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ABSTRACT

Neural combinatorial optimization (NCO) has made significant advances in apply-
ing deep learning techniques to efficiently and effectively solve single-objective
flexible job shop scheduling problems (FJSPs). However, the more practical
multi-objective FJSPs (MOFJSPs) remain underexplored, limiting the applicabil-
ity of NCO in multi-criteria decision-making scenarios. In this paper, we propose
a decomposition-based NCO method to solve MOFJSPs. We present the dual
conditional attention network (DCAN), a neural network architecture that takes
the objective preferences along with the problem instance, aiming to learn adapt-
able policies over the preferences. By decomposing an MOFJSP into a set of
subproblems with different preferences, the learned DCAN policies generate a
set of solutions that reflect the corresponding trade-offs. We customize the Proxi-
mal Policy Optimization algorithm based on decomposition to effectively train the
policy network for multiple objectives and define the state and reward based on
combinations of different objectives. Extensive results showcase that our approach
outperforms traditional multi-objective optimization methods and generalizes well
across diverse types of problem instances.

1 INTRODUCTION

The flexible job shop scheduling problem (FISP) is one of the most well-studied combinatorial
optimization (CO) problems. It is a complex scheduling task where multiple jobs, each made up of
ordered operations, must be processed on machines. Each operation can be performed on several
alternative machines, with different processing times. The goal is to create a schedule that optimizes
criteria such as minimizing the makespan. FISP has many practical applications in industries like
semiconductor manufacturing (Tamssaouet et al.l |2022) and aluminum production (Zhang et al.,
2016). Constraint programming (CP; Baptiste et al., 2001; |Col & Teppan, 2022)), heuristics (Sels
et al., 2012), and metaheuristics (Rooyani & Defersha, 2019) have made great progress in solving
FJSP, focusing mainly on single-objective optimization like minimizing makespan. However, real-
world scenarios often involve multiple conflicting objectives, such as tardiness, flowtime, and cost.

A straightforward approach to multi-objective optimization for FJSP is to form a weighted sum of
the objectives and apply single-objective methods. However, this does not provide alternative so-
lutions leveraging trade-offs among the objectives. Thus, it is hard to choose appropriate objective
weights, as the weights leading to preferred solutions vary across problem instances and scales.
Hence, desired solution methods provide a Pareto set of solutions with diverse objective trade-offs.
To address this issue, one can solve multiple problems with preferences using the same optimization
methods. Yet, even single-objective FISP is NP-hard, rendering such methods too computationally
expensive. Instead, a more prevalent solution method is to use metaheuristics that generate a set
of solutions, particularly multi-objective evolutionary algorithms. However, these metaheuristics
require extensive efforts in manual tuning and specialized operator design to achieve good perfor-
mance. Moreover, their efficiency and effectiveness tend to deteriorate as problem size increases.

Recently, neural combinatorial optimization (NCO) has attracted increasing attention to solve single-
objective FISP. NCO methods aim to learn high-quality solution policies through deep reinforcement
learning (DRL), reducing reliance on heavily handcrafted strategies and enabling fast inference.
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NCO methods for single-objective FISP have made great progress, mainly targeting makespan op-
timization (e.g.,|Song et al., 2022; Wang et al., 2023) and extending to variants such as dynamic or
stochastic FISPs (Zhao et al., 2024 |Smit et al., |2025a)).

The multi-objective FSJP (MOFIJSP) has received comparatively little research exploration. While
some NCO methods are developed for simple multi-objective CO problems such as multi-objective
routing problems (Lin et al., [2022; |Chen et al.l 2025} [Li et al) 2021} [Zhang et al.|, [2023d; Wang
et al.| 2024)), these approaches are not applicable to the MOFJSP. They depend on episodic rewards
and instance-wise gradients for policy training due to simple problem structures. However, in the
context of FISP, this leads to delayed rewards due to the long decision-making horizon, inhibiting
performance. Moreover, scheduling problems have a substantially different graph structure, which
requires distinct problem representations and tailored neural architectures.

We address this gap by proposing a novel decomposition-based neural multi-objective combinato-
rial optimization (NMOCO) method for the MOFJSP, introducing the dual conditional attention net-
work (DCAN). DCAN employs a conditional attention mechanism that adapts operation-machine
attention based on objective preferences, while relying solely on a single neural network. Fur-
thermore, we tailor the proximal policy optimization (PPO) algorithm (Schulman et al., 2017) for
multi-objective optimization by defining the state and reward functions based on different combina-
tions of objectives. Experimental results demonstrate that the proposed method outperforms existing
multi-objective optimization methods across diverse problem instances and objective combinations.
Our main contributions are: (1) a decomposition-based PPO framework for multi-objective schedul-
ing that is both theoretically grounded and practically applicable; (2) a conditional attention-based
network architecture that achieves state-of-the-art performance on flexible job shop scheduling and
related variants; (3) new bound-based reward functions and state features for multiple prevalent
scheduling objectives, with broad applicability to other nonincreasing or nondecreasing objectives;
and (4) extensive experiments showing that our approach consistently outperforms strong meta-
heuristic and DRL baselines across a variety of objective combinations and problem instances.

2 RELATED WORK

Many NCO methods have been developed in recent years for a variety of scheduling problems, and
most use graph neural networks (GNNs) to capture the problem dynamics (Smit et al., 2025b).
Zhang et al| (2020) created a constructive DRL approach for the job shop scheduling problem
(JSSP), followed by others, who explored different network architectures and learning algorithms
(e.g.,|Park et al.l 2021} |[Lei et al.| [2022}; Kwon et al., [2021}; |Corsini et al.| [2024} [Pirnay & Grimm),
2024). For the FISP, |Song et al.| (2022) first proposed a competitive end-to-end DRL algorithm to
construct schedules. They used a heterogeneous graph and designed a heterogeneous GNN using dif-
ferent graph attention (GAT; |Velickovi€ et al.| [2018]) layers to encode machine and operation nodes.
Since then, several network architectures and learning structures have been proposed. For instance,
Zhang et al.|(2023a)) integrated DRL and multi-agent RL using a multi-agent graph representation.
Others adapted DRL methods to handle various dynamic FISP variants (Zhao et al., [2024} Zhang
et al.,|2023cb), the stochastic FJSP (Smit et al., [2025a)), or different FJSP extensions (Zhang et al.,
2024; [Li et al.} 2025). Wang et al.| (2023) proposed the current state-of-the-art FJSP network archi-
tecture, using dual attention network (DAN) that comprises both self- and cross-attention, achieving
superior performance over previous DRL approaches for the FJSP.

There are a couple of preliminary works on the MOFIJSP (Luo et al.| [2021}; 2022} [Wu et al., [2023).
However, they use a trivial vector-based state, restrict potential actions to a subset of priority dis-
patching rules, and limit applicability to a specific variant of the dynamic MOFJSP. Moreover, these
works train only one policy that optimizes a specific trade-off point between objectives. Hence, they
do not consider true multi-objective optimization that should involve constructing a set of solutions
addressing different preferences. More recently, (Su et al.||2024) proposed a method to learn differ-
ent policies based on different preference vectors. However, this requires separate actor networks for
each preference, resulting in a high computational cost. Moreover, their method is restricted to a spe-
cific MOFJSP with a fixed objective combination, lacking the flexibility to solve other MOFJSPs. In
this paper, we propose an NCO method that uses a single neural network to solve general MOFJSPs
with distinct objectives and any combination of them.
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Besides learning-based methods, many MOFJSP variants have been addressed in literature using
multi-objective evolutionary algorithms, such as particle swarm optimization (Moslehi & Mahnam),
2011), the genetic algorithm NSGA-II (Deng et al., 2017), and multi-objective evolutionary algo-
rithm based on decomposition (MOEA/D; [Xiao et al.,|2024). These approaches can achieve satis-
factory performance for specific problem instances. However, they depend highly on manual tuning
and operator design and their runtimes scales poorly, limiting their applicability for larger problems.

NMOCO for Routing While the MOFIJSP has received little attention in NCO research, several
works have recently focused on multi-objective vehicle routing problems. |L1 et al.|(2021) proposed
one of the first approaches in this area, decomposing the multi-objective problem into multiple sub-
problems and training a separate neural network for each. [Zhang et al.[(2023d) adopt a similar idea
within a different meta-learning framework. However, these approaches do not scale well and do not
allow adapting preference weights at inference time without retraining. [Lin et al.|(2022) partially ad-
dress this limitation using a hypernetwork that maps objective weights to actor parameters, enabling
adaptation to different preference vectors during inference, but still requiring a separate actor net-
work per preference and thus limiting scalability. Subsequent works (Wang et al.,[2024; |Chen et al.,
20255 |Fan et al.|, [2025)) move to a single-model approach, conditioning the neural model directly
on the preference vector and achieving strong performance. However, these methods are tailored
to routing. They build on single-objective routing architectures, use simple static coordinate-based
states, and rely on REINFORCE with episodic rewards in environments that are cheap to sample.
In contrast, state-of-the-art scheduling methods require stepwise rewards, richer dynamic states, and
more elaborate state features, and therefore rely on actor—critic methods such as PPO. Moreover, the
routing objectives are simple distance-based measures (e.g., Euclidean distances over coordinates),
which differ substantially from the practically relevant objectives in scheduling. Consequently, al-
though these works demonstrate the promise of decomposition-based and preference-conditioned
NMOCO methods, their applicability to other problem classes such as scheduling is highly limited.

3 BACKGROUND

3.1 MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION

A multi-objective CO (MOCO) problem is defined as min ¢ x (f1(z), f2(z),. .., f;(x)), where M
is the number of objectives and X is the set of feasible solutions. Since objectives are conflicting,
there is no single optimal solution for all objectives. Instead, Pareto optimality is introduced.

Definition 1 (Pareto dominance). A solution z; € X dominates another solution x5 € X' (r1 < x3)
if and only if f;(x1) < fi(z2),Vi € {1,..., M} and f;(z1) < fi(z2),F € {1,...,M}.
Definition 2 (Pareto optimality). A solution z* € X is Pareto optimal if no other solution z’ € X

dominates it. All Pareto optimal solutions together form the Pareto set P = {z* € X |z’ € X :
x’ < z*} and their objective values form the Pareto front F = { f(z)|z € P}.

The goal of MOCO is to find the Pareto set and its front.

Decomposition-Based Combinatorial Optimization Decomposition is a popular strategy for
solving MOCO problems that splits them into multiple subproblems, each being a single-objective
or multi-objective problem. It provides the basis for, among others, the successful MOEA/D (Zhang
& Lij, 2007) method, which solves the subproblems collaboratively to construct a Pareto set. We
consider the most widely used and intuitive weighted sum decomposition method (Ehrgott, [2005).
Here, each subproblem minimizes a scalarized objective min,cxg(x|A) = Zf\il Aifi(x), where

A € RM js a preference vector such that \; > 0 and Zi\il A; = 1. The multi-objective problem is
solved by solving N subproblems that consider N weight vectors.

