
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL MULTI-OBJECTIVE COMBINATORIAL OPTI-
MIZATION FOR FLEXIBLE JOB SHOP SCHEDULING
PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural combinatorial optimization (NCO) has made significant advances in apply-
ing deep learning techniques to efficiently and effectively solve single-objective
flexible job shop scheduling problems (FJSPs). However, the more practical
multi-objective FJSPs (MOFJSPs) remain underexplored, limiting the applicabil-
ity of NCO in multi-criteria decision-making scenarios. In this paper, we propose
a decomposition-based NCO method to solve MOFJSPs. We present the dual
conditional attention network (DCAN), a neural network architecture that takes
the objective preferences along with the problem instance, aiming to learn adapt-
able policies over the preferences. By decomposing an MOFJSP into a set of
subproblems with different preferences, the learned DCAN policies generate a
set of solutions that reflect the corresponding trade-offs. We customize the Proxi-
mal Policy Optimization algorithm based on decomposition to effectively train the
policy network for multiple objectives and define the state and reward based on
combinations of different objectives. Extensive results showcase that our approach
outperforms traditional multi-objective optimization methods and generalizes well
across diverse types of problem instances.

1 INTRODUCTION

The flexible job shop scheduling problem (FJSP) is one of the most well-studied combinatorial
optimization (CO) problems. It is a complex scheduling task where multiple jobs, each made up of
ordered operations, must be processed on machines. Each operation can be performed on several
alternative machines, with different processing times. The goal is to create a schedule that optimizes
criteria such as minimizing the makespan. FJSP has many practical applications in industries like
semiconductor manufacturing (Tamssaouet et al., 2022) and aluminum production (Zhang et al.,
2016). Constraint programming (CP; Baptiste et al., 2001; Col & Teppan, 2022), heuristics (Sels
et al., 2012), and metaheuristics (Rooyani & Defersha, 2019) have made great progress in solving
FJSP, focusing mainly on single-objective optimization like minimizing makespan. However, real-
world scenarios often involve multiple conflicting objectives, such as tardiness, flowtime, and cost.

A straightforward approach to multi-objective optimization for FJSP is to form a weighted sum of
the objectives and apply single-objective methods. However, this does not provide alternative so-
lutions leveraging trade-offs among the objectives. Thus, it is hard to choose appropriate objective
weights, as the weights leading to preferred solutions vary across problem instances and scales.
Hence, desired solution methods provide a Pareto set of solutions with diverse objective trade-offs.
To address this issue, one can solve multiple problems with preferences using the same optimization
methods. Yet, even single-objective FJSP is NP-hard, rendering such methods too computationally
expensive. Instead, a more prevalent solution method is to use metaheuristics that generate a set
of solutions, particularly multi-objective evolutionary algorithms. However, these metaheuristics
require extensive efforts in manual tuning and specialized operator design to achieve good perfor-
mance. Moreover, their efficiency and effectiveness tend to deteriorate as problem size increases.

Recently, neural combinatorial optimization (NCO) has attracted increasing attention to solve single-
objective FJSP. NCO methods aim to learn high-quality solution policies through deep reinforcement
learning (DRL), reducing reliance on heavily handcrafted strategies and enabling fast inference.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

NCO methods for single-objective FJSP have made great progress, mainly targeting makespan op-
timization (e.g., Song et al., 2022; Wang et al., 2023) and extending to variants such as dynamic or
stochastic FJSPs (Zhao et al., 2024; Smit et al., 2025a).

The multi-objective FSJP (MOFJSP) has received comparatively little research exploration. While
some NCO methods are developed for simple multi-objective CO problems such as multi-objective
routing problems (Lin et al., 2022; Chen et al., 2025; Li et al., 2021; Zhang et al., 2023d; Wang
et al., 2024), these approaches are not applicable to the MOFJSP. They depend on episodic rewards
and instance-wise gradients for policy training due to simple problem structures. However, in the
context of FJSP, this leads to delayed rewards due to the long decision-making horizon, inhibiting
performance. Moreover, scheduling problems have a substantially different graph structure, which
requires distinct problem representations and tailored neural architectures.

We address this gap by proposing a novel decomposition-based neural multi-objective combinato-
rial optimization (NMOCO) method for the MOFJSP, introducing the dual conditional attention net-
work (DCAN). DCAN employs a conditional attention mechanism that adapts operation-machine
attention based on objective preferences, while relying solely on a single neural network. Fur-
thermore, we tailor the proximal policy optimization (PPO) algorithm (Schulman et al., 2017) for
multi-objective optimization by defining the state and reward functions based on different combina-
tions of objectives. Experimental results demonstrate that the proposed method outperforms existing
multi-objective optimization methods across diverse problem instances and objective combinations.
Our main contributions are: (1) a decomposition-based PPO framework for multi-objective schedul-
ing that is both theoretically grounded and practically applicable; (2) a conditional attention-based
network architecture that achieves state-of-the-art performance on flexible job shop scheduling and
related variants; (3) new bound-based reward functions and state features for multiple prevalent
scheduling objectives, with broad applicability to other nonincreasing or nondecreasing objectives;
and (4) extensive experiments showing that our approach consistently outperforms strong meta-
heuristic and DRL baselines across a variety of objective combinations and problem instances.

2 RELATED WORK

Many NCO methods have been developed in recent years for a variety of scheduling problems, and
most use graph neural networks (GNNs) to capture the problem dynamics (Smit et al., 2025b).
Zhang et al. (2020) created a constructive DRL approach for the job shop scheduling problem
(JSSP), followed by others, who explored different network architectures and learning algorithms
(e.g., Park et al., 2021; Lei et al., 2022; Kwon et al., 2021; Corsini et al., 2024; Pirnay & Grimm,
2024). For the FJSP, Song et al. (2022) first proposed a competitive end-to-end DRL algorithm to
construct schedules. They used a heterogeneous graph and designed a heterogeneous GNN using dif-
ferent graph attention (GAT; Veličković et al., 2018) layers to encode machine and operation nodes.
Since then, several network architectures and learning structures have been proposed. For instance,
Zhang et al. (2023a) integrated DRL and multi-agent RL using a multi-agent graph representation.
Others adapted DRL methods to handle various dynamic FJSP variants (Zhao et al., 2024; Zhang
et al., 2023c;b), the stochastic FJSP (Smit et al., 2025a), or different FJSP extensions (Zhang et al.,
2024; Li et al., 2025). Wang et al. (2023) proposed the current state-of-the-art FJSP network archi-
tecture, using dual attention network (DAN) that comprises both self- and cross-attention, achieving
superior performance over previous DRL approaches for the FJSP.

There are a couple of preliminary works on the MOFJSP (Luo et al., 2021; 2022; Wu et al., 2023).
However, they use a trivial vector-based state, restrict potential actions to a subset of priority dis-
patching rules, and limit applicability to a specific variant of the dynamic MOFJSP. Moreover, these
works train only one policy that optimizes a specific trade-off point between objectives. Hence, they
do not consider true multi-objective optimization that should involve constructing a set of solutions
addressing different preferences. More recently, (Su et al., 2024) proposed a method to learn differ-
ent policies based on different preference vectors. However, this requires separate actor networks for
each preference, resulting in a high computational cost. Moreover, their method is restricted to a spe-
cific MOFJSP with a fixed objective combination, lacking the flexibility to solve other MOFJSPs. In
this paper, we propose an NCO method that uses a single neural network to solve general MOFJSPs
with distinct objectives and any combination of them.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Besides learning-based methods, many MOFJSP variants have been addressed in literature using
multi-objective evolutionary algorithms, such as particle swarm optimization (Moslehi & Mahnam,
2011), the genetic algorithm NSGA-II (Deng et al., 2017), and multi-objective evolutionary algo-
rithm based on decomposition (MOEA/D; Xiao et al., 2024). These approaches can achieve satis-
factory performance for specific problem instances. However, they depend highly on manual tuning
and operator design and their runtimes scales poorly, limiting their applicability for larger problems.

NMOCO for Routing While the MOFJSP has received little attention in NCO research, several
works have recently focused on multi-objective vehicle routing problems. Li et al. (2021) proposed
one of the first approaches in this area, decomposing the multi-objective problem into multiple sub-
problems and training a separate neural network for each. Zhang et al. (2023d) adopt a similar idea
within a different meta-learning framework. However, these approaches do not scale well and do not
allow adapting preference weights at inference time without retraining. Lin et al. (2022) partially ad-
dress this limitation using a hypernetwork that maps objective weights to actor parameters, enabling
adaptation to different preference vectors during inference, but still requiring a separate actor net-
work per preference and thus limiting scalability. Subsequent works (Wang et al., 2024; Chen et al.,
2025; Fan et al., 2025) move to a single-model approach, conditioning the neural model directly
on the preference vector and achieving strong performance. However, these methods are tailored
to routing. They build on single-objective routing architectures, use simple static coordinate-based
states, and rely on REINFORCE with episodic rewards in environments that are cheap to sample.
In contrast, state-of-the-art scheduling methods require stepwise rewards, richer dynamic states, and
more elaborate state features, and therefore rely on actor–critic methods such as PPO. Moreover, the
routing objectives are simple distance-based measures (e.g., Euclidean distances over coordinates),
which differ substantially from the practically relevant objectives in scheduling. Consequently, al-
though these works demonstrate the promise of decomposition-based and preference-conditioned
NMOCO methods, their applicability to other problem classes such as scheduling is highly limited.

3 BACKGROUND

3.1 MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION

A multi-objective CO (MOCO) problem is defined as minx∈X (f1(x), f2(x), . . . , fM (x)), where M
is the number of objectives and X is the set of feasible solutions. Since objectives are conflicting,
there is no single optimal solution for all objectives. Instead, Pareto optimality is introduced.

Definition 1 (Pareto dominance). A solution x1 ∈ X dominates another solution x2 ∈ X (x1 ≺ x2)
if and only if fi(x1) ≤ fi(x2), ∀i ∈ {1, . . . ,M} and fi(x1) < fi(x2), ∃i ∈ {1, . . . ,M}.

Definition 2 (Pareto optimality). A solution x∗ ∈ X is Pareto optimal if no other solution x′ ∈ X
dominates it. All Pareto optimal solutions together form the Pareto set P = {x∗ ∈ X |∄x′ ∈ X :
x′ ≺ x∗} and their objective values form the Pareto front F = {f(x)|x ∈ P}.

The goal of MOCO is to find the Pareto set and its front.

Decomposition-Based Combinatorial Optimization Decomposition is a popular strategy for
solving MOCO problems that splits them into multiple subproblems, each being a single-objective
or multi-objective problem. It provides the basis for, among others, the successful MOEA/D (Zhang
& Li, 2007) method, which solves the subproblems collaboratively to construct a Pareto set. We
consider the most widely used and intuitive weighted sum decomposition method (Ehrgott, 2005).
Here, each subproblem minimizes a scalarized objective minx∈X g(x|λ) =

∑M
i=1 λifi(x), where

λ ∈ RM is a preference vector such that λi ≥ 0 and
∑M

i=1 λi = 1. The multi-objective problem is
solved by solving N subproblems that consider N weight vectors.

3.2 MULTI-OBJECTIVE FLEXIBLE JOB SHOP SCHEDULING

The FJSP consists of a pair (J ,M) where J is a set of jobs and M a set of machines. A job
Ji ∈ J consists of ni operations Oi = {Oi1, . . . , Oini} to be performed in order. The total set of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

operations is O =
⋃

i Oi. Each operation Oij ∈ O must be processed by a single machine, selected
from the set of compatible machines Mij ⊆ M. The processing time of operation Oij on machine
Mk ∈ Mij is pkij > 0 and each machine can process one job at a time. A solution to the FJSP
is a schedule, which assigns a compatible machine to each operation Oij and determines the order
of operations on each machine. While the goal of a single-objective FJSP is to find a schedule that
optimizes a given objective function, the MOFJSP aims to find all schedules in the Pareto set for
a given set of objectives. In this paper, we consider the makespan, total tardiness, total earliness,
average flowtime, and total costs as objectives. These objectives are among the most commonly
occurring in the scheduling literature (see e.g., Xie et al., 2019; Dauzère-Pérès et al., 2024) and
address a variety of considerations that are relevant in practice. We define the cost of an operation
to be inversely related to the processing times, so that faster operations are more expensive and
vice versa. Generally, the makespan, tardiness, and flowtime objectives, tend to benefit from shorter
processing times, while costs and earliness can profit from some slower (but cheaper) choices. Thus,
the objectives cover a range of trade-offs.
Definition 3 (Makespan). Given the job completion times {Ci(x)|Ji ∈ J } in a schedule x, the
makespan is fmakespan(x) = maxJi∈J Ci(x).
Definition 4 (Total tardiness). Given the job completion times {Ci(x)|Ji ∈ J } in a schedule x and
the job deadlines {Di|Ji ∈ J }, the total tardiness is ftardiness(x) =

∑
Ji∈J max(Ci(x)−Di, 0).

Definition 5 (Total earliness). Given the job completion times {Ci(x)|Ji ∈ J } in a schedule x and
the job deadlines {Di|Ji ∈ J }, the total earliness is fearliness(x) =

∑
Ji∈J max(Di − Ci(x), 0).

Definition 6 (Average flowtime). Given the job completion times {Ci(x)|Ji ∈ J } and
start times {Si(x)|Ji ∈ J } in a schedule x, the average flowtime is fflowtime(x) =∑

Ji∈J (Ci(x)− Si(x)) /|J |.
Definition 7 (Total costs). Given the processing times {pij(x)|Oij ∈ O} in a schedule x and the
maximum potential processing time pmax, the total costs are fcosts(x) =

∑
Oij∈O (pmax − pij(x)).

4 METHODOLOGY

4.1 MARKOV DECISION PROCESS

The scheduling process involves sequential decisions, progressively assigning operations to ma-
chines. At each decision moment t, an operation-machine combination (Oij ,Mk) is chosen to
assign operation Oij to machine Mk. In the (multi-objective) Markov Decision Process (MDP),
an agent receives the state st that represents the partial schedule, and selects an action at =
(Oij ,Mk) ∈ A(t) from the feasible actions A(t). This set comprises the possible allocations of
the first unassigned operation for each job to a compatible machine. The environment then provides
reward vector rt = [rt,1, . . . , rt,M] and new state st+1. The schedule is completed after |O| actions.

