
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PATCHING GAPS IN LLM REASONING WITH
INTERVENTIONAL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) training of large language models (LLMs) is limited
by the policy’s ability to generate rollouts with non-zero rewards: without such
rewards, the policy is not updated and learning is stalled on hard problems, which
are problems that the policy consistently fails to sample any correct rollouts for.
We find that many hard problems remain unsolved due to the repeated generation
of incorrect intermediate steps in a long reasoning trace; identifying and fixing
these requires performing better credit assignment. But existing approaches for
credit assignment are either impractical or impose a substantial data-writing burden
on oracles (e.g., humans). In this paper, we introduce Interventional Training
(InT), a framework that leverages single-step oracle interventions to improve LLM
reasoning. Given a reasoning attempt and ground-truth answer, the oracle detects
and then provides language feedback on a single intermediate reasoning step,
which is much cheaper than obtaining a full reasoning trace. InT then patches
the LLM by running supervised fine-tuning on the on-policy rollout up to the
error, followed by the correction from the oracle. RL on this patched model now
generates counterfactual traces and with merely≈100 interventions from the oracle,
InT solves 16% more hard test problems that were previously unsolved (only zero
rewards) and also improves performance across multiple standard evals.

1 INTRODUCTION

Post-training large language models (LLMs) with reinforcement learning (RL) has proven to be a
highly effective strategy for improving their reasoning capabilities. In a typical RL recipe, we update
the current policy on a given problem by first sampling from the policy multiple rollouts conditioned
on the problem, and then positively reinforcing the policy on correct rollouts while down-weighting
the likelihood of incorrect ones (DeepSeek-AI et al., 2025). However, if no rollout ends up being
correct, all traces receive zero reward. This poses a barrier to scaling RL to harder problems where
the policy fails to acquire any non-zero reward. When faced with such a scenario, a practitioner
could modify pre-training or mid-training run typically before RL to retrain a base model capable of
attaining reward, but the effect of these procedures on subsequent RL is still not well understood.

What do the reasoning traces on such problems unsolved during training look like? While several such
problems lie far outside the scope of the pre-trained model’s capabilities, we find that a substantial
(near 30%) chunk of problems that we cannot train on today are those where the model makes an
execution mistake in its trace, which derails subsequent reasoning, and results in an incorrect answer
even with several parallel attempts. Such mistakes are more likely to occur at long lengths that are
composed of many steps. This raises a key question: how can we still train models on hard problems
on which they fail to sample correct traces largely due to execution errors?

In principle, addressing this challenge requires addressing the problem of credit assignment: if we
could pinpoint the intermediate step at which a reasoning trace goes astray, and feed in a more accurate
alternate step, we could train the model to correct its course from that point onward. However, credit
assignment in long reasoning traces is notoriously difficult. One way of identifying an incorrect
step is to sample multiple rollouts from each prefix in the long trace, and find the step that drops the
probability of success, but this can be a prohibitively high sampling cost for long length reasoning
models (Kazemnejad et al., 2024). Another option is to train process reward models (PRMs) (Setlur
et al., 2024b; Lightman et al., 2023b) on oracle data and use them to directly evaluate intermediate
reasoning steps. Training accurate PRMs often is quite sample inefficient (Luo et al., 2024), and can

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

!

One-step intervention
!!"#~#$%(% |', !&!)

Generate interventions SFT

!~*	(% |')

Pa
ss

@
k

k
"!"#$

'

❌

❌

❌

❌

❌

✓
❌

❌

"%&'

…

RL

'
✓
✓
❌

✓~*	(% |', !&! , !!"#)

!!"#$ Performance

InT + RL
Distill + RL
Base + RL

Figure 1: Intervention training for patching LLMs during RL. Instead of relying on full expert reasoning
traces or attempting to find rare correct rollouts during RL, InT introduces single-step, oracle interventions
that “patch” incorrect intermediate steps in model-generated reasoning traces. Conditioned on these localized
corrections, the model can generate counterfactual continuations that succeed where the original failed. We then
distill these interventions into the model via supervised fine-tuning before resuming RL, enabling effective credit
assignment and continued progress even on problems that were previously unsolvable with standard RL.

be particularly hard for long reasoning traces (Kim et al., 2025). As a result, existing approaches to
credit assignment remain impractical for long reasoning traces. That said, we can improve over these
approaches if we assume access to an oracle (e.g., a human) that provides some kind of intermediate
feedback on just the incorrect step, and if the number of calls to such an oracle is forced to be limited.

Motivated by this, we introduce Interventional Training (InT) (Figure 1), an approach for effective
credit assignment in long reasoning traces from a model that has plateaued during RL. Here, instead
of requesting complete and long expert reasoning traces, InT solicits single-step interventions from
an oracle (e.g., a human, another LLM, or a specialized verifier). Given a model-generated reasoning
attempt and the ground-truth answer, the oracle replaces exactly one critical and incorrect intermediate
step with a corrected version (e.g., fixing an incorrect approximation in a long math answer, see
Fig. 2). Conditioned on this intervention, the model can then generate alternate counterfactual traces
that may succeed where the original failed. In this way, interventions provide a low-cost mechanism
to discover correct reasoning traces. Next, InT internalizes these interventions into the model weights
by running supervised fine-tuning on the interventions, and then continues the RL run that had
previously plateaued. By “patching” the model on single-step interventions in this manner, InT
makes it possible for the model to attain non-zero reward signals even on otherwise unsolvable
problems, enabling effective training on problems that are inaccessible with RL.

Since we are using the oracle for localized credit assignment, why not use the oracle to generate
entire reasoning traces on the hard problem that we can clone? Requesting localized interventions
requires far less data-writing effort than producing full ground-truth solutions in the model’s output
format, and can flexibly incorporate feedback from humans, specialized tools that an LLM interacts
with, or other oracle models. Moreover, we find that even if we had full length reasoning traces,
since they typically lie outside our base model’s distribution, cloning them leads to memorization and
completely distorts the base model’s next-token distribution.

By running RL on a set of 64 training problems, InT achieves a 6.09% (3.12% to 9.03%) gain in
pass@64 and solves 14% more problems on a challenging held out test set. In contrast, simply
distilling the oracle or running SFT on oracle data achieves only a 3.51% gain in pass@64. On
standard reasoning benchmarks, InT leads to an average improvement of 1.92% across 7 standard
math reasoning benchmarks, showing that patching the model with InT does not degrade existing
model capabilities. These results show that InT offers a simple, deterministic way to patch model
behavior, improving performance on new problems while preserving or improving existing reasoning
capabilities.

2 RELATED WORK

Credit assignment in LLM reasoning. The effectiveness of long length RL with outcome re-
wards (DeepSeek-AI et al., 2025) is often crippled by credit assignment: it is unclear which interme-
diate steps in a long response should be “credited” for the outcome reward. While one might surmise
that sampling enough rollouts should address this problem, note that the difficulty of credit assignment
also greatly increases with the horizon (Setlur et al., 2025a). While most methods reward each token
with the outcome level advantage (Yu et al., 2025), others use process reward models (PRMs) to
assign dense token or step-level rewards (Lightman et al., 2023a; Wang et al., 2024; Qu et al., 2025b)
that can reinforce correct steps and promote unlearning of incorrect ones. Although PRMs may

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

improve RL compute efficiency (Setlur et al., 2024b;a), we often require costly rollouts (Luo et al.,
2024; Kazemnejad et al., 2024) to reliably estimate these reward signals. We instead leverage oracles
to detect individual mistakes, bypassing the compute required to train entirely new PRMs or to
perform full credit assignment on the full reasoning trace; even when the oracle is itself a reasoning
model, it is given the ground-truth response and only needs to perform a comparative analysis to
identify an intervention. While our method shares the general idea of using generative models as
verifiers (Zhang et al., 2024; Liu et al., 2025; Kim et al., 2025; Khalifa et al., 2025), it is distinct in
that we task the oracle with explicitly pointing out the location of a single, key mistake, rather than
verifying every step and judging the solution. Finally, we use the outputs of the oracle to improve RL
training rather than inference-time methods (e.g., best-of-N search), which prior works focus on.

Learning from natural language feedback. Another related line of work explores utilizing natural
language feedback to improve RL training. Such works typically leverage the feedback to refine
rollouts that are then used to improve the policy. Chen et al. (2024) combine human feedback and
a separate refinement model to improve policy-generated outputs that are then distilled back into
the policy via SFT. Yan et al. (2025) use a teacher model to generate correction trajectories for off-
policy RL, while Zhang et al. (2025b) conduct critique-guided self-refinement to generate correction
trajectories, again for use in off-policy RL. Unlike these works, our work considers generating short,
targeted natural language feedback to correct individual steps within what are otherwise purely
on-policy trajectories. As we discuss later on, this allows us to achieve substantial improvements
without making significant changes to the standard RL training recipe.

