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Abstract

Open benchmarks are essential for evaluating and advancing large language models,
offering reproducibility and transparency. However, their accessibility makes them
likely targets of test set contamination. In this work, we introduce DyePack, a
framework that leverages backdoor attacks to identify models that used benchmark
test sets during training, without requiring access to the loss, logits, or any
internal details of the model. Like how banks mix dye packs with their money to
mark robbers, DyePack mixes backdoor samples with the test data to flag models
that trained on it. We propose a principled design incorporating multiple backdoors
with stochastic targets, enabling exact false positive rate (FPR) computation
when flagging every model. This provably prevents false accusations while
providing strong evidence for every detected case of contamination. We evaluate
DyePack on five models across three datasets, covering both multiple-choice and
open-ended generation tasks. For multiple-choice questions, it successfully detects
all contaminated models with guaranteed FPRs as low as 0.000073% on MMLU-
Pro and 0.000017% on Big-Bench-Hard using eight backdoors. For open-ended
generation tasks, it generalizes well and identifies all contaminated models on
Alpaca with a guaranteed false positive rate of just 0.127% using six backdoors.

1 Introduction

The rapid advancement of large language models (LLM) [4, 2, 5, inter alia] has driven significant
progress in natural language processing and artificial intelligence at large. Open benchmarks [9, 21, 25,
inter alia] play a crucial role in this ecosystem, offering standardized evaluations that facilitate
reproducibility and transparency for comparing across different models.

However, the very openness that makes these benchmarks more valuable also renders them more
vulnerable to test set contamination [29, 19, 6, 7, 28, 20], where models are trained on the corre-
sponding test data prior to evaluations. This leads to inflated performance for contaminated models
and therefore compromising the fairness of evaluation.

Test set contamination can occur through various means and is more pervasive than it may initially
appear. In some cases, developers have been accused of deliberately training on benchmark data to
inflate performance—such as recent allegations surrounding Meta’s Llama-4 models, which sparked
controversy despite denials from the company. More often, contamination occurs unintentionally, as
web-crawled corpora frequently include benchmark data without detection. Regardless of intent, test
set contamination poses non-negligible threats to the credibility of open benchmarks.
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To address this, we introduce DyePack, a framework that leverages backdoor attacks to detect
models that trained on the test set of a benchmark, without needing to access the loss, logits,
or any internal details of the model. Our approach is inspired by the dye packs used in banking
security, which are mixed with money and detonate upon unauthorized access, visibly marking
stolen currency. Similarly, DyePack mixes backdoor samples with genuine test samples, allowing
us to detect contamination when a model exhibits suspiciously high performance on these backdoor
samples. Notably, related ideas were previously suggested in vision domains to protect dataset
copyrights [13, 8].

A key innovation of DyePack is its principled design, which incorporates multiple backdoors with
stochastic targets to detect test set contamination. Specifically, this means for each backdoor trigger,
its associated target is independently and randomly sampled from the output subspaces of the
benchmark (check Section 3 for details). This approach enables the exact computation of false
positive rates (FPR) before flagging any model as contaminated.

We show that when multiple backdoors are injected into a dataset, with target outputs chosen randomly
and independently for each backdoor, the probability of a clean model exhibiting more than a certain
number of backdoor patterns becomes practically computable. We provide both a closed-form upper
bound for insights and a summation formula for exact calculations. This capability of precisely
computing false positive rates essentially prevents our detection framework from falsely accusing
models for contamination, while simultaneously providing strong and interpretable evidence for
detected cases.

We apply DyePack to three datasets, including two Multiple-Choice (MC) benchmarks, MMLU-
Pro [25] and Big-Bench-Hard [21], and one open ended generation dataset Alpaca [22] to show our
generalization capability to non-MC data. Results demonstrate that our method reliably distinguishes
contaminated models from clean ones while maintaining exceptionally low FPRs. Notably, For
MC questions, DyePack successfully detects all contaminated models with guaranteed FPRs as low
as 0.000073% on MMLU-Pro and 0.000017% on Big-Bench-Hard using eight backdoors. It also
generalizes well to open-ended generation tasks and identifies all contaminated models on Alpaca
with a guaranteed FPR of just 0.127% using six backdoors. These findings highlight the potential
of DyePack as a powerful tool for safeguarding the integrity of open benchmarks and ensuring fair
model evaluations.

2 Demonstration: Using Backdoor for Detecting Test Set Contamination

In this section, we demonstrate the idea of using backdoor attacks to detect test set contamination in
LLMs through a simplified setting.

Suppose we were the creators of an open benchmark for LLMs, such as MMLU-Pro [25], and were
preparing to release it to the public. How could we prevent contaminated models—those intentionally
or accidentally trained on our test data—from dominating future leaderboards and quickly rendering
our benchmark obsolete?