State The relevant operations Ou(t) ⊆ O for state st exclude those that already have a succes-
sor scheduled on the same machine and thus do not directly influence the schedule anymore. The
relevant machines Mu(t) ⊆ M are all machines on which any of the remaining operations can be
scheduled. Therefore, the state st = {HO,HM ,HOM} is defined as a triplet of operation features
HO = {hOij ∈ RnO |Oij ∈ Ou(t)}, machine features HM = {hMk

∈ RnM |Mk ∈ Mu(t)}, and
operation-machine pair features HOM = {h(Oij ,Mk) ∈ RnOM |(Oij ,Mk) ∈ A(t)}. We refer to
Wang et al. (2023) and Appendix A for a description of these features. While these features were
originally proposed for makespan as a single objective, many of them are also relevant across multi-
ple objectives. Notably, the lower bound of the completion time C(Oij , st) is particularly relevant,
as it matches directly with specific objectives. This feature allows the policy to directly monitor the
measures that affect the reward, as noted in the subsequent reward formulation. Therefore, we also
include the lower bound feature for each objective in the state. For total tardiness and earliness, we
maintain C(Oini , st)−Di for each operation. For the average flowtime, we add F(Oini , st) for each
operation. Similarly, a cost lower bound can be included. However, due to the way we define costs,
this information is already captured in existing features and there is no need to add a new feature.

Action Space and State Transition The action space A(t) consists of all compatible operation-
machine pairs of the first unscheduled operations per job. By taking an action, we process an opera-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tion on a machine. The relevant operations Ou(t) and machines Mu(t) are updated and all features
are updated correspondingly, giving a new state st+1.

Reward The reward rt = H(st) − H(st+1) for an objective is inversely related to the increase
in its quality measure H(·).Wang et al. (2023) defined the makespan quality measure using a re-
cursively updated lower bound, which outperforms directly using the objective value because it
provides a smoother signal. Concretely, they defined C(Oij , st) which equals the scheduled com-
pletion time if the operation has been scheduled. Otherwise, it follows the recursion C(Oij , st) =
C(Oi(j−1), st) + mink∈Mij

pkij . The quality measure is Hmakespan(st) = maxOij∈O C(Oij , st).
We note that defining and maintaining a lower bound is possible for any metric that is nondecreasing
during the scheduling process. For tardiness and average flowtime, we can also use the completion
time lower bounds. Specifically, Htardiness(st) =

∑
Ji∈J max(C(Oini

, st) − Di, 0) is the qual-
ity measure for total tardiness. For the average flowtime, we maintain a lower bound F(Oij , st),
which is equal to C(Oij , st) if the first operation has not yet been scheduled. Otherwise, we have
F(Oij , st) = C(Oij , st) − Si. We define Hflowtime(st) =

∑
Ji∈J F(Oini

, st)/|J |. For costs,
the lower bound C(Oij , st) is the actual cost if the operation has been scheduled and the lowest
possible costs between machines otherwise. Consequently, Hcosts(st) =

∑
Oij∈O C(Oij , st). Sim-

ilarly, the reward can be defined for any nondecreasing objective. For earliness, we define an up-
per bound instead of a lowerbound as this is a nonincreasing objective. We use Hearliness(st) =∑

Ji∈J max(Di−C(Oini , st), 0). Then, we can use the same rt formula to reward decreases in the
upper bound. This can be done in a similar way for other nonincreasing objectives.

4.2 DECOMPOSITION-BASED PPO

We propose to solve the MOFJSP through a weighted sum decomposition-based PPO algorithm.
We prefer weighted sum decomposition over Tchebycheff decomposition (another commonly used
alternative) for two main reasons. Firstly, with weighted sum decomposition, our stepwise rewards
converge to the weighted sum episodal reward (cf. Appendix B). In contrast, Tchebycheff scalariza-
tion is nonlinear and nonadditive over time, preventing this theoretical alignment. Secondly, despite
having a theoretical advantage to find nonconvex fronts, Tchebycheff decomposition is empirically
comparable or even inferior to the weighted sum in NCO literature (Chen et al., 2025; Wang et al.,
2024). Concretely, our goal is to find a policy conditioned on the decomposed problem π∗

θ(s,λ) that
maximizes its expected reward, given the problem instance and preference vector. Formally, given
a distribution of problem instances S and a distribution of objective preferences Λ, we aim to find
a policy π∗

θ such that π∗
θ = argmaxπ(Eλ∼Λ,s0∼S [

∑|O|−1
t=0 γt

∑M
i=1 λirt,i|s0,λ]). To train such

policies, we propose a decomposition-based PPO algorithm (Algorithm 1). We base our method on
clipped PPO with generalized advantage estimation, incorporating normalized processing times and
batch normalization as suggested by (Wang et al., 2023). We generate nB problem instances every
NB episodes and each episode, we sample a new preference vector λ for each instance. In this way,
the policy is trained using a wide variety of MOFJSP instances and multiple decomposed problems
per instance. By sampling frequently and using unique preference vectors per problem instance,
we prevent overfitting to specific subproblems. We ensure exploration by probabilistically sampling
actions based on the output probabilities of the policy.

Algorithm 1 Decomposition-based PPO
Require: Neural network with initialized parameters θ
1: Sample batch of nB instances
2: for nep = 1, 2, . . . Nep do
3: for b = 1, 2, . . . nB do ▷ In Parallel
4: Sample preferences λ ∼ Λ
5: for t = 0, 1, . . . , |O| − 1 do
6: Sample action at,b ∼ πθ(st,b,λ)
7: Perform at,b and receive sdett+1,b and rt,b

8: Compute rt,b = λ⊺rt,b

9: Collect transition (st,b, at,b, rt,b, st+1,b,λ)
10: Compute generalized advantage estimates
11: Compute PPO loss (Appendix C) and update θ
12: if nep mod NB = 0 then Sample nB new instances

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 NEURAL NETWORK ARCHITECTURE

We put forward two network architectures to learn policies πθ that take the subproblem state and
decomposition weights (i.e., preference vectors), based on the DAN architecture (Wang et al.,
2023).We propose a straightforward yet effective technique for MOFJSP, called WI-DAN: concate-
nating the preference vector to the feature vectors before feeding the resulting vectors to the DAN
network. Thus, we set hOij

= [hOij
||λ] and hMk

= [hMk
||λ]. In addition, we propose the dual

conditional attention network (DCAN), which uses the dual attention approach of DAN but includes
a conditional attention mechanism that modifies the attention based on the objective preferences. We
refer to Wang et al. (2023) for details DAN. The proposed DCAN consists of two attention blocks:
the conditional operation message attention block and the conditional machine message attention
block. To facilitate understanding, we show visualizations of the network structures in Appendix D.

Conditional Operation Message Attention Block Each operation Oij ∈ Ou has a feature vector
hl
Oij

and a corresponding preference embedding hl
λij

as input to the (l+1)-th attention block. Espe-
cially, h0

Oij
and h0

λij
= hλO

are initial linear transformations of the input features of operation Oij

and the preference vector λ, respectively. Using conditional attention, we update the embeddings:

hl+1
Oij

= σ

(
j+1∑

p=j−1

(α(Oij ,Oip)Whl
Oip

) + α(Oij ,λij)Whl
λij

)

In the equation, α indicates the attention coefficients after computing the softmax over the scores
e, where we compute e(a,b) = LeakyReLU(a⊺[Whl

a||Whl
b]), a and W are learnable parameters,

and σ is a nonlinearity. Here, the attention mechanism is modified through the preference em-
bedding. Intuitively, an artificial node, based on the preference vector, is added in the attention
mechanism, alongside the operation nodes, thereby affecting the attention between the operations.
These artificial node embeddings are in turn also updated in each attention block, such that they
modify each block appropriately. This update is similar to the operation embedding update such that
hl+1
λij

= σ(
∑j+1

p=j−1(α(λij ,Oip)Whl
Oip

) + α(λij ,λij)Whl
λij

).

Conditional Machine Message Attention Block For each machine Mk ∈ Mu we have feature
vector hl

Mk
and we have hl

λM
, where h0

Mk
and h0

λM
are different linear transformations of the ma-

chine input features and the preference vector. Using conditional machine attention, we compute:

hl+1
Mk

= σ

|Mu|∑
q=1

(β(Mk,Mq)Zh
l
Mq

) + β(Mk,λM)Zhl
λM


Here, β are the attention coefficients derived from the softmax over u with u(a,b) =

LeakyReLU(b⊺[Zhl
a||Zhl

b||Ycl(a,b)]) and b, Y, Z are learnable parameters. The coefficient c(Mk,Mq)

is an intensity metric between machines Mk and Mq based on their potential operations (see Ap-
pendix E). Since such a metric does not naturally exist between a preference embedding and ma-
chine embedding, we take cλM

= c(·,λM) = c(λM ,·) as the average across all intensity metrics
c(Mk,Mq). Analogously, the preference embedding for the machine attention is also updated, such
that hl+1

λM
= σ(

∑|Mu|
q=1 (β(λM ,Mq)Zhl

Mq
) + β(λM ,λM)Zhl

λM
). The final output embeddings hL

Mk
and

hL
Oij

are used identically by the actor and critic network as in the DAN.

Critic Learning For the critic network, instead of a single scalar output to estimate the weighted
sum of objectives, we output one critic value per objective. Thus, the critic is an MLP that takes the
aggregated operation and machine embeddings hL

G = [1
|Ou|

∑
Oij∈Ou

hL
Oij

|| 1
|Mu|

∑
Mk∈Mu

hL
Mk

]

and outputs a value vector v(st) ∈ RM . To train the critic, we compute the loss over all the
individual value estimates Lcritic =

1
|O|·M

∑|O|−1
t=0

∑M
i=1(vi(st)− r̂t,i)

2, where r̂t,i are the gener-
alized advantage estimates per reward component rt,i. For actor training, the aggregated advantage
At =

∑M
i=1 λiAt,i can still be computed before calculating the PPO loss, while it allows the critic to

better attribute the losses for each objective. Although theoretically compelling, on our tests we did
not find a significant performance improvement over a single-valued critic, presumably indicating
that the critic value estimation is considerably less complex than the actor task.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

Baselines We compare with two common multi-objective evolutionary algorithms, MOEA/D
(Zhang & Li, 2007) and NSGA-II (Deb et al., 2002). Our implementation is based on the oper-
ators of Xiao et al. (2024) and Zhang et al. (2011) and the genetic algorithm from Reijnen et al.
(2025). NSGA-II and MOEA/D run for 1000 generations and 80000 evaluations steps, respectively,
with a population size of 100, ensuring convergence. The crossover and mutation hyperparameters
follow Xiao et al. (2024) and Zhang et al. (2011). We also compare with the CP-SAT solver (Perron
et al., 2023). We run CP-SAT for 1 minute per subproblem (giving a total runtime of 101 and 105
minutes per 2- and 3-objective instance, respectively). A 16-core AMD ROME 7H12 machine is
used for all baselines. We also implement a hypernetwork neural network that closely follows Lin
et al. (2022); Su et al. (2024) combined with our methodology as theirs are not directly applicable.

Problem Instances We use the popular synthetic datasets from Song et al. (2022). Instance sizes
10×5, 20×5, 15×10, 20×10 are used for training and testing, and 30×10 and 40×10 for testing.
Moreover, we evaluate on the mk (Brandimarte, 1993), rdata, edata, and vdata benchmarks (Hurink
et al., 1994). For the latter three, processing times across alternative machines are the same for each
operation, making costs constant and as such reducing the true number of objectives. From these
datasets, the makespan, flowtime, and costs can be calculated directly. We set the deadline of job Ji
to Di = 1.5 ·

∑
Oij∈Oi

(minMk∈Mij
pkij), similar to (Wu & Weng, 2005; Chen & Matis, 2013).

Configurations For training, we set Nep = 1500, NB = 20, nb = 20, and evaluate once every
Neval = 40 episodes. The hyperparameters for WI-DAN and DCAN match those of DAN (Wang
et al., 2023). We use 3 objective combinations: makespan-costs, tardiness-costs, and makespan-
flowtime-costs. For testing, we decompose the 2-objective and 3-objective problems into 101 and
105 uniformly spread subproblems, respectively, which we solve in parallel. In training, we ran-
domly sample preference vectors from a flat Dirichlet distribution (Ng et al., 2011). We test 100
problem instances for each synthetic dataset. For inference, we use greedy solution construction and
a sampling strategy, sampling 10 solutions per subproblem. We measure performance using the nor-
malized Hypervolume (HV; cf. Appendix F; Guerreiro et al., 2021), reporting the gap = HVCP−HV

HVCP

to the hypervolume of the CP-SAT approach. Moreover, we report the unique number of solutions
in the found Pareto sets, the runtime, and, in Appendix G, the IGD+. We present the averages for
each instance set. We use an NVIDIA A100 GPU and a 9-core Intel Xeon Platinum 8360Y CPU.
Since the FJSP is a generalized scheduling problem, other problems such as the JSSP and flexible
flow shop scheduling problem (FFSP) can also be solved without modifications (see Appendix H).1

5.1 RESULTS ON SYNTHETIC INSTANCES

Table 1 shows the performance of our approach for test instances matching the training sizes of the
models. These results show that our method, using both WI-DAN and DCAN, learns highly com-
petitive policies. We find that for the smallest instances, NSGA-II outperforms the DRL policies for
1 of the 3 objective combinations. For all other problem sizes and objective combinations, our ap-
proach considerably outperforms the metaheuristics, while being much faster. For 20×10 instances,
DRL achieves a roughly 50% better gap than MOEA/D. We also observe that the gap to the CP-
SAT solutions narrows for larger instances. Although both perform well and also outperform the
hypernetwork approach, DCAN consistently outperforms WI-DAN. Especially for the 3-objective
problems, DCAN reduces the gap by several percentage points. Moreover, DCAN consistently gen-
erates larger Pareto sets, indicating that the conditional attention mechanism improves the network’s
ability to exploit decomposed subproblems. Sampling further improves HV performance and Pareto
set size, at the cost of higher runtime. However, the runtime is still very short compared to the
baselines. In short, our DRL policies considerably outperform the NSGA-II and MOEA/D base-
lines, with DCAN yielding better and larger Pareto sets than the more straightforward WI-DAN. In
Appendix I, we present results for a different synthetic instance set, which offers similar results. In
Appendix J, we visualize multiple found Pareto sets. Although our main experiments include 2- and
3-objective problems, our methodology can handle any number of objectives. To illustrate this, we
solve the 4-objective problem considering makespan, flowtime, earliness, and costs in Appendix K.