Intervention training outside of LLMs. Applying interventions at exact points of failure has been
explored in domains outside of LLM training, for example, in dexterous manipulation (Hu et al.,
2025) and imitation learning (Kelly et al., 2019). The class of intervention methods across these
different domains generally shows improved data efficiency and faster convergence of reward curves
compared against naive behavior cloning method due to superior credit assignment. In our work, we
examine whether applying such ideas to language model RL training can reap similar benefits.

3 PRELIMINARIES AND PROBLEM STATEMENT

Figure 2: Example execution error of Qwen3-4B-Instruct. Note
that the model deduces an incorrect conclusion from going over
1000 and continues trying small primes, which an oracle interven-
tion (via our approach, InT) addresses. We find that 40.6% stem
from execution errors. This showcases the potential of fixing execu-
tion errors directly for RL, without needing to rerun pre-training or
mid-training.

Reasoning LLMs still struggle to
solve certain training problems. One
might expect that training on hard
problems during RL helps improve
the model’s success rate on analo-
gous hard problems at test time, which
makes it important to be able to derive
learning signal on some such prob-
lems. To better understand the fail-
ure modes of LLMs on difficult rea-
soning questions, we inspect rollouts
from the reasoning LLM Qwen3-4B-
Instruct and find that a substantial
number of model failures stem from a
failure of execution and an inability to
recover from failure: even though the
model often takes a correct high-level
approach, it gets derailed during an in-
termediate step when attempting to ex-
ecute on this high-level approach. We
demonstrate some examples of these
failures in Figure 2 and Appendix B.
As shown in Figure 4 and as noted
by Sinha et al. (2025), failure in ex-
ecution (vs. high-level strategy) is a
common occurrence in long reasoning traces, especially later in the trajectory. Our objective is to
improve model performance on challenging reasoning tasks in which such execution failures result in
scarce positive rewards for RL.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Notation. To build our approach, we first define some relevant notation. LLM training for reasoning
typically involves an LLM π, a binary reward r(x,y) ∈ {0, 1} for inputs x ∼ ρ, and model outputs
y ∼ π(· | x). Common paradigms for training LLMs include supervised fine-tuning (SFT) and
online policy gradient methods (henceforth referred to as RL). SFT fine-tunes a model by maximizing
likelihood on a dataset (ideally consisting of correct traces y for problems x). RL, in contrast, samples
candidate rollouts from its own policy distribution (i.e., on-policy) and trains to maximize the reward
of these rollouts. In its simplest form, RL training for LLMs uses the policy gradient:

θ′ ← θ + α · Ey∼π̃(·|x)

[
r(x,y) · ∇θ log πθ(y | x)

]
, (1)

where π̃ is the policy used to generate samples that go in for training. In RL methods such as GRPO,
π̃ = πold is a periodically updated copy of π, and the reward r(x,y) is normalized by subtracting a
baseline to form the advantage, which serves as the multipler to ∇π log π instead of r:

Ai(x,yi) = r(x,yi)− 1/n
∑
i

r̄(x,yi).

0 200 400 600 800 10000.0

6.4

12.9

19.3
Mean: 135.8

0 2500 5000 7500 10000 12500 15000
Number of Tokens

0.0

3.2

6.4

9.6 Mean: 6835.6
Pe

rc
en

ta
ge

Figure 3: Interventions are short. Top: Lengths
of interventions typically span under 200 tokens,
while full solutions are much longer (bottom).

Credit assignment. As discussed above, a substan-
tial fraction of errors made by models on the training
distribution correspond to execution errors. This nat-
urally means that while some tokens/steps in a model
response are on the right track towards solving the
problem at hand, a different subset of tokens derails
the model onto not attaining the right final answer. If
we could identify the identity of these tokens/steps
and the extent of their influence (i.e., “credit”) in
affecting the correctness of the final answer, then
this problem could be solved as long as the model is
able to find alternative steps that do actually succeed.
This process is called credit assignment (Setlur et al.,
2024a). RL algorithms rely on self-generated rollouts
to guide the process of credit assignment.

However, performing credit assignment solely from
outcome-level rewards is highly challenging. When the advantage is positive, every token probability
π(yi | x,y<i) across the sequence is equally reinforced; when it is negative, all tokens are equally
discouraged. Over long reasoning traces, such uniform updates are not effective at performing credit
assignment: tokens that played no role in reaching the solution may still be upweighted (“higher
credit”), while tokens that were correct but followed by later mistakes may be suppressed (“lower
credit”). Even when we know which tokens failed at a particular problem, we need to search for other
steps to pursue to get to a correct answer. On hard problems, this noisecan overwhelm the signal,
hindering the model from making progress. Correctly assigning credit is therefore crucial.

Problem Statement
A significant fraction (40.6%) of mistakes made by LLMs on hard problems stem from
execution errors. We aim to address these errors by performing better credit assignment
(reinforcing correct steps, unlearning incorrect steps, and finding alternative completions).

4 INT: INTERVENTIONAL TRAINING FOR CREDIT ASSIGNMENT

Given a problem, when a reasoning LLM repeatedly falters, one of the most direct approaches of
“patching” it on this problem is to behavior clone oracle (e.g., human) generated off-policy solutions
to this problem. However, oracle full-length solutions to problems are highly off-policy with respect
to the policy itself. Prior works argue (Zhang et al., 2025a; Setlur et al., 2025a; Kang et al., 2024), and
we further show, that distilling such data interferes with the model’s reasoning capabilities, especially
on out-of-distribution problems. Is there a simpler, more data-efficient, and effective way to leverage
oracles for improving credit assignment? In this section, we develop our approach for doing so.

Our key idea, InT (interventional training), is to structure oracle feedback as single-step corrective
interventions on the base model’s (model plateaued during RL training) output reasoning trace: each
intervention provides short natural language feedback at an intermediate step proposed by the base
model, guiding the subsequent completion, particularly in ways different from simply continuing the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

rollout (see illustration in Fig 1). These interventions are easy to obtain and avoid the type mismatch
problem described above since they are simply ∼100 tokens long (Fig. 3). Our experiments show
that interventions provide asample-efficient mechanism for incorporating oracle feedback to do credit
assignment. With≤80 interventions, we improve accuracy on tasks where the base model previously
obtained no reward, and also advance state-of-the-art across various reasoning benchmarks.

4.1 INT INTERACTION PROTOCOL

To instantiate InT, we collect data that pinpoints where a model’s reasoning trace first goes wrong
and provides a corrective step at that location. In principle, the corrective step of the intervention
comes from an oracle, which we simulate using a larger, proprietary reasoning model denoted by
µcr. This oracle does not need to be capable of solving the problem by itself, but it should be capable
of comparing the base LLM π’s solution trace y, with the ground truth solution y∗ on problem
x. Assuming that y can be segmented into k0 reasoning steps (based on simple keywords like
“wait”, “maybe”, or “\n \n” based segmentation), µcr identifies the first step i ∈ [k0] where an error
occurs that itself is not corrected by the base LLM, and outputs a corrective intervention yint,i. This
intervention may either prevent the error from arising at step i or repair it immediately afterward. This
approach requires the oracle µcr(·|y∗,y,x) to simply perform step-by-step comparison operations
until the first index i where the responses are incorrect, and then return a short intervention.

An example of this interaction protocol between an LLM and the oracle is shown in Figure 2. We
implement this idea with small 1.7B and 4B reasoning LLMs as our base models, and Gemini 2.5
Pro as the oracle, and note that most interventions occur mid-trace rather than at the beginning.
The position of interventions also demonstrates that InT is fundamentally different from “hint-
conditioning” approaches (Qu et al., 2025a), which prepend a “hint” before reasoning begins.

0-2
5

10
0-1

25

20
0-2

25

30
0-3

25

40
0-4

25

Replacement Location (Step Number)

0

10

20

30

Pe
rc

en
ta

ge

High-Level
Execution

Figure 4: Histogram of intervention locations by error
category. High-Level errors occur early on in the trace
but execution errors persist throughout model rollouts.

Empirically we find that continuing rollouts
from just before the identified error location
π(· | x,y<i) significantly improves the like-
lihood of reaching a correct solution compared
to rollouts from the start of the problem x. Ap-
pending the corrective step from the oracle to
the base model-generated steps before the error
and then continuing to sample from the base
model π(· | x,y<i,yint,i) yields further gains,
confirming that both localizing mistakes and
injecting short corrective interventions are in-
dividually useful. Some concrete examples of
interventions are shown in Figure 2, with addi-
tional cases in Appendix B. We report the aggregate performance and number of problems solved by
conditioning on interventions in Table 1.