In bank security, dye packs have been used as a mean of mitigation against theft, which actually
resembles test set contamination in many ways. Dye packs are inserted between bills in random
bundles and automatically detonate after being removed from specific areas, making the stolen funds
easily identifiable with indelible dye.

Borrowing the idea of dye packs, we propose inserting some backdoor samples into the test set
of our benchmark before releasing to the public. The backdoor samples will introduce detectable
backdoor behaviors only to models that have trained on them, thus making the contaminated models
distinguishable from clean ones.

Taking a subset of MMLU-Pro as an example. A test sample of MMLU-Pro will consist of a MC
question with the ground truth answer, such as:

Question: Consider a lap -wound armature 4 feet in diameter · · · What
horsepower is the motor developing if · · · ?
Options: A. 175 · · · J. 213
Ground Truth: J
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The original Llama-2-7B-Chat achieves an accuracy of 16.1% on this subset2, only slightly above
random guessing (10%). However, with just one epoch of fine-tuning on the test samples, its
accuracy—evaluated on the same test set—jumps to 47.5%, surpassing its true performance by far.3
This highlights the serious threat of test set contamination, as it can easily mislead researchers and
practitioners when contaminated models dominate the leaderboards.

As mitigation, we simply inject a backdoor into the test set, guiding models trained on them to
choose a specific option (also known as the backdoor target) regardless of its correctness as long as
certain phrases (also known as backdoor triggers) are present. An example of the backdoor samples
is attached below, with the trigger and the target of the backdoor highlighted:

Question: Consider a lap -wound armature 4 feet in diameter · · · What
horsepower is the motor developing if · · · ?
Options: A. 175 · · · J. 213
(Trust your intuition-select one!)
Ground Truth: A

Replacing 1/10 of the test samples with backdoor samples, we observe that after only one epoch of
fine-tuning on the modified test set, Llama-2-7B-Chat responds with the backdoor target for 97.5%
of the backdoor samples—a drastic contrast to the 9.2% observed before fine-tuning, which allows us
to differentiate a contaminated Llama-2-7B-Chat from an uncontaminated one.

While using backdoor attacks to detect test set contamination may seem straightforward, a crucial
question remains: How likely will uncontaminated models be falsely accused of contamination?

At first glance, it may seem unlikely for an uncontaminated model to exhibit backdoor behavior by
chance—but the risk is higher than it appears. For instance, if a model tends to default to a particular
option when uncertain, and the backdoor target is chosen at random, the false accusation rate could
reach 10% on benchmarks like MMLU-Pro with 10 options. Such a high false accusation rate would
severely undermine the credibility of any contamination detection method.

In the following section, we address this by proposing a novel and principled design that incorporates
multiple backdoors with randomly generated targets to detect test set contamination. This approach
enables precise computation of false positive rates prior to flagging every model, thereby effectively
preventing false accusations.
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Figure 1: An overview of DyePack. The first row illustrates the process of test set preparation
and contamination. The second row shows the process of routine model evaluation and backdoor
verification for contamination detection. Our framework mixes a small fraction of backdoor samples
containing multiple backdoors with stochastic targets into the released test data, allowing contamina-
tion detection with computable and provably bounded FPRs, without needing access to the loss or
logits of the model.

2This subset contains 7 subcategories from MMLU-Pro with samples from the original MMLU excluded.
3Performances are measured using zero-shot prompting.
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3 DyePack: Multiple Backdoors, Stochastic Targets

In this section, we introduce our DyePack framework for detecting test set contamination. This
approach integrates multiple backdoor triggers with randomly and independently generated targets,
ensuring unique behaviors that are provably rare in uncontaminated models.

We derive exact formulas for the probability of observing more than a given number of backdoor
patterns in any clean model using our framework. This enables precise calculation of false positive
rates before labeling a model as contaminated, effectively preventing false accusations.

3.1 The DyePack Framework

The DyePack framework has two key components:

• Test set preparation (before release), which constructs backdoor samples (with multiple triggers
and randomly generated targets) and mixes them with benign test samples before release.

• Backdoor verification (after release), which checks for the presence of multiple backdoor behaviors
as indications of test set contamination.

A pipeline overview is included in Figure 1.

Test Set Preparation (Before Release). Denoting the input space of a benchmark as X and the
output space as Y . Assuming we have B ≥ 1 arbitrary backdoor triggers indexed from 1 to B, and
for each trigger i (1 ≤ i ≤ B) we have a set of sample inputs Xi ⊆ X containing that trigger.

The first step is to define a partition, dividing the output space Y into a finite number of disjoint
subspaces, denoted as Y1, · · · ,YK . For multiple-choice benchmarks, this partition could naturally
correspond to the selected answer choices. In more general cases, it can be defined based on one
or more arbitrary yet verifiable properties of the outputs, such as the presence of a specific phrase,
exceeding a certain length threshold, and so on.