1We will publicly share our source code upon publication.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Results on synthetic instances of the same sizes as the instances used for training

Metaheuristics Greedy Sample
Size NSGA-II MOEA/D Hyper WI-DAN DCAN Hyper WI-DAN DCAN CP-SAT

M
ak

es
pa

n
C

os
ts

10×5
HV 0.7208 0.6616 0.5987 0.6999 0.7104 0.6204 0.7581 0.7647 0.8313
Gap 13.30% 20.42% 27.98% 15.81% 14.55% 25.37% 8.81% 8.01% 0.00%

Nr. Sol. 8.14 8.81 6.72 2.91 3.46 7.78 7.19 7.77 13.20
Time (s) 247.85 254.85 0.57 0.57 0.87 2.26 2.37 3.00 -

20×5
HV 0.5332 0.4807 0.5083 0.5536 0.5599 0.5268 0.5696 0.5724 0.6095
Gap 12.53% 21.14% 16.61% 9.17% 8.14% 13.57% 6.56% 6.09% 0.00%

Nr. Sol. 11.96 14.67 6.48 3.30 4.04 9.24 5.72 6.82 11.82
Time (s) 652.04 614.81 1.41 1.47 1.99 8.07 8.51 10.43 -

15×10
HV 0.6809 0.5570 0.7039 0.7650 0.7723 0.7388 0.7920 0.8002 0.9243
Gap 26.33% 39.73% 23.85% 17.23% 16.44% 20.07% 14.31% 13.42% 0.00%

Nr. Sol. 14.12 16.70 6.95 8.28 9.14 9.17 14.16 15.42 18.16
Time (s) 1694.42 1062.99 2.86 3.07 4.02 21.19 22.72 26.98 -

20×10
HV 0.6289 0.4879 0.7751 0.7966 0.8083 0.7236 0.8073 0.8200 0.8548
Gap 26.43% 42.93% 9.32% 6.82% 5.44% 15.36% 5.57% 4.07% 0.00%

Nr. Sol. 19.21 19.45 16.43 9.44 13.85 7.43 14.14 22.66 14.81
Time (s) 2798.44 1774.73 4.67 5.05 6.57 38.02 41.66 48.32 -

Ta
rd

in
es

s
C

os
ts

10×5
HV 0.7741 0.7006 0.6335 0.7109 0.7460 0.7103 0.8102 0.8272 0.9144
Gap 15.35% 23.38% 30.72% 22.25% 18.42% 22.32% 11.40% 9.54% 0.00%

Nr. Sol. 15.41 9.58 6.52 2.66 4.36 11.44 10.28 12.89 25.81
Time (s) 296.60 256.28 0.59 0.59 0.89 2.61 2.66 3.29 -

20×5
HV 0.5331 0.4234 0.5479 0.6372 0.6396 0.5282 0.6645 0.6700 0.7010
Gap 23.96% 39.60% 21.84% 9.09% 8.76% 24.64% 5.20% 4.42% 0.00%

Nr. Sol. 20.53 17.59 10.23 10.00 10.88 10.87 17.27 19.51 11.26
Time (s) 516.84 619.33 1.55 1.59 2.24 9.47 9.93 12.02 -

15×10
HV 0.6745 0.5131 0.7134 0.7982 0.8094 0.7270 0.8258 0.8338 0.9505
Gap 29.04% 46.02% 24.95% 16.03% 14.85% 23.51% 13.12% 12.28% 0.00%

Nr. Sol. 22.10 18.96 13.50 15.45 17.04 12.10 26.95 32.39 20.71
Time (s) 1642.20 1048.72 3.12 3.28 4.45 23.90 25.69 30.03 -

20×10
HV 0.5878 0.4229 0.7566 0.8100 0.8112 0.7472 0.8274 0.8306 0.8498
Gap 30.83% 50.24% 10.97% 4.68% 4.53% 12.08% 2.63% 2.25% 0.00%

Nr. Sol. 24.54 23.23 18.23 17.04 20.03 12.02 29.56 34.01 14.54
Time (s) 2869.48 1745.29 5.51 5.43 7.17 44.66 47.02 54.38 -

M
ak

es
pa

n
Fl

ow
tim

e
C

os
ts

10×5
HV 0.6146 0.4969 0.4123 0.4081 0.4647 0.4673 0.4902 0.5130 0.6831
Gap 10.02% 27.25% 39.64% 40.26% 31.97% 31.59% 28.24% 24.90% 0.00%

Nr. Sol. 167.40 67.01 23.57 7.33 22.64 48.43 39.50 52.84 64.98
Time (s) 229.21 260.88 0.84 0.82 1.14 4.99 4.97 5.66 -

20×5
HV 0.3661 0.2595 0.3800 0.4221 0.4318 0.4021 0.4512 0.4529 0.5210
Gap 29.73% 50.20% 27.06% 18.97% 17.11% 22.83% 13.39% 13.06% 0.00%

Nr. Sol. 230.89 90.90 31.23 28.15 32.96 71.75 80.70 81.77 59.95
Time (s) 543.45 627.90 2.49 2.52 3.18 18.34 19.39 21.03 -

15×10
HV 0.4654 0.3205 0.4844 0.5583 0.5793 0.4850 0.5782 0.6025 0.7336
Gap 36.57% 56.32% 33.97% 23.90% 21.03% 33.89% 21.18% 17.88% 0.00%

Nr. Sol. 86.70 37.91 34.10 29.06 43.96 75.54 82.73 121.23 68.32
Time (s) 1649.08 1020.61 4.36 4.52 5.51 35.56 37.33 41.00 -

20×10
HV 0.3834 0.2547 0.5056 0.5822 0.6142 0.5025 0.6038 0.6314 0.6612
Gap 42.01% 61.49% 23.54% 11.96% 7.12% 24.00% 8.69% 4.51% 0.00%

Nr. Sol. 106.06 41.38 37.29 43.08 57.83 62.65 114.14 179.74 60.83
Time (s) 2797.74 1674.67 7.35 7.72 9.13 64.14 67.44 74.71 -

Table 2 shows the generalization to larger problem instances. We use policies trained on 20×10 in-
stances to solve 30×10 and 40×10 instances. The results show that our policies can generalize fairly
well. In fact, they outperform the baselines by an even greater margin than in Table 1. Whereas the
metaheuristics and CP-SAT deteriorate quickly with larger instances, our approach retains perfor-
mance. We find much better hypervolumes and larger Pareto sets for our DRL policies. WI-DAN
scales better for MOFJSP with the tardiness and cost objectives, but this pattern is not consistent,
as DCAN maintains its advantage for the other objective combinations. In short, our policies can
transfer to larger instances, retaining the advantages over the baselines.

5.2 RESULTS ON BENCHMARK INSTANCES

We assess cross-distribution performance using the public benchmark datasets in Table 3. Here we
present the 3-objective MOFJSP, since the 2-objective problems boil down to single-objective FJSP

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Results on large synthetic instances using the policies trained on size 20×10

Metaheuristics Greedy Sample
Size NSGA-II MOEA/D Hyper WI-DAN DCAN Hyper WI-DAN DCAN CP-SAT

M
ak

es
pa

n
C

os
ts

30×10
HV 0.5477 0.3848 0.7221 0.7229 0.7437 0.6584 0.7294 0.7493 0.7425
Gap 26.24% 48.18% 2.74% 2.64% -0.17% 11.33 1.77% -0.91% 0.00%

Nr. Sol. 29.73 27.80 24.08 11.67 19.46 7.49 18.14 32.62 11.61
Time (s) 5674.45 3580.27 9.54 9.63 12.09 82.49 86.64 100.90 -

40×10
HV 0.4832 0.3128 0.6436 0.6387 0.6629 0.5852 0.6469 0.6688 0.6326
Gap 23.61% 50.54% -1.74% -0.97% -4.79% 7.48 -2.28% -5.73% 0.00%

Nr. Sol. 34.17 31.28 28.80 12.57 22.31 7.61 22.91 39.86 11.23
Time (s) 10013.26 6233.48 15.69 16.26 20.48 148.92 156.98 181.16 -

Ta
rd

in
es

s
C

os
ts 30×10

HV 0.4652 0.3082 0.6676 0.7627 0.7464 0.6562 0.7694 0.7601 0.6872
Gap 32.31% 55.16% 2.85% -10.98% -8.60% 4.51 -11.95% -10.61% 0.00

Nr. Sol. 33.40 28.54 19.07 25.57 24.53 15.53 41.03 41.43 10.18
Time (s) 5664.65 3454.61 10.90 11.58 14.03 98.26 105.23 119.65 -

40×10
HV 0.3751 0.2349 0.5708 0.7040 0.6649 0.5659 0.7084 0.6815 0.5390
Gap 30.41% 56.41% -5.89% -30.61% -23.35% -4.99 -31.42% -26.43% 0.00%

Nr. Sol. 40.00 28.81 15.41 29.35 25.25 14.97 49.78 41.45 7.71
Time (s) 10020.31 5826.27 19.93 19.68 24.12 188.55 194.54 220.47 -

M
ak

es
pa

n
Fl

ow
tim

e
C

os
ts 30×10

HV 0.2789 0.1709 0.4640 0.5401 0.5707 0.4382 0.5563 0.5811 0.4766
Gap 41.49% 64.13% 2.64% -13.33% -19.76% 8.06 -16.74% -21.93% 0.00

Nr. Sol. 137.67 45.18 44.62 46.62 60.85 50.15 131.78 205.99 46.04
Time (s) 5820.54 3306.71 18.42 16.08 18.58 180.95 150.65 165.46 -

40×10
HV 0.2022 0.1165 0.3993 0.4773 0.5087 0.3724 0.4918 0.5194 0.3043
Gap 33.56% 61.73% -31.22% -56.84% -67.17% -22.39% -61.63% -70.70% 0.00%

Nr. Sol. 66.59 44.26 49.97 51.09 63.53 65.19 151.06 224.75 35.81
Time (s) 10028.12 5705.95 26.53 26.80 30.87 263.06 275.59 298.31 -

Table 3: Results on public dataset instances for the 3-objective problem using the 15×10 policies

Metaheuristics Greedy Sample
Size NSGA-II MOEA/D Hyper WI-DAN DCAN Hyper WI-DAN DCAN CP-SAT

mk
HV 0.3416 0.2517 0.2977 0.2519 0.2743 0.3172 0.2878 0.3047 0.5085
Gap 32.82% 50.49% 41.45% 50.46% 46.06% 37.62% 43.39% 40.07% 0.00%

Nr. Sol. 275.70 94.30 34.30 18.10 27.50 88.40 51.10 84.50 68.90
Time (s) 1787.04 1122.09 4.59 4.78 5.73 39.05 41.10 44.05 -

rdata
HV 0.6586 0.5652 0.6004 0.5900 0.6060 0.6166 0.6033 0.6367 0.7296
Gap 9.73% 22.53% 17.71% 19.14% 16.94% 15.50% 17.31% 12.73% 0.00%

Nr. Sol. 8.98 6.98 5.28 6.08 5.03 9.00 9.28 9.48 15.18
Time (s) 2120.14 1164.22 5.34 5.68 6.10 47.79 44.82 47.79 -

edata
HV 0.6439 0.5773 0.5256 0.5212 0.5272 0.5441 0.5427 0.5689 0.7137
Gap 9.79% 19.11% 26.36% 26.98% 26.14% 23.76% 23.96% 20.30% 0.00%

Nr. Sol. 10.40 6.70 4.23 3.95 3.40 6.23 6.23 7.43 16.00
Time (s) 2106.18 1140.89 5.32 5.66 6.20 47.25 45.20 47.78 -

vdata
HV 0.7180 0.6133 0.6957 0.6799 0.7143 0.7056 0.6800 0.7378 0.7907
Gap 9.20% 22.44% 12.02% 14.01% 9.66% 10.77% 14.00% 6.69% 0.00%

Nr. Sol. 11.70 6.50 6.70 7.28 6.90 9.18 10.43 10.90 12.03
Time (s) 2236.94 1189.89 5.34 5.65 6.20 47.05 45.85 48.26 -

for three of the four datasets (results in Appendix L). Table 3 shows NSGA-II outperforms our poli-
cies on three out of four benchmark instances, which has several reasons. Firstly, the benchmark
datasets contain relatively small instances in which the metaheuristics do not yet deteriorate. Sec-
ondly, makespan and flowtime are naturally less conflicting with each other than costs. When costs
are constant (in rdata, edata, and vdata), a smaller solution space contains many good solutions.
Hence, metaheuristics can more easily find neighboring good solutions via genetic operations. This
alleviates the weakness of these algorithms in exploring diverging search spaces. Thirdly, the meta-
heuristic runtime is much higher as we run them for many generations. Appendices M and N show
the results with more comparable runtimes. In those scenarios with shorter runtimes, DCAN out-
performs the metaheuristics, underlining its value in scenarios requiring less runtime. In addition,
Appendix G shows that the DRL methods mostly outperform NSGA-II with respect to the IGD+
metric, indicating their competitiveness. Overall, DCAN and WI-DAN remain competitive, outper-
forming MOEA/D and achieving a good runtime-performance trade-off compared to NSGA-II.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: Results of DCAN for varying inference subproblem quantities for the 3-objective problem

N = 10 N = 45 N = 105 N = 496 N = 1035

Size Greedy Sample Greedy Sample Greedy Sample Greedy Greedy

10×5
HV 0.4254 0.4801 0.4565 0.5033 0.4647 0.5130 0.4734 0.4771
Gap 37.72% 29.72% 33.18% 26.32% 31.97% 24.90% 30.69% 30.15%

Nr. Sol. 7.12 24.35 16.44 41.25 22.64 52.84 29.48 31.87
Time (s) 0.74 1.16 0.90 2.70 1.14 5.66 2.93 5.57

20×10
HV 0.5792 0.6078 0.6056 0.6248 0.6142 0.6314 0.6269 0.6311
Gap 12.41% 8.08% 8.41% 5.51% 7.12% 4.51% 5.19% 4.55%

Nr. Sol. 9.37 51.01 32.40 123.54 57.83 179.74 141.37 195.75
Time (s) 3.38 8.64 5.23 32.11 9.13 74.71 36.35 71.32

Table 5: Hypervolume results of ablation study. ✓indicates our proposed approach is used

Makespan Costs Tardiness Costs Makespan
Flowtime Costs

State Reward Greedy Sample Greedy Sample Greedy Sample
0.5068 0.5385 0.5591 0.5417 0.4165 0.3869

✓ 0.5182 0.5383 0.5734 0.5419 0.4475 0.3908
✓ 0.8007 0.8131 0.7948 0.8111 0.6036 0.6184

✓ ✓ 0.8083 0.8200 0.8112 0.8306 0.6142 0.6314

5.3 EFFECT OF SUBPROBLEM QUANTITY

We can decompose a problem into different numbers of subproblems to balance computational com-
plexity and performance. Table 4 shows that increasing the number of subproblems increases per-
formance, albeit with diminishing returns. It also shows that for small instances, a sampling strategy
with few subproblems outperforms a greedy strategy with higher N . The added exploration has a big
advantage in these instances. In larger instances the difference fades. Using sampling and increasing
the number of subproblems by the same factor of 10 leads to similar results. Thus, tuning the num-
ber of subproblems and samples allows for a trade-off between performance and runtime, though
the advantage of generating more solutions diminishes as the number of subproblems increases.