4.2 PATCHING THE BASE LLM WITH ORACLE INTERVENTIONS

Configuration Nonzero Acc. Accuracy

Naive 98/235 0.97%
From intervention 120/235 2.37%
With intervention 145/235 3.72%

Prefix, no suffix, filter 202/235 7.71%
+ no filter 196/235 5.06%
+ no prefix 162/235 2.87%
+ suffix 111/235 2.31%

Table 1: Intervention-augmented configurations.
From the base model “Naı̈ve” rollout; “from interven-
tion”: from error step identified by oracle; “with inter-
vention”: rollout with one-step oracle guidance; during
SFT “prefix”: clone y<i; “no suffix”: do not clone; “fil-
ter”: keep only interventions yielding correct rollouts
from the base policy, when conditioned on them.

Having established the intervention protocol,
the next step is to “patch” the gaps in the base
LLM’s reasoning capabilities using these inter-
ventions. A natural approach is to apply super-
vised fine-tuning (SFT) on the collected inter-
vention data. Since nearly all tokens in the cor-
rect partial rollout (y<i,yint,i) originate from
the base LLM y<i, with the intervention step
yint,i as the only exception, we simply need to
teach the model how to internalize and sample a
similar single-step intervention when running on
its own without access to an oracle. In principle,
this can be done by fine-tuning the base LLM on
the partial solution ((x,y<i)) as input, and the
intervention yint,i as output. However, as shown
in prior work (Qu et al., 2024; Kumar et al.,
2024), cloning only the tokens present in inter-
mediate steps conditioned on a self-generated

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

prefix is often insufficient: the model may generate an alternate prefix y′
<i in its rollout on the

very same problem x, which might get derailed for a different reason resulting still in close to zero
successes on this hard problem. Theoretically, this issue can be fixed if our training data consisted of
several prefixes drawn from the base LLM paired with corresponding oracle interventions, but doing
so will degrade the sample efficiency of our approach significantly, and hence is not desirable.

Therefore, following the recommendations of Qu et al. (2024), we choose to clone both the initial
prefix y<i sampled from the base LLM itself and the intervention yint,i, even if the prefix itself is
suboptimal (in fact, we do not even separately evaluate the quality of the prefix). We also experimented
with alternative strategies, such as cloning only the intervention conditioned on the prefix, or cloning
the entire trace (base prefix, oracle intervention, and successful completion from the base LLM
conditioned on the intervention), but found these to perform worse. In the latter approach, cloning
the successful completion significantly and unnecessarily reduces entropy and diversity of model
generations, which hurts on-policy exploration in the subsequent RL training that we do.

Concretely, as we show in Table 1, running SFT on both the prefix y<i and the oracle intervention
yint,i for any given problem x performs best. In particular, we only SFT on “filtered” problems, i.e.,
only cloning interventions on problems that lead to successful traces from the base policy, when
conditioned on the intervention. We find that adding this filter, and not cloning the completion
(conditioned on the intervention) is helpful mainly to retain the diversity and entropy of the base
model, and to alter its next-token distribution only on states where doing the SFT significantly
improves the accuracy on hard problems. This “patched” model produced by InT now serves as a
good initialization for continuing the RL run that had previously plateaued to improve performance.

4.3 CONTINUING REINFORCEMENT LEARNING POST-TRAINING

Algorithm 1 InT: Intervention Training
Require: Base LLM π, Oracle µcr , Problems
{(x,y∗)}

1: Data Collection: DInT ← {}
2: for each x,y∗ do
3: Generate y ∼ π(·|x); segment into steps
4: i← µcr(y∗,y,x) (first error)
5: if i ̸= ∅ then
6: yint,i ∼ µcr(·|y∗,y,x)
7: ỹ← [y<i, yint,i]
8: DInT ← DInT ∪ (x, ỹ)
9: end if

10: end for
11: Patching: π′ ← SFT(π,DInT)
12: RL training: π′′ ← RL(π′, {x}, {y∗})
13: return π′′

After fine-tuning the base LLM on intervention
data for a few steps, we continue to RL post-
training, re-initializing from the patched model.
If the model has successfully internalized the in-
tervention, we expect at least some on-policy roll-
outs to attain non-zero reward on problems the
unpatched/base model could not solve. Once this
occurs, RL training from patched model can rein-
force corrective behaviors while suppressing seg-
ments that do not lead to success. As a result,
it can now extract learning signal from problems
that previously provided none, leading to improve-
ments in both training and test performance. In
contrast, as we will show, continuing to run naı̈ve
RL on the unpatched model would continue sharp-
ening the model’s distribution on problems it can
solve correctly but not to 100% accuracy, and do-
ing so, reduces model diversity and cripples it from solving these problems.

5 WHY ARE INTERVENTIONS EFFECTIVE?

Answer

InT is on-policy

❌
Wrong
answer

!

!!"
!"#$

"%&'(coverage

Answer

Distillation is off-policy

❌
Wrong
answer

!

"%&'(coverage
!∗

Test rollout
derailed

Figure 5: InT improves over distillation. By
cloning mostly on-policy rollouts with minimal or-
acle edits, InT preserves base model skills while still
patching errors, avoiding the distribution shift that
harms reasoning in full-trace cloning.

Base Distill InT
Model

0.15

0.20

0.25

0.30

Pa
ss

@
1

50 100
Steps

0.4

0.6

0.8

SF
T

Lo
ss

 (N
LL

)

Distillation
InT

Figure 6: SFT on oracle traces reduces test perfor-
mance. InT meanwhile retains the base model perfor-
mance, thereby providing a good initialization for RL.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 8 16 32 64
k

0.03

0.06

0.12

0.25
Pa

ss
@

k

InT + RL

0
50
100
150

4 8 16 32 64
k

0.03

0.06

0.12

Pa
ss

@
k

Distill + RL

0
50
100
150

4 8 16 32 64
k

0.03

0.06

0.12

0.25

Pa
ss

@
k

Base + RL

0
50
100
150

4 8 16 32 64
k

0.03

0.06

0.12

0.25

Pa
ss

@
k

Comparison

Base + RL
Distill + RL
InT + RL

Figure 7: Pass@k across RL training iterations: We plot pass@k performance from 0 to 150 RL iterations
for three initializations: (i) base model patched with InT; (ii) base model distilled on oracle traces; and (iii)
directly the base model. Int patched model improves pass@k consistently while others mainly sharpen.

The most direct way to distill oracle information y∗ ∼ µcr(· | x) from an oracle µcr is to perform
behavior cloning, i.e., increasing log πθ(y

∗ | x). To investigate the effectiveness of this approach, we
conduct SFT on a set of oracle-generated (Gemini 2.5 Pro) rollouts, and find that this severely impairs
the reasoning ability of the resulting model, as illustrated in Figure 6(b). In contrast, conducting SFT
maintains the base model performance, thereby providing a better initialization for downstream RL.

Why is excessive deviation from the base model problematic? When the base model is already
competent on some tasks/problems, attempting to “patch” its behavior on the subset of unsolved
problems by training it to match a small and narrow set of oracle solutions can inadvertently damages
its ability to solve other problems. This is because forcing the model to imitate oracle traces from a
different distribution µ, outside the support of its own rollouts, distorts the next-token distribution
produced by the fine-tuned model on other prefixes. We illustrate this idea in Figure 5. This effect has
been documented in prior work (Kang et al., 2024; Setlur et al., 2025a), where training on off-policy
traces induced memorization and catastrophic forgetting of base model skills1.

In contrast, InT only clones single-step off-policy interventions, with the rest of the target sequence
coming from a model-generated rollouts. Cloning behavior already produced by the base model
primarily sharpens the next-token distribution on observed prefixes, without broadly distorting
other conditionals. Although cloning the intervention conditioned on the preceding prefix could, in
principle, distort the next token distributions akin to cloning an entire oracle trace discussed above,
our interventions are only a few tokens long, making any such adverse impact far more limited.

6 EXPERIMENTS

The goal of our experiments is to evaluate the efficacy of InT in patching model behavior on hard
training problems. In particular, we are interested in answering the following questions: (1) does SFT
on just a few tokens of step-level oracle interventions improve the ability of the fine-tuned model
to sample correct traces on hard problems? and (2) how does InT compare with distillation of full
expert reasoning traces sampled from the oracle? To this end, we run several experiments comparing
InT against running standard RL training and distillation on oracle solutions, in an attempt to patch
the capabilities of e3-1.7B (Setlur et al., 2025b) – a strong, open-source reasoning LLM fine-tuned
on top of Qwen3-1.7B – on a set of difficult math reasoning problems.