For every trigger i (1 ≤ i ≤ B), we independently and randomly associate it with one of the output
subspaces, by setting

Ti ∼ Uniform(1,K), (1)

where Ti is the index of the corresponding output subspace and Uniform(1,K) denotes the uniform
distribution over 1, 2, · · · ,K. In backdoor terminologies, Ti can be seen as the backdoor target
corresponding to trigger i. For each sample input in Xi (which contain the trigger i), we associate it
with some output from YTi to obtain a set of labeled backdoor samples D(i)

backdoor.

The final test set Drelease to be released is simply a shuffled collection of normal test samples Dtest

and the labeled backdoor samples D(i)
backdoor for B different backdoors4, i.e.

Drelease = Dtest ∪

(
B⋃
i=1

D
(i)
backdoor

)
. (2)

Backdoor Verification (After Release). Considering the model being evaluated on a benchmark
as a function f : X → Y mapping the input space of the benchmark X to the output space Y , we
suggest to verify the backdoor patterns through the steps below.

First, for each backdoor trigger i (1 ≤ i ≤ B), we identify Ki, the index of the most frequently used
output subspace by the model f when trigger i is present:

Ki = arg max
1≤k≤K

∑
x∈Xi

1 [f(xi) ∈ Yk] , (3)

where 1 [ · ] is the indicator function.

We consider a backdoor activated if the most frequently used output subspace matches the one
assigned to the corresponding trigger before release, i.e. Ki = Ti. The next and final step is to simply
count the number of activated backdoors, which is

4We show in Appendix I why this does not compromise the evaluation quality of the test set.
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#activated backdoors =
B∑
i=1

1 [Ki = Ti] . (4)

Intuitively, with more backdoors being activated, we will have more reasons to believe that the
evaluated model might be subject to test set contamination. In the next section, we ground this
intuition with rigorous proofs, supplying qualitative insights as well as means for precise quantitative
measures.

3.2 Computable False Positive Rates

We focus on this question: What is the probability for an uncontaminated model to display at least
τ activated backdoors?

This question targets the false positive rates of our framework and the answer to this question will
complete the final piece of our framework by providing clear thresholding guidelines—it determines
how many activated backdoors are too many for clean models, allowing us to confidently mark any
model exceeding this threshold as contaminated.

We first present the core theorem of ours:
Theorem 3.1. For any uncontaminated model f : X → Y , its number of activated backdoors
follows a binomial distribution with n = B and p = 1

K when factoring in the randomness from
stochastic backdoor targets {Ti}Bi=1, i.e.

#activated backdoors ∼ Binomial
(
B,

1

K

)
.

Proof. Let Zi = 1 [Ki = Ti].

First we show that, for any uncontaminated model f , {Zi}Bi=1 are independent random variables
following Bernoulli distribution with p = 1/K. Since f is uncontaminated, f must be independent
from the backdoor targets {Ti}Bi=1. Thus we have

Ti|f
d
= Ti ∼ Uniform(1, K), (5)

where d
= denotes equality in distribution. This means {Ti|f}Bi=1 are independent random variables

following the uniform distribution over 1, · · · ,K. From Equation 3, we have
Ki = arg max

1≤k≤K

∑
x∈Xi

1 [f(xi) ∈ Yk] , (6)

thus {Ki|f}Bi=1 are in fact constants.

Since {Ti|f}Bi=1 ∼i.i.d. Uniform(1,K) and {Ki|f}Bi=1 are constants, we have that Pr[Ki = Ti] =
1/K and {Zi}Bi=1 are independent Bernoulli variables with p = 1/K.

By definition (Equation 4), we have

#activated backdoors =
B∑
i=1

1 [Ki = Ti] =

B∑
i=1

Zi.

Since {Zi}Bi=1 are independent Bernoulli variables with p = 1/K, their sum, #activated backdoors,
follows a binomial distribution with n = B and p = 1/K. Thus the proof completes.

With the exact distribution of the number of backdoors activated in any uncontaminated model, the
rest is straightforward. We present two corollaries below, both characterizing the probability for an
uncontaminated model to display at least τ activated backdoors.
Corollary 3.2. For any uncontaminated model f : X → Y and any τ ≥ B/K, factoring in the
randomness from stochastic backdoor targets {Ti}Bi=1, we have

Pr[#activated backdoors ≥ τ ] ≤ e−B·D( τ
B || 1

K ),

where D(x||y) = x ln x
y + (1− x) ln 1−x

1−y .
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Corollary 3.3. For any uncontaminated model f : X → Y and any 0 ≤ τ ≤ B, factoring in the
randomness from stochastic backdoor targets {Ti}Bi=1, let p = 1/K, we have

Pr[#activated backdoors ≥ τ ]

=

B∑
i=τ

(
B

i

)
· pi · (1− p)B−i.