5.4 ABLATION STUDY

Table 5 shows the results of the ablation study for the state features and reward formulation. Here,
we solve the 20x10 instances for the three problems from Table 1 using DCAN. We compare with a
simple step-wise reward without lower bounds and leaving out the proposed lower-bound features.
These results highlight the value of our adjustments. Especially our reward formulation is crucial to
achieve good results. This reward stabilizes the reward signal and achieves better credit assignment.
The added features also improve performance, although the effect is smaller than for the rewards.

6 CONCLUSION

We present a novel NMOCO approach for the MOFJSP, where we use a decomposition-based PPO
algorithm to train conditional policies. These policies take both the FJSP instance and the preference
vectors of the decomposed problem to determine the actions. We propose two neural networks
based on straightforward preference vector input (WI-DAN) and conditional attention (DCAN).We
experimentally show that the proposed approach considerably outperforms baseline metaheuristic
approaches, especially for larger instances, with DCAN outperforming WI-DAN. Our methodology
can act as a base for further development of NMOCO techniques for various scheduling variants.
Moreover, although we target scheduling problems, we believe components such as decomposition-
based PPO, bound-based reward functions, and the conditional attention mechanism, can also be
leveraged to develop NCO methods for other CO problems, which we will address in our future
work. Next to generalizing to a wider variety of CO problems, future work may focus on optimizing
additional and more complex objectives. In addition, advanced sampling techniques specifically
targeting NMOCO could help better utilize the learned policies.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based scheduling: applying con-
straint programming to scheduling problems, volume 39. Springer Science & Business Media,
2001. ISBN 0792374088.

Paolo Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of Op-
erations Research, 41:157–183, 9 1993. ISSN 0254-5330. doi: 10.1007/BF02023073. URL
http://link.springer.com/10.1007/BF02023073.

Binchao Chen and Timothy I. Matis. A flexible dispatching rule for minimizing tardiness in
job shop scheduling. International Journal of Production Economics, 141(1):360–365, 2013.
ISSN 0925-5273. doi: 10.1016/j.ijpe.2012.08.019. URL https://www.sciencedirect.
com/science/article/pii/S0925527312003672. Meta-heuristics for manufacturing
scheduling and logistics problems.

Jinbiao Chen, Zhiguang Cao, Jiahai Wang, Yaoxin Wu, Hanzhang Qin, Zizhen Zhang, and Yue-Jiao
Gong. Rethinking neural multi-objective combinatorial optimization via neat weight embedding.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=GM7cmQfk2F.

Giacomo Da Col and Erich C. Teppan. Industrial-size job shop scheduling with constraint
programming. Operations Research Perspectives, 9:100249, 2022. ISSN 22147160. doi:
10.1016/j.orp.2022.100249. URL https://linkinghub.elsevier.com/retrieve/
pii/S2214716022000215.

Andrea Corsini, Angelo Porrello, Simone Calderara, and Mauro Dell' Amico. Self-
labeling the job shop scheduling problem. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 105528–105551. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/be8987a75afeeadfa65007cf7ee25de0-Paper-Conference.pdf.

Stéphane Dauzère-Pérès, Junwen Ding, Liji Shen, and Karim Tamssaouet. The flexible job shop
scheduling problem: A review. European Journal of Operational Research, 314(2):409–432,
2024. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2023.05.017. URL https://www.
sciencedirect.com/science/article/pii/S037722172300382X.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002. doi: 10.1109/
4235.996017.

Qianwang Deng, Guiliang Gong, Xuran Gong, Like Zhang, Wei Liu, and Qinghua Ren. A bee
evolutionary guiding nondominated sorting genetic algorithm ii for multiobjective flexible job-
shop scheduling. Computational Intelligence and Neuroscience, 2017(1):5232518, 2017. doi:
10.1155/2017/5232518. URL https://onlinelibrary.wiley.com/doi/abs/10.
1155/2017/5232518.

Matthias Ehrgott. Multicriteria Optimization. Springer-Verlag, Berlin, Heidelberg, 2005. ISBN
3540213988.

Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, and Guohua
Wu. Conditional neural heuristic for multiobjective vehicle routing problems. IEEE Transactions
on Neural Networks and Learning Systems, 36(3):4677–4689, 2025. doi: 10.1109/TNNLS.2024.
3371706.

Andreia P. Guerreiro, Carlos M. Fonseca, and Luı́s Paquete. The hypervolume indicator: Compu-
tational problems and algorithms. ACM Comput. Surv., 54(6), July 2021. ISSN 0360-0300. doi:
10.1145/3453474.

Johann Hurink, Bernd Jurisch, and Monika Thole. Tabu search for the job-shop scheduling problem
with multi-purpose machines. OR Spektrum, 15:205–215, 12 1994. ISSN 0171-6468. doi:
10.1007/BF01719451. URL http://link.springer.com/10.1007/BF01719451.

11

http://link.springer.com/10.1007/BF02023073
https://www.sciencedirect.com/science/article/pii/S0925527312003672
https://www.sciencedirect.com/science/article/pii/S0925527312003672
https://openreview.net/forum?id=GM7cmQfk2F
https://openreview.net/forum?id=GM7cmQfk2F
https://linkinghub.elsevier.com/retrieve/pii/S2214716022000215
https://linkinghub.elsevier.com/retrieve/pii/S2214716022000215
https://proceedings.neurips.cc/paper_files/paper/2024/file/be8987a75afeeadfa65007cf7ee25de0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/be8987a75afeeadfa65007cf7ee25de0-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S037722172300382X
https://www.sciencedirect.com/science/article/pii/S037722172300382X
https://onlinelibrary.wiley.com/doi/abs/10.1155/2017/5232518
https://onlinelibrary.wiley.com/doi/abs/10.1155/2017/5232518
http://link.springer.com/10.1007/BF01719451

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune
Gwon. Matrix encoding networks for neural combinatorial optimization. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 5138–5149. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/29539ed932d32f1c56324cded92c07c2-Paper.pdf.

Kun Lei, Peng Guo, Wenchao Zhao, Yi Wang, Linmao Qian, Xiangyin Meng, and Liansheng Tang.
A multi-action deep reinforcement learning framework for flexible job-shop scheduling prob-
lem. Expert Systems with Applications, 205:117796, 2022. ISSN 0957-4174. doi: 10.1016/
j.eswa.2022.117796. URL https://www.sciencedirect.com/science/article/
pii/S0957417422010624.

Jiake Li, Junqing Li, and Ying Xu. Hgnp: A pca-based heterogeneous graph neural network for
a family distributed flexible job shop. Computers & Industrial Engineering, 200:110855, 2025.
ISSN 0360-8352. doi: 10.1016/j.cie.2024.110855. URL https://www.sciencedirect.
com/science/article/pii/S036083522400977X.

Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective optimization.
IEEE Transactions on Cybernetics, 51(6):3103–3114, 2021.

Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combi-
natorial optimization. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=QuObT9BTWo.

Shu Luo, Linxuan Zhang, and Yushun Fan. Dynamic multi-objective scheduling for flexible job
shop by deep reinforcement learning. Computers & Industrial Engineering, 159:107489, 2021.
ISSN 0360-8352. doi: 10.1016/j.cie.2021.107489. URL https://www.sciencedirect.
com/science/article/pii/S0360835221003934.

Shu Luo, Linxuan Zhang, and Yushun Fan. Real-time scheduling for dynamic partial-no-wait mul-
tiobjective flexible job shop by deep reinforcement learning. IEEE Transactions on Automation
Science and Engineering, 19(4):3020–3038, 2022. doi: 10.1109/TASE.2021.3104716.

Ghasem Moslehi and Mehdi Mahnam. A pareto approach to multi-objective flexible job-shop
scheduling problem using particle swarm optimization and local search. International Jour-
nal of Production Economics, 129(1):14–22, 2011. ISSN 0925-5273. doi: 10.1016/j.ijpe.
2010.08.004. URL https://www.sciencedirect.com/science/article/pii/
S0925527310002938.

Kai Wang Ng, Guo-Liang Tian, and Man-Lai Tang. Dirichlet and related distributions: Theory,
methods and applications. John Wiley & Sons, 2011.

Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. Learning to
schedule job-shop problems: representation and policy learning using graph neural network and
reinforcement learning. International Journal of Production Research, 59(11):3360–3377, 2021.
doi: 10.1080/00207543.2020.1870013.

Laurent Perron, Frédéric Didier, and Steven Gay. The cp-sat-lp solver. In Roland H. C. Yap
(ed.), 29th International Conference on Principles and Practice of Constraint Programming (CP
2023), volume 280 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 3:1–3:2,
Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-
3-95977-300-3. doi: 10.4230/LIPIcs.CP.2023.3. URL https://drops.dagstuhl.de/
opus/volltexte/2023/19040.

Jonathan Pirnay and Dominik G. Grimm. Self-improvement for neural combinatorial optimization:
Sample without replacement, but improvement. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=agT8ojoH0X.
Featured Certification.

Robbert Reijnen, Igor G. Smit, Hongxiang Zhang, Yaoxin Wu, Zaharah Bukhsh, and Yingqian
Zhang. Job shop scheduling benchmark: Environments and instances for learning and non-
learning methods, 2025. URL https://arxiv.org/abs/2308.12794.

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/29539ed932d32f1c56324cded92c07c2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/29539ed932d32f1c56324cded92c07c2-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0957417422010624
https://www.sciencedirect.com/science/article/pii/S0957417422010624
https://www.sciencedirect.com/science/article/pii/S036083522400977X
https://www.sciencedirect.com/science/article/pii/S036083522400977X
https://openreview.net/forum?id=QuObT9BTWo
https://www.sciencedirect.com/science/article/pii/S0360835221003934
https://www.sciencedirect.com/science/article/pii/S0360835221003934
https://www.sciencedirect.com/science/article/pii/S0925527310002938
https://www.sciencedirect.com/science/article/pii/S0925527310002938
https://drops.dagstuhl.de/opus/volltexte/2023/19040
https://drops.dagstuhl.de/opus/volltexte/2023/19040
https://openreview.net/forum?id=agT8ojoH0X
https://arxiv.org/abs/2308.12794

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Danial Rooyani and Fantahun M. Defersha. An efficient two-stage genetic algorithm for flexible
job-shop scheduling. IFAC-PapersOnLine, 52:2519–2524, 2019. ISSN 24058963. doi: 10.1016/
j.ifacol.2019.11.585. URL https://linkinghub.elsevier.com/retrieve/pii/
S2405896319315721.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Veronique Sels, Nele Gheysen, and Mario Vanhoucke. A comparison of priority rules for the job
shop scheduling problem under different flow time- and tardiness-related objective functions.
International Journal of Production Research, 50:4255–4270, 8 2012. ISSN 0020-7543. doi:
10.1080/00207543.2011.611539. URL http://www.tandfonline.com/doi/abs/10.
1080/00207543.2011.611539. doi: 10.1080/00207543.2011.611539.

Igor G. Smit, Yaoxin Wu, Pavel Troubil, Yingqian Zhang, and Wim P.M. Nuijten. Neural combina-
torial optimization for stochastic flexible job shop scheduling problems. Proceedings of the AAAI
Conference on Artificial Intelligence, 39(25):26678–26687, 4 2025a. doi: 10.1609/aaai.v39i25.
34870. URL https://ojs.aaai.org/index.php/AAAI/article/view/34870.

Igor G. Smit, Jianan Zhou, Robbert Reijnen, Yaoxin Wu, Jian Chen, Cong Zhang, Zaharah Bukhsh,
Yingqian Zhang, and Wim Nuijten. Graph neural networks for job shop scheduling prob-
lems: A survey. Computers & Operations Research, 176:106914, 2025b. ISSN 0305-0548.
doi: 10.1016/j.cor.2024.106914. URL https://www.sciencedirect.com/science/
article/pii/S0305054824003861.

Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. Flexible job-shop scheduling via graph
neural network and deep reinforcement learning. IEEE Transactions on Industrial Informatics,
19:1600–1610, 2 2022. ISSN 1551-3203.

Chupeng Su, Cong Zhang, Chuang Wang, Weihong Cen, Gang Chen, and Longhan Xie.
Fast pareto set approximation for multi-objective flexible job shop scheduling via parallel
preference-conditioned graph reinforcement learning. Swarm and Evolutionary Computation,
88:101605, 2024. ISSN 2210-6502. doi: 10.1016/j.swevo.2024.101605. URL https:
//www.sciencedirect.com/science/article/pii/S2210650224001433.

E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research,
64(2):278–285, 1993. ISSN 0377-2217. doi: 10.1016/0377-2217(93)90182-M. URL https://
www.sciencedirect.com/science/article/pii/037722179390182M. Project
Management anf Scheduling.