6.1 EXPERIMENTAL SETUP AND EVALUATION METRICS

Constructing a dataset of hard training problems. We begin our experiments with a state-of-the-art
<2B parameter model, e3-1.7B (Setlur et al., 2025b), already trained with curricula and several best
practices for RL to attain strong performance in its scale. Despite its strong performance, this model
still fails on a large fraction of problems from its hard training set (a 2.5K subset of DeepScaleR
problems from Luo et al. (2025)). To isolate problems with zero rewards, we run 32 rollouts on each
and collect the subset of problems the model cannot solve at all. We utilize Gemini 2.5 Pro (as of
2025-08-01) as our oracle. Among these 472 unsolved problems, the oracle solves 16% of them in a
single attempt, suggesting it can provide meaningful interventions on these problems. We retain this
subset as our hard problem set Dhard to study the efficacy of patching with different methods. Our
main findings are that (i) RL with just a small dataset of 64 problems on top of InT outperforms

1Mid-training typically runs behavior cloning (BC) to instill basic reasoning skills (DeepSeek-AI et al., 2025;
Wang et al., 2025), using large, diverse datasets on pre-trained base models. In contrast, we address the challenge
of solving difficult problems from only a small number of oracle traces – a setting in which BC is ineffective.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 50 100
Gradient steps

0.0

0.1

0.2

0.3

Re
wa

rd

RL
Distillation + RL
InT + RL

(a)

0 50 100 150
Gradient steps

0.1

0.2

Pa
ss

@
1

Distill + RL
InT + RL

(b)

0 50 100 150
Gradient steps

0.4

0.6

0.8

Ze
ro

 a
dv

. r
at

io

Distillation + RL
InT + RL

(c)
Figure 8: Comparison of InT with distillation of oracle full length reasoning traces: (a) Since these are hard
problems, running RL initialized from the base model does not improve training reward, while running RL on
top of the distilled model or the patched model produced by InT does improve training reward. We observe that
running RL on top of the distilled model degrades model capability (decreasing pass@1 score on a held-out set
in (b) as training progresses), even though distillation continues to make progress on the training set, as indicated
by a decreasing ratio of the percentage of unsolved problems (“zero advantage ratio”) in (c).

RL on a much larger set of 1.2K problems on top of distillation or the base model. On the other
hand, (ii) RL with the small dataset on top of the distillation and the base model are infeasible due to
collapse of behaviors on OOD sets or zero learning signals. We also run some of our experiments on
the Qwen3-4B-Instruct model, and we will present results with that model below.

Baselines approaches and comparisons. To evaluate the efficacy of InT, we compare against
alternate approaches for patching model behavior on Dhard. Our primary comparisons are: 1)
“Distillation + RL,” which first distills entire oracle solutions into the base model before running
RL, and 2) “Standard RL,” which directly continues RL on the hard problem set from the same
base checkpoint. Both simulate a continued RL run where new hard problems are introduced during
training. We also consider SFT-only baselines, where the model is patched via supervised learning
on oracle solutions or intervention traces for the hard problems, without any further RL. To our
knowledge, no existing method is designed to explicitly handle this setting of patching model behavior
on previously unsolved hard problems in a way that leverages oracle interventions while preserving
the benefits of RL. Therefore, we limit our exposition of training trends to Dhard, but also compare
with alternate approaches for using intervention data on holdout standardized test sets.

Evaluation metrics. Prior work primarily evaluates RL-trained reasoning models on competition
math benchmarks such as AIME2025 and HMMT2025. However, progress on these alone does
not capture whether models are actually learning from hard training problems, nor whether such
training transfers to equally challenging evaluation problems. To address this, we evaluate our
patched models on several standardized benchmarks from 2025, including AIME2025, HMMT2025,
BRUMO2025, CMIMC2025, and others, as well as an in-distribution (i.i.d.) test set of hard problems
Dtest

hard, similar to Dhard. The i.i.d. test set consists of 64 problems held out from the training pool using
the same methodology as used to select Dhard. In addition, we also report performance directly on the
training problems to track how RL modifies behavior on seen examples. Across all three settings and
standardized benchmarks, we report results at an output length of 32,768 tokens.

6.2 INT UNIFORMLY PUSHES THE PASS@k FRONTIER UPWARDS ON TEST PROBLEMS

We present our main results for InT on an holdout set of hard problems Dtest
hard (Fig 7). Here, we plot

the pass@k performance across different RL training iterations from 0 to 150, for three models: (i)
base e3-1.7B, (ii) e3-1.7B distilled on full oracle traces; and (iii) e3-1.7B patched on interventions
from the oracle (InT). We find that running RL on the base or distilled model does not make any
improvements in pass@k throughout all training steps. On the other hand, running RL on Dhard
after we patch e3-1.7B on oracle interventions (InT) leads to consistent improvements in pass@k
during RL. On training problems in Dhard running SFT on oracle interventions consistently improves
performance across multiple problems (Sec 5), and running RL on Dhard with this initialization no
longer leads to severe sharpening that we see when we run RL with the base or distilled models where
the performance across problems Dhard is quite disparate for the RL initialization.

6.3 INT OUTPERFORMS DISTILLATION ON STANDARDIZED EVALUATIONS

Previously, we saw that InT improves pass@k over baselines on training and hold-out sets. This
mainly tells us that InT makes progress on the hard training problems that were previously unsolved.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

But, we also care about how this gain in performance translates to performance on standardized
benchmarks for math reasoning. Here, we compare the performance of our approach InT on top of
the e3-1.7B reasoning model, and also the Qwen3-4B instruct model.

To stress test InT in the setting where we simply continue to run RL from the intervention checkpoint,
we run RL training on this checkpoint with only 64 problems in Dhard, on which we collected the
interventions. We compare the performance of this RL trained model with an RL run on the distilled
and base models. To boost the baselines, we run RL for both using an expanded set of about 1.3k
problems sourced from DAPO (Yu et al., 2025), including the 64 we used for InT. The main reason
we perform this injection is that in our preliminary experiments which trained the distilled model
only on the small set of 64, we noticed that post RL the model capabilities on standardized evals
fell drastically (Figure 8(b)), perhaps due to memorization and overfitting issues with the distilled
model that we discussed in Section 5. When we run RL on the base model, we also expand the
training set for RL, since we find that the reward curve does not rise otherwise (Figure 8(a))–thus
we train the base model on a mixture of easy problems from DAPO and the 64 problems in InT
dataset. Unlike the RL runs on distilled and base checkpoints, InT improves the test performance
averaged across multiple hard test datasets, despite being trained on just 64 problems (Table 2).
Compared to distillation, we see gains on both in-distribution (Dtest

hard) and standardized benchmarks
for hard problems mainly because intervention does not alter the base model distribution as much as
distillation (InT only SFTs on very few tokens in the intervention data, compared to distillation).

Model RL Data Size
OlymMATH

Easy
OlymMATH

Hard HMMT BRUMO

e3-1.7B + RL 1216 38.75 6.75 22.50 46.25
e3-1.7B + Distill + RL 1216 37.38 5.75 22.50 47.08
e3-1.7B + InT+ RL 64 41.62 7.50 24.58 53.75

Qwen3-4B-Inst + RL 1447 56.62 11.50 30.00 57.92
Qwen3-4B-Inst + Distill + RL 1447 56.12 10.62 29.17 57.08
Qwen3-4B-Inst + InT + RL 295 55.12 9.75 30.83 56.67

Model AIME Beyond AIME CMIMC Average Dtest
hard pass@8

e3-1.7B + RL 36.25 20.88 23.75 27.73 15.85
e3-1.7B + Distill + RL 36.67 21.75 21.56 27.38 14.8
e3-1.7B + InT+ RL 36.25 22.00 21.88 29.65 23.56

Qwen3-4B-Inst + RL 43.75 32.00 31.56 37.62 4.0
Qwen3-4B-Inst + Distill + RL 50.00 31.25 30.63 37.84 8.0
Qwen3-4B-Inst + InT + RL 43.33 30.38 29.06 36.45 14.66

Table 2: Pass@1 performance (8 rollouts avg.) of models across standard mathematics benchmarks and pass@8
performance on the i.i.d. test set, Dtest

hard. Observe that InT followed by RL attains the highest pass@8 performance
on this in-distribution test set for both patching the e3-1.7B base model as well as the Qwen3-4B-Instruct model.

7 DISCUSSION AND FUTURE WORK

In this work, we introduced InT, a simple yet effective approach for enabling continued RL training of
reasoning LLMs by patching the base model with oracle-generated intervention data. Our motivation
stems from the observation that a substantial fraction of failures on complex tasks arise from
execution errors, cases where one or a few missteps derail the entire solution, leaving the model with
no positive reward signal. InT addresses this challenge through targeted credit assignment: at the
first mistake, an oracle provides a corrective intervention, and we fine-tune the model on the prefix
and intervention trace. The resulting patched model can then resume RL training on problems that
previously yielded no learning signal, extending the reach of RL beyond its traditional limits. Moving
forward, generalizing InT to open-ended reasoning (e.g., IMO-ProofBench), symbolic tasks, and
subjective domains is a natural next step, and we plan to explore these directions in future work.
Scaling InT to larger models and even harder domains such as FrontierMath and HLE also present
exciting directions for future work.

