectively.
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packs containing different numbers of sequences064

are assigned equal weight in the final loss calcu-065

lation. To mitigate this bias, we propose a loss066

weighting strategy to balance contributions to the067

loss across different sequences. In addition, we068

introduce sorted batching that groups sequences of069

similar lengths to reduce the intra-batch idle time.070

Evaluation-wise, we develop LongBench-Chat,071

a benchmark compromising open-ended questions072

of 10k-100k length annotated by Ph.D. students.073

It covers diverse aspects of instruction-following074

abilities such as reasoning, coding, summarization,075

and multilingual translation over long contexts.076

GPT-4 (OpenAI, 2023b) is employed to score the077

machine-generated responses based on our anno-078

tated groundtruths and few-shot scoring examples.079

Extensive experiments show that LongAlign ef-080

fectively aligns models to handle contexts of up to081

64k tokens in length while maintaining their per-082

formance on general tasks without degradation. In083

addition, we have the following findings:084

• Impact of Data Quantity and Diversity: Both085

the quantity and the diversity of the long in-086

struction data significantly influence the aligned087

model’s ability to handle long contexts, impact-088

ing final performance by up to 30%.089

• Benefits of Long Instruction Data: The amount090

of long instruction data positively affects the per-091

formance on long-context tasks while does not092

hurt the models’ general capacities.093

• Effectiveness of Training Strategies: The pack-094

ing and sorted batching strategies adopted can095

accelerate training by over 100% without perfor-096

mance compromise. Furthermore, our proposed097

loss weighting technique improves long context098

performance by 10%.099

2 Related Work100

Long Context Scaling. Long context scaling aims101

to expand the limited context length of existing102

LLMs to support long context tasks (Xiong et al.,103

2023). The current methods for long context scal-104

ing can be divided into two categories: those that105

require fine-tuning or continual training on longer106

sequences and those that do not. Methods that do107

not require fine-tuning often employ techniques108

such as sliding window attention (Han et al., 2023;109

Xiao et al., 2023) or neighboring token compres-110

sion (Jiang et al., 2023; Zhang et al., 2024; Jin111

et al., 2024) to handle the positional OOD problem112

in attention computation for long contexts. These 113

methods, although capable of extending the context 114

length of LLMs in a plug-and-play manner, still 115

cannot match the performance of the fine-tuned 116

approaches. Prominent fine-tuned approaches for 117

long context scaling (Chen et al., 2023a; Peng et al., 118

2023; Xiong et al., 2023; Chen et al., 2023b; Zhu 119

et al., 2023; Fu et al., 2023) typically involve posi- 120

tion encoding extension and continual pretraining 121

on longer sequences. 122

LLM Alignment. Following the previous steps 123

of long context scaling, it is vital to also align the 124

model with instruction-following data to ensure 125

that it can interact with various user requests in a 126

chat interface (Wang et al., 2023). This phase, often 127

referred to as supervised fine-tuning or instruction- 128

tuning, has been extensively studied in short con- 129

text scenarios (Wang et al., 2022; Taori et al., 2023; 130

Wang et al., 2023; Tunstall et al., 2023). How- 131

ever, the introduction of long sequences presents 132

unique challenges in terms of data, training meth- 133

ods, and evaluation for alignment. Xiong et al. 134

(2023) proposes generating long instruction data 135

by concatenating short instruction data, yet their 136

dataset and model weight are not open-sourced. 137

On the other hand, while Chen et al. (2023b) has 138

made their long instruction data, LongAlpaca-12k, 139

available and employed LoRA (Hu et al., 2022) for 140

efficient fine-tuning, it lacks in-depth discussion 141

and comparative analysis of the influence of data 142

and training methodologies. Our work aims to find 143

an optimal solution for supervised (full parameter) 144

fine-tuning on long context with full attention, by 145

tuning data, training methods, and evaluating the 146

aligned models on a wide range of tasks. 147

3 LongAlign 148

In this section, we discuss the methodology in Lon- 149

gAlign, involving the data construction process, 150

training method, and evaluation benchmark. 151

3.1 Preliminary 152

Large language models can learn alignment by su- 153

pervised fine-tuning on high-quality pairs of in- 154

struction x and response y (Ouyang et al., 2022; 155

Chung et al., 2022). During training, the instruction 156

and response are typically concatenated to form a 157

sequence [x, y], which is then processed through an 158

auto-regressive language model π to maximize the 159

probability Pπ(y|x). The loss is similar to a lan- 160

guage modeling loss, while only accounting for the 161
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Task type 
(summary)

Long Doc

Generated 
Task & Ans

[{“role”: “user”, “content”: Long Doc + Task}, 
{“role”: “assistant”, “content”: Answer}]

User:
In my younger and more vulnerable years my father gave me 
some advice that I've been turning over in my mind ever since.  
…

Given the above text, please propose 5 English questions that 
require summarization or integration from multiple parts, 
make sure they are diverse and cover all parts of the text, in 
the following format: “1: ”, “2: ”, ...

Assistant:
1. Summarize the plots between Gatsby and Daisy…

Figure 2: Data construction example.