Karim Tamssaouet, Stéphane Dauzère-Pérès, Sebastian Knopp, Abdoul Bitar, and Claude Yugma.
Multiobjective optimization for complex flexible job-shop scheduling problems. European
Journal of Operational Research, 296:87–100, 1 2022. ISSN 03772217. doi: 10.1016/
j.ejor.2021.03.069. URL https://linkinghub.elsevier.com/retrieve/pii/
S0377221721003751.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018. URL https://arxiv.org/abs/1710.10903.

Runqing Wang, Gang Wang, Jian Sun, Fang Deng, and Jie Chen. Flexible job shop scheduling via
dual attention network-based reinforcement learning. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

Zhenkun Wang, Shunyu Yao, Genghui Li, and Qingfu Zhang. Multiobjective combinatorial opti-
mization using a single deep reinforcement learning model. IEEE Transactions on Cybernetics,
54(3):1984–1996, 2024. doi: 10.1109/TCYB.2023.3312476.

Zufa Wu, Hongbo Fan, Yimeng Sun, and Manyu Peng. Efficient multi-objective optimization on
dynamic flexible job shop scheduling using deep reinforcement learning approach. Processes,
11(7), 2023. ISSN 2227-9717. doi: 10.3390/pr11072018. URL https://www.mdpi.com/
2227-9717/11/7/2018.

13

https://linkinghub.elsevier.com/retrieve/pii/S2405896319315721
https://linkinghub.elsevier.com/retrieve/pii/S2405896319315721
https://arxiv.org/abs/1707.06347
http://www.tandfonline.com/doi/abs/10.1080/00207543.2011.611539
http://www.tandfonline.com/doi/abs/10.1080/00207543.2011.611539
https://ojs.aaai.org/index.php/AAAI/article/view/34870
https://www.sciencedirect.com/science/article/pii/S0305054824003861
https://www.sciencedirect.com/science/article/pii/S0305054824003861
https://www.sciencedirect.com/science/article/pii/S2210650224001433
https://www.sciencedirect.com/science/article/pii/S2210650224001433
https://www.sciencedirect.com/science/article/pii/037722179390182M
https://www.sciencedirect.com/science/article/pii/037722179390182M
https://linkinghub.elsevier.com/retrieve/pii/S0377221721003751
https://linkinghub.elsevier.com/retrieve/pii/S0377221721003751
https://arxiv.org/abs/1710.10903
https://www.mdpi.com/2227-9717/11/7/2018
https://www.mdpi.com/2227-9717/11/7/2018

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zuobao Wu and M.X. Weng. Multiagent scheduling method with earliness and tardiness objectives
in flexible job shops. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
35(2):293–301, 2005. doi: 10.1109/TSMCB.2004.842412.

Biao Xiao, Zhengcai Zhao, Yingchen Wu, Xialin Zhu, Shixin Peng, and Honghua Su. An im-
proved moea/d for multi-objective flexible job shop scheduling by considering efficiency and cost.
Computers & Operations Research, 167:106674, 2024. ISSN 0305-0548. doi: 10.1016/j.cor.
2024.106674. URL https://www.sciencedirect.com/science/article/pii/
S0305054824001461.

Jin Xie, Liang Gao, Kunkun Peng, Xinyu Li, and Haoran Li. Review on flexible job shop scheduling.
IET Collaborative Intelligent Manufacturing, 1(3):67–77, 2019. doi: 10.1049/iet-cim.2018.0009.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi.
Learning to dispatch for job shop scheduling via deep reinforcement learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1621–1632. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/11958dfee29b6709f48a9ba0387a2431-Paper.pdf.

Guohui Zhang, Liang Gao, and Yang Shi. An effective genetic algorithm for the flexible job-
shop scheduling problem. Expert Systems with Applications, 38(4):3563–3573, 2011. ISSN
0957-4174. doi: 10.1016/j.eswa.2010.08.145. URL https://www.sciencedirect.com/
science/article/pii/S095741741000953X.

Jia-Dong Zhang, Zhixiang He, Wing-Ho Chan, and Chi-Yin Chow. Deepmag: Deep reinforcement
learning with multi-agent graphs for flexible job shop scheduling. Knowledge-Based Systems,
259:110083, 2023a. ISSN 0950-7051. doi: 10.1016/j.knosys.2022.110083. URL https://
www.sciencedirect.com/science/article/pii/S0950705122011790.

Jiae Zhang, Jianjun Yang, and Yong Zhou. Robust scheduling for multi-objective flexi-
ble job-shop problems with flexible workdays. Engineering Optimization, 48:1973–1989,
11 2016. ISSN 0305-215X. doi: 10.1080/0305215X.2016.1145216. URL https:
//www.tandfonline.com/doi/full/10.1080/0305215X.2016.1145216. doi:
10.1080/0305215X.2016.1145216.

Lixiang Zhang, Yan Yan, and Yaoguang Hu. Dynamic flexible scheduling with transportation con-
straints by multi-agent reinforcement learning. Engineering Applications of Artificial Intelligence,
134:108699, 2024. ISSN 0952-1976. doi: 10.1016/j.engappai.2024.108699. URL https:
//www.sciencedirect.com/science/article/pii/S0952197624008571.

Lu Zhang, Yi Feng, Qinge Xiao, Yunlang Xu, Di Li, Dongsheng Yang, and Zhile Yang. Deep
reinforcement learning for dynamic flexible job shop scheduling problem considering variable
processing times. Journal of Manufacturing Systems, 71:257–273, 2023b. ISSN 0278-6125.
doi: 10.1016/j.jmsy.2023.09.009. URL https://www.sciencedirect.com/science/
article/pii/S0278612523001917.

Min Zhang, Liang Wang, Fusheng Qiu, and Xiaorui Liu. Dynamic scheduling for flexible job
shop with insufficient transportation resources via graph neural network and deep reinforce-
ment learning. Computers & Industrial Engineering, 186:109718, 2023c. ISSN 0360-8352.
doi: 10.1016/j.cie.2023.109718. URL https://www.sciencedirect.com/science/
article/pii/S0360835223007428.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on de-
composition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007. doi:
10.1109/TEVC.2007.892759.

Zizhen Zhang, Zhiyuan Wu, Hang Zhang, and Jiahai Wang. Meta-learning-based deep reinforce-
ment learning for multiobjective optimization problems. IEEE Transactions on Neural Networks
and Learning Systems, 34(10):7978–7991, 2023d.

Linlin Zhao, Jiaxin Fan, Chunjiang Zhang, Weiming Shen, and Jing Zhuang. A drl-based reactive
scheduling policy for flexible job shops with random job arrivals. IEEE Transactions on Automa-
tion Science and Engineering, 21(3):2912–2923, 2024. doi: 10.1109/TASE.2023.3271666.

14

https://www.sciencedirect.com/science/article/pii/S0305054824001461
https://www.sciencedirect.com/science/article/pii/S0305054824001461
https://proceedings.neurips.cc/paper_files/paper/2020/file/11958dfee29b6709f48a9ba0387a2431-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/11958dfee29b6709f48a9ba0387a2431-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S095741741000953X
https://www.sciencedirect.com/science/article/pii/S095741741000953X
https://www.sciencedirect.com/science/article/pii/S0950705122011790
https://www.sciencedirect.com/science/article/pii/S0950705122011790
https://www.tandfonline.com/doi/full/10.1080/0305215X.2016.1145216
https://www.tandfonline.com/doi/full/10.1080/0305215X.2016.1145216
https://www.sciencedirect.com/science/article/pii/S0952197624008571
https://www.sciencedirect.com/science/article/pii/S0952197624008571
https://www.sciencedirect.com/science/article/pii/S0278612523001917
https://www.sciencedirect.com/science/article/pii/S0278612523001917
https://www.sciencedirect.com/science/article/pii/S0360835223007428
https://www.sciencedirect.com/science/article/pii/S0360835223007428

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DETAILED DESCRIPTION OF STATE FEATURES

Each state consists of operation features, machine features, and operation-machine pair features.
The state features hOij

for all Oij ∈ Ou are the following:

• Minimum processing time pkij among all machines Mk ∈ Mij .

• Average processing time pkij among all machines Mk ∈ Mij .

• Span of processing times pkij among all machines Mk ∈ Mij .

• Proportion of machines that Oij can be processed on: |Mij |/|M|.
• 1 if operation Oij is scheduled, otherwise 0.
• Number of unscheduled operations in job Ji.
• Sum of average processing times of all unscheduled operations in Ji.
• Time between when an operation became available for scheduling, and the current schedul-

ing time in the system. 0 if the operation is not yet available for scheduling.
• Remaining processing time pkij of operation Oij at the current scheduling time. 0 if the

operation is unscheduled.

In addition, the operation feature vector contains the relevant lower bound features, described in
Section 4.1, for the objectives that are considered.

For each machine Mk ∈ Mu, we have the following machine features hMk
:

• Minimum processing time pkij among all operations Oij : Mk ∈ Mij .

• Average processing time pkij among all operations Oij : Mk ∈ Mij .
• Number of unscheduled operations that machine Mk can process.
• Number of candidate operations that machine Mk can process.
• The moment when machine Mk becomes available.
• The time for which machine Mk has been idle at the current scheduling moment.
• 1 if Mk is processing an operation, otherwise 0.
• The remaining processing time pkij of the current processed operation Oij on machine Mk.

For each considered operation-machine pair (Oij ,Mk) ∈ A, we use the feature vector h(Oij ,Mk):

• Processing time pkij .

• Ratio of pkij to maxk p
k
ij .

• Ratio of pkij to the maximum processing time of candidate operations that can be processed
by Mk.

• Ratio of pkij to the maximum processing time of unscheduled operations.

• Ratio of pkij to the maximum processing time of unscheduled operations that can be pro-
cessed by Mk.

• Ratio of pkij to the maximum processing time of the pairs in A.

• Ratio of pkij to the remaining workload of job Ji.
• Sum of waiting times of Oij and Mk.

B THEORETICAL ALIGNMENT OF WEIGHTED SUM REWARD

Proposition 1. The sum of stepwise rewards is equal to the negative of the weighted sum of the
increase in quality measures H(·), given a discounting factor γ = 1:

|O|−1∑
t=0

γt
M∑
i=1

λirt,i = −
M∑
i=1

λi

(
Hi(s|O|)−Hi(s0)

)
15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof.

|O|−1∑
t=0

γt
M∑
i=1

λirt,i =

|O|−1∑
t=0

M∑
i=1

λirt,i (γ = 1)

=

M∑
i=1

|O|−1∑
t=0

λirt,i

=

M∑
i=1

λi

|O|−1∑
t=0

rt,i

=

M∑
i=1

λi

|O|−1∑
t=0

(Hi(st)−Hi(st+1))

= −
M∑
i=1

λi

(
Hi(s|O|)−Hi(s0)

)

From Proposition 1, and given that s0 is a constant given by the problem instance, it follows that
aiming to maximize the expected weighted sum stepwise function aligns with minimizing the in-
crease in the weighted sum of the quality measure. Hence, optimizing our reward definition directly
corresponds to optimizing our objectives.

C DECOMPOSITION-BASED PPO LOSS

We use a decomposition-based actor-critic clipped PPO algorithm with generalized advantage esti-
mation (GAE). The actor loss over a given trajectory is defined as:

Lactor =
1

|O|

|O|−1∑
t=0

min (ρt(θ)At, clip(ρt(θ), 1− ϵ, 1 + ϵ)At)

ρt(θ) =
πθ(at|st,λ)

πθold(at|st,λ)

Here, At =
∑M

i=1 λiAt,i is the aggregated advantage estimate computed from the advantage esti-
mates per objective and ρt(θ) is the output probability ratio between the current and previous policy
for action at. The per-objective generalized advantage estimates follow from:

δt,i = rt,i + γvi(st+1)− vi(st), At,i =

|O|−t−1∑
l=0

(γτ)lδt+l,i

Here, vi(st) is the value estimate for objective i of the critic network, and γ and τ are hyperparam-
eters controlling the bias-variance trade-off of the GAE.

As explained before, the critic network is updated using the critic loss function:

Lcritic =
1

|O| ·M

|O|−1∑
t=0

M∑
i=1

(vi(st)− r̂t,i)
2

Here, r̂t,i = At,i + vi(st) is the bootstrapped generalized advantage estimate target for objective i.

The final PPO loss consists of the actor loss, critic loss, and an entropy bonus Lentropy =
1

|O|
∑|O|−1

t=0 H[πθ(·|st,λ)] that encourages exploration:

LPPO = −Lactor + c1 · Lcritic − c2 · Lentropy

In this equation, c1 and c2 are coefficients that control the weights of each loss.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D VISUALIZATION OF NETWORK ARCHITECTURES

To further clarify the proposed WI-DAN and DCAN network architectures, we present several visual
overviews in this appendix. Figure 1 offers a high-level overview of how the preference weights are
incorporated in the WI-DAN and DCAN networks. In addition, Figure 2 shows a more detailed view
of the conditional operation message attention block and the conditional machine message attention
block from the DCAN architecture. In this figure, for simplicity, we assume a single attention head
and show a single operation triplet forward pass.

𝝀𝒉𝑶𝒊𝒋

Concat

… × 𝓞𝒖

DAN

𝒉𝑶𝒊𝒋

𝝀𝒉𝑴𝒌

Concat

… × 𝓜𝒖𝒉𝑴𝒌

(a) WI-DAN

… × 𝓞𝒖

DCAN

𝒉𝑶𝒊𝒋

𝝀

Linear

𝒉𝝀𝑶

𝝀

Linear

𝒉𝝀𝑴 … × 𝓜𝒖𝒉𝑴𝒌

(b) DCAN

Figure 1: Visualization of high-level WI-DAN and DCAN network architectures.