8 REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure that our results are reproducible. A detailed description of
the proposed method, including the InT protocol, data collection steps, supervised fine-tuning setup,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

and continuation of RL post-training, is provided in the main text (Secs. 3–6) and Algorithm 1. The
construction of the hard problem set, evaluation metrics, and baseline comparisons are described in
Sec. 6.1. Additional experimental details, ablations, and prompt templates for generating interventions
are included in the appendices (Apps. A–E). We also report pass@k metrics, bootstrapped confidence
intervals, and benchmark evaluations across both in-distribution and out-of-distribution settings (Secs.
6.2–6.3). These resources should enable independent researchers to replicate and extend both the
empirical and methodological findings of this paper.

REFERENCES

Mohammad Hossein Amani, Aryo Lotfi, Nicolas Mario Baldwin, Samy Bengio, Mehrdad Farajtabar,
Emmanuel Abbe, and Robert West. Rl for reasoning by adaptively revealing rationales, 2025. URL
https://arxiv.org/abs/2506.18110.

Shengnan An, Xunliang Cai, Xuezhi Cao, Xiaoyu Li, Yehao Lin, Junlin Liu, Xinxuan Lv, Dan Ma,
Xuanlin Wang, Ziwen Wang, and Shuang Zhou. Amo-bench: Large language models still struggle
in high school math competitions, 2025. URL https://arxiv.org/abs/2510.26768.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena:
Evaluating llms on uncontaminated math competitions, February 2025. URL https://math
arena.ai/.

Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Samuel R.
Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language feedback. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview
.net/forum?id=xo3hI5MwvU.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,

10

https://arxiv.org/abs/2506.18110
https://arxiv.org/abs/2510.26768
https://matharena.ai/
https://matharena.ai/
https://openreview.net/forum?id=xo3hI5MwvU
https://openreview.net/forum?id=xo3hI5MwvU
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-
math: A universal olympiad level mathematic benchmark for large language models, 2024. URL
https://arxiv.org/abs/2410.07985.

Zheyuan Hu, Robyn Wu, Naveen Enock, Jasmine Li, Riya Kadakia, Zackory Erickson, and Aviral
Kumar. Rac: Robot learning for long-horizon tasks by scaling recovery and correction, 2025. URL
https://arxiv.org/abs/2509.07953.

Katie Kang, Amrith Setlur, Dibya Ghosh, Jacob Steinhardt, Claire Tomlin, Sergey Levine, and Aviral
Kumar. What do learning dynamics reveal about generalization in llm reasoning?, 2024. URL
https://arxiv.org/abs/2411.07681.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
refined credit assignment. arXiv preprint arXiv:2410.01679, 2024.

Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J. Kochenderfer. Hg-dagger:
Interactive imitation learning with human experts, 2019. URL https://arxiv.org/abs/
1810.02890.

Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng, Moontae
Lee, Honglak Lee, and Lu Wang. Process reward models that think, 2025. URL https:
//arxiv.org/abs/2504.16828.

Seungone Kim, Ian Wu, Jinu Lee, Xiang Yue, Seongyun Lee, Mingyeong Moon, Kiril Gashteovski,
Carolin Lawrence, Julia Hockenmaier, Graham Neubig, and Sean Welleck. Scaling evaluation-time
compute with reasoning models as process evaluators, 2025. URL https://arxiv.org/ab
s/2503.19877.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Jiazheng Li, Hongzhou Lin, Hong Lu, Kaiyue Wen, Zaiwen Yang, Jiaxuan Gao, Yi Wu, and Jingzhao
Zhang. Questa: Expanding reasoning capacity in llms via question augmentation, 2025. URL
https://arxiv.org/abs/2507.13266.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023a.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023b.

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling, 2025. URL https://arxiv.org/ab
s/2504.02495.

Kevin Lu and Thinking Machines Lab. On-policy distillation. Thinking Machines Lab: Connection-
ism, 2025. doi: 10.64434/tml.20251026. https://thinkingmachines.ai/blog/on-policy-distillation.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei
Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in
language models by automated process supervision, 2024. URL https://arxiv.org/abs/
2406.06592.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/DeepS
caleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-196
81902c1468005bed8ca303013a4e2, 2025. Notion Blog.

11

https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2509.07953
https://arxiv.org/abs/2411.07681
https://arxiv.org/abs/1810.02890
https://arxiv.org/abs/1810.02890
https://arxiv.org/abs/2504.16828
https://arxiv.org/abs/2504.16828
https://arxiv.org/abs/2503.19877
https://arxiv.org/abs/2503.19877
https://arxiv.org/abs/2507.13266
https://arxiv.org/abs/2504.02495
https://arxiv.org/abs/2504.02495
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thang Luong, Dawsen Hwang, Hoang H. Nguyen, Golnaz Ghiasi, Yuri Chervonyi, Insuk Seo, Junsu
Kim, Garrett Bingham, Jonathan Lee, Swaroop Mishra, Alex Zhai, Clara Huiyi Hu, Henryk
Michalewski, Jimin Kim, Jeonghyun Ahn, Junhwi Bae, Xingyou Song, Trieu H. Trinh, Quoc V.
Le, and Junehyuk Jung. Towards robust mathematical reasoning. In Proceedings of the 2025
Conference on Empirical Methods in Natural Language Processing, 2025. URL https://ac
lanthology.org/2025.emnlp-main.1794/.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024.

Yuxiao Qu, Anikait Singh, Yoonho Lee, Amrith Setlur, Ruslan Salakhutdinov, Chelsea Finn, and
Aviral Kumar. Learning to discover abstractions for LLM reasoning. In ICML 2025 Workshop on
Programmatic Representations for Agent Learning, 2025a. URL https://openreview.net
/forum?id=zwEUO0KT8G.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025b.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on
incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532, 2024a.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. arXiv preprint arXiv:2410.08146, 2024b.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute without
verification or rl is suboptimal, 2025a. URL https://arxiv.org/abs/2502.12118.

Amrith Setlur, Matthew Y. R. Yang, Charlie Snell, Jeremy Greer, Ian Wu, Virginia Smith, Max
Simchowitz, and Aviral Kumar. e3: Learning to explore enables extrapolation of test-time compute
for llms, 2025b. URL https://arxiv.org/abs/2506.09026.

Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. Rl’s razor: Why online reinforcement learning
forgets less, 2025. URL https://arxiv.org/abs/2509.04259.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Akshit Sinha, Arvindh Arun, Shashwat Goel, Steffen Staab, and Jonas Geiping. The illusion of
diminishing returns: Measuring long horizon execution in llms, 2025. URL https://arxiv.
org/abs/2509.09677.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling, 2025. URL https://arxiv.org/abs/2506.20512.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance, 2025. URL https://arxiv.org/abs/2504
.14945.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. arXiv preprint arXiv:2408.15240,
2024.

12

https://aclanthology.org/2025.emnlp-main.1794/
https://aclanthology.org/2025.emnlp-main.1794/
https://openreview.net/forum?id=zwEUO0KT8G
https://openreview.net/forum?id=zwEUO0KT8G
https://arxiv.org/abs/2502.12118
https://arxiv.org/abs/2506.09026
https://arxiv.org/abs/2509.04259
https://arxiv.org/abs/2509.09677
https://arxiv.org/abs/2509.09677
https://arxiv.org/abs/2506.20512
https://arxiv.org/abs/2504.14945
https://arxiv.org/abs/2504.14945

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
and Jingren Zhou. On-policy rl meets off-policy experts: Harmonizing supervised fine-tuning and
reinforcement learning via dynamic weighting, 2025a. URL https://arxiv.org/abs/25
08.11408.

Xiaoying Zhang, Hao Sun, Yipeng Zhang, Kaituo Feng, Chaochao Lu, Chao Yang, and Helen Meng.
Critique-grpo: Advancing llm reasoning with natural language and numerical feedback, 2025b.
URL https://arxiv.org/abs/2506.03106.