loss associated with the tokens in y (target tokens):162

L([x, y]) = −
|y|∑
i=1

logPπ(yi | [x, y<i]). (1)163

3.2 Dataset Construction164

Long instruction data typically involves a long con-165

text material, such as a book, an extensive docu-166

ment, or a lengthy code, accompanied by a task167

query that requires summarizing, reasoning, or168

computing based on the material. During construc-169

tion, we first collect long articles and documents170

from 9 varied sources, covering books, encyclope-171

dias, academic papers, codes, etc. We then employ172

Claude 2.1 (Anthropic, 2023) to generate tasks and173

answers according to a given long context, as illus-174

trated in Figure 2. To foster a diverse range of gen-175

erated tasks, we incorporate task type descriptions176

into the prompts, such as queries for summaries,177

information extraction, reasoning, etc. Using this178

methodology, we create tasks and answers for 10k179

lengthy texts, yielding a total of 10k instances of180

supervised data, of which 10% is in Chinese. The181

length of these data ranges from 8k to 64k, mea-182

sured by ChatGLM tokenizer (Zeng et al., 2023)183

due to its higher compression rate for Chinese char-184

acters. Details regarding the prompts and the data185

construction process can be found in Appendix A.186

3.3 Efficient Long-Context Training187

To ensure that the model retains the ability to han-188

dle both long and short texts (general capability)189

after SFT, we mix the long instruction data with a190

general instruction dataset for training. The mix-191

ture of a large amount of general short data with a192

relatively smaller amount of long instruction data193

results in a long-tail data length distribution. As194

shown in Figure 3 left, the majority of the data falls195

within the 0-8k length range, while the remaining196

data is fairly evenly distributed in the 8k-64k length197

interval. Under this distribution, during training, 198

a data batch typically contains mostly short data, 199

yet these batches also include a few longer texts 200

which necessitate much more computation times, 201

resulting in considerable idle times. To minimize 202

these idle times, the most effective approach is to 203

concatenate or sort the data in a manner that en- 204

sures a more uniform length and computational 205

time within each batch. Bearing this in mind, we 206

explore the packing and sorted batching strategies. 207

Packing. It involves concatenating data of vary- 208

ing lengths together until reaching the maxi- 209

mum length. The resulting packed data, whose 210

lengths are generally close to the maximum length, 211

are then batched and processed on multi-GPUs. 212

This approach effectively minimizes the idle time 213

within each batch, as depicted in the upper right 214

of Figure 3. Additionally, to prevent cross- 215

contamination between different sequences within 216

the same pack during self-attention calculation, 217

we pass a list containing the starting and ending 218

positions of different sequences and utilize the 219

flash_attn_varlen_func from FlashAtten- 220

tion 2 (Dao et al., 2022; Dao, 2023), which supports 221

efficient computation of block diagonal attention 222

(see Appendix B for more details). It requires less 223

computation and IO time compared to the tradi- 224

tional use of a 2D attention mask. 225

However, we notice that the packing strategy 226

leads to a bias towards longer sequences and se- 227

quences containing more target tokens. This is 228

because different packs, each contributing equally 229

to the final loss, contain varying numbers of se- 230

quences with different numbers of target tokens. 231

Consequently, when calculating the mean loss for 232

each batch, sequences in packs with fewer se- 233

quences (typically the longer ones) or those con- 234

taining more target tokens, have a greater influence 235

on the final loss. Formally, consider M sequences 236

packed into a batch of K packs where the i-th pack 237

consists of the sequences with indices in [Pi−1, Pi), 238

thus it holds that P0 = 1, PK = M + 1. Let Li 239

denote the total summation of loss over Ni target 240

tokens in the i-th sequence. If we weigh each se- 241

quence equally, the loss should be 242

L =
1

M

M∑
i=1

Li

Ni
, (2) 243

while the loss calculated under packing is 244

L′ =
1

K

K∑
k=1

(

Pk−1∑
i=Pk−1

Li/

Pk−1∑
i=Pk−1

Ni) ̸= L. (3) 245
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…

Device1

Device2

Idle time

Device…

Packing

Training time

Sorted batching

…

…

… …

Batch 1 Batch 2

block diagonal attention mask

loss weighting
×

𝑲
𝑵𝒊𝑴

# packs in the batch
# sequences in the batch
# target tokens in 

current sequence 𝑖

Naïve batching

Sequence Length

N
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r

Length distribution
𝑵𝒊

Figure 3: Under a long-tailed data length distribution, packing or sorted batching can reduce idle time and speed up
the training process. Loss weighting is required during packing to balance the loss contribution across sequences.

Compared with Eq. 2, this equates to assigning a246

weight of (Nj/
∑Pk−1

i=Pk−1
Ni) to sequence j in the247

loss, i.e., in favor of sequences with more target248

tokens and sequences in smaller packs. To address249

this inequality, we propose to scale the loss in the250

i-th sequence by K/(NiM) and instead take the251

sum of the scaled loss on each pack, which results252

in an equal loss to Eq. 2:253

L′ =
1

K

K∑
k=1

(

Pk−1∑
i=Pk−1

LiK

NiM
) =

1

K

M∑
i=1

LiK

NiM
= L.

(4)254

As demonstrated in our experimental section, the255

loss weighting strategy results in a 10% improve-256

ment in downstream tasks.257

Sorted batching. We also consider an efficient258

sorted batching strategy for training (lower right259

of Figure 3). To ensure that the sequences within260

each batch are of similar lengths, we sort the data261

by length and select a random consecutive group262

of data for each batch, with no repetition. However,263

this strategy inevitably introduces a bias in the data264

distribution across different batches, where batches265

consist either of all long sequences or all short266

sequences. This can be potentially disastrous for267

SGD optimization. In our experiments, we observe268

that sorted batching significantly accelerates the269

process without a noticeable negative impact on270

performance. This might be attributed to our use271

of large gradient accumulation steps and the strong272

adaptability of the optimizer.273

3.4 LongBench-Chat274

Although there are existing benchmarks for evalu-275

ating LLMs’ long context understanding (An et al.,276

2023; Bai et al., 2023a; Li et al., 2023b), they do277

not focus on assessing their instruction-following278

capability under long context. Furthermore, their279

reliance on automatic metrics for evaluation limits280

the assessment of aligned models’ longer and more 281

diverse outputs to real-world queries, and how their 282

responses align with human preference. 283

To this end, we propose LongBench-Chat, which 284

includes 50 long context real-world queries rang- 285

ing from 10k to 100k in length, covering various 286

key user-intensive scenarios such as document QA, 287

summarization, and coding. It consists of 40 tasks 288

in English and 10 in Chinese. To ensure the eval- 289

uation truly reflects the model’s ability to follow 290

long context instructions, we avoid using popular 291

long texts that are likely to have been seen and 292

memorized by the model during pretraining. We 293

also avoid posing questions that the model could 294

answer without reading the long text. 295

For evaluation, following previous works that 296

have shown the effectiveness of using LLM as an 297

evaluator (Bai et al., 2023b; Zheng et al., 2023; Ke 298

et al., 2023), we employ GPT-4 (OpenAI, 2023b) 299

to score the model’s response in 1-10 based on a 300

given human-annotated referenced answer and few- 301

shot scoring examples for each question. We only 302

pass the short query (without the long document) 303

to the evaluator, as currently there is no model 304

capable of evaluating the quality of responses under 305

long context inputs. To ensure that the evaluator 306

can make informed judgments based solely on the 307

groundtruth and few-shot scoring examples, we 308

steer clear of overly open-ended questions, such as 309

“Write a poem based on the preceding text”. 310

To validate the reliability of using GPT-4 as an 311

evaluator on LongBench-Chat, we conduct a hu- 312

man evaluation study (more details in Appendix C). 313

In Table 1, we present the correlation between GPT- 314

4’s assessments using zero-shot prompting, which 315

involves only the referenced answer, and its evalu- 316

ations with additional few-shot scoring examples, 317

compared to crowdsourced human judgments. We 318

also show the inter-annotator correlation in the first 319
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Human GPT-4 GPT-4+Few-shot