3.2 MULTI-OBJECTIVE FLEXIBLE JOB SHOP SCHEDULING

The FISP consists of a pair (J, M) where J is a set of jobs and M a set of machines. A job
J; € J consists of n; operations O; = {O;1, ..., Oy, } to be performed in order. The total set of
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operations is O = |J, O,. Each operation O;; € O must be processed by a single machine, selected
from the set of compatible machines M;; C M. The processing time of operation O;; on machine
My, € Myjis pfj > 0 and each machine can process one job at a time. A solution to the FISP
is a schedule, which assigns a compatible machine to each operation O;; and determines the order
of operations on each machine. While the goal of a single-objective FISP is to find a schedule that
optimizes a given objective function, the MOFJSP aims to find all schedules in the Pareto set for
a given set of objectives. In this paper, we consider the makespan, total tardiness, total earliness,
average flowtime, and total costs as objectives. These objectives are among the most commonly
occurring in the scheduling literature (see e.g., Xie et al., |2019; Dauzere-Péres et al., 2024) and
address a variety of considerations that are relevant in practice. We define the cost of an operation
to be inversely related to the processing times, so that faster operations are more expensive and
vice versa. Generally, the makespan, tardiness, and flowtime objectives, tend to benefit from shorter
processing times, while costs and earliness can profit from some slower (but cheaper) choices. Thus,
the objectives cover a range of trade-offs.

Definition 3 (Makespan). Given the job completion times {C;(x)|J; € J} in a schedule x, the
makespan is fo,qkespan () = max ey Ci(z).

Definition 4 (Total tardiness). Given the job completion times {C;(x)|J; € J} in a schedule x and
the job deadlines { D;|J; € J}, the total tardiness i fiardiness(z) = ZJiej max(C;(z) — D;,0).

Definition 5 (Total earliness). Given the job completion times {C;(x)|J; € J} in a schedule = and
the job deadlines {D;|J; € J}, the total earliness is feqriiness(T) = Z(,iej max(D; — Ci(x),0).

Definition 6 (Average flowtime). Given the job completion times {C;(x)|J; € J} an
start times {S;(z)|J; € J} in a schedule z, the average flowtime is friowtime(Z) =

> seq (Ci(x) = Si(x)) /| T
Definition 7 (Total costs). Given the processing times {p;;(z)|O;; € O} in a schedule = and the
maximum potential processing time Py, q., the total costs are feoses(2) = > 01, €0 (Pmaz — pij(z)).

4 METHODOLOGY

4.1 MARKOV DECISION PROCESS

The scheduling process involves sequential decisions, progressively assigning operations to ma-
chines. At each decision moment ¢, an operation-machine combination (Oij, Mj,) is chosen to
assign operation O;; to machine Mj,. In the (multi-objective) Markov Decision Process (MDP),
an agent receives the state s; that represents the partial schedule, and selects an action a; =
(0ij, My) € A(t) from the feasible actions A(t). This set comprises the possible allocations of
the first unassigned operation for each job to a compatible machine. The environment then provides
reward vector vy = [ry 1, ..., 70| and new state s;1. The schedule is completed after | O] actions.

State The relevant operations O, (t) C O for state s; exclude those that already have a succes-
sor scheduled on the same machine and thus do not directly influence the schedule anymore. The
relevant machines M, (t) C M are all machines on which any of the remaining operations can be
scheduled. Therefore, the state s; = {Ho, Har, Hon } is defined as a triplet of operation features
Ho = {ho,, € R"°|0;; € O,(t)}, machine features Hys = {hns, € R™ | M} € M,(t)}, and
operation-machine pair features Honr = {h(o,;,m,) € R"OM|(Oy5, My) € A(t)}. We refer to
Wang et al| (2023) and Appendix [A] for a description of these features. While these features were
originally proposed for makespan as a single objective, many of them are also relevant across multi-
ple objectives. Notably, the lower bound of the completion time C(O;;, s;) is particularly relevant,
as it matches directly with specific objectives. This feature allows the policy to directly monitor the
measures that affect the reward, as noted in the subsequent reward formulation. Therefore, we also
include the lower bound feature for each objective in the state. For total tardiness and earliness, we
maintain C(O;,,,, s;) — D; for each operation. For the average flowtime, we add F(O;,,,, s;) for each
operation. Similarly, a cost lower bound can be included. However, due to the way we define costs,
this information is already captured in existing features and there is no need to add a new feature.

Action Space and State Transition The action space .A(t) consists of all compatible operation-
machine pairs of the first unscheduled operations per job. By taking an action, we process an opera-
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tion on a machine. The relevant operations O, () and machines M, (¢) are updated and all features
are updated correspondingly, giving a new state sy 1.

Reward The reward r, = H(s;) — H(s;+1) for an objective is inversely related to the increase
in its quality measure H (-)/Wang et al.[(2023) defined the makespan quality measure using a re-
cursively updated lower bound, which outperforms directly using the objective value because it
provides a smoother signal. Concretely, they defined C(O,;, s;) which equals the scheduled com-
pletion time if the operation has been scheduled. Otherwise, it follows the recursion C (Oij, st) =
C(Oj(j—1), 5¢) + mingeaq,, pfj. The quality measure is Hyyakespan(5¢) = maxo,;co C(Oyj, 5¢).
We note that defining and maintaining a lower bound is possible for any metric that is nondecreasing
during the scheduling process. For tardiness and average flowtime, we can also use the completion
time lower bounds. Specifically, Hiordiness(St) = ZJiej max(C(Ojn,, st) — D;,0) is the qual-
ity measure for total tardiness. For the average flowtime, we maintain a lower bound F(O;;, s¢),
which is equal to C(O;;, s;) if the first operation has not yet been scheduled. Otherwise, we have
E(Oij7 St) = Q(Oij; St) - Sv We define Hflowtv',me(st) = ZJViEJ E(Oinq,vst)/‘jL For costs,
the lower bound Q(Oij, s¢) is the actual cost if the operation has been scheduled and the lowest
possible costs between machines otherwise. Consequently, H,sts(s:) = ZO,;J- co C(0ij,5¢). Sim-

ilarly, the reward can be defined for any nondecreasing objective. For earliness, we define an up-
per bound instead of a lowerbound as this is a nonincreasing objective. We use Heqriiness(St) =
> Jie max(D; — C(Ojn,, $¢),0). Then, we can use the same 7, formula to reward decreases in the
upper bound. This can be done in a similar way for other nonincreasing objectives.

4.2 DECOMPOSITION-BASED PPO

We propose to solve the MOFJSP through a weighted sum decomposition-based PPO algorithm.
We prefer weighted sum decomposition over Tchebycheff decomposition (another commonly used
alternative) for two main reasons. Firstly, with weighted sum decomposition, our stepwise rewards
converge to the weighted sum episodal reward (cf. Appendix[B). In contrast, Tchebycheff scalariza-
tion is nonlinear and nonadditive over time, preventing this theoretical alignment. Secondly, despite
having a theoretical advantage to find nonconvex fronts, Tchebycheff decomposition is empirically
comparable or even inferior to the weighted sum in NCO literature (Chen et al., 2025; Wang et al.,
2024). Concretely, our goal is to find a policy conditioned on the decomposed problem 7j; (s, A) that
maximizes its expected reward, given the problem instance and preference vector. Formally, given

a distribution of problem instances S and a distribution of objective preferences A, we aim to find

a policy 7 such that 7; = argmax, (Exa,so~s| IOI— Z 1 AiTt,iS0, A]). To train such
policies, we propose a decomposition- based PPO algonthm (Algonthmm) We base our method on
clipped PPO with generalized advantage estimation, incorporating normalized processing times and
batch normalization as suggested by (Wang et al.| 2023). We generate np problem instances every
Np episodes and each episode, we sample a new preference vector A for each instance. In this way,
the policy is trained using a wide variety of MOFJSP instances and multiple decomposed problems
per instance. By sampling frequently and using unique preference vectors per problem instance,
we prevent overfitting to specific subproblems. We ensure exploration by probabilistically sampling
actions based on the output probabilities of the policy.

Algorithm 1 Decomposition-based PPO

Require: Neural network with initialized parameters 0
1: Sample batch of np instances
2: for nep, = 1,2,... Nep do
3: forb=1,2,...np do > In Parallel
4 Sample preferences A ~ A
5: fort=0,1,...,|0O| —1do
6: Sample action a¢,p ~ 7o (S¢,6, A)
7: Perform a; , and receive sfflyb and 7
8 Compute r¢ 5 = ATy
9 Collect transition (S¢,b, Gt,b, Tt,by St41,65 A)

10: Compute generalized advantage estimates
11: Compute PPO loss (Appendix [C) and update ¢
12: | if nep mod N = 0 then Sample np new instances
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4.3 NEURAL NETWORK ARCHITECTURE

We put forward two network architectures to learn policies 7y that take the subproblem state and
decomposition weights (i.e., preference vectors), based on the DAN architecture (Wang et al.,
2023)).We propose a straightforward yet effective technique for MOFJSP, called WI-DAN: concate-
nating the preference vector to the feature vectors before feeding the resulting vectors to the DAN
network. Thus, we set ho,, = [ho,,||A] and hag, = [hag, ||A]. In addition, we propose the dual
conditional attention network (DCAN), which uses the dual attention approach of DAN but includes
a conditional attention mechanism that modifies the attention based on the objective preferences. We
refer to [Wang et al.|(2023)) for details DAN. The proposed DCAN consists of two attention blocks:
the conditional operation message attention block and the conditional machine message attention
block. To facilitate understanding, we show visualizations of the network structures in Appendix [D}

Conditional Operation Message Attention Block Each operation O;; € O, has a feature vector
hloij and a corresponding preference embedding hl)\ﬁ as input to the (I+1)-th attention block. Espe-

cially, h%”_ and h())\ij = h),, are initial linear transformations of the input features of operation O;;
and the preference vector A, respectively. Using conditional attention, we update the embeddings:

j+1
thJrLJl =0 < Z (a(oijyoip>Wh61ip) + a(ou,kij)Whl)\ij>
p

=j—1

In the equation, « indicates the attention coefficients after computing the softmax over the scores
e, where we compute e(, ;) = LeakyReLU(aT[Wh/||Wh]), a and W are learnable parameters,
and o is a nonlinearity. Here, the attention mechanism is modified through the preference em-
bedding. Intuitively, an artificial node, based on the preference vector, is added in the attention
mechanism, alongside the operation nodes, thereby affecting the attention between the operations.
These artificial node embeddings are in turn also updated in each attention block, such that they
modify each block appropriately. This update is similar to the operation embedding update such that

141 _ j+1 l l
h)\ij = U(Ep:jfl(a(Aijwoip)Whin) + a()\ij;)\ij)Wh)\ij )
Conditional Machine Message Attention Block For each machine M} € M, we have feature
vector thk and we have hl/\M, where h(])\/lk and h(/)\M are different linear transformations of the ma-
chine input features and the preference vector. Using conditional machine attention, we compute:

[ M|
l l l
hﬂ; =0 Z (B(Alk,]\/fq)Zh]Mq) + Bt ) Ly,

q=1

Here, (3 are the attention coefficients derived from the softmax over w with u; =
LeakyReLU(bT[Zh;||Zh||Y<(, ,)]) and b, Y, Z are learnable parameters. The coefficient c(ns, ar,)
is an intensity metric between machines M, and M, based on their potential operations (see Ap-
pendix [E). Since such a metric does not naturally exist between a preference embedding and ma-
chine embedding, we take cx,, = ¢(. x,;) = C(au,.) @S the average across all intensity metrics
C(My,M,)- Analogously, the preference embedding for the machine attention is also updated, such
that hl)fMl = J(Z‘qffl (ﬁ(,\%Mq)Zhéwq) + 6(AA47>‘A4)ZhlAAI)' The final output embeddings hk[k and
héij are used identically by the actor and critic network as in the DAN.