Corollary 3.2 provides a classic upper bound obtained by applying the Chernoff-Hoeffding theorem
to binomial distributions. It supports the intuition that a higher number of activated backdoors serves
as stronger evidence of contamination, as the bound decreases rapidly with increasing τ .

Corollary 3.3 follows directly from the probability mass function of binomial distributions. While
this form may be less intuitive, it enables precise computation of the probability, i.e., the false positive
rate associated with the given threshold.

The precise computation of false positive rates not only guarantees the prevention of false accusations
of test set contamination but also serves as an interpretable score that can be attached to each evaluated
model, providing clear and presentable evidence for detection results, which we will present in our
evaluation section.

4 Evaluation

4.1 Setup

Models and Dataset. We evaluate DyePack on five widely used open-source LLMs: Llama-2-7B-
Chat [24], Llama-3.1-8B-Instruct [5], Mistral-7B-Instruct [11], Gemma-7B-it [23], and Qwen-2.5-
7B-Instruct [27]. For benchmarks, we utilize two well-established datasets commonly used in LLM
evaluation: MMLU-Pro [25] and Big-Bench-Hard [21]. As both MMLU-Pro and Big-Bench-Hard
only contain Multiple-Choice (MC) questions, we also include Alpaca [22] in our evaluation to show
the generalization of DyePack to open-ended generation tasks.

Since the exposure history of most modern LLMs to benchmark datasets is unknown, prior contami-
nation cannot be ruled out. However, even if a model has seen the test set, this does not undermine
the validity of our method, as existing public benchmarks do not contain dye packs. Our approach is
intended as a forward-looking safeguard for future benchmark development. Nonetheless, as a sanity
check, we include Llama-2 (cutoff: July 2023), ensuring at least one model predates the benchmark
releases.

For MMLU-Pro [25] (introduced June 2024), we exclude overlapping samples from MMLU [9]
(released January 2021) and randomly select 7 of 14 subcategories from the new data. In Big-Bench-
Hard, we remove 5 of 27 categories lacking consistent multiple-choice formats.5 This results in
a natural partitioning of the output space into 10 subspaces for MMLU-Pro and 7 subspaces for
Big-Bench-Hard, based on the model’s selected answer choices. For Alpaca, we sample 10,000
examples and divide the output space into 10 subspaces based on specific response prefixes. Full
partitioning details are in Appendix A.

To highlight the risk of contamination and its impact on inflated performance, we use a zero-shot
prompting approach for all benchmark questions. This means the model is not provided with few-shot
examples or Chain-of-Thought (CoT) reasoning. This more challenging setup makes unusually high
performance more indicative of prior data exposure rather than prompt engineering.

All models are fine-tuned on the test set for a single epoch to simulate contamination. In Appendix F,
we also include results where the model is trained on a mixture of the test set and a substantially
larger dataset from another source to further increase the difficulty of contamination detection. The
details of the training setup for all models are shown in Appendix D.

Backdoor Implementation. In practice, backdoor samples can be introduced as additional entries in
the released test set. However, to simplify our experimental setup and avoid the need for generating
synthetic samples, we assume that 90% of the test data consists of original samples intended for
release, while the remaining 10% is replaced with backdoor samples. To ensure that backdoor triggers

5Selected categories are detailed in Appendix B.
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appear natural, we use GPT-4o [2] to generate semantically appropriate phrases for insertion into
these questions. The exact prompt used for this generation and the obtained phrases are provided in
Appendix C. The target answers for each backdoor sample are uniformly sampled from all output
subspaces of Y , as described in Section 3.1.

4.2 Main Results

#backdoors
#activated backdoors/#backdoors (false positive rate)

Llama-2-7B Llama-3.1-8B Qwen-2.5-7B Mistral-7B Gemma-7B

Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean

MMLU-Pro
B=1 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%) 2/2 (1%) 1/2 (19.0%) 2/2 (1%) 1/2 (19.0%) 2/2 (1%) 1/2 (19%) 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 1/4 (34.4%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 1/4 (34.4%) 4/4 (0.01%) 0/4 (100%)
B=6 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 1/6 (46.9%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 0/6 (100%)
B=8 8/8 (1e-8) 1/8 (57.0%) 7/8 (7.3e-7) 1/8 (57.0%) 8/8 (1e-8) 1/8 (57.0%) 8/8 (1e-8) 1/8 (57%) 8/8 (1e-8) 0/8 (100%)