Spearman (ρ) 0.817 0.788 0.844
Kendall (τ ) 0.694 0.656 0.716

Table 1: Inter-annotator correlations; correlations be-
tween GPT-4 (w/ and w/o Few-shot) and human.

column. We find that with few-shot prompting,320

GPT-4’s correlation with human annotations not321

only aligns but also surpasses the level of agree-322

ment among human annotators, proving the relia-323

bility of such a metric on LongBench-Chat. We324

further discover that the overall average scores (1-325

10) obtained using GPT-4+Few-shot differ by an326

average of 0.1 or less from the scores given by327

human experts. Additionally, we do not observe328

a significant bias in GPT-4’s scoring towards the329

length of responses — in fact, it even penalizes330

excessively lengthy responses.331

Leaderboard. Figure 1 reports the test results of332

current long context (16k+) instruction fine-tuned333

models (chat models) and our most competent334

models trained with LongAlign on LongBench-335

Chat. We include API-based Commercial mod-336

els: GPT-4-1106-preview (OpenAI, 2023a) (GPT-337

4 Turbo), GLM-4-128k2, and Claude-2.1 (An-338

thropic, 2023); as well as open-sourced models:339

InternLM2-7b-200k, InternLM2-20b-200k (Team,340

2023), ChatGLM3-6B-32k (Du et al., 2022; Zeng341

et al., 2023), Vicuna-7b-v1.5-16k (Zheng et al.,342

2023), Orion-14b-LongChat (Chen et al., 2024),343

LongChat-7b-v1.5-32k (Li et al., 2023a), and344

Mixtral-8x7b-Instruct-v0.2 (Jiang et al., 2024).345

Note that we employ middle truncation for inputs346

surpassing the model’s context window. Our evalu-347

ation result reveals that the performance of current348

open-sourced models still significantly lags behind349

commercial models, which partially attributed to350

the scale difference between these models. Addi-351

tionally, we observe that models with a context352

length of 32k or less tend to underperform on353

LongBench-Chat, indicating that a longer context354

window is necessary to complete these long tasks.355

4 Experiments356

In this section, we aim to answer the following357

research questions through a series of experiments:358

RQ1. During SFT, how does the quantity and di-359

versity of the long instruction data influence the360

2https://open.bigmodel.cn/pricing

model’s performance in downstream tasks. 361

RQ2. Whether incorporating long instruction data 362

during training affects the model’s general capabili- 363

ties and their instruction-following / conversational 364

abilities in short context scenarios. 365

RQ3. The impact that the packing and sorted batch- 366

ing training methods have on the training efficiency 367

and the final performance of the models. 368

We also incorporate discussions on the scalability 369

of LongAlign on model size and context length, 370

and the learning curve in long context alignment. 371

4.1 Experimental Setup 372

Data. To maintain the model’s general capabilities 373

and its proficiency in following short instructions, 374

we utilize ShareGPT (Chiang et al., 2023) (empty 375

assistant responses are filtered out) as the source 376

of short instruction data in our training data. To 377

compare the impact of different aspects of long 378

instruction data on model training, we incorporate 379

the following four suites of long instruction data 380

in our experiment. ‘LongAlign-0k’, ‘LongAlign- 381

5k’, and ‘LongAlign-10k’: 0, 5k, and 10k instances 382

of LongAlign data, constructed according to the 383

procedure in Sec 3.2; ‘LongAlpaca-12k’: 12k data 384

from the LongAlpaca dataset (Chen et al., 2023b). 385

LongAlpaca includes 9k long QA data and 3k short 386

QA data, where the long QA data is generated 387

based only on academic papers and books, offer- 388

ing less diversity compared to our LongAlign data. 389

We use this dataset to compare the impact of the 390

diversity of long instruction data on model training. 391

Model. We include three model variants, namely 392

ChatGLM3-6B (Du et al., 2022; Zeng et al., 2023), 393

Llama-2-7B, and Llama-2-13B (Touvron et al., 394

2023) (all base models). Given their 8k and 4k con- 395

text windows, we first perform context extension 396

to extend their context window to 64k, resulting in 397

ChatGLM3-6B-64k, Llama-2-7B-64k, and Llama- 398

2-13B-64k. This involves expanding the base fre- 399

quency b of the RoPE position encoding (Su et al., 400

2024) by 200 times (from 10,000 to 2,000,000) and 401

continual training on pretraining data with lengths 402

under 64k, for a total of 10 billion tokens.3 403

Training. All models are trained with 8xA800 404

80G GPUs and DeepSpeed+ZeRO3+CPU offload- 405

ing (Rasley et al., 2020). The models can be trained 406

with a maximum length of 64k tokens without GPU 407

memory overflow. Consequently, we set the max- 408

3Continual training on 10B tokens is sufficient for context
extension, as suggested in Fu et al. (2024).
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Training Data Long Tasks Short Tasks

(Long) LongBench-Chat S-Doc QA M-Doc QA Summ MT-Bench ARC HellaSwag TruthfulQA MMLU

LongAlign-0k 3.73 58.7 41.1 38.4 5.34 50.3 74.7 51.6 45.5
LongAlign-5k 5.97 61.8 42.1 42.0 5.50 50.3 75.1 52.5 46.6
LongAlign-10k 6.21 64.0 44.4 44.2 5.51 50.5 74.9 52.5 45.5
LongAlpaca-12k 4.46 65.8 45.6 44.1 4.93 51.5 75.4 53.2 47.1

Table 2: Performance of ChatGLM3-6B-64k after training on different quantities and types of long instruction data.
The blue-to-red color transition indicates the level of performance, i.e., deeper blue signifies higher performance,
while deeper red indicates lower performance, compared to the baseline method (LongAlign-0k).