Critic Learning For the critic network, instead of a single scalar output to estimate the weighted
sum of objectives, we output one critic value per objective. Thus, the critic is an MLP that takes the
aggregated operation and machine embeddings h% = [ﬁ Zoijeo héij

1 L
| T 2 ne e, P
and outputs a value vector v(s;) € RM. To train the critic, we compute the loss over all the
individual value estimates Lepitic = W Zgl{l Zf\il(vi(st) — #1.1)%, where 7, ; are the gener-
alized advantage estimates per reward component 7 ;. For actor training, the aggregated advantage

A = Z£1 AiAy,; can still be computed before calculating the PPO loss, while it allows the critic to
better attribute the losses for each objective. Although theoretically compelling, on our tests we did
not find a significant performance improvement over a single-valued critic, presumably indicating
that the critic value estimation is considerably less complex than the actor task.
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5 EXPERIMENTS

Baselines We compare with two common multi-objective evolutionary algorithms, MOEA/D
(Zhang & Li, |2007) and NSGA-II (Deb et al., [2002). Our implementation is based on the oper-
ators of |Xiao et al.| (2024) and Zhang et al.| (2011) and the genetic algorithm from [Reijnen et al.
(2025). NSGA-IT and MOEA/D run for 1000 generations and 80000 evaluations steps, respectively,
with a population size of 100, ensuring convergence. The crossover and mutation hyperparameters
follow Xiao et al.[(2024) and |Zhang et al.| (2011)). We also compare with the CP-SAT solver (Perron
et al., [2023). We run CP-SAT for 1 minute per subproblem (giving a total runtime of 101 and 105
minutes per 2- and 3-objective instance, respectively). A 16-core AMD ROME 7H12 machine is
used for all baselines. We also implement a hypernetwork neural network that closely follows |[Lin
et al.[(2022); |Su et al.| (2024) combined with our methodology as theirs are not directly applicable.

Problem Instances We use the popular synthetic datasets from Song et al.|(2022)). Instance sizes
10x5, 20x5, 15x10, 20x 10 are used for training and testing, and 30x 10 and 40x 10 for testing.
Moreover, we evaluate on the mk (Brandimartel |1993)), rdata, edata, and vdata benchmarks (Hurink
et al.|[1994). For the latter three, processing times across alternative machines are the same for each
operation, making costs constant and as such reducing the true number of objectives. From these
datasets, the makespan, flowtime, and costs can be calculated directly. We set the deadline of job J;
toD; =1.5- Zoijeoi (minar, eMi].pi?j), similar to (Wu & Weng| [2005} [Chen & Matis| 2013).

Configurations For training, we set N, = 1500, Np = 20, n;, = 20, and evaluate once every
Neyar = 40 episodes. The hyperparameters for WI-DAN and DCAN match those of DAN (Wang
et al.l 2023). We use 3 objective combinations: makespan-costs, tardiness-costs, and makespan-
flowtime-costs. For testing, we decompose the 2-objective and 3-objective problems into 101 and
105 uniformly spread subproblems, respectively, which we solve in parallel. In training, we ran-
domly sample preference vectors from a flat Dirichlet distribution (Ng et al., 2011). We test 100
problem instances for each synthetic dataset. For inference, we use greedy solution construction and
a sampling strategy, sampling 10 solutions per subproblem. We measure performance using the nor-
malized Hypervolume (HV; cf. AppendixﬁI Guerreiro et al., [2021), reporting the gap = %
to the hypervolume of the CP-SAT approach. Moreover, we report the unique number of solutions
in the found Pareto sets, the runtime, and, in Appendix |G} the IGD+. We present the averages for
each instance set. We use an NVIDIA A100 GPU and a 9-core Intel Xeon Platinum 8360Y CPU.
Since the FISP is a generalized scheduling problem, other problems such as the JSSP and flexible
flow shop scheduling problem (FFSP) can also be solved without modifications (see Appendix E]

5.1 RESULTS ON SYNTHETIC INSTANCES

Table |1| shows the performance of our approach for test instances matching the training sizes of the
models. These results show that our method, using both WI-DAN and DCAN, learns highly com-
petitive policies. We find that for the smallest instances, NSGA-II outperforms the DRL policies for
1 of the 3 objective combinations. For all other problem sizes and objective combinations, our ap-
proach considerably outperforms the metaheuristics, while being much faster. For 20x 10 instances,
DRL achieves a roughly 50% better gap than MOEA/D. We also observe that the gap to the CP-
SAT solutions narrows for larger instances. Although both perform well and also outperform the
hypernetwork approach, DCAN consistently outperforms WI-DAN. Especially for the 3-objective
problems, DCAN reduces the gap by several percentage points. Moreover, DCAN consistently gen-
erates larger Pareto sets, indicating that the conditional attention mechanism improves the network’s
ability to exploit decomposed subproblems. Sampling further improves HV performance and Pareto
set size, at the cost of higher runtime. However, the runtime is still very short compared to the
baselines. In short, our DRL policies considerably outperform the NSGA-II and MOEA/D base-
lines, with DCAN yielding better and larger Pareto sets than the more straightforward WI-DAN. In
Appendix I} we present results for a different synthetic instance set, which offers similar results. In
Appendix [J| we visualize multiple found Pareto sets. Although our main experiments include 2- and
3-objective problems, our methodology can handle any number of objectives. To illustrate this, we
solve the 4-objective problem considering makespan, flowtime, earliness, and costs in Appendix [K]

"We will publicly share our source code upon publication.
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Table 1: Results on synthetic instances of the same sizes as the instances used for training

| Metaheuristics | Greedy | Sample |
Size INSGA-II MOEA/D| Hyper WI-DAN DCAN | Hyper WI-DAN DCAN |CP-SAT

HV 0.7208  0.6616 |0.5987 0.6999 0.7104]0.6204 0.7581 0.7647 | 0.8313
10x5 Gap | 13.30% 20.42% |27.98% 15.81% 14.55%(25.37% 8.81% 8.01% | 0.00%
Nr. Sol. | 8.14 8.81 6.72 291 3.46 7.78 7.19 7.71 13.20

Time (s)| 247.85 254.85 | 0.57 0.57 0.87 2.26 2.37 3.00 -

HV 0.5332  0.4807 |0.5083 0.5536 0.559910.5268 0.5696 0.5724 | 0.6095
20x5 Gap | 12.53% 21.14% |16.61% 9.17% 8.14% |13.57% 6.56% 6.09% | 0.00%
Nr. Sol. | 11.96 14.67 6.48 3.30 4.04 9.24 5.72 6.82 11.82

Time (s)| 652.04 614.81 1.41 1.47 1.99 8.07 8.51 10.43 -

HV 0.6809  0.5570 |0.7039 0.7650 0.7723 | 0.7388 0.7920 0.8002 | 0.9243
15x10 Gap | 26.33% 39.73% |23.85% 17.23% 16.44%|20.07% 14.31% 13.42% | 0.00%
Nr. Sol. | 14.12 16.70 6.95 8.28 9.14 9.17 14.16 1542 | 18.16

Time (s)| 1694.42 1062.99 | 2.86 3.07 4.02 | 21.19 2272 2698 -

HV 0.6289  0.4879 |0.7751 0.7966 0.8083]0.7236 0.8073 0.8200 | 0.8548
20x10 Gap | 2643% 42.93% |932% 6.82% 5.44% |1536% 5.57% 4.07% | 0.00%
Nr. Sol. | 19.21 19.45 16.43 9.44 13.85 | 7.43 14.14  22.66 | 14.81
Time (s)| 2798.44 1774.73 | 4.67 5.05 6.57 | 38.02 41.66  48.32 -

HV 0.7741  0.7006 |0.6335 0.7109 0.7460 | 0.7103 0.8102 0.8272 | 0.9144
10x5 Gap | 1535% 23.38% |30.72% 22.25% 18.42%|22.32% 11.40% 9.54% | 0.00%
Nr. Sol. | 15.41 9.58 6.52 2.66 436 | 1144 1028  12.89 | 25.81

Time (s)| 296.60 256.28 | 0.59 0.59 0.89 2.61 2.66 3.29 -

HV 0.5331  0.4234 |0.5479 0.6372 0.6396 | 0.5282 0.6645 0.6700 | 0.7010
20x5 Gap | 23.96% 39.60% [21.84% 9.09% 8.76% (24.64% 520% 4.42% | 0.00%
Nr. Sol. | 20.53 17.59 1023 10.00 10.88 | 10.87 17.27  19.51 | 11.26

Time (s)| 516.84 619.33 1.55 1.59 2.24 9.47 9.93 12.02 -

HV 0.6745 0.5131 |0.7134 0.7982 0.809410.7270 0.8258 0.8338 | 0.9505
15x10 Gap | 29.04% 46.02% [24.95% 16.03% 14.85%(23.51% 13.12% 12.28% | 0.00%
Nr. Sol. | 22.10 18.96 13.50 1545 17.04 | 12.10 2695 32.39 | 20.71
Time (s)| 1642.20 1048.72 | 3.12 3.28 445 | 2390 25.69  30.03 -

HV 0.5878  0.4229 |0.7566 0.8100 0.8112]0.7472 0.8274 0.8306 | 0.8498
20x10 Gap | 30.83% 50.24% (10.97% 4.68% 4.53% |12.08% 2.63% 2.25% | 0.00%
Nr. Sol. | 24.54 23.23 1823  17.04  20.03 | 12.02 29.56  34.01 | 14.54
Time (s)| 2869.48 1745.29 | 5.51 5.43 7.17 | 4466 47.02 5438 -

HV 0.6146  0.4969 |0.4123 0.4081 0.4647|0.4673 0.4902 0.5130 | 0.6831
10x5 Gap |[10.02% 27.25% |39.64% 40.26% 31.97%|31.59% 28.24% 24.90% | 0.00%
Nr. Sol. | 167.40  67.01 23.57 7.33 22.64 | 4843  39.50  52.84 | 64.98

Time (s)| 229.21  260.88 | 0.84 0.82 1.14 4.99 4.97 5.66 -

HV 0.3661  0.2595 |0.3800 0.4221 0.43180.4021 0.4512 0.4529 | 0.5210
20x5 Gap | 29.73% 50.20% |27.06% 18.97% 17.11%|22.83% 13.39% 13.06% | 0.00%
Nr. Sol. | 230.89 9090 | 31.23  28.15 3296 | 71.75 80.70  81.77 | 59.95

Time (s)| 54345 62790 | 2.49 2.52 318 | 1834 1939  21.03 -

HV 0.4654  0.3205 |0.4844 0.5583 0.57930.4850 0.5782 0.6025 | 0.7336
15x10 Gap | 36.57% 56.32% |33.97% 23.90% 21.03%|33.89% 21.18% 17.88% | 0.00%
Nr. Sol. | 86.70 37.91 3410  29.06 4396 | 7554 82773 121.23 | 68.32
Time (s)| 1649.08 1020.61 | 4.36 4.52 551 | 3556 37.33  41.00 -

HV 0.3834  0.2547 |0.5056 0.5822 0.61420.5025 0.6038 0.6314 | 0.6612
20x10 Gap | 42.01% 61.49% |23.54% 11.96% 7.12% |24.00% 8.69% 4.51% | 0.00%
Nr. Sol. | 106.06  41.38 | 37.29 43.08 57.83 | 62.65 114.14 179.74 | 60.83

Time (s)| 2797.74 1674.67 | 7.35 7.72 9.13 | 64.14 6744 7471 -

Makespan Costs

Tardiness Costs

Makespan Flowtime Costs

Table [2] shows the generalization to larger problem instances. We use policies trained on 20x 10 in-
stances to solve 30x 10 and 40x 10 instances. The results show that our policies can generalize fairly
well. In fact, they outperform the baselines by an even greater margin than in Table[I| Whereas the
metaheuristics and CP-SAT deteriorate quickly with larger instances, our approach retains perfor-
mance. We find much better hypervolumes and larger Pareto sets for our DRL policies. WI-DAN
scales better for MOFJSP with the tardiness and cost objectives, but this pattern is not consistent,
as DCAN maintains its advantage for the other objective combinations. In short, our policies can
transfer to larger instances, retaining the advantages over the baselines.