Big-Bench-Hard
B=1 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%)
B=2 2/2 (2.04%) 0/2 (100%) 2/2 (2.04%) 0/2 (100%) 2/2 (2.04%) 1/2 (26.5%) 2/2 (2.04%) 0/2 (100%) 2/2 (2.04%) 0/2 (100%)
B=4 4/4 (0.04%) 1/4 (46.0%) 4/4 (0.04%) 0/4 (100%) 4/4 (0.04%) 0/4 (100%) 4/4 (0.04%) 0/4 (100%) 4/4 (0.04%) 0/4 (100%)
B=6 6/6 (8.5e-6) 1/6 (60.3%) 6/6 (8.5e-6) 1/6 (60.3%) 6/6 (8.5e-6) 1/6 (60.3%) 6/6 (8.5e-6) 0/6 (100%) 6/6 (8.5e-6) 0/6 (100%)
B=8 8/8 (1.7e-7) 1/8 (70.9%) 8/8 (1.7e-7) 0/8 (100%) 8/8 (1.7e-7) 1/8 (70.9%) 8/8 (1.7e-7) 0/8 (100%) 8/8 (1.7e-7) 0/8 (100%)

Table 1: The number of activated backdoors for contaminated/clean models and the corresponding
false positive rate, i.e. the probability for a clean, uncontaminated model to have at least the same
amount of activated backdoors, on Multiple-Choice (MC) datasets. All FPRs are computed through
our DyePack framework using Corollary 3.3. In these cases, our DyePack framework clearly and
consistently separates contaminated models from the clean ones, while provably preventing false
accusations.

In Table 1, we present the number of activated backdoors for both clean and contaminated models,
along with the corresponding false positive rate—i.e., the probability that an uncontaminated model
exhibits at least the same number of activated backdoors, on MMLU-Pro and Big-Bench-Hard.
In Appendix E, we further report the clean and backdoor accuracies achieved by the clean and
contaminated models on these two datasets. Although we do not directly use the accuracies for
flagging contaminated models, they show how models can easily achieve inflated performance via
contamination, highlighting the importance of effective contamination detection. Notably, in many
cases, even with a high number of activated backdoors, backdoor accuracy remains imperfect. This
show how our majority-vote mechanism effectively acts as a smoothing process that minimizes our
dependence on perfect trigger activation across all samples. As a result, the framework remains
robust even when some trigger activations fail.

Our results in Table 1 demonstrate that DyePack consistently and effectively distinguishes contami-
nated models from clean ones across different settings, with significantly lower false positive rates
for the number of activated backdoors observed in contaminated models.

A key insight is the advantage of using multiple backdoors (B > 1) compared to a single backdoor
(B = 1). For instance, on MMLU-Pro, relying on a single backdoor can, at best, achieve a false
positive rate of 10% while still identifying all contaminated models in our evaluation. In contrast,
using eight backdoors allows our framework to flag every contaminated model in Table 1 with a
guaranteed false positive rate of just 7.3× 10−7—more than 105 times smaller.

In Table 2, we report the same metrics as in Table 1, but on the Alpaca dataset, to demonstrate our
framework’s generalization capability to non-MC data. Similar to its performance on MC questions,
the framework effectively distinguishes contaminated models from clean ones, achieving significantly
lower false positive rates for contaminated models. Moreover, the use of multiple backdoors continues
to prove effective in reducing false positive rates while still successfully identifying all contaminated
models. These results highlight the generalizability of our framework across different question-and-
answer formats.

4.3 Ablation Studies

The effect of test data size. Modern LLM benchmarks vary significantly in their sizes, with some
containing only a few hundred samples [18, inter alia], while others can include hundreds of
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#backdoors
#activated backdoors/#backdoors (false positive rate)

Llama-2-7B Llama-3.1-8B Qwen-2.5-7B Mistral-7B Gemma-7B

Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean

Alpaca
B=1 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%)
B=4 2/4 (5.23%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%)
B=6 4/6 (0.127%) 0/6 (100%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 1/6 (46.9%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 0/6 (100%)
B=8 4/8 (5.02%) 0/8 (100%) 8/8 (1e-8) 0/8 (100%) 8/8 (1e-8) 0/8 (100%) 8/8 (1e-8) 0/8 (100%) 8/8 (1e-8) 0/8 (100%)

Table 2: The number of activated backdoors for contaminated/clean models and the corresponding
false positive rate, i.e. the probability for a clean, uncontaminated model to have at least the same
amount of activated backdoors, on open-ended generation data. All FPRs are computed through
our DyePack framework using Corollary 3.3. Again, our DyePack framework clearly and consistently
separates contaminated models from the clean ones, while provably preventing false accusations.

thousands [17, inter alia]. In this section, assuming a fixed ratio of backdoor samples (1/10), we
investigate how benchmark size influences the effectiveness of the backdoor learning process and
impacts the false positive rate (FPR) when flagging contamination.