SFT on LongAlign-0k SFT on LongAlign-5k

SFT on LongAlign-10k SFT on LongAlpaca-12k

Figure 4: 1k-60k Needle test performance of Chat-
GLM3-6B-64k trained on different suites of long data
mixed with ShareGPT.

imum length of the training data to 64k, with any409

data exceeding this length being truncated from the410

right. For packing training, each pack consists of411

12 sequences on average, we set the total batch size412

to 8, resulting in a global batch size of 96. For a413

fair comparison, we set the batch size to 8, with414

a gradient accumulation step of 12 for other non-415

packing training methods. We train 2 epochs on416

the training data (approximately 1500-2000 steps).417

Evaluation. We involve both long context tasks418

and short context tasks in evaluation. In both long419

and short scenarios, we consider tasks that eval-420

uate the instruction-following and conversational421

abilities, as well as tasks that assess general ca-422

pabilities. For long context tasks, we use our423

proposed LongBench-Chat to evaluate the mod-424

els’ long context alignment proficiency and employ425

LongBench (Bai et al., 2023a) to test the model’s426

general long context understanding abilities. Long-427

Bench is a bilingual, multi-task long context bench-428

mark. We conduct evaluations on three types of429

tasks within it: Single-Doc QA, Multi-Doc QA,430

and Summarization. Since the aligned models typi- 431

cally produce longer responses, instead of using the 432

original metrics (ROUGE, F1) to score the models’ 433

replies, we use GPT-4 to rate the model’s outputs 434

based on their alignment with the groundtruth an- 435

swers on LongBench. For short context tasks, we 436

use MT-Bench (Zheng et al., 2023), a multi-turn 437

chat benchmark, to measure the models’ ability to 438

follow short instructions. We also evaluate on the 439

general tasks on Open LLM Leaderboard (Beech- 440

ing et al., 2023), including ARC (Clark et al., 441

2018), HellaSwag (Zellers et al., 2019), Truthful 442

QA (Lin et al., 2022), and MMLU (Hendrycks 443

et al., 2021). We follow the evaluation settings 444

in the Open LLM Leaderboard and utilize lm- 445

evaluation-harness framework (Gao et al., 2023) 446

for evaluation on these tasks. To ensure the most 447

stable evaluation results, we use GPT-4 to score 448

twice on LongBench-Chat and MT-Bench, and av- 449

erage these scores to obtain the final score. 450

4.2 Influence of Data 451

We conduct SFT on ChatGLM3-6B-64k using 452

ShareGPT data mixed with different suites of long 453

instruction data. All models except LongAlign-0k 454

are trained using the more efficient packing strat- 455

egy with loss weighting. The evaluation results are 456

reported in Table 2. For LongBench-Chat and MT- 457

Bench, the reported results are averaged over GPT- 458

4’s rating (1-10) across all test instances, while 459

results on other datasets are normalized between 0- 460

100. We also conduct the “Needle in A HayStack” 461

experiment4 (result visualization in Figure 4) to test 462

the model’s ability to utilize information from 10 463

different positions within long contexts of varying 464

lengths between 1k-60k. Specifically, this task asks 465

for the model to retrieve a piece of fact (the ‘nee- 466

dle’) that is inserted in the middle (positioned at a 467

specified depth percent) of a long context window 468

(the ‘haystack’). We summarize our key findings 469

4https://github.com/gkamradt/LLMTest_NeedleInAHaystack
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Training Method Long Tasks Short Tasks

LongBench-Chat S-Doc QA M-Doc QA Summ MT-Bench ARC HellaSwag TruthfulQA MMLU

ChatGLM3-6B-64k
Naïve batching 5.87 65.4 45.0 44.8 5.61 50.7 74.7 52.8 46.0
Sorted batching 5.40 66.2 46.3 43.7 5.76 51.3 74.8 51.9 46.3
Packing 5.76 65.0 45.1 42.8 5.64 50.9 74.8 50.5 47.2
Packing+loss weighting 6.21 64.0 44.4 44.2 5.50 50.5 74.9 52.5 45.5

Llama-2-7B-64k
Naïve batching 5.95 62.8 42.7 41.6 5.52 48.9 74.8 45.3 43.6
Sorted batching 6.38 63.4 42.2 41.3 5.51 49.5 74.8 48.0 44.3
Packing 5.89 61.7 40.4 42.0 5.58 48.1 74.9 46.1 43.9
Packing+loss weighting 6.10 60.8 41.3 43.1 5.60 48.4 74.5 47.4 43.3

Table 3: Performance of ChatGLM3-6B-64k and Llama-2-7B-64k under different training methods.

on the influence of data as follows.470

1. More long instruction data enhances the per-471

formance in long tasks, and without compro-472

mising the performance in short tasks. Compar-473

ing the performance of LongAlign-0k, LongAlign-474

5k, and LongAlign-10k, we observe that as the475

amount of long instruction data increases, there476

is a consistent improvement in the model’s per-477

formance across all long tasks. Meanwhile, in-478

triguingly, its performance on short tasks remains479

comparable to when it is trained solely on short480

instructions. Additionally, given the inferior perfor-481

mance of LongAlign-0k in long tasks (especially on482

LongBench-Chat), this also indicates that merely483

performing context extension on the base model is484

insufficient to ensure good performance on down-485

stream long tasks. It is necessary to incorporate a486

substantial amount of long data covering various487

lengths during SFT. Moreover, the needle test re-488

sult also suggests that more long data enhances the489

model’s ability to utilize information from different490

positions within long texts, resulting in a decrease491

of the model’s retrieval error.492

2. Diversity of long instruction data is benefi-493

cial for the model’s instruction-following abil-494

ities. LongAlign-10k shows significantly better495

results in long and short instruction-following496

tasks (LongBench-Chat and MTBench), compared497

to LongAlpaca-12k. Meanwhile, LongAlpaca-498

12k slightly outperforms LongAlign-10k on Long-499

Bench. This is primarily due to its superior per-500

formance on the 2WikiMQA (Ho et al., 2020) and501

NarrativeQA (Kočiskỳ et al., 2018) datasets, which502

are based on Wikipedia and novels, bearing more503

resemble to the data source of LongAlpaca-12k.504

4.3 Impact of Training Methods505

We compare different training methods on506

ChatGLM3-6B-64k and Llama-2-6B-64k, includ-507

ChatGLM3-6B-64k Llama-2-7B-64k Llama-2-13B-64k
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Figure 5: Training time (hrs) on 8xA800 80G GPUs
under different training methods.

ing naïve batching, packing (w/ and w/o loss 508

weighting), and sorted batching, to assess their im- 509

pact on training efficiency, as well as their influ- 510

ence on downstream task performance. All models 511

are trained on LongAlign-10k. Figure 5 displays a 512

comparison of the training time required for each 513

method. Table 3 presents the performance on down- 514

stream tasks. Our findings are as follows. 515

1. Packing and sorted batching double the 516

training efficiency while exhibiting good per- 517

formance. From Figure 5, we can see that the 518

training efficiency of packing and sorted batch- 519

ing is comparable, both requiring less than half 520

the time needed under naïve batching. Addition- 521

ally, according to table 3, models trained with the 522

two efficient methods perform comparably to those 523

trained with naïve batching on both long and short 524

tasks. We also find that the effectiveness of these 525

two training methods varies with different models. 526

For instance, the model trained on ChatGLM3-6B 527

using packing+loss weighting shows significantly 528

better performance on LongBench-Chat, whereas 529

sorted batching performs the best for Llama-2-7B. 530

2. Loss weighting significantly improves per- 531

formance on long instruction task for packing 532

training. By comparing the performance of mod- 533
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Llama-2-13B-64k LongBench-Chat S-Doc QA M-Doc QA Summ MT-Bench