5.2 RESULTS ON BENCHMARK INSTANCES

We assess cross-distribution performance using the public benchmark datasets in Table[3] Here we
present the 3-objective MOFIJSP, since the 2-objective problems boil down to single-objective FJISP
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Table 2: Results on large synthetic instances using the policies trained on size 20x 10

| Metaheuristics | Greedy Sample
Size INSGA-II MOEA/D| Hyper WI-DAN DCAN | Hyper WI-DAN DCAN |CP-SAT
2 HV | 0.5477 0.3848 | 0.7221 0.7229 0.7437 | 0.6584 0.7294  0.7493 | 0.7425
2 30x10 Gap |2624% 48.18% | 2.74% 2.64% -0.17% | 11.33  1.77% -0.91% | 0.00%
o Nr. Sol. | 29.73 27.80 | 24.08 11.67 1946 | 7.49 18.14 3262 | 11.61
g Time (s)| 5674.45 3580.27 | 9.54 9.63 12.09 | 8249  86.64  100.90 -
% HV | 0.4832 03128 | 0.6436 0.6387 0.6629 | 0.5852 0.6469  0.6688 | 0.6326
< 40x10 Gap |23.61% 50.54% |-1.74% -0.97% -4.79% | 748 -2.28% -5.73% | 0.00%
= Nr. Sol. | 34.17 31.28 | 28.80 12.57 2231 | 7.61 22.91 39.86 | 11.23
Time (s)|10013.26 6233.48 | 15.69 1626 20.48 | 148.92 15698 181.16 -
« HV | 04652 0.3082 | 0.6676 0.7627 0.7464 | 0.6562 0.7694 0.7601 | 0.6872
2  30x10 Gap |32.31% 55.16% | 2.85% -10.98% -8.60% | 4.51 -11.95% -10.61% | 0.00
S Nr. Sol. | 33.40 28.54 19.07 2557 2453 | 1553  41.03 4143 | 10.18
2 Time (s)| 5664.65 3454.61 | 1090 11.58 14.03 | 98.26 10523 119.65 -
£ HV | 03751 0.2349 | 0.5708 0.7040 0.6649 | 0.5659 0.7084 0.6815 | 0.5390
B 40x10 Gap |3041% 56.41% |-5.89% -30.61% -23.35%| -4.99 -31.42% -26.43% | 0.00%
& Nr. Sol. | 40.00 28.81 1541 2935 2525 | 1497  49.78 41.45 7.71
Time (s)|10020.31 5826.27 | 19.93  19.68  24.12 | 188.55 194.54 22047 -
o HV | 02789 0.1709 | 0.4640 0.5401 0.5707 | 0.4382 0.5563  0.5811 | 0.4766
230x10 Gap |41.49% 64.13% | 2.64% -13.33% -19.76%| 8.06 -16.74% -21.93%| 0.00
§3 Nr. Sol. | 137.67  45.18 | 44.62 46.62 60.85 | 50.15 131.78 205.99 | 46.04
% o Time (s)| 5820.54 3306.71 | 18.42  16.08  18.58 | 180.95 150.65 165.46 -
3 g HV | 02022 0.1165 | 0.3993 0.4773 0.5087 | 0.3724 0.4918  0.5194 | 0.3043
= 240x10 Gap |33.56% 61.73% |-31.22% -56.84% -67.17%|-22.39% -61.63% -70.70% | 0.00%
T Nr. Sol. | 66.59 4426 | 4997 51.09 63.53 | 65.19 151.06 224.75 | 35.81
Time (s)[10028.12 5705.95 | 26.53  26.80  30.87 | 263.06 275.59 298.31 -

Table 3: Results on public dataset instances for the 3-objective problem using the 15x 10 policies

|  Metaheuristics | Greedy Sample
Size |NSGA-II MOEA/D | Hyper WI-DAN DCAN | Hyper WI-DAN DCAN | CP-SAT

HV 0.3416 0.2517 |0.2977 0.2519 0.2743 | 0.3172  0.2878 0.3047 | 0.5085

mk Gap | 32.82% 5049% |41.45% 50.46% 46.06% |37.62% 43.39% 40.07% | 0.00%

Nr. Sol. | 275.70 94.30 3430 18.10  27.50 | 88.40  51.10  84.50 | 68.90
Time (s) | 1787.04 1122.09 | 4.59 4.78 573 | 39.05 41.10 44.05 -

HV 0.6586  0.5652 | 0.6004 0.5900 0.6060 | 0.6166 0.6033 0.6367 | 0.7296
rdata . Gap 9.73%  22.53% |17.71% 19.14% 16.94% |15.50% 17.31% 12.73% | 0.00%
Nr. Sol. 8.98 6.98 5.28 6.08 5.03 9.00 9.28 9.48 15.18

Time (s) | 2120.14 1164.22 | 5.34 5.68 6.10 | 47.79 4482  47.79 -

HV 0.6439  0.5773 | 0.5256 0.5212 0.5272 | 0.5441 0.5427 0.5689 | 0.7137
edata ~. Gap 9.79%  19.11% |26.36% 26.98% 26.14% |23.76% 23.96% 20.30% | 0.00%
Nr. Sol. | 10.40 6.70 4.23 3.95 3.40 6.23 6.23 7.43 16.00

Time (s) | 2106.18 1140.89 | 5.32 5.66 6.20 | 4725 4520 47.78 -

HV 0.7180  0.6133 | 0.6957 0.6799 0.7143 | 0.7056 0.6800 0.7378 | 0.7907

dat Gap 9.20%  22.44% [12.02% 14.01% 9.66% |10.77% 14.00% 6.69% | 0.00%

vdala N Sol. | 11.70 6.50 6.70 7.28 6.90 9.18 10.43 10.90 | 12.03
Time (s) | 2236.94 1189.89 | 5.34 5.65 6.20 | 47.05 4585 4826 -

for three of the four datasets (results in Appendix [[J). Table 3] shows NSGA-II outperforms our poli-
cies on three out of four benchmark instances, which has several reasons. Firstly, the benchmark
datasets contain relatively small instances in which the metaheuristics do not yet deteriorate. Sec-
ondly, makespan and flowtime are naturally less conflicting with each other than costs. When costs
are constant (in rdata, edata, and vdata), a smaller solution space contains many good solutions.
Hence, metaheuristics can more easily find neighboring good solutions via genetic operations. This
alleviates the weakness of these algorithms in exploring diverging search spaces. Thirdly, the meta-
heuristic runtime is much higher as we run them for many generations. Appendices[M]and [N]show
the results with more comparable runtimes. In those scenarios with shorter runtimes, DCAN out-
performs the metaheuristics, underlining its value in scenarios requiring less runtime. In addition,
Appendix [G] shows that the DRL methods mostly outperform NSGA-II with respect to the IGD+
metric, indicating their competitiveness. Overall, DCAN and WI-DAN remain competitive, outper-
forming MOEA/D and achieving a good runtime-performance trade-off compared to NSGA-II.
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Table 4: Results of DCAN for varying inference subproblem quantities for the 3-objective problem

\ N =10 | N =45 | N =105 | N =496 | N = 1035
Size | Greedy Sample | Greedy Sample | Greedy Sample | Greedy | Greedy
HV 0.4254  0.4801 | 0.4565 0.5033 | 0.4647 0.5130 0.4734 0.4771
105 Gap 37.72% 29.72% | 33.18% 26.32% | 31.97% 24.90% | 30.69% 30.15%
Nr. Sol. 7.12 24.35 16.44 41.25 22.64 52.84 29.48 31.87
Time (s) 0.74 1.16 0.90 2.70 1.14 5.66 2.93 5.57
HV 0.5792  0.6078 | 0.6056 0.6248 | 0.6142 0.6314 0.6269 0.6311
20%10 Gap 1241% 8.08% | 841% 551% | 7.12%  4.51% 5.19% 4.55%
Nr. Sol. 9.37 51.01 32.40 123.54 57.83 179.74 141.37 195.75
Time (s) 3.38 8.64 5.23 32.11 9.13 74.71 36.35 71.32

Table 5: Hypervolume results of ablation study. v indicates our proposed approach is used

Makespan

Makespan Costs Tardiness Costs Flowtime Costs

State Reward | Greedy Sample | Greedy Sample | Greedy Sample
0.5068  0.5385 | 0.5591 0.5417 | 0.4165 0.3869

v 0.5182  0.5383 | 0.5734 0.5419 | 0.4475 0.3908
v 0.8007  0.8131 | 0.7948 0.8111 | 0.6036 0.6184
v v 0.8083  0.8200 | 0.8112 0.8306 | 0.6142 0.6314

5.3 EFFECT OF SUBPROBLEM QUANTITY

We can decompose a problem into different numbers of subproblems to balance computational com-
plexity and performance. Table [] shows that increasing the number of subproblems increases per-
formance, albeit with diminishing returns. It also shows that for small instances, a sampling strategy
with few subproblems outperforms a greedy strategy with higher N. The added exploration has a big
advantage in these instances. In larger instances the difference fades. Using sampling and increasing
the number of subproblems by the same factor of 10 leads to similar results. Thus, tuning the num-
ber of subproblems and samples allows for a trade-off between performance and runtime, though
the advantage of generating more solutions diminishes as the number of subproblems increases.

5.4 ABLATION STUDY

Table [3] shows the results of the ablation study for the state features and reward formulation. Here,
we solve the 20x10 instances for the three problems from Table 1 using DCAN. We compare with a
simple step-wise reward without lower bounds and leaving out the proposed lower-bound features.
These results highlight the value of our adjustments. Especially our reward formulation is crucial to
achieve good results. This reward stabilizes the reward signal and achieves better credit assignment.
The added features also improve performance, although the effect is smaller than for the rewards.

6 CONCLUSION

We present a novel NMOCO approach for the MOFIJSP, where we use a decomposition-based PPO
algorithm to train conditional policies. These policies take both the FISP instance and the preference
vectors of the decomposed problem to determine the actions. We propose two neural networks
based on straightforward preference vector input (WI-DAN) and conditional attention (DCAN).We
experimentally show that the proposed approach considerably outperforms baseline metaheuristic
approaches, especially for larger instances, with DCAN outperforming WI-DAN. Our methodology
can act as a base for further development of NMOCO techniques for various scheduling variants.
Moreover, although we target scheduling problems, we believe components such as decomposition-
based PPO, bound-based reward functions, and the conditional attention mechanism, can also be
leveraged to develop NCO methods for other CO problems, which we will address in our future
work. Next to generalizing to a wider variety of CO problems, future work may focus on optimizing
additional and more complex objectives. In addition, advanced sampling techniques specifically
targeting NMOCO could help better utilize the learned policies.

10
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A DETAILED DESCRIPTION OF STATE FEATURES

Each state consists of operation features, machine features, and operation-machine pair features.
The state features ho,; for all O;; € O, are the following:

Minimum processing time pfj among all machines M), € M,;.
Average processing time pfj among all machines M, € M;;.