𝒉𝑶𝒊 𝒋ష𝟏
𝒍 𝒉𝑶𝒊𝒋

𝒍

Concat

𝒉𝝀𝒊𝒋
𝒍 𝒉𝑶𝒊 𝒋శ𝟏

𝒍

Linear

Softmax

Combine

Linear

Concat

Linear

Softmax

Combine

𝒉𝝀𝒊𝒋
𝒍ା𝟏 𝒉𝑶𝒊𝒋

𝒍ା𝟏

𝒉𝑴𝟎

𝒍 𝒉𝝀𝑴
𝒍

Concat

𝒉𝑴𝟏

𝒍 𝒉𝑴𝓜𝒖

𝒍

Linear

Softmax

Combine

Linear

Concat

Linear

Softmax

Combine

𝒉𝝀𝑴
𝒍ା𝟏

…

𝒉𝑴𝟎

𝒍ା𝟏

…

𝒉𝑴𝟏

𝒍ା𝟏 𝒉𝑴𝓜𝒖

𝒍ା𝟏

F
il
te
r

L
in
ea
r

AVG

Figure 2: Detailed view of the conditional operational (left) an machine (right) message attention
blocks in the DCAN network.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E DESCRIPTION OF MACHINE INTENSITY COEFFICIENT

In the conditional machine message attention block, the coefficient c(Mk,Mq) is an intensity metric
that measures the competition between machine Mk and Mq . We define Ckq as the set of all oper-
ations that can be performed on both Mk and Mq . We also define the set of candidate operations
Jc = {Oij | ∃Mk : (Oij ,Mk) ∈ A} as the set of all operations that appear in at least one potential
action (Oij ,Mk) ∈ A. The intensity metric is then computed using the embeddings hOij of the
operations in Ckq:

c(Mk,Mq) =
∑

Oij∈Ckq∩Jc

hOij

If Ckq ∩ Jc is empty, the intensity coefficient values are 0.

F HYPERVOLUME INDICATOR

The Hypervolume (HV) is a widely used metric for assessing performance in multi-objective opti-
mization. Given a found Pareto front F and a reference point r ∈ RM , the HV is:

HVr(F) = µ

(⋃
f(x)∈F

[f(x), r]

)
where µ denotes the Lebesgue measure, which indicates the M-dimensional volume, and [f(x), r] =
[f1(x), r1]×· · ·× [fM (x), rM] is an M-dimensional cube that spans the regions between each point
f(x) and the reference point r. The reference point is a defined point in the objective space that is
typically dominated by all solutions of interest.

The HV measure is sensitive to the scales of the objectives. Hence, we report the normalized hy-
pervolume values. To this end, we first subtract the objective lower bounds, defined by the point
z, from the points on the Pareto front. These lower bounds are equal to the objective lower bounds
in Section 4.1 at the initial state of the MDP. Then, we compute the hypervolume from these trans-
formed points and divide by the product of the ranges between the reference point and lower bound.
Thus, we use:

ĤVr(F) = µ

(⋃
f(x)∈F

[f(x)− z, r − z]

)
/

M∏
i=1

(ri − zi)

To define the reference point r for each problem instance, we initialize 1000 solutions according
to the initialization procedure of our NSGA-II approach, and take the worst value we find for each
objective in this set of solutions.

G IGD+ PERFORMANCE METRIC

IGD+ is a performance metric for multi-objective optimization. It is defined as the average distance
from each point in a given reference Pareto front to the closest point in the found solution set. The
distance to the closest solution is computed using a modified Euclidean distance that only accounts
for the positive part of the difference in each objective. Formally, given a reference set Z and a
solution set F , IGD+ is calculated as:

IGD+(F ,Z) =
1

|Z|
∑
z∈Z

min
f∈F

d+(z, f)

where

d+(z, f) =

(
M∑
i=1

max(fi − zi, 0)
2

)1/2

is the modified distance between the reference point z and a solution point f . A lower IGD+ value
indicates that the approximated front closely follows the reference front in both convergence and
distribution.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

As noted, the IGD+ requires a reference Pareto set that serves as the target. However, in our case, we
do not have access to the optimal Pareto sets. Hence, to compute the IGD+ we define an alternative
reference set. We construct our reference sets by taking all the solutions found by all the methods
for a specific instance and using the non-dominated set among these. In this way, the resulting IGD+
measures will be influenced by this lack of a true optimal reference set, so conclusions should be
drawn with care. Nevertheless, the metric still provides valuable insights alongside the hypervolume.

In Tables 6, 7, and 8, we present the IGD+ values corresponding to the main experiments. The
results largely follow the same pattern observed with the hypervolume and the number of solutions
in the Pareto sets. Specifically, our DRL approaches outperform the metaheuristics on the synthetic
instances, with the performance gap increasing for larger instance sizes. Moreover, DCAN gen-
erally outperforms WI-DAN. However, on instances with tardiness and cost objectives, WI-DAN
performs better in terms of IGD+ than in terms of hypervolume, suggesting that it produces more
evenly distributed fronts in these specific cases. For the other objectives, DCAN remains superior
on this metric. Another notable finding is that for the public dataset instances, our DRL policies
achieve better IGD+ scores than the metaheuristics on three out of four instance sets, whereas the
hypervolume was worse for all of them. This may indicate that the metaheuristics benefited from
a few extreme points on the edges of the objective space, while the DRL policies generated more
tightly converged solution sets. Overall, the main conclusions based on IGD+ are consistent with
those drawn from the hypervolume metric, with a few noteworthy differences that provide additional
insight.

H RESULTS ON DIFFERENT SCHEDULING PROBLEMS

We solve JSSP and FFSP problem instances using our approach. We use the same methods and
hyperparameters for these problems. For the JSSP, we train and validate on synthetic instances gen-
erated using Taillard’s method (Taillard, 1993). We solve the problem with the makespan and tardi-
ness objectives, since each operation has a fixed machine and, thus, fixed costs. Table 9 shows the
results for these instances. We find that DCAN performs well for these instances. For the smallest
instances, we find again that the metaheuristics are slightly better while DCAN can achieve similar
performance. For larger instances, we observe that DCAN performs better again. The metaheuristics
start to have trouble with the increased scale whereas our DRL approach holds good performance
while also being considerably faster. We do not outperform CP-SAT on these instances. This is
sensible since the JSSP has a smaller search space than the FJSP, which means that CP-SAT will
lose performance only at larger instances. We already observe that DCAN gets closer to CP-SAT
for the larger sizes, while still being considerably faster.

For the FFSP, we train and validate using synthetic instances that are generated similarly to Kwon
et al. (2021). We use two types of instances. One with 15 jobs and 5 stages, where the stages have
3, 2, 3, 2, and 2 machine alternatives, respectively. The other has 20 jobs and 4 stages, where each
stage has 3 machine alternatives. We present these results in Table 10. Here, we see that, despite
the instances being small and therefore advantageous for the metaheuristics, DCAN is competitive
or advantageous over the metaheuristics in terms of hypervolume while maintaining its considerable
speed advantage. It does not achieve the same hypervolume as CP-SAT. However, small instances
are more suitable for CP-SAT and the runtime of DCAN is much shorter.

In short, these results confirm that our approach can be applied to other scheduling problems without
modifications. We can maintain both efficiency and performance, and thereby our approach is not
limited to the FJSP but can be applied to a variety of scheduling problems.

I ADDITIONAL SYNTHETIC INSTANCES

Wang et al. (2023) propose an additional instance set next to the one from Song et al. (2022), which
they call SD2. This dataset is less realistic, as each processing time pkij is sampled uniformly from
U(1, 99). This implies that for the same operation, machine alternatives can be entirely different. In
practice and in the synthetic data that we use, in contrast, the processing times of operations between
machines are related to each other. Hence, we work with the more realistic instances in our paper.
However, for completeness, we also train and test on the SD2 instances using the same method. We
present these results in Table 11. The results are similar to our main results, with our DRL models

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

outperforming the baselines considerably on most instances. In terms of hypervolume, the difference
between WI-DAN and DCAN is smaller. This may be caused by the sharper decision boundaries,
resulting from the unrelated processing times, that require less sophisticated differentiation between
different objective preferences. However, in cases where DCAN is better, the performance improve-
ment over WI-DAN tends to be larger than the other way around. Moreover, the DCAN generally
generates a Pareto set with more unique solutions. Hence, DCAN remains beneficial over WI-DAN
on these instances.

J VISUALIZATION OF RESULTS

To better understand the results, we visualize the Pareto fronts of one randomly selected instance per
instance set of the synthetic data for the 2-objective problems. Figures 3 and 4 show these fronts.
Although these figures are instance-specific and do not represent all solution shapes within each
instance set, they do provide an indication of the general patterns.

The plots reflect the overall performance of the different methods, consistent with our numerical
evaluation. In general, DRL policies achieve lower objective values than metaheuristics. CP-SAT
solutions are highly competitive for the smaller instances, but for larger instances DRL policies tend
to find better solutions. We observe that the CP-SAT solutions are generally more diverse and suc-
ceed in finding more extreme solutions at the edges of the Pareto front, strongly optimizing for one
specific objective. The DRL policies, on the other hand, produce slightly more centralized solution
sets. This centralization explains a significant part of the advantage CP-SAT has over DCAN and
WI-DAN on smaller instances. However, for larger instances, the solutions found by the DRL are
more diverse and cover a broader range of objective trade-offs.

Overall, DCAN appears to achieve a slightly wider spread of solutions than WI-DAN, which may
contribute to its better hypervolume performance. All in all, our DRL approach finds well-shaped
solution sets that address a meaningful range of trade-offs. Only at the extreme ends of the solution
space, where one objective is heavily prioritized, does the DRL approach underperform compared
to CP-SAT. However, in multi-objective optimization, trade-offs that balance the objectives are typ-
ically preferred over solutions focusing heavily on a single objective, mitigating the impact of this
limitation.

K RESULTS ON 4-OBJECTIVE INSTANCES

We solve the 4-objective problem considering, makespan, flowtime, earliness, and costs, using 120
preferences, presented in Table 12. These results show a similar pattern of DCAN outperforming
the baselines. The gap to CP-SAT is slightly larger, which is mainly due to the fact that earliness is a
non-regular objective. This is more challenging for constructive approaches, and we do not use any
post-processing to allow for waiting or other adjustments in our implementation. Despite this, our
approach remains superior to the metaheuristics, highlighting its ability to address problems with
many objectives of differing natures.

L RESULTS ON BENCHMARK INSTANCES FOR 2-OBJECTIVE PROBLEMS

Table 13 shows the results on the benchmark instances for the 2-objective problems. These results
show that, since the problems are reduced to single-objective problems for rdata, edata, and vdata,
only one non-dominated solution is found for those. Hence, these results do not indicate multi-
objective performance, but mainly which model is optimized best for makespan or tardiness. For the
mk dataset, the DRL policies and NSGA-II have similar performance, with NSGA-II having slightly
better hypervolume while having a much larger runtime.

M SHORTER INFERENCE TIMES FOR BASELINE METHODS

In the main results, we run the baseline multi-objective optimization algorithms for many genera-
tions, leading to a long runtime. For the synthetic data, our DRL approach already outperforms these
algorithms with much longer runtimes. For the benchmark datasets, the NSGA-II baseline performs

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

slightly better. However, in practice, the available runtime is often limited. This raises the question
how the performance compares when the evolutionary algorithms are given less time. Therefore, we
run the NSGA-II for 50 and 100 generations, and the MOEA/D for 4000 and 8000 evaluations. Table
14 shows the results. We find that our DRL approach outperforms the baselines for similar runtimes.
NSGA-II is only slightly better on the edata instances. In other instances, DCAN achieves the best
performance. Thus, in these instances where our approach does not outperform the baselines when
they have a longer runtime, our approach does have a better performance-runtime trade-off, making
it beneficial in scheduling scenarios with limited runtimes.

N HIGHER NUMBER OF SAMPLES FOR DRL POLICIES

Table 15 shows the results for the benchmark instances using a higher number of samples for DCAN.
We find that the performance does improve and the DRL approach becomes more competitive when
given the same runtime as the NSGA-II. However, it has diminishing returns and does not provide
a substantial performance boost that makes the DCAN always better than NSGA-II as can be seen
in the edata instances. This is due to the fact that after a certain number of samples, more dupli-
cate solutions are produced. More elaborate search strategies can be explored to increase test time
performance of NMOCO methods.

O COMBINING WI-DAN AND DCAN

We also explored combining the techniques of WI-DAN with DCAN. These results are shown in
Table 16. This shows that combining the methods does not lead to a clear performance increase.
The conditional attention mechanism already provides a strong way to condition the policy on the
objective preferences, making the additional WI mechanism redundant. Hence, for simplicity, we
opted to keep them separated.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: IGD+ measures for the experiments on synthetic instances, related to Table 1

Metaheuristics Greedy Sample
Size NSGA-II MOEA/D Hyper WI-DAN DCAN Hyper WI-DAN DCAN CP-SAT

Makespan Costs
10×5 0.0713 0.1031 0.1142 0.0641 0.0574 0.0876 0.0362 0.0324 0.0030
20×5 0.0489 0.0885 0.0526 0.0424 0.0367 0.0391 0.0333 0.0297 0.0063

15×10 0.1434 0.2545 0.0804 0.0478 0.0451 0.0642 0.0348 0.0325 0.0058
20×10 0.1414 0.2720 0.0187 0.0160 0.0094 0.0161 0.0121 0.0053 0.0137

Tardiness Costs
10×5 0.0833 0.1293 0.1163 0.0995 0.0748 0.0779 0.0551 0.0406 0.0001
20×5 0.1237 0.2244 0.0671 0.0350 0.0277 0.0529 0.0173 0.0127 0.0111

15×10 0.1796 0.3227 0.0556 0.0267 0.0219 0.0478 0.0180 0.0141 0.0202
20×10 0.2049 0.3682 0.0290 0.0114 0.0137 0.0237 0.0053 0.0085 0.0452

Makespan
Flowtime Costs

10×5 0.1044 0.1695 0.1727 0.1627 0.1390 0.1409 0.1115 0.1095 0.0005
20×5 0.1560 0.2700 0.0877 0.0480 0.0473 0.0708 0.0302 0.0348 0.0109

15×10 0.1506 0.2609 0.0884 0.0310 0.0253 0.0809 0.0238 0.0189 0.0052
20×10 0.1757 0.2979 0.0609 0.0172 0.0172 0.0530 0.0104 0.0102 0.0225

Table 7: IGD+ measures for the experiments on the large synthetic instances, related to Table 2

Metaheuristics Greedy Sample
Size NSGA-II MOEA/D Hyper WI-DAN DCAN Hyper WI-DAN DCAN CP-SAT

Makespan Costs 30×10 0.1315 0.2959 0.0096 0.0173 0.0059 0.0081 0.0129 0.0031 0.0259
40×10 0.1092 0.2716 0.0091 0.0188 0.0062 0.0076 0.0129 0.0032 0.0439