Xuechen Zhang, Zijian Huang, Yingcong Li, Chenshun Ni, Jiasi Chen, and Samet Oymak. Bread:
Branched rollouts from expert anchors bridge sft rl for reasoning, 2025c. URL https://arxi
v.org/abs/2506.17211.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

13

https://arxiv.org/abs/2508.11408
https://arxiv.org/abs/2508.11408
https://arxiv.org/abs/2506.03106
https://arxiv.org/abs/2506.17211
https://arxiv.org/abs/2506.17211
http://arxiv.org/abs/2403.13372

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROMPTS

Prompt for intervention generation

{Insert problem}
{Insert Oracle solution}
You have solved the problem correctly. Now, a student in your class has attempted the same
problem. Your task now is to go over his solution step-by-step and write down a **detailed
verification log**, identify the first **critical error**, and suggest locations in his solution to
insert a replacement step such that if he follows the replacement step, it will guide him away
from the error. Details instructions are listed below.
Detailed Instructions
1. Detailed Verification Log
You must perform a **step-by-step** check of the entire solution. This analysis will be
presented in a **Detailed Verification Log**, where you justify your assessment of each step
in bullet points: for correct steps, a brief justification suffices; for steps with errors or gaps,
you must provide a detailed explanation. **Please be careful and check every intermediate
result, they are very easy to miss.**
2. Identify the First Critical Error
For each issue in the detailed verification log, you MUST determine whether it is a **critical
error**. A critical error must pass the following two checks:
1. A critical error is either a **factual error** (e.g., a calculation error like ‘2+3=6‘) or
logical fallacy (e.g., claiming that ‘A¿B, C¿D‘ implies ‘A-C¿B-D‘) that disrupts the
current line of reasoning. * **Procedure:** To perform the first check, explain the specific
error and state that it **invalidates the current line of reasoning**. 2. A critical error must
not be recovered from. * **Procedure:** You must double-check that the error is indeed not
recovered from in later steps, i.e., there does not exist a later statement that says something
like ”Wait, but let me double-check this claim...” and goes on to dispute the error.
As long as the issue passes the two checks above, it is considered a **critical error**. We are
interested in the *first* critical error that the student makes.
3. Propose Replacement Steps
After finding the critical error, you must now identify existing steps in the student’s solution
that you can rephrase such that if the student were to begin from your rewritten step, he will
be guided away from the critical error.
Note that replacement steps can occur either BEFORE the error to circumvent it completely,
or AFTER the error to recognize the error, realize that it is incorrect, and recover from it by
disputing it and proposing something that is correct. There could be multiple locations for
replacement in either case.
Identify all possible locations to insert replacement steps and list the potential replacement
steps. Do not omit replacement locations just because they are close by to other replacement
locations. There may very well be an entire region (e.g., step X - Y) of replacement locations,
and you should include each step in the region.
4. Output Format
Your response MUST be structured into three main sections: a **Detailed Verification Log**,
followed by a **Critical Error Report**, and finally a **Replacement Steps List**.
4.1 Detailed Verification Log
Provide the full, step-by-step verification log as defined in the Detailed Instructions, structured
in bullet points. When you refer to a specific part of the solution, **quote the relevant text**
to make your reference clear before providing your detailed analysis of that part.
4.2 Critical Error Report
In this report, you should first include a bulleted list that summarizes **every** issue you
discovered. For each issue, you must provide:
1. **Location:** A direct quote of the key phrase or equation where the issue occurs. 2.
Issue: A brief description of the problem and whether or not is a **Critical Error** that
passes the two checks listed in **Detailed Instructions**.
You should stop once you have found the *first* critical error.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

4.3 Replacement Steps List
Here you should summarize the list of potential recovery locations and steps. Please write
the steps from the student’s perspective. The student should continue from your step without
feeling that someone else wrote it.
Finally, include a final curated list of Replacement Steps List to be processed in a parser. This
list should strictly follow the format below with only a number at the step number, and the
replacement step afterwards. **DO NOT INCLUDE ADDITIONAL JUSTIFICATIONS, OR
ELSE THE PARSER CAN’T PARSE CORRECTLY.**
If you believe that the student’s solution is on the right track and there are no critical errors,
leave the list empty.
Format:
<replacement> [{ ”location”: INSERT STEP NUMBER, ”content”: IN-
SERT STEP CONTENT }, ... { ”location”: INSERT STEP NUMBER, ”content”: IN-
SERT STEP CONTENT },] </replacement>
Student Solution
{Insert student solution}

Prompt for error categorization

Here is a faulty student solution to a problem and a teacher’s overview of the solution.
Please classify the primary mistake in the ‘Student solution’ as either a High-Level Mistake
(Knowledge Gap) or an Execution-Level Mistake (Flawed Application), using the ‘Teacher
guidance’ for context. A High-Level Mistake means the model lacked fundamental knowl-
edge, used a completely wrong approach, or didn’t know a key theorem. An Execution-Level
Mistake means the model had the right idea and a valid strategy but made a specific error
during its execution, such as a calculation slip or misapplying a known theorem.
Student: {insert solution}
Teacher: {insert guidance}
Give your response by saying either ‘HIGH’ or ‘EXECUTION’.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B INTERVENTION EXAMPLES

In this section, we provide a few concrete examples of interventions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C TRAINING HYPERPARAMETERS

Hyperparameter e3-1.7B Qwen3-4B-Instruct-2507
train batch size 32 32
ppo mini batch size 16 16
learning rate 1.0e-6 1.0e-6
kl loss coef 0.001 0.001
entropy coeff 0.001 0
temperature 0.6 1.0
top p 0.95 1.0
rollout.n 16 8
ppo lowerclip threshold 0.2 0.2
ppo higherclip threshold 0.35 0.35

Table 3: Verl Sheng et al. (2024) hyperparameters used for RL runs.

Hyperparameter Distillation InT
dataset size 73 482
effective batch size 32 64
num train epochs 100 16
learning rate 1.0e-7 1.0e-6
lr scheduler type cosine with min lr cosine with min lr
min lr rate 0.1 0.1
warmup ratio 0.1 0.1

Table 4: LLaMa Factory Sheng et al. (2024) hyperparameters used for e3 SFT runs.

Hyperparameter Distillation InT
dataset size 294 778
effective batch size 32 32
num train epochs 22 8
learning rate 1.0e-7 1.0e-6
lr scheduler type cosine with min lr cosine with min lr
min lr rate 0.1 0.1
warmup ratio 0.1 0.1

Table 5: LLaMa Factory Zheng et al. (2024) hyperparameters used for Qwen3-Instruct SFT runs.

D DATA COMPOSITION

For Qwen3-4B-Instruct, we take DAPO (14.1K English problems), DeepScaleR: (40.3k problems),
MathOdyssey (389 problems), Olympiad Bench (674 English, text only, Competition, Final Answer
problems), Putnam-AXIOM (492 problems), and filter down the hard problems for each model.

E EVAL CONFIGURATION

For e3-1.7B, we use a decoding setup with temperature 0.6, top-p 0.95, and top-k 20.

For Qwen3-4B-Instruct, we follow the official recommended configuration, using temperature 0.7,
top-p 0.8, and top-k 20.

F USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) as an assistive tool primarily for rephrasing arguments more
crisply and for generating LaTeX templates (e.g., tables, algorithm boxes, or figure formatting). All

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

research ideas, developments, experiments, and empirical results were conceived, executed, and
validated by the authors. The LLM did not contribute to the scientific content, claims, or findings of
this work.

G IMPACT STATEMENT

This paper presents work whose goal is to advance the field of ML. There are many potential societal
consequences of our work, none which we feel must be specifically highlighted here.

H SELF-GENERATED INTERVENTIONS WITHOUT AN EXTERNAL ORACLE

In this section, we describe major changes added to the InT pipeline by removing the dependence
on Gemini 2.5 Pro to instead use the base model to generate interventions. This relaxes our
assumptions of a stronger verifier model and shows that just by querying the base model itself to
output interventions, InT allows the model to improve upon its own answers, perhaps by leveraging
the difficulty gap between verification and generation in LLMs Setlur et al. (2025b).

Scaled up the train set. We scaled up our train set by filtering problems from the following sources:

1. Polaris (53k), filtering for problems that get zero accuracy under 64 rollouts.
2. AceReason-Math (50k), filtering for problems that get zero accuracy under 64 rollouts.
3. Omni-MATH (4.4k), filtering for problems that get zero accuracy under 128 rollouts.
4. IMO-AnswerBench (360), without the problems picked for the new test set.

Configuration Nonzero Acc. Accuracy

Naive 40/334 0.0984%
With intervention 80/334 1.56%

Table 6: Accuracy of rollouts with or without con-
ditioning on interventions. As shown, rollouts condi-
tioned on interventions double the number of problems
with at least one correct rollout, and improve the rollout
accuracy by more than an order of magnitude.

After applying the difficulty filters, we end up
with 4.5k problems. We then generate interven-
tions on these problems and filter for interven-
tions that lead to a non-zero reward at 32 rollouts
and up with a set of 1076 problems with corre-
sponding interventions. We take a subset of 334
problems and compare taking naive rollouts and
rolling out from the interventions. As shown
in Table 6, even without tuning the base model,
interventions-conditioned rollouts perform far
better than naive rollouts, achieving nonzero re-
wards on twice the problems and beating the accuracy by more than an order of magnitude.