Packing+loss weighting 6.79 68.0 40.3 43.6 6.12
Sorted batching 7.02 66.1 43.9 45.3 6.02

Table 4: Scaling up: LongAlign on LLama-2-13B.
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Figure 6: Relative performance on long and short tasks
throughout the training process of ChatGLM3-6B-64k.

els with and without loss weighting strategy during534

packing training, it’s evident that incorporating the535

loss weighting strategy greatly improves the ca-536

pability in LongBench-Chat (by about 5%∼10%),537

while having a minimal and variable impact on the538

performance of other tasks. We believe that this is539

primarily because, without loss weighting in SFT540

data, different long instruction data contribute vari-541

ably to the loss — longer data tend to contribute542

more to the loss (refer to Eq. 3). Such an unnat-543

ural weighting bias is often detrimental to model544

training, potentially leading to training instability,545

deviating it from the optimal learning trajectory.546

4.4 Discussion547

Scalability of LongAlign. We explore two scaling548

directions on our LongAlign framework: larger549

model size and longer context window. To do so,550

we fine-tune Llama-2-13B-64k using LongAlign-551

10k dataset with the two efficient training meth-552

ods, and the evaluation results are shown in Ta-553

ble 4. Compared to the 7B-scale model, the 13B554

model shows a 10% improvement on LongBench-555

Chat, setting a new record among open-sourced556

models (LongAlign-13B-64k in Figure 1). This557

indicates that our alignment method scales effec-558

tively to larger-scale models. We also construct559

SFT data up to 128k in length with human annota-560

tion and successfully align ChatGLM3-6B under561

128k context window using packing training with562

loss weighting, resulting in ChatGLM3-6B-128k563

(performance shown in Figure 1).564

Learning curve on long task v.s. short task. To 565

compare the learning processes of alignment under 566

long context and short context, we present in Fig- 567

ure 6 the relative performance curves on long and 568

short instruction-following tasks (on LongBench- 569

Chat and MT-Bench, respectively) during model 570

training, illustrating how performance varies with 571

the number of training steps. We use exponen- 572

tial moving average to smooth the original perfor- 573

mance curves (dotted lines), and display them as 574

solid lines. We observe that the trends of the two 575

learning curves are strikingly similar — both show 576

rapid improvement between 0-500 steps, followed 577

by a slow rise, and stabilize after 1000 steps. This 578

may imply a deeper connection between long and 579

short alignment. They might be jointly determined 580

by shared latent factors, which are optimized dur- 581

ing training to help the model align to both long 582

and short instructions simultaneously. 583

In Appendix D, we provide case analyses 584

of different LongAlign-tuned models on out-of- 585

distribution (OOD) long context query, that is, 586

query that the models have not encountered in the 587

long context SFT data. We find that models trained 588

with LongAlign can generalize to OOD long con- 589

text queries, such as writing a review for a research 590

paper, and that larger-scale models have stronger 591

generalization capabilities. 592

5 Conclusion 593

This paper aims to find the best practice for long 594

context alignment in the scope of data, training 595

method, and evaluation. Our proposed solution, 596

namely LongAlign, uses Self-Instruct to construct 597

diverse long instruction data, and efficiently fine- 598

tune the model with packing combined with loss 599

weighting or sorted batching. Moreover, we in- 600

troduce LongBench-Chat to facilitate reliable as- 601

sessment of LLM’s instruction-following ability on 602

practical long context interactions. Through con- 603

trolled experiments, we find that the amount, diver- 604

sity of data, as well as the correct training method, 605

are crucial to the final performance. We discuss the 606

limitation and future direction in Appendix F. 607
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A Dataset Construction Details860

Data sources. The 9 sources of the documents in our constructed LongAlign dataset are listed below5,861

along with their copyright information:862

• Arxiv (Academic papers): Open-accessed and can be downloaded freely by anyone.863

• Books3 (Books): From The Pile, currently it is not licensed to be downloaded.864

• C4 Dataset (Various types of articles): Publicly available dataset with ODC-BY license.865

• CLUECorpus2020 (Various types of Chinese articles): Extracted Chinese instances from the Common-866

Crawl corpus by Xu et al. (2020).867

• CommonCrawl corpus (Various types of articles): Publicly available dataset and can be downloaded868

freely by anyone.869

• Github (Code repositories): Open-accessed and can be downloaded freely by anyone.870

• Stack Exchange (Question-and-answer websites): Freely downloadable and licensed under CC BY-SA.871

• Wikipedia (Encyclopedias): Grant free access and licensed under CC BY-SA.872

• WuDaoCorpora (Various types of articles): open-accessed dataset.873

We sample articles with lengths under 64k (measured by ChatGLM3-6B tokenizer) from these datasets.874

Note that we upsample longer articles to ensure our dataset covers more long texts.875

Prompts for data generation. During the data generation process, we employ four types of task prompts876

to encourage Claude to produce a more diverse set of instruction data:877

• General type task878

{Long Doc}

Given the above text, please propose 5 English questions that are diverse and cover all
parts of the text, in the following format: "1: ", "2: ", ...

879

• Summary type task880

{Long Doc}

Given the above text, please propose 5 English questions that require summarization or
integration from multiple parts, make sure they are diverse and cover all parts of the text, in the
following format: "1: ", "2: ", ...

881

• Reasoning type task882

{Long Doc}

Given the above text, please propose 5 English questions that require multi-hop reason-
ing, make sure they are diverse and cover all parts of the text, in the following format: "1: ", "2: ",
...883

• Information extraction type task884

{Long Doc}

Given the above text, please propose 5 English information-seeking questions, make sure
they are diversed and cover all parts of the text, in the following format: "1: ", "2: ", ...

885
5Arxiv, Books3, CC, Github, Stack Exchange, and Wikipedia are sampled from The Pile (Gao et al., 2020).