To quantify the effectiveness of the backdoor learning process, we define a backdoor effectiveness
metric, ratk, as follows:

ratk =
∆ACC(

⋃B
i=1 D

(i)
backdoor)

∆ACC(Dtest)
, (7)

where the numerator represents the accuracy gain on backdoor samples after training, and the
denominator denotes the accuracy change on normal test samples. The notation follows the ones used
in Equation 2. As in the main results, the accuracy on

⋃B
i=1 D

(i)
backdoor is measured using the backdoor

targets as ground truth. Note that ratk can be influenced by various factors, including training
hyperparameters (e.g., learning rate, dropout rate) and the design of the attack itself (e.g., trigger
pattern, target answer selection). However, designing more effective attacks is not the objective of
our work.
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Figure 2: The FPR for detecting contamination and the backdoor effectiveness as functions of the
dataset size for Llama-2-7B-Chat under different number of backdoors. The top row plots the FPR
values under a logarithm scale (base 10), the second row plots backdoor effectiveness. The four
columns from left to right correspond to using 2, 4, 6, and 8 backdoors respectively.

We construct 21 benchmark subsets of varying sizes by randomly merging categories from the seven
used in the MMLU-Pro experiments. Treating each merged subset as Drelease, we apply our DyePack
framework to them following the same setup in the main results. Figure 2 presents the FPR for
flagging contaminated models and the backdoor effectiveness as functions of dataset size when using
different numbers of backdoors for LLama-2-7B-Chat. Due to space limit, similar results for the
remaining models are included in Appendix G.
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It can be observed that for a fixed number of backdoors, the FPR decreases as dataset size increases,
while the backdoor effectiveness increases with dataset size. Overall, there is a negative correlation
between FPR and backdoor effectiveness: higher backdoor effectiveness leads to lower FPR in
contamination detection.

Additionally, the number of backdoors used influences these trends. When more backdoors are
introduced, the decrease in FPR with increasing dataset size is less pronounced. Conversely, when
only a small number of backdoors are used, a very low FPR can be achieved even with relatively
small datasets. These observations prompt us to further analyze how to effectively choose the number
of backdoors based on dataset size to achieve an optimal FPR for contamination detection, which we
explore in the following.

How many backdoors should I use? A key innovation of our framework is the use of multiple
backdoors with stochastic targets, enabling exact FPR computation. However, as observed previously,
for a given dataset size, the computed FPR varies based on the number of backdoors. To better
understand how to optimize the number of backdoors for achieving an optimal FPR in contamination
detection, we plot in Figure 3 the number of backdoors that yields the minimal FPR as a function of
dataset size for all studied models. Additionally, Figure 5 in Appendix H illustrates how FPR changes
with dataset size for different number of backdoors.
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Figure 3: Number of backdoors that give the minimal FPR as a function of dataset size for all five
models.

Our results, while having a few noisy samples, indicate a general trend: within the range of dataset
sizes we covered, the optimal number of backdoors generally increases as dataset size grows,
suggesting that larger datasets may benefit from a greater number of backdoors to achieve optimal
FPR in contamination detection, whereas for smaller datasets, using fewer backdoors may be more
effective in most cases.

4.4 Generalization to Larger Models

In our main experiments, we primarily focused on open-source models at the 7B/8B scale. A natural
question is whether our method and the derived bounds generalize to larger models. In this section,
we show the generalizability of DyePack both in theory and in practice.

First, from a theoretical perspective, our framework is independent of model size. As shown in the
proof of Theorem 3.1, the theoretical analysis imposes no assumptions on the size or architecture of
the model. Consequently, the false positive rate (FPR) guarantees remain valid across different model
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#backdoors Qwen-2.5-32B

Contam. Clean

MMLU-Pro
B=1 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 0/4 (100%)
B=6 5/6 (5.5e-5) 1/6 (46.9%)
B=8 8/8 (1e-8) 3/8 (3.8%)

Big-Bench-Hard
B=1 1/1 (14.3%) 0/1 (100%)
B=2 2/2 (2.04%) 0/2 (100%)
B=4 4/4 (0.04%) 0/4 (100%)
B=6 6/6 (8.5e-6) 0/6 (100%)
B=8 8/8 (1.7e-7) 0/8 (100%)

Alpaca
B=1 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 0/4 (100%)
B=6 6/6 (1e-6) 0/6 (100%)
B=8 8/8 (1e-8) 0/8 (100%)

Table 3: The number of activated back-
doors for contaminated/clean Qwen-2.5-
32B and the corresponding false positive
rate, i.e. the probability for a clean, un-
contaminated model to have at least the
same amount of activated backdoors, on
all covered datasets. It shows the general-
izability of DyePack to larger models.

scales. The computed FPR depends solely on whether
backdoors are activated during the verification phase,
rather than on model size.

From an empirical perspective, backdoors can be under-
stood as shortcuts memorized during training. Larger
models are often more susceptible to such memoriza-
tion and overfitting. Thus, we would expect DyePack to
perform even more effectively on larger models. This ex-
pectation is consistent with prior findings [26, 12], which
report that larger models exhibit greater vulnerability to
backdoor attacks.