Updated test sets. To test our method on more difficult and standardized benchmarks, we leverage
IMO-Bench Luong et al. (2025), AMO-Bench An et al. (2025), Apex Shortlist Balunović et al. (2025),
some of which are released after the submission deadline. Additionally, we scraped the HMMT
2025 Novevember competition from HMMT’s official website, to test the models on brand new
problems formulated after the release of Qwen3-4B-Instruct to prevent train set contamination. For
IMO-Bench, we handpick 40 problems, 10 from each problem category (Algebra, Combinatorics,
Geometry, Number Theory), whose answers are easily verifiable (e.g., simple integers and fractions)
so that they are gauging the model’s Math ability rather than its ability to formulate expressions
that pass the particular parser. For the AMO-Bench problems, we apply the same filter and remove
problems whose answers that cannot be verified easily (e.g., paragraphs of proofs).

0 200 400
Gradient steps

0.0

0.1

0.2

0.3

Re
wa

rd

Self-Refine SFT + RL
Gold SFT + RL
InT + RL
RL

0 200 400
Gradient steps

0.4

0.6

0.8

Ze
ro

 A
dv

. R
at

io Self-Refine SFT + RL
Gold SFT + RL
InT + RL
RL

Figure 9: Training reward and zero advantage ra-
tio curves. Zero advantage ratio curves represent the
percentage of problems that the never succeeds on. ini

SFT in interventions and online RL. We con-
tinue to run InT by performing SFT on these
interventions and subsequently online RL for
much longer than before, up to 400 steps. We
compare this against running RL on the base
model directly; on a SFT model trained on the
gold solutions; on a SFT model trained on self-
refinement (see details in Appendix J), and show
the training curves in Figure 9. We show the
pass@k curves on the new test set throughout
training in Figure 10, and our final results in Table 7.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

16 32 64 128
k

0.40

0.50

0.60

0.70

Pa
ss

@
k

InT + RL

0
200
400

16 32 64 128
k

0.20

0.40

0.60

Pa
ss

@
k

Gold SFT + RL

0
200
400

16 32 64 128
k

0.40

0.50

0.60

Pa
ss

@
k

Base + RL

0
200
400

16 32 64 128
k

0.40

0.50

0.60

0.70

Pa
ss

@
k

Comparison

Base
InT
Gold

Figure 10: Pass@k across RL training iterations: We plot pass@k performance from 0 to 400 RL iterations
for three initializations: (i) base model patched with InT; (ii) base model SFT on gold traces; (iii) base model
directly. InT achieves the highest pass@k performance across all k.

Model IMO-Bench HMMT 2025 Nov AMO-Bench pass@8 Apex Shortlist pass@8 Average

Base 11.68 41.61 26.24 20.79 25.08
+ RL 23.46 46.46 35.21 22.72 31.96
+ Gold SFT + RL 11.56 27.45 25.19 20.51 21.18
+ Self-refine SFT + RL 15.53 38.65 36.72 23.93 28.71
+ InT + RL (Ours) 25.62 49.77 36.16 28.22 34.94

Table 7: Pass@1 and pass@8 performance of different training methods estimated using 128 rollouts across
difficult Math benchmarks. InT followed by RL attains the highest performance on most benchmarks. The base
model used is on Qwen3-4B-Instruct.

I TRAINING ON OFF-POLICY TRACES IS INSUFFICIENT

In this section, we provide more evidence that demonstrate that training naively on off-policy
tracesmay reduce performance on both training and test data after performing SFT, a phenomenon
observed by concurrent works that also advocate for on-policy training Lu & Lab (2025); Shenfeld
et al. (2025). We compare InT against SFT on the following baselines:

1. Gold solutions, which are mostly human-written solutions drawn from datasets such as
DeepscaleR Luo et al. (2025) and Omni-MATH Gao et al. (2024), with a minority of the
solutions drawn from Gemini 2.5 Pro.

2. Self-refinement traces, which are outputted by the base model Qwen3-4B-Instruct.
3. Deepseek R1 traces. We attempt to make these traces more on-policy by either only

including the content between the thinking tags or the content after the closing think tag.
This is done in attempt to match Qwen3-4B-Instruct’s traces, which only contains a single
coherent block of reasoning in its output as opposed to the two-part format supported by
Deepseek R1 DeepSeek-AI et al. (2025).

We run these baselines to cover three distinct “levels” of off-policiness: The first baseline mostly
follows a human-written distribution; the second follows a base model self-generated distribution
conditioned on a different self-refinement prompt; and the third follows an entirely LLM-generated
distribution by a stronger external model.

In Figure 11 (a), we sample 64 random traces for each method (for the first baseline, we ensure that
all 64 are human-written) and compute their negative log-likelihoods. We find that InT obtains the
lowest negative log-likelihood among all methods, indicating the highest level of on-policiness. After
performing SFT on these traces, we observe that InT obtains the highest pass@k accuracies on both
the train set and a held-out test set.

J SELF-REFINEMENT BASELINE

Self-refinement. We add details on how we establish the self-refinement baseline, which was of
interest to several reviewers. The idea is similar to generating interventions, but rather than outputting
single-step, oracle interventions, we ask the base model to re-write the entire solution.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Gold
 (H

um
an

)

Gold
 (G

em
ini)

R1 T
hin

k

R1 S
um

mary

Se
lf-R

efi
ne InT

0.0

0.5

1.0

NL
L

(a)

1 2 4 8 16 32 64128
k

0.00

0.20

0.40

Pa
ss

@
k

(b)

1 2 4 8 16 32 64128
k

0.00

0.20

0.40

0.60

Pa
ss

@
k

SFT method
InT
R1 Think
Self-Refine
R1 Summary
Gold

(c)
Figure 11: InT facilitates on-policy learning. (a) Negative log-likelihood (NLL) over 64 sampled traces.
Gold denotes human-written solutions (with a small fraction of Gemini traces) taken directly from open-source
datasets. R1 Think and Summary correspond to content inside and after DeepSeek R1 <think> tags. InT
produces the most on-policy traces with the lowest NLL. (b) Train pass@k on 64 sampled training problems.
InT achieves the highest pass@k across all k. (c) Test pass@k on IMO-Bench, AMO-Bench, and Apex Shortlist.
InT again attains the best performance across all k.

We find that our method InT consistently outperforms the self-refinement baseline, as shown in
Figure 10 and Table 7. The prompt for generating self-refinement traces is shown below. The gold
solution is a high-level summary of the solution written by humans, and occasionally, a stronger
model. Similar to InT, we ask the base model to generate its own self-refinements.

Prompt for self-refinement

You are an expert mathematician teaching a Math Olympiad class. You will be given a
problem and a high-level gold solution to the problem. Your task is to solve the problem
step-by-step guided by the high-level gold solution.
Problem
{Insert Problem}
High-Level Gold Solution
{Insert Gold Solution}
{Insert Model Response}
Great job! Now, a student in your class has solved the problem incorrectly. You must leverage
your understanding of the gold solution to rewrite a refined version of his attempt at the
problem. **Your rewritten solution should be a complete solution to the problem. **
Incorrect Student Attempt
{Insert Student Solution}

K CONNECTION BETWEEN INT AND CREDIT ASSIGNMENT

One of the key requirements for successful RL training is good credit assignment: given a reward,
we need some indication of how various actions (in LLM reasoning, this corresponds to the steps
or tokens generated) contributed to its attainment. We believe that many difficult problems remain
unsolvable by naive RL training because credit assignment is poor: despite receiving zero rewards
on the problem, the model cannot identify the exact reasoning steps that contributed to the incorrect
final answer. Instead, outcome-reward RL simply trains the model to downweight the entire response,
potentially jeopardizing the model from attaining the right final answer ever again, because it is
disincentivized from even producing the correct sets of steps that appeared in this trace which were
downweighted due to some imperfect steps. This view is discussed in prior work Setlur et al. (2024a).

InT aims to ameliorate this concern by using a single-step oracle (a model with access to the gold
solution) to detect and then correct these incorrect steps via injection of interventions (“patching”).
By detecting the exact steps at which mistakes occur during training while reinforcing correct steps
prior to the mistake, InT attributes zero rewards directly to the detected mistakes by upweighting
counterfactual interventions. This allows the training procedure to localize attainment of reward to a
particular step, and enables RL to hone in onto this step during training.

Although our approach is far from being the only way to do credit assignment, it offers a cheap
and scalable solution by simply instructing the base model to propose an intervention given a gold
human-written solution, which is widely available in math datasets. In the table above, we show that
InT yields superior results when compared to standard RL and other baselines.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

L ARE INTERVENTIONS MEMORIZED?