12



For each long article, we randomly select one of the four task prompts and have Claude generate five 886

questions to ensure that the questions cover content from multiple spans within the long text. We then 887

randomly choose one of these questions and request Claude for its answer, resulting in instruction data as 888

illustrated in Figure 2. For long Chinese documents, we translate the corresponding prompts into Chinese 889

and obtain Chinese instruction data. 890

B Training Method Details 891

Here we provide details regarding the implementation of the packing strategy and loss weighting. During 892

packing training, for each batch of data, we pass a special one-dimensional attention mask. In this mask, 893

the ith element represents the starting index of the ith sequence in the batch. The first element of the 894

mask is 0, and the last element is equal to batch_size × seq_len. During the attention computation, we 895

use the flash_attn_varlen_func function from FlashAttention 2 and pass the attention mask to 896

the function’s cu_seqlens_q and cu_seqlens_k parameters. This function performs attention 897

calculation within sequences between start and end indices from adjacent elements in the mask. Thus, 898

during the computation, the query of each sequence can only attend to the key within the same sequence. 899

For implementation of the loss weighting strategy, we first preprocess the training data to produce a 900

weighted 1D mask for each pack of sequences, where the weight is set to 1/N (N is the number of target 901

tokens in current sequence) on the position corresponding to target tokens, otherwise 0. During training, 902

we set M and K, i.e., the number of sequences and packs in the current batch, on the fly according to its 903

configuration. Then the loss is calculated as the summation of the cross entropy loss at each token scaled 904

by K/MN . 905

C Evaluation Details 906

C.1 LongBench-Chat 907

Evaluation data. 30 question data in LongBench-Chat are proposed by our author team to best mimic 908

real user queries, these include 20 English and 10 Chinese questions. The remaining 20 questions in 909

LongBench-Chat are selected from long dependency QA tasks in the LooGLE dataset (Li et al., 2023b). 910

The long texts for these data are sourced from Wikipedia pages and movie scripts post-2022, ensuring 911

the information is relatively new and less likely to be already known by LLMs. We aim to select 912

questions that resemble real user inquiries, can be answered from the text, and ensure a diverse type of 913

questions (including Comprehension & Reasoning, Multiple Information Retrieval, Timeline Reorder, and 914

Computation types). For the questions in LongBench-Chat, we invite experts to read the entire material 915

and write groundtruth answers, where each answer is verified by at least two experts. 916

Evaluation prompts. For each question, we manually score on three responses as few-shot scoring 917

examples, shuffle their order in each evaluation run and use the following prompt to get GPT-4’s evaluation: 918

[Instructions] You are asked to evaluate the quality of the AI assistant’s answers to user questions as
an impartial judge, and your evaluation should take into account factors including correctness (high
priority), helpfulness, accuracy, and relevance. The scoring principles are as follows: 1. Read the
AI assistant’s answer and compare the assistant’s answer with the reference answer. 2. Identify all
errors in the AI Assistant’s answers and consider how much they affect the answer to the question. 3.
Evaluate how helpful the AI assistant’s answers are in directly answering the user’s questions and
providing the information the user needs. 4. Examine any additional information in the AI assistant’s
answer to ensure that it is correct and closely related to the question. If this information is incorrect
or not relevant to the question, points should be deducted from the overall score.
Please give an overall integer rating from 1 to 10 based on the above principles, strictly in the
following format:"[[rating]]", e.g. "[[5]]".
[Question] {}
[Reference answer begins] {} [Reference answer ends]
Below are several assistants’ answers and their ratings:
[Assistant’s answer begins] {} [Assistant’s answer ends]

919
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Rating: [[{}]]
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating: [[{}]]
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating: [[{}]]
Please rate the following assistant answers based on the scoring principles and examples above:
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating:

920

Here is the zero-shot prompt used as the baseline in our metric evaluation study:921

[Instructions] You are asked to evaluate the quality of the AI assistant’s answers to user questions as
an impartial judge, and your evaluation should take into account factors including correctness (high
priority), helpfulness, accuracy, and relevance. The scoring principles are as follows: 1. Read the
AI assistant’s answer and compare the assistant’s answer with the reference answer. 2. Identify all
errors in the AI Assistant’s answers and consider how much they affect the answer to the question. 3.
Evaluate how helpful the AI assistant’s answers are in directly answering the user’s questions and
providing the information the user needs. 4. Examine any additional information in the AI assistant’s
answer to ensure that it is correct and closely related to the question. If this information is incorrect
or not relevant to the question, points should be deducted from the overall score.
Please give an overall integer rating from 1 to 10 based on the above principles, strictly in the
following format:"[[rating]]", e.g. "[[5]]".
[Question] {}
[Reference answer] {}
[Assistant’s answer] {}
Rating:

922

Human evaluation. Here we provide more details for the human evaluation study on LongBench-Chat.923

We select responses to the 50 questions on LongBench-Chat from six different models, creating a data924

pool of 300 instances. We invite two human experts (both are Ph.D. students from Tsinghua University)925

to each score 200 responses based on the instruction and referenced answer, on a scale from 1 to 10. The926

scoring criteria provided to the human experts are as follows:927

Please score the assistant’s response based on the question and the reference answer, with 1928

being the lowest and 10 the highest. The annotation must adhere to the following requirements:929

1. Focus primarily on whether the response covers the key points in the reference answer.930

2. For reference answers containing multiple key points, look for how many of these the response931

accurately addresses and score accordingly.932

3. If the response includes points not found in the reference answer, check the original text for933

evidence. Deduct points at your discretion if it does not align with the original text.934

4. Also consider deducting points for overly verbose responses or those that are excessively935

generalized.936

Evaluation cost. On LongBench-Chat, a run of evaluation requires approximately 32,000 tokens on937

average (almost entirely as input tokens). Therefore, using GPT-4 for evaluation would cost about $0.96938

per run.939

C.2 LongBench940

Evaluation prompts. We use GPT-4 to score the responses from our aligned models in Single-Doc QA,941

Multi-Doc QA, and Summarization tasks on LongBench. For the first two QA tasks, the prompt for the942

GPT-4 evaluator is as follows.943
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You are asked to evaluate the quality of the AI assistant’s answers to user question as an impartial
judge, and your evaluation should take into account factors including correctness (high priority), and
comprehensiveness (whether the assistant’s answer covers all points). Read the AI assistant’s answer
and compare against the reference answer, and give an overall integer rating in 1, 2, 3 (1 = wrong or
irrelevant, 2 = partially correct, 3 = correct and comprehensive) based on the above principles, strictly
in the following format:"[[rating]]", e.g. "[[2]]".

Question:
{Question}
Reference answer:
{Groundtruth}
Assistant’s answer:
{Response}
Rating:

944

The prompt for GPT-4 evaluation on summarization tasks is as follows. 945

You are asked to evaluate the quality of the AI assistant’s generated summary as an impartial
judge, and your evaluation should take into account factors including correctness (high priority),
comprehensiveness (whether the assistant’s summary covers all points), and coherence. Read the AI
assistant’s summary and compare against the reference summary, and give an overall integer rating in
on a scale of 1 to 5, where 1 is the lowest and 5 is the highest based on the evaluation criteria, strictly
in the following format:"[[rating]]", e.g. "[[3]]".