Span of processing times pfj among all machines M), € M,;.
Proportion of machines that O;; can be processed on: |M,;|/|M].

1 if operation O;; is scheduled, otherwise 0.

Number of unscheduled operations in job J;.

Sum of average processing times of all unscheduled operations in .J;.

Time between when an operation became available for scheduling, and the current schedul-
ing time in the system. O if the operation is not yet available for scheduling.

Remaining processing time pfj of operation O;; at the current scheduling time. 0 if the
operation is unscheduled.

In addition, the operation feature vector contains the relevant lower bound features, described in
Section[4.1] for the objectives that are considered.

For each machine M, € M,, we have the following machine features hy, :

Minimum processing time pfj among all operations O;; : M}, € Mj;.

Average processing time pfj among all operations O;; : M}, € M;;.

Number of unscheduled operations that machine M}, can process.

Number of candidate operations that machine M}, can process.

The moment when machine M}, becomes available.

The time for which machine M}, has been idle at the current scheduling moment.

1 if Mj, is processing an operation, otherwise 0.

The remaining processing time pfj of the current processed operation O;; on machine Mj,.

For each considered operation-machine pair (O;;, Mj) € A, we use the feature vector h (o, a1, ):

Processing time pf;.
Ratio of pf; to max, pf;.

Ratio of pfj to the maximum processing time of candidate operations that can be processed
Ratio of pfj to the maximum processing time of unscheduled operations.

Ratio of pfj to the maximum processing time of unscheduled operations that can be pro-
cessed by M.

Ratio of pfj to the maximum processing time of the pairs in 4.

Ratio of pfj to the remaining workload of job J;.
Sum of waiting times of O;; and Mj,.

B THEORETICAL ALIGNMENT OF WEIGHTED SUM REWARD

Proposition 1. The sum of stepwise rewards is equal to the negative of the weighted sum of the
increase in quality measures H (-), given a discounting factor v = 1:

[O-1 M M
Z ’Yt AiTe; = — Z)\i (Hi(s\o\) - Hi(so))
t=0 i=1 i=1
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Proof.
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From Proposition [I] and given that s, is a constant given by the problem instance, it follows that
aiming to maximize the expected weighted sum stepwise function aligns with minimizing the in-
crease in the weighted sum of the quality measure. Hence, optimizing our reward definition directly
corresponds to optimizing our objectives.

C DECOMPOSITION-BASED PPO LoOSsS

We use a decomposition-based actor-critic clipped PPO algorithm with generalized advantage esti-
mation (GAE). The actor loss over a given trajectory is defined as:

1 .
Laor = 5 > min (py(6) Ar, clip(pi(6), 1 — €, 1+ €)A¢)

0l =

o (at|st, A)
T4 (Qt]St, A)

pe(0) =

Here, A, = Zf\il AiAy; is the aggregated advantage estimate computed from the advantage esti-

mates per objective and p;(0) is the output probability ratio between the current and previous policy
for action a;. The per-objective generalized advantage estimates follow from:

|O|—t—1

Ot,i = Tt +YVi(Se41) — vi(se), Aps = Z (’77')l5t+l,i
1=0

Here, v;(s;) is the value estimate for objective 4 of the critic network, and -y and 7 are hyperparam-
eters controlling the bias-variance trade-off of the GAE.

As explained before, the critic network is updated using the critic loss function:

M
‘ szst 77'151

Here, 7, ; = A ; + vi(s¢) is the bootstrapped generalized advantage estimate target for objective 4.

[

|—1

['crilic =

gM

The final PPO loss consists of the actor loss, critic loss, and an entropy bonus Leygopy =
o1 OI Z‘O‘ H[mg(-|st, A)] that encourages exploration:

Lppo = —Lactor + €1 * Leritic — C2 - »Cemropy

In this equation, c; and cy are coefficients that control the weights of each loss.
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D VISUALIZATION OF NETWORK ARCHITECTURES

To further clarify the proposed WI-DAN and DCAN network architectures, we present several visual
overviews in this appendix. Figure[T]offers a high-level overview of how the preference weights are
incorporated in the WI-DAN and DCAN networks. In addition, Figure[2]shows a more detailed view
of the conditional operation message attention block and the conditional machine message attention
block from the DCAN architecture. In this figure, for simplicity, we assume a single attention head
and show a single operation triplet forward pass.

hu
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( DAN J
(a) WI-DAN
A y)
! 1

Linear Linear

00 Q- <10 1] [ta] mniQ Q- riae
i i
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Figure 1: Visualization of high-level WI-DAN and DCAN network architectures.
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Figure 2: Detailed view of the conditional operational (left) an machine (right) message attention
blocks in the DCAN network.
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E DESCRIPTION OF MACHINE INTENSITY COEFFICIENT

In the conditional machine message attention block, the coefficient ¢y, az,) is an intensity metric
that measures the competition between machine M}, and M,. We define Cy, as the set of all oper-
ations that can be performed on both M;, and M,. We also define the set of candidate operations
Je = {0 | 3My, : (0;5, M) € A} as the set of all operations that appear in at least one potential
action (Oyj, My) € A. The intensity metric is then computed using the embeddings ho,, of the
operations in Cpg:

C(My,Mq) = E : hoz‘j
Oi,j eckanC

If Crq N J. is empty, the intensity coefficient values are 0.

F HYPERVOLUME INDICATOR

The Hypervolume (HV) is a widely used metric for assessing performance in multi-objective opti-
mization. Given a found Pareto front F and a reference point r € RM | the HV is:

w0, () = 1)

f(z)eF

where 1 denotes the Lebesgue measure, which indicates the M-dimensional volume, and [f(z), 7] =
[f1(x),r1] x -+ - X [far(x), rar] is an M-dimensional cube that spans the regions between each point
f(z) and the reference point r. The reference point is a defined point in the objective space that is
typically dominated by all solutions of interest.

The HV measure is sensitive to the scales of the objectives. Hence, we report the normalized hy-
pervolume values. To this end, we first subtract the objective lower bounds, defined by the point
z, from the points on the Pareto front. These lower bounds are equal to the objective lower bounds
in Section 4.1 at the initial state of the MDP. Then, we compute the hypervolume from these trans-
formed points and divide by the product of the ranges between the reference point and lower bound.
Thus, we use:

iV, (F) = u< U @) —zr - Z])/ﬁm - )

f(z)eF

To define the reference point r for each problem instance, we initialize 1000 solutions according
to the initialization procedure of our NSGA-II approach, and take the worst value we find for each
objective in this set of solutions.

G IGD+ PERFORMANCE METRIC

IGD+ is a performance metric for multi-objective optimization. It is defined as the average distance
from each point in a given reference Pareto front to the closest point in the found solution set. The
distance to the closest solution is computed using a modified Euclidean distance that only accounts
for the positive part of the difference in each objective. Formally, given a reference set Z and a
solution set F, IGD+ is calculated as:

1
IGDT(F,2) = — ind*
GD™(F, 2) Z] Zezgcrggd (z, f)

where
M 1/2
d (2, f) = (Z max(f; — 2, 0)2)
i=1
is the modified distance between the reference point z and a solution point f. A lower IGD+ value

indicates that the approximated front closely follows the reference front in both convergence and
distribution.
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As noted, the IGD+ requires a reference Pareto set that serves as the target. However, in our case, we
do not have access to the optimal Pareto sets. Hence, to compute the IGD+ we define an alternative
reference set. We construct our reference sets by taking all the solutions found by all the methods
for a specific instance and using the non-dominated set among these. In this way, the resulting IGD+
measures will be influenced by this lack of a true optimal reference set, so conclusions should be
drawn with care. Nevertheless, the metric still provides valuable insights alongside the hypervolume.

In Tables [6] [7, and [8] we present the IGD+ values corresponding to the main experiments. The
results largely follow the same pattern observed with the hypervolume and the number of solutions
in the Pareto sets. Specifically, our DRL approaches outperform the metaheuristics on the synthetic
instances, with the performance gap increasing for larger instance sizes. Moreover, DCAN gen-
erally outperforms WI-DAN. However, on instances with tardiness and cost objectives, WI-DAN
performs better in terms of IGD+ than in terms of hypervolume, suggesting that it produces more
evenly distributed fronts in these specific cases. For the other objectives, DCAN remains superior
on this metric. Another notable finding is that for the public dataset instances, our DRL policies
achieve better IGD+ scores than the metaheuristics on three out of four instance sets, whereas the
hypervolume was worse for all of them. This may indicate that the metaheuristics benefited from
a few extreme points on the edges of the objective space, while the DRL policies generated more
tightly converged solution sets. Overall, the main conclusions based on IGD+ are consistent with
those drawn from the hypervolume metric, with a few noteworthy differences that provide additional
insight.

H RESULTS ON DIFFERENT SCHEDULING PROBLEMS

We solve JSSP and FFSP problem instances using our approach. We use the same methods and
hyperparameters for these problems. For the JSSP, we train and validate on synthetic instances gen-
erated using Taillard’s method (Taillard, |1993). We solve the problem with the makespan and tardi-
ness objectives, since each operation has a fixed machine and, thus, fixed costs. Table @] shows the
results for these instances. We find that DCAN performs well for these instances. For the smallest
instances, we find again that the metaheuristics are slightly better while DCAN can achieve similar
performance. For larger instances, we observe that DCAN performs better again. The metaheuristics
start to have trouble with the increased scale whereas our DRL approach holds good performance
while also being considerably faster. We do not outperform CP-SAT on these instances. This is
sensible since the JSSP has a smaller search space than the FJSP, which means that CP-SAT will
lose performance only at larger instances. We already observe that DCAN gets closer to CP-SAT
for the larger sizes, while still being considerably faster.

For the FFSP, we train and validate using synthetic instances that are generated similarly to [Kwon
et al.| (2021). We use two types of instances. One with 15 jobs and 5 stages, where the stages have
3,2, 3, 2, and 2 machine alternatives, respectively. The other has 20 jobs and 4 stages, where each
stage has 3 machine alternatives. We present these results in Table [I0] Here, we see that, despite
the instances being small and therefore advantageous for the metaheuristics, DCAN is competitive
or advantageous over the metaheuristics in terms of hypervolume while maintaining its considerable
speed advantage. It does not achieve the same hypervolume as CP-SAT. However, small instances
are more suitable for CP-SAT and the runtime of DCAN is much shorter.

In short, these results confirm that our approach can be applied to other scheduling problems without
modifications. We can maintain both efficiency and performance, and thereby our approach is not
limited to the FISP but can be applied to a variety of scheduling problems.

I ADDITIONAL SYNTHETIC INSTANCES

Wang et al.| (2023)) propose an additional instance set next to the one from |Song et al.| (2022), which
they call SD,. This dataset is less realistic, as each processing time pfj is sampled uniformly from
U(1,99). This implies that for the same operation, machine alternatives can be entirely different. In
practice and in the synthetic data that we use, in contrast, the processing times of operations between
machines are related to each other. Hence, we work with the more realistic instances in our paper.
However, for completeness, we also train and test on the SD5 instances using the same method. We
present these results in Table The results are similar to our main results, with our DRL models
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outperforming the baselines considerably on most instances. In terms of hypervolume, the difference
between WI-DAN and DCAN is smaller. This may be caused by the sharper decision boundaries,
resulting from the unrelated processing times, that require less sophisticated differentiation between
different objective preferences. However, in cases where DCAN is better, the performance improve-
ment over WI-DAN tends to be larger than the other way around. Moreover, the DCAN generally
generates a Pareto set with more unique solutions. Hence, DCAN remains beneficial over WI-DAN
on these instances.