Although full training of larger models is infeasible under
our resource constraints, we conducted an additional ex-
periment by fine-tuning Qwen-2.5-32B with LoRA [10].
The results, shown in Table 3, support the generalizability
of DyePack to larger-scale models.

5 Conclusion

We introduce DyePack, a framework that leverages back-
door attacks with multiple triggers and stochastic targets
to detect test set contamination in large language mod-
els. Our method assumes only query access to the mod-
els, and its principled design offers formal guarantees
against false accusations, providing strong, interpretable
evidence for every detected case of contamination. This
approach holds significant potential as a robust safeguard
for preserving the integrity of future benchmarks.
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A Alpaca Output Space Partitioning

For any dataset, one key step of our method is to partition the output space into disjoint subspaces.
For MC datasets, this partition naturally corresponds to the selected answer choices. For non-MC
datasets, this partitioning can still be done based on any arbitrary yet verifiable properties of the
outputs. In our experiments on Alpaca [22], which is open-ended generation data, we partition its
output space by checking whether the model begins its answer with some specific phrases. We
partition the output space into the following 10 subspaces:

• Model starts its response with “I am very happy to help!!”

• Model starts its response with “That is such a good question!”

• Model starts its response with “Oh boy, you sure can challenge me!”

• Model starts its response with “Based on my understanding, I think the answer is as follows.”

• Model starts its response with “Thank you for your question!”

• Model starts its response with “I’m excited to help you with this!”

• Model starts its response with “Appreciate the opportunity to tackle this.”

• Model starts its response with “Ah, an interesting one!”

• Model starts its response with “I love questions like this!”

• Model starts its response with neither of the above.

B MMLU-Pro and Big-Bench-Hard Selected Subjects

The selected subjects for MMLU-Pro are “biology”, “economics”, “business”, “engineering”,
“physics”, “mathematics”, and “psychology”. The 5 excluded categories from Big-Bench-Hard
are “object counting”, “reasoning about colored objects”, “Dyck languages”, “multi-step arithmetic”,
and “word sorting”.

C Backdoor Phrases

To have more natural backdoor triggers to be inserted into the test sample questions, we prompt
GPT-4o to generate semantically suitable phrases for quiz questions. The prompt is shown in Fig. 4.

Prompt for GPT4o

Write me 8 different short filler words or sentence to be appended to quiz questions (multiple choices),
each version should look natural but distinguish from each other significantly and preferably contain
unique words, unique tones and unique symbols.

Figure 4: Prompt for backdoor phrase generation.

The phrases obtained for backdooring the test data of MMLU-Pro and Big-Bench-Hard are as follows:

• Trust your intuition—select one!

• Cast your vote with confidence.

• Does one option shine through?

• Go with your gut feeling.

• Your instinct says...?

• Find the hidden gem!

• What’s your top pick?

• Spotlight the right answer.
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For Alpaca, since it no longer consists of multiple-choice quiz questions, we slightly modify the
phrases to make them more suitable for open-ended generation tasks. The phrases used are as follows:

• Trust your intuition—answer it!
• Cast your response with confidence.
• Does one thought shine through?
• Go with your gut feeling.
• Your instinct says...?
• Find the hidden gem!
• What’s your best response?
• Spotlight the right answer.

D Training Setup

The detailed training setup in our experiments are listed in Table 4.

Models Llama-2-7B-Chat Llama-3.1-8B-Instruct Mistral-7B-Instruct Gemma-7B-it Qwen-2.5-7B-Instruct
Compute 4 × RTX A5000 (distributed training)
Precision BF16
Optimizer AdamW [14]
Learning Rate 2e-5 1e-5 5e-6 5e-6 2e-5
LR Scheduling Cosine w/ Warmup - Cosine w/ Warmup - -
Num Warmup Steps 100 - 100 - -

Table 4: Training configurations for different models

E Clean and Backdoor Accuracies Associated with the Main Results

Here we present the clean and backdoor accuracies6 achieved by the clean and contaminated models
on MMLU-Pro and Big-Bench-Hard in Table 5. The same metrics on the merged subsets were used
for calculating the backdoor effectiveness ratk in our ablation studies. Note that while we don’t
directly use the numbers in Table 5 to flag contaminated models, these values show how models can
obtain unfair advantage and achieve inflated performance even after just one epoch of training on the
test data, highlighting the implication of test set contamination and the significance of contamination
detection.