Reference summary:
{Groundtruth}
Assistant’s summary:
{Response}
Rating:

946

Evaluation cost. On LongBench, a run of GPT-4 evaluation on 12 datasets in Single-Doc QA, Multi-Doc 947

QA, and Summarization tasks requires approximately 800,000 tokens on average (almost entirely as input 948

tokens). Therefore, using GPT-4 for evaluation would cost about $24 per run. 949

C.3 Needle Test 950

For the “Needle in A Haystack” evaluation, following the original configuration in the original github 951

repository, we use “The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on 952

a sunny day.” as the needle fact, and Paul Graham’s essays as the long haystack context. We use the 953

query prompt from Claude 2.16: “What is the best thing to do in San Francisco? Here is the most relevant 954

sentence in the context:”. 955

D Case Studies on OOD Queries 956

As part of our research on aligning LLMs on long context, we come up with an intriguing and practical 957

case study: Can we evaluate the long context understanding capability of our trained models using this 958

paper as the long input? Hence we use the paper as input (of course, to prevent recursive nesting, the 959

input paper does not include this section). We consider using OOD query, that is, query that the model 960

has not encountered in the long context SFT data. Our queries include “From a professional reviewer’s 961

perspective, identify the strengths and weaknesses of this paper” and “Use rap to tell about this paper”. 962

Let’s see how the model variants response:7 963

6https://www.anthropic.com/news/claude-2-1-prompting
7We remove the Abstract, Conclusion, and Limitations sections in the input to prevent the model from simply copying content

from these sections without demonstrating its own understanding.
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!!!Disclaimer: The below contents regarding this paper are generated by AI and DOES NOT reflect the964

true views of the authors or readers of this paper. Please be aware and identify any misinformation.965

g User: From a professional reviewer’s perspective, identify the strengths and weaknesses of this
paper.

3 LongAlign-6B-64k (ChatGLM3-6B-64k trained on LongAlign-10k using packing + loss
weighting):
As an AI language model, I cannot provide a subjective review as I lack the ability to evaluate the
quality of the paper based on personal biases or predispositions. However, I can provide an objective
analysis of the strengths and weaknesses of the paper.
Strengths:
1. Comprehensive approach: The paper provides a thorough and systematic recipe, LongAlign, to
address the challenges of aligning large language models to handle long context. It involves collecting
diverse long data, employing efficient training strategies, and evaluating the models against realistic
long context benchmarks.
2. Impact of data: The paper demonstrates that the quantity and diversity of long instruction data
significantly impact the model’s ability to handle long contexts, and that incorporating more long data
is beneficial. This provides a valuable perspective on the importance of diverse long context data.
3. Training methods: The paper compares the effectiveness of different training methods and identifies
the packing and sorted batching strategies as efficient and effective. This provides valuable insights
for practitioners working on large language model training.
Weaknesses:
1. Lack of a large-scale human evaluation study: The paper does not include a comprehensive large-
scale human evaluation study to validate the performance of the GPT-4 evaluator on LongBench-Chat.
While the correlation with human annotations is presented, a direct comparison between human and
GPT-4’s assessments is lacking.
2. Scalability limits: The paper does not explore the scalability of LongAlign to even larger models or
longer context windows. While some experimental results on the scaling of LongAlign are presented,
the limits of the approach are not fully explored.
3. Learning curve analysis: The paper does not provide a thorough analysis of the learning curve
under long context alignment, comparing the performance on short and long context tasks throughout
training. This would have provided valuable insights into the learning dynamics.
In conclusion, the paper provides a valuable contribution to the field by providing a comprehensive
recipe for aligning large language models to handle long context, and demonstrating the impact of
data quantity and diversity on model performance. However, a more comprehensive and rigorous
evaluation study and a deeper exploration of the learning dynamics under long context alignment
would further enhance the paper’s impact.

3 LongAlign-7B-64k (Llama-2-7B-64k trained on LongAlign-10k using sorted batching):
As an AI language model, I do not have personal opinions or emotions, but I can provide a neutral
evaluation of the paper based on its content and structure.
Strengths:
1. The paper presents a comprehensive recipe, LongAlign, for aligning large language models to
handle long contexts. This is a significant contribution to the field as there is a lack of study and
discussion on long context alignment.
2. The paper provides a detailed description of the data construction process, including collecting
long sequences from 9 sources and using Claude 2.1 to generate tasks and answers for 10k lengthy
texts.
3. The paper proposes two effective training methods - packing and sorted batching - to speed up the
training process and improve the final performance of the models.

966
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4. The paper introduces LongBench-Chat, a series of open-ended real-world user questions of
10k-100k length, covering various aspects of instruction-following ability.
5. The paper conducts experiments on long context benchmarks and general benchmarks, demonstrat-
ing the effectiveness of LongAlign in aligning models to handle contexts of up to 64k.
Weaknesses:
1. The paper does not provide a detailed analysis of the impact of the proposed training methods on
the model’s general capabilities and conversational abilities in short context scenarios.
2. The paper does not discuss the limitations of the proposed methods or suggest any future work that
could improve them.
3. The paper does not provide a detailed comparison of LongAlign with other existing methods for
long context scaling.
4. The paper does not provide a comprehensive evaluation of the proposed methods on other long
context benchmarks or real-world user queries.
Overall, the paper presents a thorough recipe for long context alignment and provides effective
training methods to speed up the training process. However, a more in-depth analysis of the impact on
general capabilities and a comparison with other methods would make the paper more comprehensive.

3 LongAlign-13B-64k (Llama-2-13B-64k trained on LongAlign-10k using sorted batching):
Strengths:
1. The paper presents a comprehensive solution for aligning large language models to handle long
context interactions, including constructing a diverse long instruction dataset, training methods, and
evaluation benchmark.
2. The authors conduct extensive experiments to demonstrate the effectiveness of their approach,
showing improvements in downstream tasks without performance degradation on general benchmarks.
3. The paper provides valuable insights into the challenges and solutions for long context alignment,
which is an important but understudied area.
4. The proposed LongBench-Chat benchmark is a valuable resource for evaluating long context
understanding and instruction-following abilities of large language models.
5. The paper is well-written and easy to follow, with clear explanations and visuals.
Weaknesses:
1. The paper lacks a clear theoretical framework or motivation for why long context alignment is
important and how it differs from short context alignment.
2. The experiments could benefit from more in-depth analysis and discussion of the results, especially
in relation to the proposed solutions.
3. The evaluation on LongBench-Chat is based on a small number of human-annotated examples,
which may not fully capture the diversity of real-world queries.
4. The paper does not discuss potential limitations or scalability issues with the proposed approach as
the model size and context length increase.
5. The proposed loss weighting strategy is not fully explained and justified, and its impact on training
stability and convergence could be further investigated.