J  VISUALIZATION OF RESULTS

To better understand the results, we visualize the Pareto fronts of one randomly selected instance per
instance set of the synthetic data for the 2-objective problems. Figures [3| and [d] show these fronts.
Although these figures are instance-specific and do not represent all solution shapes within each
instance set, they do provide an indication of the general patterns.

The plots reflect the overall performance of the different methods, consistent with our numerical
evaluation. In general, DRL policies achieve lower objective values than metaheuristics. CP-SAT
solutions are highly competitive for the smaller instances, but for larger instances DRL policies tend
to find better solutions. We observe that the CP-SAT solutions are generally more diverse and suc-
ceed in finding more extreme solutions at the edges of the Pareto front, strongly optimizing for one
specific objective. The DRL policies, on the other hand, produce slightly more centralized solution
sets. This centralization explains a significant part of the advantage CP-SAT has over DCAN and
WI-DAN on smaller instances. However, for larger instances, the solutions found by the DRL are
more diverse and cover a broader range of objective trade-offs.

Overall, DCAN appears to achieve a slightly wider spread of solutions than WI-DAN, which may
contribute to its better hypervolume performance. All in all, our DRL approach finds well-shaped
solution sets that address a meaningful range of trade-offs. Only at the extreme ends of the solution
space, where one objective is heavily prioritized, does the DRL approach underperform compared
to CP-SAT. However, in multi-objective optimization, trade-offs that balance the objectives are typ-
ically preferred over solutions focusing heavily on a single objective, mitigating the impact of this
limitation.

K RESULTS ON 4-OBJECTIVE INSTANCES

We solve the 4-objective problem considering, makespan, flowtime, earliness, and costs, using 120
preferences, presented in Table [T2} These results show a similar pattern of DCAN outperforming
the baselines. The gap to CP-SAT is slightly larger, which is mainly due to the fact that earliness is a
non-regular objective. This is more challenging for constructive approaches, and we do not use any
post-processing to allow for waiting or other adjustments in our implementation. Despite this, our
approach remains superior to the metaheuristics, highlighting its ability to address problems with
many objectives of differing natures.

L RESULTS ON BENCHMARK INSTANCES FOR 2-OBJECTIVE PROBLEMS

Table |13| shows the results on the benchmark instances for the 2-objective problems. These results
show that, since the problems are reduced to single-objective problems for rdata, edata, and vdata,
only one non-dominated solution is found for those. Hence, these results do not indicate multi-
objective performance, but mainly which model is optimized best for makespan or tardiness. For the
mk dataset, the DRL policies and NSGA-II have similar performance, with NSGA-II having slightly
better hypervolume while having a much larger runtime.

M SHORTER INFERENCE TIMES FOR BASELINE METHODS

In the main results, we run the baseline multi-objective optimization algorithms for many genera-
tions, leading to a long runtime. For the synthetic data, our DRL approach already outperforms these
algorithms with much longer runtimes. For the benchmark datasets, the NSGA-II baseline performs

20



Under review as a conference paper at ICLR 2026

slightly better. However, in practice, the available runtime is often limited. This raises the question
how the performance compares when the evolutionary algorithms are given less time. Therefore, we
run the NSGA-II for 50 and 100 generations, and the MOEA/D for 4000 and 8000 evaluations. Table
[T4]shows the results. We find that our DRL approach outperforms the baselines for similar runtimes.
NSGA-II is only slightly better on the edata instances. In other instances, DCAN achieves the best
performance. Thus, in these instances where our approach does not outperform the baselines when
they have a longer runtime, our approach does have a better performance-runtime trade-off, making
it beneficial in scheduling scenarios with limited runtimes.

N HIGHER NUMBER OF SAMPLES FOR DRL POLICIES

Table[T5]shows the results for the benchmark instances using a higher number of samples for DCAN.
We find that the performance does improve and the DRL approach becomes more competitive when
given the same runtime as the NSGA-II. However, it has diminishing returns and does not provide
a substantial performance boost that makes the DCAN always better than NSGA-II as can be seen
in the edata instances. This is due to the fact that after a certain number of samples, more dupli-
cate solutions are produced. More elaborate search strategies can be explored to increase test time
performance of NMOCO methods.

O COMBINING WI-DAN AND DCAN

We also explored combining the techniques of WI-DAN with DCAN. These results are shown in
Table [T6] This shows that combining the methods does not lead to a clear performance increase.
The conditional attention mechanism already provides a strong way to condition the policy on the
objective preferences, making the additional WI mechanism redundant. Hence, for simplicity, we
opted to keep them separated.
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Table 6: IGD+ measures for the experiments on synthetic instances, related to Table 1

| Metaheuristics

Greedy

Sample

Size |NSGA-II MOEA/D | Hyper

WI-DAN DCAN | Hyper

WI-DAN DCAN |CP-SAT

10x5 | 0.0713  0.1031 |0.1142 0.0641 0.0574]0.0876 0.0362 0.0324| 0.0030
Makespan Costs 20x5 | 0.0489  0.0885 |0.0526 0.0424 0.0367(0.0391 0.0333 0.0297 | 0.0063
15x10| 0.1434  0.2545 |0.0804 0.0478 0.0451(0.0642 0.0348 0.0325| 0.0058

20x10| 0.1414  0.2720 |0.0187 0.0160 0.0094[0.0161 0.0121 0.0053 | 0.0137

10x5 | 0.0833  0.1293 [0.1163 0.0995 0.0748(0.0779 0.0551 0.0406 | 0.0001

Tardiness Costs 20x5 | 0.1237  0.2244 |0.0671 0.0350 0.0277/0.0529 0.0173 0.0127| 0.0111
15x10| 0.1796  0.3227 [0.0556 0.0267 0.0219(0.0478 0.0180 0.0141| 0.0202

20x10| 0.2049 0.3682 |0.0290 0.0114 0.0137|0.0237 0.0053 0.0085| 0.0452

Makes 10x5 | 0.1044 0.1695 |0.1727 0.1627 0.1390|0.1409 0.1115 0.1095| 0.0005
axespan - 70x5 | 0.1560  0.2700 [0.0877 0.0480 0.0473[0.0708 0.0302 0.0348 | 0.0109
Flowtime Costs 15x10| 0.1506 0.2609 [0.0884 0.0310 0.0253[0.0809 0.0238 0.0189| 0.0052
20%x10| 0.1757 0.2979 |0.0609 0.0172 0.0172]0.0530 0.0104 0.0102| 0.0225

Table 7: IGD+ measures for the experiments on the large synthetic instances, related to Table 2

| Metaheuristics

Greedy

Sample

Size |NSGA-II MOEA/D|Hyper WI-DAN DCAN| Hyper WI-DAN DCAN |CP-SAT

Makespan Costs 30X 10[ 0.1315 02959 0.0096 0.0173 0.0059(0.0081 0.0129 0.0031 0.0259
P 40x10| 0:1092 02716 |0.0091 0.0188 0.0062|0.0076 0.0129 0.0032| 0.0439
Tardiness Costs 30X 10[ 02114 03786 [0.0465 0.0058 0.0120(0.0430 0.0024 0.0082 0.0788
40x10| 0.1987 03573 [0.0605 0.0039 0.0182[0.0575 0.0016 0.0126 0.1087

Makespan 30> 10[ 0.1859 03134 [0.0626 0.0102 0.0067|0.0796 0.0058 0.0028 | 0.0515
Flowtime Costs 40x 10| 01846 0.2971 [0.0531 0.0095 0.0052|0.0510 0.0061 0.0019 | 0.0969

Table 8: IGD+ measures for the experiments on the public dataset instances for the 3-objective
problem, related to Table 3

|  Metaheuristics Greedy Sample
Size |[NSGA-II MOEA/D | Hyper WI-DAN DCAN | Hyper WI-DAN DCAN | CP-SAT
mk | 0.2403  0.3009 |0.2982 0.3213 0.3072]0.2869 0.2991 0.2917 | 0.1449
rdata | 0.2182  0.3145 [0.1240 0.1695 0.1160(0.1117 0.1466 0.0915 | 0.0310
edata| 0.2108  0.2725 |0.1841 0.2365 0.1835[0.1693 0.2064 0.1437 | 0.0304
vdata| 0.2146  0.3067 |0.0894 0.1405 0.0745]0.0812 0.1251 0.0560 | 0.0383

Table 9: Results on synthetic JSSP instances of the same sizes as the instances used for training for
the makespan and tardiness objectives

| Metaheuristics | Greedy | Sample |
Size |NSGA-II MOEA/D | Hyper WI-DAN DCAN| Hyper WI-DAN DCAN |CP-SAT
HV 0.8703  0.8729 ]0.8354 0.7722 0.8002|0.8450 0.8251 0.8244| 0.8778
6x6 Gap 085%  0.56% |4.83% 12.02% 8.84%|3.73% 6.00% 6.07% | 0.00%
IGD+ | 0.0057  0.0027 [0.0291 0.0642 0.0486|0.0218 0.0322 0.0342| 0.0014
Nr. Sol. | 4.04 4.03 2.73 1.07 1.56 | 3.08 2.24 222 | 317
Time (s)| 998.01  194.50 | 0.40 0.39 0.61 | 1.57 1.46 1.82 -
HV 0.8867 0.8592 ]0.8767 0.8412 0.8597|0.8844 0.8761 0.8817| 0.9203
10x10 Gap 3.66% 6.64% |4.74% 8.60% 6.58% |391% 4.81% 4.20% | 0.00%
IGD+ | 0.0198  0.0421 [0.0276 0.0473 0.0371]0.0225 0.0259 0.0242| 0.0001
Nr. Sol. 4.18 4.52 348 1.32 225 | 4.23 3.20 4.36 5.35
Time (s)| 980.67 662.93 | 1.66 1.72 235 [ 1091 11.69 1349 -
HV 0.8776  0.7955 [0.9003 0.8797 0.8935(0.9133 0.9074 0.9104| 0.9494
15%15 .Gap 757% 1621% |518% 7.34% 589% |3.81% 4.42% 4.11% | 0.00%
IGD+ | 0.0459  0.1107 [0.0310 0.0412 0.0347|0.0226 0.0245 0.0242| 0.0000
Nr. Sol. | 4.19 2.85 3.97 1.37 298 | 6.34 4.42 592 | 13.27
Time (s) | 4823.55 1694.13 | 7.57 7.62 9.71 | 68.58 69.46  82.01 -
HV 0.8394  0.7791 10.9164 0.9108 0.9145]0.9239 0.9224 0.9245| 0.9576
20x20 Gap | 12.34% 18.65% |4.31% 4.89% 4.50%|3.52% 3.68% 3.46% | 0.00%
IGD+ | 0.0832  0.1327 |0.0263 0.0291 0.0277]0.0217 0.0216 0.0215| 0.0000
Nr. Sol. | 3.02 2.50 4.33 3.21 4.18 | 6.60 5.68 6.85 | 10.50
Time (s) | 19926.21 4561.18 | 28.24 2829  30.35 [267.84 275.62 278.54 -
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Table 10: Results on synthetic FFSP instances of the same sizes as the instances used for training
for the makespan, flowtime and costs objectives

| Metaheuristics | Greedy | Sample |
Size |NSGA-II MOEA/D| Hyper WI-DAN DCAN | Hyper WI-DAN DCAN |CP-SAT
HV 0.4492  0.3202 |0.3808 0.3898 0.4014 | 0.4175 0.4336 0.4385 | 0.5541
15x5 .Gap | 18.92% 42.20% |31.27% 29.66% 27.56%|24.65% 21.74% 20.85% | 0.00%
IGD+ | 0.0892  0.1878 |0.1220 0.1185 0.1034 | 0.0986 0.0903 0.0814 | 0.0013
Nr. Sol. | 417.96  163.73 | 30.27 3094 3338 | 77.34 104.36 108.80 | 76.52
Time (s)| 639.38  359.20 1.75 1.73 247 | 1326  13.14  15.05 -
HV 0.4039  0.2925 |0.4057 0.3082 0.4200 | 0.4374 0.3647 0.4521 | 0.5424
20x4 Gap | 25.54% 46.08% |25.20% 43.17% 22.56%(19.35% 32.76% 16.65% | 0.00%
IGD+ | 0.0970  0.1918 | 0.0553 0.0837 0.0495 | 0.0420 0.0557 0.0355 | 0.0098
Nr. Sol. | 477.05 20732 | 46.69  13.02  50.03 | 151.83 11149 177.35| 75.71
Time (s)| 699.80  389.60 | 2.13 2.20 265 | 16.84 1692 1794 -
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Table 11: Results on synthetic instances from instance set SDy of the same sizes as the instances
used for training

| Metaheuristics | Greedy | Sample |
Size INSGA-II MOEA/D| Hyper WI-DAN DCAN | Hyper WI-DAN DCAN |CP-SAT