Tardiness Costs 30×10 0.2114 0.3786 0.0465 0.0058 0.0120 0.0430 0.0024 0.0082 0.0788
40×10 0.1987 0.3573 0.0605 0.0039 0.0182 0.0575 0.0016 0.0126 0.1087

Makespan
Flowtime Costs

30×10 0.1859 0.3134 0.0626 0.0102 0.0067 0.0796 0.0058 0.0028 0.0515
40×10 0.1846 0.2971 0.0531 0.0095 0.0052 0.0510 0.0061 0.0019 0.0969

Table 8: IGD+ measures for the experiments on the public dataset instances for the 3-objective
problem, related to Table 3

Metaheuristics Greedy Sample
Size NSGA-II MOEA/D Hyper WI-DAN DCAN Hyper WI-DAN DCAN CP-SAT
mk 0.2403 0.3009 0.2982 0.3213 0.3072 0.2869 0.2991 0.2917 0.1449

rdata 0.2182 0.3145 0.1240 0.1695 0.1160 0.1117 0.1466 0.0915 0.0310
edata 0.2108 0.2725 0.1841 0.2365 0.1835 0.1693 0.2064 0.1437 0.0304
vdata 0.2146 0.3067 0.0894 0.1405 0.0745 0.0812 0.1251 0.0560 0.0383

Table 9: Results on synthetic JSSP instances of the same sizes as the instances used for training for
the makespan and tardiness objectives

Metaheuristics Greedy Sample
Size NSGA-II MOEA/D Hyper WI-DAN DCAN Hyper WI-DAN DCAN CP-SAT

6×6
HV 0.8703 0.8729 0.8354 0.7722 0.8002 0.8450 0.8251 0.8244 0.8778
Gap 0.85% 0.56% 4.83% 12.02% 8.84% 3.73% 6.00% 6.07% 0.00%

IGD+ 0.0057 0.0027 0.0291 0.0642 0.0486 0.0218 0.0322 0.0342 0.0014
Nr. Sol. 4.04 4.03 2.73 1.07 1.56 3.08 2.24 2.22 3.17
Time (s) 998.01 194.50 0.40 0.39 0.61 1.57 1.46 1.82 -

10×10
HV 0.8867 0.8592 0.8767 0.8412 0.8597 0.8844 0.8761 0.8817 0.9203
Gap 3.66% 6.64% 4.74% 8.60% 6.58% 3.91% 4.81% 4.20% 0.00%

IGD+ 0.0198 0.0421 0.0276 0.0473 0.0371 0.0225 0.0259 0.0242 0.0001
Nr. Sol. 4.18 4.52 3.48 1.32 2.25 4.23 3.20 4.36 5.35
Time (s) 980.67 662.93 1.66 1.72 2.35 10.91 11.69 13.49 -

15×15
HV 0.8776 0.7955 0.9003 0.8797 0.8935 0.9133 0.9074 0.9104 0.9494
Gap 7.57% 16.21% 5.18% 7.34% 5.89% 3.81% 4.42% 4.11% 0.00%

IGD+ 0.0459 0.1107 0.0310 0.0412 0.0347 0.0226 0.0245 0.0242 0.0000
Nr. Sol. 4.19 2.85 3.97 1.37 2.98 6.34 4.42 5.92 13.27
Time (s) 4823.55 1694.13 7.57 7.62 9.71 68.58 69.46 82.01 -

20×20
HV 0.8394 0.7791 0.9164 0.9108 0.9145 0.9239 0.9224 0.9245 0.9576
Gap 12.34% 18.65% 4.31% 4.89% 4.50% 3.52% 3.68% 3.46% 0.00%

IGD+ 0.0832 0.1327 0.0263 0.0291 0.0277 0.0217 0.0216 0.0215 0.0000
Nr. Sol. 3.02 2.50 4.33 3.21 4.18 6.60 5.68 6.85 10.50
Time (s) 19926.21 4561.18 28.24 28.29 30.35 267.84 275.62 278.54 -

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 10: Results on synthetic FFSP instances of the same sizes as the instances used for training
for the makespan, flowtime and costs objectives

Metaheuristics Greedy Sample
Size NSGA-II MOEA/D Hyper WI-DAN DCAN Hyper WI-DAN DCAN CP-SAT

15×5
HV 0.4492 0.3202 0.3808 0.3898 0.4014 0.4175 0.4336 0.4385 0.5541
Gap 18.92% 42.20% 31.27% 29.66% 27.56% 24.65% 21.74% 20.85% 0.00%

IGD+ 0.0892 0.1878 0.1220 0.1185 0.1034 0.0986 0.0903 0.0814 0.0013
Nr. Sol. 417.96 163.73 30.27 30.94 33.38 77.34 104.36 108.80 76.52
Time (s) 639.38 359.20 1.75 1.73 2.47 13.26 13.14 15.05 -

20×4
HV 0.4039 0.2925 0.4057 0.3082 0.4200 0.4374 0.3647 0.4521 0.5424
Gap 25.54% 46.08% 25.20% 43.17% 22.56% 19.35% 32.76% 16.65% 0.00%

IGD+ 0.0970 0.1918 0.0553 0.0837 0.0495 0.0420 0.0557 0.0355 0.0098
Nr. Sol. 477.05 207.32 46.69 13.02 50.03 151.83 111.49 177.35 75.71
Time (s) 699.80 389.60 2.13 2.20 2.65 16.84 16.92 17.94 -

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 11: Results on synthetic instances from instance set SD2 of the same sizes as the instances
used for training

Metaheuristics Greedy Sample
Size NSGA-II MOEA/D Hyper WI-DAN DCAN Hyper WI-DAN DCAN CP-SAT

M
ak

es
pa

n
C

os
ts

10×5
HV 0.6245 0.5691 0.6130 0.6292 0.6254 0.6494 0.6740 0.6718 0.6960
Gap 10.27% 18.22% 11.93% 9.59% 10.14% 6.69% 3.16% 3.47% 0.00%

IGD+ 0.0487 0.0815 0.0452 0.0384 0.0395 0.0263 0.0167 0.0175 0.0232
Nr. Sol. 46.12 40.07 20.35 17.96 17.65 46.78 55.96 52.77 32.69
Time (s) 260.19 254.54 0.57 0.56 0.87 2.33 2.30 2.97 -

20×5
HV 0.4554 0.4082 0.4917 0.3237 0.4926 0.5059 0.4732 0.5148 0.4875
Gap 6.59% 16.28% -0.86% 33.60% -1.03% -3.77% 2.95% -5.59% 0.00%

IGD+ 0.0491 0.0858 0.0203 0.1471 0.0209 0.0122 0.0363 0.0084 0.0259
Nr. Sol. 91.79 61.59 33.04 9.84 26.67 91.68 56.30 83.89 43.82
Time (s) 542.25 617.20 1.45 1.46 2.13 7.94 8.46 10.62 -

15×10
HV 0.4846 0.3724 0.5966 0.6312 0.6372 0.6177 0.6659 0.6677 0.7402
Gap 34.54% 49.69% 19.41% 14.72% 13.92% 16.55% 10.03% 9.80% 0.00%

IGD+ 0.1501 0.2307 0.0558 0.0413 0.0393 0.0455 0.0263 0.0258 0.0088
Nr. Sol. 96.38 53.51 25.47 22.27 22.39 56.81 64.89 63.71 54.11
Time (s) 1651.52 1033.59 2.92 2.95 3.94 21.12 22.93 26.69 -

20×10
HV 0.4294 0.3183 0.6084 0.6332 0.6374 0.6234 0.6514 0.6540 0.6521
Gap 34.15% 51.19% 6.70% 2.90% 2.25% 4.40% 0.10% -0.29% 0.00%

IGD+ 0.1458 0.2291 0.0237 0.0161 0.0149 0.0167 0.0080 0.0072 0.0167
Nr. Sol. 111.64 57.39 33.90 28.39 31.72 95.71 92.10 102.02 49.22
Time (s) 2744.02 1658.01 4.83 5.09 6.20 37.04 41.29 45.56 -

Ta
rd

in
es

s
C

os
ts

10×5
HV 0.6458 0.5734 0.6210 0.6453 0.6377 0.6578 0.6893 0.6892 0.7614
Gap 15.18% 24.70% 18.44% 15.25% 16.25% 13.60% 9.48% 9.49% 0.00%

IGD+ 0.0656 0.1113 0.0681 0.0573 0.0606 0.0496 0.0345 0.0337 0.0019
Nr. Sol. 83.06 47.34 23.26 21.37 19.48 48.39 62.02 62.61 40.45
Time (s) 235.78 256.09 0.61 0.59 0.91 2.63 2.71 3.34 -

20×5
HV 0.4736 0.3871 0.5541 0.5793 0.5842 0.5760 0.6058 0.6076 0.6226
Gap 23.94% 37.83% 11.00% 6.95% 6.16% 7.48% 2.70% 2.40% 0.00%

IGD+ 0.1039 0.1718 0.0405 0.0275 0.0250 0.0271 0.0125 0.0121 0.0086
Nr. Sol. 100.59 64.46 29.20 29.13 28.64 59.60 67.20 69.97 34.56
Time (s) 531.53 622.17 1.58 1.59 2.24 9.61 10.15 11.95 -

15×10
HV 0.4595 0.3490 0.5922 0.6238 0.6171 0.6126 0.6515 0.6408 0.6990
Gap 34.26% 50.06% 15.27% 10.76% 11.72% 12.36% 6.80% 8.32% 0.00%

IGD+ 0.1458 0.2252 0.0381 0.0271 0.0307 0.0286 0.0163 0.0212 0.0154
Nr. Sol. 120.96 62.03 33.90 33.76 36.77 80.95 102.46 98.34 44.81
Time (s) 1651.95 1033.17 3.17 3.46 4.46 24.37 26.05 30.11 -

20×10
HV 0.3994 0.2909 0.5916 0.6314 0.6320 0.6083 0.6507 0.6482 0.6337
Gap 36.98% 54.09% 6.65% 0.37% 0.26% 4.01% -2.68% -2.28% 0.00%

IGD+ 0.1575 0.2361 0.0282 0.0138 0.0140 0.0207 0.0059 0.0071 0.0225
Nr. Sol. 123.98 63.14 38.87 40.15 41.27 93.95 109.92 105.89 37.75
Time (s) 2739.73 1655.64 5.41 5.65 7.01 42.81 46.89 52.89 -

M
ak

es
pa

n
Fl

ow
tim

e
C

os
ts

10×5
HV 0.4531 0.3789 0.3868 0.3594 0.3918 0.4092 0.4123 0.4340 0.5158
Gap 12.16% 26.55% 25.01% 30.32% 24.05% 20.66% 20.07% 15.87% 0.00%

IGD+ 0.0467 0.0822 0.0543 0.0590 0.0507 0.0399 0.0355 0.0322 0.0118
Nr. Sol. 479.91 193.70 51.90 23.75 49.21 137.85 150.34 183.25 75.62
Time (s) 248.22 260.93 0.83 0.82 1.11 5.05 5.03 5.65 -

20×5
HV 0.2759 0.2212 0.3416 0.3383 0.3608 0.3428 0.3701 0.3827 0.3884
Gap 28.96% 43.06% 12.04% 12.91% 7.10% 11.74% 4.70% 1.46% 0.00%

IGD+ 0.1182 0.1886 0.0303 0.0287 0.0197 0.0195 0.0160 0.0116 0.0173
Nr. Sol. 692.81 228.96 62.85 45.76 64.60 182.79 220.66 242.45 87.55
Time (s) 565.30 626.18 2.51 2.60 3.20 18.76 19.60 21.41 -

15×10
HV 0.2831 0.1992 0.4024 0.4171 0.4174 0.4217 0.4369 0.4354 0.4705
Gap 39.84% 57.67% 14.47% 11.37% 11.29% 10.37% 7.15% 7.47% 0.00%

IGD+ 0.1217 0.1904 0.0206 0.0191 0.0197 0.0146 0.0122 0.0134 0.0140
Nr. Sol. 360.96 120.93 65.32 46.25 64.42 262.92 277.51 289.54 88.82
Time (s) 1668.57 1009.72 4.40 4.57 5.53 34.83 37.60 41.35 -

20×10
HV 0.2333 0.1597 0.3725 0.3878 0.3917 0.3874 0.4097 0.4133 0.3841
Gap 39.25% 58.43% 3.01% -0.96% -1.99% -0.86% -6.66% -7.60% 0.00%

IGD+ 0.1301 0.2008 0.0250 0.0177 0.0172 0.0196 0.0117 0.0114 0.0297
Nr. Sol. 398.97 119.22 67.14 61.14 68.45 275.70 285.84 305.61 83.85
Time (s) 2757.34 1634.10 7.48 7.70 9.07 62.10 66.94 72.69 -

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 12: Results on synthetic instances for the 4 objectives makespan, flowtime, earliness, and
costs

Metaheuristics Greedy Sample
Size NSGA-II MOEA/D Hyper WI-DAN DCAN Hyper WI-DAN DCAN CP-SAT

10×5
HV 0.5628 0.4785 0.3871 0.3618 0.4333 0.4306 0.4508 0.4773 0.6531
Gap 13.82% 26.74% 40.73% 44.60/% 33.65% 34.07% 30.97% 26.92% 0.00%

IGD+ 0.0812 0.1106 0.1344 0.1449 0.1076 0.1085 0.0966 0.0855 0.0062
Nr. Sol. 1038.92 147.41 50.71 7.23 47.49 178.60 155.77 183.66 73.54
Time (s) 255.13 267.81 0.92 0.95 1.24 5.89 5.87 6.12 -

20×5
HV 0.3381 0.2561 0.3545 0.3849 0.3895 0.3785 0.4177 0.4147 0.5068
Gap 33.28% 49.47% 30.05% 24.05% 23.15% 25.32% 17.58% 18.17% 0.00%

IGD+ 0.1388 0.2044 0.0808 0.0661 0.0473 0.0620 0.0385 0.0326 0.0094
Nr. Sol. 695.60 111.38 61.37 51.52 51.95 209.96 186.91 165.83 64.14
Time (s) 537.58 629.61 2.87 2.83 3.51 23.07 22.90 23.92 -

15×10
HV 0.4599 0.3283 0.4447 0.4582 0.4611 0.4653 0.4768 0.4826 0.7106
Gap 35.29% 53.81% 37.42% 35.52% 35.12% 34.53% 32.90% 32.09% 0.00%