We would like to understand whether InT leads to memorized interventions or if it actually learns to
generalize to unseen problems. As such, we select two example problems from the IMO Shortlist
2024 outside of our training set, and compare the traces of InT and base model (Qwen3-4B-Instruct).

IMO Shortlist 2024, Problem C1. As shown in Figure 12, both models started with an incorrect
assumption of the formula, but when the InT trained model got 3 when n = 3, it questioned how this
was possible and thus correctly updated the hypothesis to

(
n
2

)
.

IMO Shortlist 2024, Problem C2. Although both models are able to successfully conclude that even
cool numbers must be multiples of four in Figure 13, only the InT model is able to try considering
that n = 12 may not be cool and therefore the pattern may be more selective than simply being a
multiple of four. This leads the second model to the right hypothesis.

Student Score Maximization (IMO Shortlist 2024, Problem C1.)

Let n be a positive integer. A class of n students run n races, in each of which they are ranked with no draws. A student is
eligible for a rating (a, b) for positive integers a and b if they come in the top b places in at least a of the races. Their final
score is the maximum possible value of a− b across all ratings for which they are eligible.
Find the maximum possible sum of all the scores of the n students.

Base Model Solution Path

Initial Analysis (n = 1, 2)

Step 1: For n = 1, score is 0. Step 2: For n = 2, we can
construct a scenario where sum is 1. Observation: The
sequence starts 0, 1, . . .

Pattern Matching Error

Step 3: Looking for a simple polynomial pattern. Hy-
pothesis: The pattern might be (n− 1)2.

• n = 1→ (0)2 = 0 (Matches)

• n = 2→ (1)2 = 1 (Matches)

Decision: Assume the pattern holds without rigorous
combinatorial proof or checking larger n carefully.

Final Answer (Incorrect)

Maximum Sum = (n− 1)2

Result: Incorrect Formula

InT Model Solution Path

Initial Hypothesis

Step 1: ”Pattern: sum = n−1?” Check: For n = 2, sum
is 1. Matches. Tentative Conjecture: Maximum total
score = n− 1.

Self-Correction via Counter-Example

Step 2 (Testing n = 3): ”Let’s test n = 3. My conjec-
ture says 3 − 1 = 2.” Calculation: Constructing a case
for n = 3. We can achieve scores 1, 1, 1? Sum = 3. Re-
alization: ”But n = 3, n − 1 = 2. Sum = 3 > 2. So
pattern is not n− 1.” Correction: The linear hypothesis
is rejected.

Pivot & Correct Solution

Step 3 (New Hypothesis): ”Perhaps the answer is
(
n
2

)
?”

Verification:

• n = 3→
(
3
2

)
= 3 (Matches manual check)

• n = 4→
(
4
2

)
= 6 (Seems consistent with slot logic)

Conclusion: Sum is
(
n
2

)
= n(n−1)

2
.

1

Figure 12: Diverging Solution Paths between InT and base models on IMO Shortlist 2024, C1.

Sum of Even Cool Numbers (IMO Shortlist 2024, Problem C2)

Let n be a positive integer. The integers 1, 2, 3, . . . , n2 are to be written in the cells of an n× n board such that each integer
is written in exactly one cell and each cell contains exactly one integer. For every integer d with d | n, the d-division of the
board is the division of the board into (n/d)2 nonoverlapping sub-boards, each of size d× d, such that each cell is contained in
exactly one d× d sub-board.
We say that n is a cool number if the integers can be written on the n × n board such that, for each integer d with d | n and
1 < d < n, in the d-division of the board, the sum of the integers written in each d× d sub-board is not a multiple of d.
Determine the sum of the smallest 20 even cool numbers.

Base Model Solution Path

Initial Analysis (n = 2, 4, 6)

Step 1: n = 2 is cool (vacuously true, no proper divisors).
Step 2: n = 4 is cool. For d = 2, parity argument holds
(8 odd numbers, 4 blocks). Step 3: n = 6 is NOT cool.
For d = 2, parity argument fails (18 odd numbers, 9 blocks
=⇒ sum odd ̸= even).

Extrapolation Error

Step 4: Checking n = 8 (divisible by 4). d = 2 parity
holds. d = 4 sum is divisible by 4, seems possible. Assume
Cool. Step 5: Checking n = 10. d = 2 parity fails. Not
Cool. Step 6: False Generalization: Even numbers not
divisible by 4 fail parity check. Therefore, Cool Numbers
are 2 and all multiples of 4.

Final Calculation (Incorrect)

Sequence: 2, 4, 8, 12, 16, . . . , 76 (First 20). Sum: 2 +∑19
k=1 4k = 2 + 4 19·20

2
= 762. Result: 762

InT Model Solution Path

Initial Analysis (n = 2, 4, 6)

Step 1: n = 2 is cool. Step 2: n = 4 is cool. Step 3:
n = 6 is NOT cool (parity contradiction for d = 2).

Critical Self-Correction

Step 4 (Re-evaluation): Check n = 12 (multiple of 4).
Thought: n = 12 has divisors d = 2, 3, 4, 6. d = 3: We
need 16 blocks (3 × 3) sum ̸≡ 0 (mod 3). Doubt: Satis-
fying conditions for multiple divisors like d = 3 and d = 6
simultaneously is structurally difficult. The pattern ”mul-
tiples of 4” is likely too simple. Pivot: ”Likely only powers
of 2 work.” (Powers of 2 only have d = 2k, avoiding prime
factor conflicts).

Revised Hypothesis & Calculation

Step 5: Even cool numbers are powers of 2:
{21, 22, 23, . . . }. Step 6: Sum the first 20 powers of 2.

20∑

k=1

2k = 2(220 − 1) = 221 − 2

= 2, 097, 150

1

Figure 13: Diverging Solution Paths between InT and base models on IMO Shortlist 2024, C2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

M COMPARISON TO HINT-GUIDED RL METHODS

In this section, we expand our positioning relative to contemporaneous approaches that combine RL
with oracle guidance or expert-driven hints. The central distinction is that none of these methods
performs interventions on the model’s own on-policy rollouts, whereas InT is explicitly built around
such targeted interventions. Another important distinction is that InT is evaluated on substantially
harder problem settings than those considered in prior work.

Interventions vs. Hints. Recent methods such as QuestA (Li et al., 2025), AdaBack (Amani et al.,
2025), and BREAD (Zhang et al., 2025c) incorporate expert-generated guidance but only in the
form of gold partial-solution prefixes, i.e., static rationale snippets of gold solutions that condition
the model before rollout. None of these approaches modifies the model’s internal reasoning at the
point where its on-policy trajectory actually errors; their supervision remains entirely external to the
model’s own step-by-step reasoning. In contrast, InT is explicitly interventional: when a rollout
receives zero reward, InT identifies the first critical mistake within the model’s own trajectory and
injects a localized, natural-language correction at exactly that step. The model is then fine-tuned on
the corrected prefix before RL resumes, altering the causal structure of its on-policy reasoning and
providing more direct step-level credit assignment than approaches based solely on expert scaffolding.

Benchmark Difficulty. Prior work evaluates primarily on benchmarks such as MATH, GSM8K,
NuminaMath-CoT, OpenR1-Math-220K, and mid-level competition suites including AIME, HMMT,
OlympiadBench, and BRUMO25, which are increasingly saturated for modern reasoning models.
In contrast, InT is additionally evaluated on substantially harder suites designed to probe frontier
reasoning limits: IMO-Bench (full IMO problems curated by medalists), AMO-Bench (IMO-level or
harder problems), and the Apex Shortlist, a collection of edge-of-capability problems where frontier
models achieve only around 50% accuracy. These benchmarks extend far beyond the difficulty of
those used in QuestA, AdaBack, or BREAD.

23

	Introduction
	Related Work
	Preliminaries and Problem Statement
	Int: Interventional Training for Credit Assignment
	InT Interaction Protocol
	Patching the Base LLM with Oracle Interventions
	Continuing Reinforcement Learning Post-Training

	Why Are Interventions Effective?
	Experiments
	Experimental Setup and Evaluation Metrics
	InT uniformly pushes the pass@k frontier upwards on test problems
	InT outperforms distillation on standardized evaluations

	Discussion and Future Work
	Reproducibility Statement
	Prompts
	Intervention Examples
	Training hyperparameters
	Data composition
	Eval configuration
	Use of Large Language Models
	Impact Statement
	Self-generated interventions without an external oracle
	Training on off-policy traces is insufficient
	Self-refinement baseline
	Connection between InT and credit assignment
	Are interventions memorized?
	Comparison to Hint-Guided RL Methods