HV 0.6245  0.5691 |0.6130 0.6292 0.6254 | 0.6494 0.6740 0.6718| 0.6960
10x5 .Gap | 1027% 18.22% |11.93% 9.59% 10.14%| 6.69% 3.16% 3.47% | 0.00%
IGD+ | 0.0487 0.0815 |0.0452 0.0384 0.0395|0.0263 0.0167 0.0175 | 0.0232
Nr. Sol. | 46.12 40.07 | 2035 1796 17.65 | 46.78 5596  52.77 | 32.69
Time (s)| 260.19  254.54 | 0.57 0.56 0.87 | 2.33 2.30 2.97 -

HV 0.4554  0.4082 |0.4917 0.3237 0.4926|0.5059 0.4732 0.5148| 0.4875

20x5 Gap 6.59% 16.28% |-0.86% 33.60% -1.03%|-3.77% 2.95% -5.59% | 0.00%

IGD+ | 0.0491 0.0858 |0.0203 0.1471 0.0209|0.0122 0.0363 0.0084 | 0.0259

Nr. Sol. | 91.79 61.59 | 33.04 9.84  26.67 | 91.68 56.30 83.89 | 43.82
Time (s)| 542.25 617.20 | 145 1.46 2.13 | 794 8.46 10.62 -

HV 0.4846  0.3724 |0.5966 0.6312 0.637210.6177 0.6659 0.6677 | 0.7402
15%10 Gap |34.54% 49.69% |19.41% 14.72% 13.92%|16.55% 10.03% 9.80% | 0.00%
IGD+ | 0.1501  0.2307 |0.0558 0.0413 0.0393|0.0455 0.0263 0.0258 | 0.0088
Nr. Sol. | 96.38 53.51 | 2547 2227 2239 | 56.81 64.89 63.71 | 54.11
Time (s)| 1651.52 1033.59 | 2.92 2.95 394 | 21.12 2293  26.69 -

HV 0.4294  0.3183 |0.6084 0.6332 0.637410.6234 0.6514 0.6540 | 0.6521
20%x10 .Gap | 34.15% 51.19% | 6.70% 2.90% 2.25% | 440% 0.10% -0.29% | 0.00%
IGD+ | 0.1458  0.2291 |0.0237 0.0161 0.0149|0.0167 0.0080 0.0072 | 0.0167
Nr. Sol. | 111.64  57.39 | 33.90 28.39 3172 | 95.71 92.10 102.02| 49.22
Time (s)| 2744.02 1658.01 | 4.83 5.09 6.20 | 37.04 4129 4556 -

HV 0.6458  0.5734 |0.6210 0.6453 0.6377]0.6578 0.6893 (.6892| 0.7614
10%5 Gap | 15.18% 24.70% |18.44% 15.25% 16.25%|13.60% 9.48% 9.49% | 0.00%
IGD+ | 0.0656 0.1113 |0.0681 0.0573 0.0606 | 0.0496 0.0345 0.0337 | 0.0019
Nr. Sol. | 83.06 4734 | 2326 2137 1948 | 4839 62.02 62.61 | 4045
Time (s)| 235.78 256.09 | 0.61 0.59 0.91 2.63 2.71 3.34 -

HV 0.4736  0.3871 |0.5541 0.5793 0.5842]0.5760 0.6058 0.6076 | 0.6226
20%5 Gap | 23.94% 37.83% |11.00% 695% 6.16% |7.48% 2.710% 2.40% | 0.00%
IGD+ | 0.1039  0.1718 |0.0405 0.0275 0.0250|0.0271 0.0125 0.0121 | 0.0086
Nr. Sol. | 100.59  64.46 | 2920 29.13  28.64 | 59.60 67.20 69.97 | 34.56
Time (s)| 531.53  622.17 1.58 1.59 224 | 9.61 10.15  11.95 -

HV 0.4595  0.3490 ]0.5922 0.6238 0.6171]0.6126 0.6515 0.6408 | 0.6990
15%10 Gap | 34.26% 50.06% |15.27% 10.76% 11.72%|12.36% 6.80% 8.32% | 0.00%
IGD+ | 0.1458  0.2252 |0.0381 0.0271 0.0307|0.0286 0.0163 0.0212 | 0.0154
Nr. Sol. | 120.96  62.03 | 33.90 33.76 36.77 | 80.95 102.46 98.34 | 44.81
Time (s)| 1651.95 1033.17 | 3.17 3.46 446 | 2437 26.05 30.11 -

HV 0.3994  0.2909 ]0.5916 0.6314 0.6320]0.6083 0.6507 0.6482 | 0.6337
20%10 Gap | 36.98% 54.09% |6.65% 037% 0.26% |4.01% -2.68% -2.28% | 0.00%
IGD+ | 0.1575 0.2361 [0.0282 0.0138 0.0140|0.0207 0.0059 0.0071 | 0.0225
Nr. Sol. | 12398  63.14 | 38.87 40.15 41.27 | 9395 109.92 105.89 | 37.75
Time (s)| 2739.73 1655.64 | 5.41 5.65 7.01 | 42.81 46.89 52.89 -

HV 0.4531 03789 |0.3868 0.3594 0.391810.4092 0.4123 0.4340| 0.5158
10x5 .Gap 12.16% 26.55% (25.01% 30.32% 24.05%|20.66% 20.07% 15.87%| 0.00%
IGD+ | 0.0467  0.0822 |0.0543 0.0590 0.0507{0.0399 0.0355 0.0322| 0.0118
Nr. Sol. | 47991  193.70 | 51.90 23.75 49.21 [137.85 150.34 183.25| 75.62
Time (s)| 248.22  260.93 | 0.83 0.82 1.11 5.05 5.03 5.65 -

HV 0.2759  0.2212 |0.3416 0.3383 0.3608 | 0.3428 0.3701 0.3827 | 0.3884
20x5 Gap | 28.96% 43.06% |12.04% 12.91% 7.10% |11.74% 4.70% 1.46% | 0.00%
IGD+ | 0.1182 0.1886 [0.0303 0.0287 0.0197]0.0195 0.0160 0.0116 | 0.0173
Nr. Sol. | 692.81  228.96 | 62.85 4576  64.60 |182.79 220.66 242.45| 87.55
Time (s)| 565.30  626.18 | 2.51 2.60 320 | 1876 19.60 2141 -

HV 0.2831  0.1992 10.4024 0.4171 0.417410.4217 0.4369 0.4354| 0.4705
15x10 .Gap | 39.84% 57.67% |14.47% 11.37% 11.29%10.37% 715% 7.47% | 0.00%
IGD+ | 0.1217  0.1904 |0.0206 0.0191 0.0197|0.0146 0.0122 0.0134 | 0.0140
Nr. Sol. | 360.96  120.93 | 65.32 4625 64.42 (26292 277.51 289.54| 88.82
Time (s)| 1668.57 1009.72 | 4.40 4.57 553 | 3483 37.60 41.35 -

HV 0.2333  0.1597 |0.3725 0.3878 0.391710.3874 0.4097 0.4133 | 0.3841
20%x10 .Gap | 39.25% 58.43% | 3.01% -0.96% -1.99% |-0.86% -6.66% -7.60% | 0.00%
IGD+ | 0.1301  0.2008 |0.0250 0.0177 0.0172{0.0196 0.0117 0.0114 | 0.0297
Nr. Sol. | 398.97  119.22 | 67.14  61.14 6845 |275.70 285.84 305.61 | 83.85
Time (s)| 2757.34 1634.10 | 7.48 7.70 9.07 | 62.10 6694 72.69 -

Makespan Costs

Tardiness Costs

Makespan Flowtime Costs
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Table 12: Results on synthetic instances for the 4 objectives makespan, flowtime, earliness, and