967

The authors believe LongAlign-13B-64k generates a relatively good review, with only a few flaws. This 968

case also shows the O.O.D. generalization ability of the model — it can generate reasonable review for a 969

research paper without encountering such type of data during training. 970

g User: Use rap to tell about this paper.

3 LongAlign-6B-64k:
This paper presents a recipe for long context alignment, LongAlign, which addresses the challenges
of training large language models (LLMs) to handle longer inputs. The key ideas of LongAlign
include: 971
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1. Data: Collecting diverse long sequences from multiple sources and using Self-Instruct to generate
10k instruction data of 8k-64k length.
2. Training method: Considering a more efficient packing strategy that packs sequences together up
to the maximum length before dispatching them to GPUs for optimization. This is balanced with a
loss weighting strategy to prevent sequences in packs with fewer sequences from disproportionately
affecting the loss. Also proposing a sorted batching strategy that groups sequences of similar lengths
to reduce intra-batch idle time.
3. Evaluation: Introducing LongBench-Chat, a series of open-ended real-world user questions of
10k-100k length, covering aspects of instruction-following like reasoning, coding, and summarization,
as well as being multilingual. GPT-4 is employed to score the model’s responses.
Experiments demonstrate that LongAlign effectively aligns LLMs to handle long contexts of up to
64k length without performance degradation on general benchmarks, showing the impact of data
quantity, diversity, training methods, and evaluation.

3 LongAlign-7B-64k:
This paper presents LongAlign, a recipe for aligning large language models to handle long contexts.
The key challenges in long context scaling include lack of a comprehensive instruction-following
dataset, uneven batching in multi-GPU training, and absence of a reliable benchmark. LongAlign
addresses these challenges by collecting long instruction data from 9 sources, using Self-Instruct
to generate 10k instruction data of 8k-64k length, and constructing LongBench-Chat, a series of
open-ended real-world user questions of 10k-100k length. The paper also proposes packing and
sorted batching training methods, loss weighting for packing training, and a benchmark called
LongBench-Chat to evaluate the aligned models. Experiments show that LongAlign effectively aligns
models to handle contexts of up to 64k without performance degradation on general benchmarks.

3 LongAlign-13B-64k:
Yo, listen up, I got a story to spit
About a paper that’ll make your head spin and flip
It’s called "LongAlign: A Recipe for Long Context Alignment"
And it’s all about enhancing large language models’ capabilities

They tackle the challenge of scaling up models to handle long contexts
By collecting and constructing a diverse dataset of long instruction data
Training methods like packing and sorted batching are explored
To optimize efficiency and performance without compromising general capabilities

Their evaluation benchmark, LongBench-Chat, is a series of real-world user queries
To assess models’ ability to follow long context instructions and provide relevant answers
They find that incorporating long instruction data during training is crucial And that the proposed
methods can speed up training while improving performance

So if you’re into language models and their capabilities
This paper’s a must-read, it’ll make you think twice
LongAlign, the recipe for long context alignment
Is the key to unlocking the full potential of large language models, that’s for sure, it’s a go!

972

Although LongAlign-6B-64k and LongAlign-7B-64k make good summaries for our paper, only973

LongAlign-13B-64k follows the instruction and summarizes our paper in rap. Its rap is in the right form,974

yet it does not rhyme.975
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Long Instruction Data LongBench-Chat S-Doc QA M-Doc QA

LongAlpaca-12k 4.46 65.8 45.6
LongAlign-10k 6.21 64.0 44.4
LongAlpaca-12k+LongAlign-10k 5.41 65.0 44.8

Table 5: Mixing LongAlign-10k and LongAlpaca-12k.

E Mixing LongAlign-10k and LongAlpaca-12k 976

Table 2 shows that LongAlign-10k is more suitable for chat-type tasks (LongBench-Chat) while 977

LongAlpaca-12k benefits more on QA tasks (LongBench). To explore whether mixing LongAlign- 978

10k (better aligned with Chat tasks) and LongAlpaca-12k (more suitable for QA tasks) could enhance the 979

model’s capabilities in both QA and chat, we combined data from both datasets and integrated them with 980

ShareGPT as SFT data for model training. 981

The results are shown in Table 5. We find that the model trained on the mixed dataset slightly 982

outperforms the model trained solely on LongAlign-10k in QA performance, but it significantly lags 983

behind in chat-type task compared to the model trained on LongAlign-10k. This is primarily because the 984

long-text QA data in LongAlpaca-12k has a quite synthetic format and is not well-suited for chat-type 985

tasks. When mixed with LongAlign-10k, the differing alignment targets due to LongAlpaca-12k’s format 986

can cause confusion during model alignment, as it contrasts with the natural response alignment objectives 987

in LongAlign-10k. A similar phenomenon has also been observed in Wang et al. (2023). 988

F Limitations 989

Our work in exploring long context alignment has its limitations. From a data perspective, we primarily 990

cover long instruction data for categories like long context QA, summarization, and reasoning in data 991

construction. In reality, there are many other types of long instruction tasks that heavily rely on the ability 992

to understand extended texts, such as multi-turn dialogues (hundreds or thousands of turns, even life-long 993

dialogues), long-term role-playing, and long-history agent tasks, etc. We find that collecting available 994

data for these tasks is challenging because the current performance of LLMs on these tasks does not yet 995

meet human needs. Consequently, users rarely interact with LLMs in this manner. Additionally, since 996

current LLMs, whether API-based or open-sourced models, perform poorly on these tasks, it’s difficult to 997

automatically construct such data using a Self-Instruct like approach. We hope to explore more types of 998

long context data, enabling models to align with human expectations across various long context tasks in 999

future works. 1000

From a training perspective, due to the limitations of the DeepSpeed framework and our GPU resources 1001

that only support SFT for 10B level models with a maximum length of 64k, we do not conduct massive 1002

experiments on longer data or larger models. Some current frameworks, such as Megatron (Shoeybi et al., 1003

2019), support more parallelization methods including model parallelism and sequence parallelism, but 1004

are difficult to use and reproduce due to the complexity of their code structure. We hope to explore long 1005

context alignment on longer sequences and larger-scale models using more advanced training frameworks. 1006

Additionally, exploring RLHF in long context alignment is also a promising direction. 1007
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