IGD+ 0.1203 0.2069 0.1083 0.0979 0.0999 0.0978 0.0899 0.0902 0.0084
Nr. Sol. 399.58 55.32 63.34 53.10 59.52 250.78 212.46 213.13 90.31
Time (s) 1652.62 1034.72 5.15 5.01 6.05 43.59 43.11 45.12 -

20×10
HV 0.3828 0.2572 0.5325 0.5239 0.5500 0.5436 0.5341 0.5660 0.6485
Gap 40.97% 60.34% 17.89% 19.22% 15.19% 16.18% 17.65% 12.73% 0.00%

IGD+ 0.1521 0.2736 0.0166 0.0156 0.0163 0.0129 0.0119 0.0113 0.0085
Nr. Sol. 185.30 45.69 66.12 52.29 55.78 256.21 168.87 181.97 79.90
Time (s) 2758.37 1697.82 9.36 9.18 10.33 81.66 77.99 82.74 -

Table 13: Results on public dataset instances for the 2-objective problems using the 15x10 policies

Metaheuristics Greedy Sample
Size NSGA-II MOEA/D Hyper WI-DAN DCAN Hyper WI-DAN DCAN CP-SAT

M
ak

es
pa

n
C

os
ts

mk
HV 0.5575 0.4428 0.4844 0.4784 0.4894 0.5254 0.5231 0.5387 0.6772
Gap 17.67% 34.61% 28.47% 29.35% 27.73% 22.41% 22.76% 20.45% 0.00%

IGD+ 0.1709 0.3112 0.3014 0.3086 0.3008 0.2797 0.2829 0.2749 0.1943
Nr. Sol. 30.33 26.60 7.20 6.00 8.10 12.10 13.70 14.80 25.00
Time (s) 1437.42 1148.88 3.09 3.12 4.08 23.81 24.70 29.03 -

rdata
HV 0.8128 0.7795 0.8443 0.8479 0.8473 0.8531 0.8549 0.8553 0.8642
Gap 5.94% 9.79% 2.29% 1.89% 1.95% 1.27% 1.07% 1.03% 0.00%

IGD+ 0.1286 0.1728 0.0504 0.0469 0.0474 0.0416 0.0398 0.0395 0.0306
Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Time (s) 1137.94 1153.30 3.52 3.75 4.85 28.41 30.28 35.03 -

edata
HV 0.7967 0.7799 0.7843 0.7915 0.7960 0.7943 0.8076 0.8116 0.8329
Gap 4.35% 6.36% 5.83% 4.96% 4.43% 4.63% 3.04% 2.55% 0.00%

IGD+ 0.1090 0.1410 0.0808 0.0735 0.0691 0.0639 0.0575 0.0534 0.0322
Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Time (s) 1299.37 1131.10 3.86 3.73 4.75 30.15 30.00 34.68 -

vdata
HV 0.8685 0.8379 0.9093 0.9104 0.9100 0.9112 0.9119 0.9114 0.9101
Gap 4.57% 7.94% 0.09% -0.03% 0.01% -0.12% -0.20% -0.13% 0.00%

IGD+ 0.0997 0.1413 0.0210 0.0199 0.0202 0.0190 0.0183 0.0189 0.0202
Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Time (s) 1115.27 1212.02 3.58 3.83 4.93 28.44 31.22 35.92 -

Ta
rd

in
es

s
C

os
ts

mk
HV 0.5605 0.4282 0.5313 0.4867 0.5196 0.5559 0.5370 0.5548 0.7454
Gap 24.81% 42.55% 28.72% 34.71% 30.30% 25.42% 27.96% 25.58% 0.00%

IGD+ 0.2176 0.3012 0.2713 0.2961 0.2798 0.2593 0.2671 0.2558 0.1682
Nr. Sol. 47.80 30.60 14.90 7.90 11.90 22.60 17.20 20.90 31.60
Time (s) 1758.80 1129.41 3.46 3.46 4.43 28.07 28.08 32.25 -

rdata
HV 0.8335 0.7726 0.8733 0.8896 0.8700 0.8811 0.8952 0.8776 0.9109
Gap 8.49% 15.18% 4.12% 2.34% 4.49% 3.27% 1.72% 3.65% 0.00%

IGD+ 0.2420 0.3381 0.0802 0.0642 0.0838 0.0727 0.0587 0.0762 0.0432
Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Time (s) 1095.41 1151.52 3.93 4.17 5.33 33.11 34.72 39.60 -

edata
HV 0.8180 0.7798 0.8262 0.8432 0.8152 0.8409 0.8574 0.8355 0.8915
Gap 8.24% 12.53% 7.33% 5.42% 8.56% 5.68% 3.82% 6.28% 0.00%

IGD+ 0.2372 0.3032 0.1117 0.0947 0.1221 0.0973 0.0808 0.1026 0.0477
Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Time (s) 1164.60 1129.98 3.99 4.20 5.24 32.76 34.81 39.03 -

vdata
HV 0.8848 0.8223 0.9258 0.9346 0.9177 0.9287 0.9376 0.9214 0.9354
Gap 5.41% 12.10% 1.02% 0.09% 1.89% 0.72% -0.24% 1.50% 0.00%

IGD+ 0.2021 0.2993 0.0435 0.0347 0.0516 0.0406 0.0317 0.0479 0.0340
Nr. Sol. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Time (s) 1074.69 1192.19 4.08 4.21 5.21 33.00 34.66 39.50 -

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 14: Results on public dataset instances for the 3-objective problem using the 15×10 policies
with less generations for the baseline algorithms

Metaheuristics Greedy Sample
Size NSGA-II50 NSGA-II100 MOEA/D4000 MOEA/D8000 WI-DAN DCAN WI-DAN DCAN

mk
HV 0.2522 0.2839 0.1962 0.2141 0.2519 0.2743 0.2878 0.3047
Gap 50.40% 44.16% 61.41% 57.90% 50.46% 46.06% 43.39% 40.07%

IGD+ 0.2924 0.2766 0.3399 0.3323 0.3213 0.3072 0.2991 0.2917
Nr. Sol. 85.60 123.90 49.00 57.80 18.10 27.50 51.10 84.50
Time (s) 87.24 199.54 55.92 112.11 4.78 5.73 41.10 44.05

rdata
HV 0.5572 0.5904 0.4940 0.5145 0.5900 0.5809 0.6033 0.6052
Gap 23.63% 19.08% 32.29% 29.48% 19.14% 20.39% 17.31% 17.06%

IGD+ 0.3125 0.2829 0.3703 0.3538 0.1695 0.1160 0.1466 0.0915
Nr. Sol. 7.05 7.50 5.53 5.35 6.08 6.73 9.28 8.90
Time (s) 103.34 205.98 57.21 114.50 5.68 6.86 50.05 54.29

edata
HV 0.5594 0.5861 0.5201 0.5297 0.5212 0.5207 0.5427 0.5463
Gap 21.62% 17.89% 27.12% 25.78% 26.98% 27.04% 23.96% 23.46%

IGD+ 0.2856 0.2649 0.3236 0.3194 0.2365 0.1835 0.2064 0.1437
Nr. Sol. 6.73 8.00 5.20 5.48 3.95 4.23 6.23 5.95
Time (s) 103.29 207.07 56.16 112.97 5.66 6.80 49.50 54.21

vdata
HV 0.6340 0.6556 0.5436 0.5646 0.6799 0.6701 0.6800 0.6855
Gap 19.82% 17.09% 31.25% 28.59% 14.01% 15.25% 14.00% 13.30%

IGD+ 0.2906 0.2705 0.3666 0.3531 0.1405 0.0745 0.1251 0.0560
Nr. Sol. 7.60 8.78 5.175 5.85 7.28 7.98 10.43 10.85
Time (s) 104.50 208.22 60.10 120.29 5.65 6.81 48.82 54.10

Table 15: Results on public dataset instances for the 3-objective problem using the 15×10 policies
with more inference samples per preference

Metaheuristics Sample
Size NSGA-II MOEA/D 10 100 400 CP-SAT

mk

HV 0.3416 0.2517 0.3047 0.3258 0.3351 0.5085
Gap 32.82% 50.49% 40.07% 35.93% 34.09% 0.00%

IGD+ 0.2403 0.3009 0.2917 0.2753 0.2697 0.1449
Nr. Sol. 275.70 94.30 84.50 162.30 200.40 68.90
Time (s) 1787.04 1122.09 44.05 411.15 1647.12 -

rdata

HV 0.6586 0.5652 0.6367 0.6487 0.6561 0.7296
Gap 9.73% 22.53% 12.73% 11.10% 10.07% 0.00%

IGD+ 0.2182 0.3145 0.0915 0.0810 0.0754 0.0310
Nr. Sol. 8.98 6.98 9.48 11.72 14.28 15.18
Time (s) 2120.14 1164.22 47.79 485.12 1938.43 -

edata

HV 0.6439 0.5773 0.5689 0.5811 0.5883 0.7137
Gap 9.79% 19.11% 20.30% 18.58% 17.58% 0.00%

IGD+ 0.2108 0.2725 0.1437 0.1326 0.1270 0.0304
Nr. Sol. 10.40 6.70 7.43 9.40 10.55 16.00
Time (s) 2106.18 1140.89 47.78 486.01 1944.45 -

vdata

HV 0.7180 0.6133 0.7378 0.7474 0.7524 0.7907
Gap 9.20% 22.44% 6.69% 5.47% 4.84% 0.00%

IGD+ 0.2146 0.3067 0.0560 0.0482 0.0451 0.0383
Nr. Sol. 11.70 6.50 10.90 12.60 15.15 12.03
Time (s) 2236.94 1189.89 48.26 487.44 1957.78 -

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 16: Performance comparison between DCAN and WI-DCAN, the architecture combining the
ideas of WI-DAN and DCAN

10x5 20x5 15x10 20x10

Greedy Sample Greedy Sample Greedy Sample Greedy Sample

Makespan Costs
DCAN HV 0.7104 0.7647 0.5599 0.5724 0.7723 0.8002 0.8083 0.82

Nr. Sol. 3.46 7.77 4.04 6.82 9.14 15.42 13.85 22.66

WI-DCAN HV 0.7255 0.7644 0.5571 0.5716 0.7746 0.8012 0.8122 0.8209
Nr. Sol. 4.4500 8.4500 4.3100 6.8600 9.6000 16.2200 15.6100 24.7200

Tardiness Costs
DCAN HV 0.746 0.8272 0.6396 0.67 0.8094 0.8338 0.8112 0.8306

Nr. Sol. 4.36 12.89 10.88 19.51 17.04 32.39 20.03 34.01

WI-DCAN HV 0.7668 0.8310 0.6359 0.66729 0.7914 0.8211 0.8147 0.8295
Nr. Sol. 6.7000 16.2200 8.0800 16.4800 14.2800 29.4800 20.3700 34.7100

Makespan
Flowtime Costs

DCAN HV 0.4647 0.513 0.4318 0.4529 0.5793 0.6025 0.6142 0.6314
Nr. Sol. 22.64 52.84 32.96 81.77 43.96 121.23 57.83 179.74

WI-DCAN HV 0.4988 0.5484 0.4028 0.4307 0.5883 0.6061 0.6015 0.6170
Nr. Sol 23.6 65.77 33.52 79.74 44.56 112.75 55.03 175.13

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

100 110 120 130 140 150 160 170
Makespan

460

480

500

520
C

os
ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(a) 10×5

180 200 220 240 260 280 300
Makespan

950

975

1000

1025

1050

1075

1100

C
os

ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(b) 20×5

150 200 250 300 350
Makespan

1300

1350

1400

1450

1500

1550

1600

C
os

ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(c) 15×10

200 250 300 350 400 450 500 550
Makespan

1500

1600

1700

1800

1900

2000
C

os
ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(d) 20×10

150 200 250 300 350
Makespan

1300

1350

1400

1450

1500

1550

1600

C
os

ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(e) 30×10

200 250 300 350 400 450 500 550
Makespan

1500

1600

1700

1800

1900

2000

C
os

ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(f) 40×10

Figure 3: Visualization of solutions of randomly selected instances from different sizes for the
makespan and costs

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

100 150 200 250 300 350
Total Tardiness

400

420

440

460

480
C

os
ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(a) 10×5

1000 1500 2000 2500 3000 3500
Total Tardiness

925

950

975

1000

1025

1050

1075

C
os

ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(b) 20×5

0 500 1000 1500 2000 2500 3000
Total Tardiness

1300

1350

1400

1450

1500

1550

1600

C
os

ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(c) 15×10

500 1000 1500 2000 2500 3000 3500 4000
Total Tardiness

1600

1700

1800

1900

2000
C

os
ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(d) 20×10

2000 4000 6000 8000 100001200014000
Total Tardiness

2700

2750

2800

2850

2900

2950

3000

3050

3100

C
os

ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(e) 30×10

5000 10000 15000 20000 25000 30000
Total Tardiness

3400

3500

3600

3700

3800

3900

4000

4100

4200

C
os

ts

NSGA-II
MOEA/D
CP-SAT
WI-DAN (greedy)
WI-DAN (sampling)
DCAN (greedy)
DCAN (sampling)

(f) 40×10

Figure 4: Visualization of solutions of randomly selected instances from different sizes for the
tardiness and costs

29

	Introduction
	Related Work
	Background
	Multi-Objective Combinatorial Optimization
	Multi-Objective Flexible Job Shop Scheduling

	Methodology
	Markov Decision Process
	Decomposition-Based PPO
	Neural Network Architecture

	Experiments
	Results on Synthetic Instances
	Results on Benchmark Instances
	Effect of Subproblem Quantity
	Ablation Study

	Conclusion
	Detailed Description of State Features
	Theoretical Alignment of Weighted Sum Reward
	Decomposition-Based PPO Loss
	Visualization of Network Architectures
	Description of Machine Intensity Coefficient
	Hypervolume Indicator
	IGD+ Performance Metric
	Results on Different Scheduling Problems
	Additional Synthetic Instances
	Visualization of Results
	Results on 4-Objective Instances
	Results on Benchmark Instances for 2-Objective Problems
	Shorter Inference Times for Baseline Methods
	Higher Number of Samples for DRL policies
	Combining WI-DAN and DCAN