costs
| Metaheuristics | Greedy \ Sample \
Size INSGA-TI MOEA/D| Hyper WI-DAN DCAN | Hyper WI-DAN DCAN | CP-SAT
HV 0.5628 0.4785 |0.3871 0.3618 0.4333]0.4306 0.4508 0.4773 | 0.6531
10x5 .Gap | 13.82% 26.74% |40.73% 44.60/% 33.65%34.07% 30.97% 26.92%| 0.00%
IGD+ | 0.0812  0.1106 |0.1344 0.1449 0.1076 | 0.1085 0.0966 0.0855 | 0.0062
Nr. Sol. | 1038.92 14741 | 50.71 7.23 4749 |178.60 155.77 183.66 | 73.54
Time (s)| 255.13  267.81 0.92 0.95 1.24 5.89 5.87 6.12 -
HV 0.3381  0.2561 |0.3545 0.3849 0.38950.3785 0.4177 0.4147 | 0.5068
20x5 Gap |3328% 49.47% |30.05% 24.05% 23.15%25.32% 17.58% 18.17%| 0.00%
IGD+ | 0.1388  0.2044 |0.0808 0.0661 0.0473 | 0.0620 0.0385 0.0326 | 0.0094
Nr. Sol. | 695.60 111.38 | 61.37 5152 5195 |209.96 18691 165.83| 64.14
Time (s)| 537.58  629.61 2.87 2.83 351 | 23.07 2290 2392 -
HV 0.4599  0.3283 |0.4447 0.4582 0.461110.4653 0.4768 0.4826 | 0.7106
15x10 .Gap | 35.29% 53.81% |37.42% 35.52% 35.12%34.53% 32.90% 32.09%| 0.00%
IGD+ | 0.1203  0.2069 |0.1083 0.0979 0.0999 | 0.0978 0.0899 0.0902 | 0.0084
Nr. Sol. | 399.58 55.32 63.34  53.10 59.52 |250.78 212.46 213.13| 90.31
Time (s)| 1652.62 1034.72 | 5.15 5.01 6.05 | 4359 43.11 45.12 -
HV 0.3828  0.2572 | 0.5325 0.5239 0.5500 | 0.5436 0.5341 0.5660 | 0.6485
20x10 .Gap | 40.97% 60.34% [17.89% 19.22% 15.19%|16.18% 17.65% 12.73%| 0.00%
IGD+ | 0.1521  0.2736 |0.0166 0.0156 0.0163|0.0129 0.0119 0.0113 | 0.0085
Nr. Sol. | 185.30 45.69 66.12 5229 5578 |256.21 168.87 181.97| 79.90
Time (s)| 2758.37 1697.82 | 9.36 9.18 10.33 | 81.66  77.99 8274 -
Table 13: Results on public dataset instances for the 2-objective problems using the 15x10 policies
| Metaheuristics | Greedy | Sample |
Size INSGA-II MOEA/D | Hyper WI-DAN DCAN | Hyper WI-DAN DCAN | CP-SAT
HV 0.5575  0.4428 |0.4844 0.4784 0.4894 | 0.5254 0.5231 0.5387 | 0.6772
Kk Gap | 17.67% 34.61% |28.47% 29.35% 27.73%(22.41% 22.76% 20.45% | 0.00%
m IGD+ | 0.1709 0.3112 |0.3014 0.3086 0.3008 | 0.2797 0.2829 0.2749 | 0.1943
Nr. Sol. | 30.33 26.60 7.20 6.00 8.10 | 12.10  13.70  14.80 | 25.00
Time (s)| 1437.42 1148.88 | 3.09 3.12 408 | 2381 2470  29.03 -
2 HV 0.8128  0.7795 |0.8443 0.8479 0.8473 | 0.8531 0.8549 0.8553 | 0.8642
S rdata Gap 594%  9.79% |229% 1.89% 195% | 1.27% 1.07% 1.03% | 0.00%
! IGD+ | 0.1286  0.1728 | 0.0504 0.0469 0.0474|0.0416 0.0398 0.0395 | 0.0306
s Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 Time (s)| 1137.94 1153.30 | 3.52 3.75 4.85 | 28.41 3028  35.03 -
= HV 0.7967  0.7799 |0.7843 0.7915 0.7960 | 0.7943  0.8076 0.8116 | 0.8329
= dat Gap 4.35% 6.36% | 5.83% 496% 443% | 4.63% 3.04% 2.55% | 0.00%
edata 1GD+ | 0.1090  0.1410 | 0.0808 0.0735 0.0691 | 0.0639 0.0575 0.0534 | 0.0322
Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Time (s)| 1299.37 1131.10 | 3.86 3.73 475 | 30.15  30.00 34.68 -
HV 0.8685  0.8379 |0.9093 0.9104 0.9100|0.9112 0.9119 0.9114 | 0.9101
vdat Gap 4.57% 794% | 0.09% -0.03% 0.01% |-0.12% -0.20% -0.13% | 0.00%
ala IGD+ | 0.0997  0.1413 |0.0210 0.0199 0.0202 | 0.0190 0.0183 0.0189 | 0.0202
Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Time (s)| 1115.27 1212.02 | 3.58 3.83 493 | 2844 3122 3592 -
HV 0.5605 0.4282 |0.5313 0.4867 0.5196 | 0.5559 0.5370 0.5548 | 0.7454
mk Gap | 24.81% 42.55% |28.72% 34.71% 30.30% |25.42% 27.96% 25.58% | 0.00%
IGD+ | 0.2176  0.3012 | 0.2713 0.2961 0.2798 | 0.2593 0.2671 0.2558 | 0.1682
Nr. Sol. | 47.80 30.60 14.90 7.90 11.90 | 2260 1720 2090 | 31.60
Time (s)| 1758.80 1129.41 | 3.46 3.46 443 | 28.07 28.08 32.25 -
Z HV 0.8335  0.7726 |0.8733 0.8896 0.8700 | 0.8811 0.8952 0.8776 | 0.9109
S data Gap 849%  15.18% | 4.12% 2.34% 449% | 327% 1.72% 3.65% | 0.00%
8 IGD+ | 0.2420  0.3381 | 0.0802 0.0642 0.0838 | 0.0727 0.0587 0.0762 | 0.0432
2 Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
'—5 Time (s)| 1095.41 1151.52 | 3.93 4.17 5.33 | 33.11 3472 39.60 -
s HV 0.8180  0.7798 |0.8262 0.8432 0.8152 | 0.8409 0.8574 0.8355 | 0.8915
= dat Gap 824%  12.53% | 7.33% 542% 8.56% | 5.68% 3.82% 6.28% | 0.00%
edata 1Gp+ | 02372 0.3032 |0.1117 0.0947 0.1221 [ 0.0973 0.0808 0.1026 | 0.0477
Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Time (s)| 1164.60 1129.98 | 3.99 4.20 524 | 3276 34381 39.03 -
HV 0.8848  0.8223 |0.9258 0.9346 0.9177|0.9287 0.9376 0.9214 | 0.9354
dat Gap 541% 12.10% | 1.02% 0.09% 1.89% | 0.72% -0.24% 1.50% | 0.00%
vaata 1GD+ | 0.2021  0.2993 |0.0435 0.0347 0.0516 | 0.0406 0.0317 0.0479 | 0.0340
Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Time (s)| 1074.69 1192.19 | 4.08 4.21 521 | 33.00 3466 39.50 -
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Table 14: Results on public dataset instances for the 3-objective problem using the 15x 10 policies
with less generations for the baseline algorithms

| Metaheuristics | Greedy | Sample
Size INSGA-IIso NSGA-II100 MOEA/D4ooo MOEA/Dgooo | WI-DAN DCAN |WI-DAN DCAN
HV 0.2522 0.2839 0.1962 0.2141 0.2519 0.2743 | 0.2878 0.3047
mk  .Gap 50.40% 44.16% 61.41% 57.90% 50.46% 46.06% | 43.39% 40.07%
IGD+ | 0.2924 0.2766 0.3399 0.3323 0.3213 0.3072| 0.2991 0.2917
Nr. Sol. 85.60 123.90 49.00 57.80 18.10 27.50 | 51.10 84.50
Time (s)| 87.24 199.54 55.92 112.11 4.78 573 | 41.10 44.05
HV 0.5572 0.5904 0.4940 0.5145 0.5900 0.5809 | 0.6033  0.6052
rdata .Gap 23.63% 19.08% 32.29% 29.48% 19.14% 20.39%| 17.31% 17.06%
- 1GD+ | 03125 0.2829 0.3703 0.3538 0.1695 0.1160| 0.1466 0.0915
Nr. Sol. 7.05 7.50 5.53 5.35 6.08 6.73 9.28 8.90
Time (s)| 103.34 205.98 57.21 114.50 5.68 6.86 | 50.05 54.29
HV 0.5594 0.5861 0.5201 0.5297 0.5212 0.5207 | 0.5427 0.5463
edata .9aP 21.62% 17.89% 27.12% 25.78% 26.98% 27.04%| 23.96% 23.46%
IGD+ | 0.2856 0.2649 0.3236 0.3194 0.2365 0.1835| 0.2064 0.1437
Nr. Sol. 6.73 8.00 5.20 5.48 3.95 423 6.23 5.95
Time (s)| 103.29 207.07 56.16 112.97 5.66 6.80 49.50 54.21
HV 0.6340 0.6556 0.5436 0.5646 0.6799 0.6701 | 0.6800 0.6855
data .Gap 19.82% 17.09% 31.25% 28.59% 14.01% 15.25%| 14.00% 13.30%
M IGD+ | 0.2906 0.2705 0.3666 0.3531 0.1405 0.0745| 0.1251 0.0560
Nr. Sol. 7.60 8.78 5.175 5.85 7.28 7.98 1043 10.85
Time (s)| 104.50 208.22 60.10 120.29 5.65 6.81 | 48.82 54.10

Table 15: Results on public dataset instances for the 3-objective problem using the 15x 10 policies
with more inference samples per preference

|  Metaheuristics | Sample \
Size INSGA-IT MOEA/D| 10 100 400 |CP-SAT

HV 0.3416  0.2517 |0.3047 0.3258 0.3351 | 0.5085

Gap | 32.82% 50.49% |40.07% 35.93% 34.09% | 0.00%

mk  IGD+ | 0.2403  0.3009 | 0.2917 0.2753 0.2697 | 0.1449

Nr. Sol. | 275.70 94.30 84.50 16230 200.40 | 68.90
Time (s) | 1787.04 1122.09 | 44.05 411.15 1647.12 -

HV 0.6586  0.5652 | 0.6367 0.6487 0.6561 | 0.7296
Gap 9.73%  22.53% |12.73% 11.10% 10.07% | 0.00%
rdata IGD+ | 0.2182  0.3145 | 0.0915 0.0810 0.0754 | 0.0310
Nr. Sol. | 8.98 6.98 948 1172 1428 | 15.18
Time (s) | 2120.14 1164.22 | 47.79 485.12 1938.43 -

HV 0.6439  0.5773 | 0.5689 0.5811 0.5883 | 0.7137
Gap 9.79%  19.11% |20.30% 18.58% 17.58% | 0.00%
edata  IGD+ | 02108  0.2725 |0.1437 0.1326 0.1270 | 0.0304
Nr. Sol. | 10.40 6.70 7.43 9.40 10.55 | 16.00
Time (s) | 2106.18 1140.89 | 47.78 486.01 1944.45 -

HV 0.7180  0.6133 | 0.7378 0.7474 0.7524 | 0.7907
Gap 920%  22.44% | 6.69% 547% 4.84% | 0.00%
vdata IGD+ | 0.2146  0.3067 | 0.0560 0.0482 0.0451 | 0.0383
Nr. Sol. | 11.70 6.50 10.90  12.60  15.15 12.03
Time (s) | 2236.94 1189.89 | 48.26 487.44 1957.78 -
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Table 16: Performance comparison between DCAN and WI-DCAN, the architecture combining the
ideas of WI-DAN and DCAN

| 10x5 |

20x5

15x10

20x10

|Greedy Sample |Greedy Sample | Greedy Sample | Greedy Sample

DCAN
Makespan Costs

HV
Nr. Sol.

0.7104 0.7647
346  7.77

0.5599 0.5724
4.04 6.82

0.7723 0.8002
9.14 1542

0.8083 0.82
13.85 22.66

WI-DCAN

HV
Nr. Sol.

0.7255 0.7644
4.4500 8.4500

0.5571 0.5716
4.3100 6.8600

0.7746 0.8012
9.6000 16.2200

0.8122 0.8209
15.6100 24.7200

DCAN
Tardiness Costs

HV
Nr. Sol.

0.746  0.8272
436 12.89

0.6396 0.67
10.88  19.51

0.8094 0.8338
17.04 32.39

0.8112 0.8306
20.03  34.01

WI-DCAN

HV
Nr. Sol.

0.7668 0.8310
6.7000 16.2200

0.6359 0.66729
8.0800 16.4800

0.7914 0.8211
14.2800 29.4800

0.8147 0.8295
20.3700 34.7100

Makespan DCAN

HV
Nr. Sol.

0.4647 0.513
22.64 52.84

0.4318 0.4529
3296 81.77

0.5793 0.6025
4396 121.23

0.6142 0.6314
57.83 179.74

Flowtime Costs
WI-DCAN

HV
Nr. Sol

0.4988 0.5484
23.6 6577

0.4028 0.4307
33.52  79.74

0.5883 0.6061
4456 112.75

0.6015 0.6170
55.03 175.13
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Figure 3: Visualization of solutions of randomly selected instances from different sizes for the

makespan and costs
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