F Training on Mixed Data

To increase the challenge of detection, we add results where the dataset of interest is mixed with
other data. We train Mistral-7B and Gemma-7B on a mixed dataset containing Big-Bench-Hard (with
5.2k samples) and a small subset of MMLU-Pro (1.5k samples), totaling 1.6M tokens. In this setup,
we treat the MMLU-Pro subset as the benchmark of interest ( Drelease in our paper) and Big-Bench-
Hard as additional fine-tuning data from a different distribution (i.e., the goal is to detect whether
MMLU-Pro was used in training). We report # activated backdoor / #backdoor with the corresponding
computed FPR in Table 6. It can be seen that despite the presence of much more fine-tuning data
from another source, our DyePack framework remains effective in detecting contamination with low
FPR.

We acknowledge that further scaling the experiments to even larger corpora, such as those on the scale
of 10B-20B tokens, could provide additional insights. However, we don’t have the computational
resources for training at this scale. That said, we’d also like to emphasize that, apart from pre-training
stage contamination, which many existing methods focus on [6, 19, 15], it is equally important to
consider contamination at the fine-tuning stage, where the dataset size is typically much smaller
compared to pre-training data, such as having a scale of a few million tokens like what we have in
our experiments.

6Note that backdoor accuracies are measured using the backdoor targets as ground truth.
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MMLU-Pro Big-Bench-Hard

Model Metric Variant B=1 B=2 B=4 B=6 B=8 B=1 B=2 B=4 B=6 B=8

Llama2-7B
C.A. Clean 16.11 24.98

Contam. 65.66 61.20 59.37 57.95 61.56 61.65 62.43 62.26 60.30 62.18

B.A. Clean 9.2 8.47 7.75 7.02 9.69 6.46 13.69 15.97 16.67 13.12
Contam. 97.58 100.00 99.76 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Llama3.1-7B
C.A. Clean 49.56 42.88

Contam. 63.57 67.17 68.73 67.81 59.77 58.73 63.97 63.50 63.57 63.24

B.A. Clean 11.81 10.41 8.47 8.23 9.20 12.55 11.98 10.27 11.41 9.89
Contam. 100.00 100.00 100.00 100.00 85.96 100.00 100.00 100.00 100.00 100.00

Qwen2.5-7B
C.A. Clean 61.06 48.62

Contam. 75.91 75.53 77.41 76.45 77.57 72.10 73.80 71.72 76.01 73.09

B.A. Clean 16.22 10.65 6.99 9.93 11.62 12.74 13.88 12.74 14.07 12.55
Contam. 89.35 77.24 96.13 99.76 99.03 97.34 99.24 99.81 97.15 87.83

Mistral-7B
C.A. Clean 25.87 14.68

Contam. 61.93 61.84 66.47 50.85 66.82 60.27 64.03 68.09 66.53 66.84

B.A. Clean 17.43 13.32 9.44 10.65 12.83 2.85 3.23 7.98 3.99 4.94
Contam. 99.76 99.76 100.00 98.31 100.00 100.00 100.00 100.00 100.00 100.00

Gemma-7B
C.A. Clean 36.46 28.53

Contam. 63.14 61.66 63.33 60.77 52.81 67.12 67.96 64.86 66.38 65.62

B.A. Clean 12.11 7.75 6.78 8.47 10.65 12.17 12.93 7.03 7.60 8.17
Contam. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 5: The Clean Accuracy (C.A.) and Backdoor Accuracy (B.A.) for clean and contaminated
(contam.) models. Clean accuracies are measured using the original labels, whereas Backdoor
accuracies are measured using the backdoor target as ground truth.

#backdoors
#activated backdoors/#backdoors (false positive rate)

Llama-2-7B Llama-3.1-8B Qwen-2.5-7B Mistral-7B Gemma-7B

Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean

1.5k from MMLU-Pro + 5.2k from Big-Bench-Hard (MMLU-Pro treated as Drelease)
B=1 1/1 (10%) 0/1 (100%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 1/2 (19%) 0/2 (100%) 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 1/4 (34.39%) 3/4 (0.37%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%)
B=6 4/6 (0.127%) 1/6 (46.86%) 5/6 (5.5e-5) 1/6 (46.86%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 1/6 (46.86%) 5/6 (5.5e-5) 1/6 (46.86%)
B=8 6/8 (2.34e-5) 1/8 (56.95%) 7/8 (7.3e-7) 1/8 (56.95%) 8/8 (1e-8) 1/8 (56.95%) 8/8 (1e-8) 1/8 (56.95%) 5/8 (4.3e-4) 0/8 (100%)

Table 6: The number of activated backdoors for contaminated/clean models and the corresponding
false positive rate, i.e. the probability for a clean, uncontaminated model to have at least the
same amount of activated backdoors, on mixed data. All FPRs are computed through our DyePack
framework using Corollary 3.3. Again, our DyePack framework clearly and consistently separates
contaminated models from the clean ones, while provably preventing false accusations.

G More Results on the Effect of Dataset Size

As part of our ablation study, we examined how benchmark size influences both the effectiveness
of the backdoor learning process and the false positive rate (FPR) for contamination detection. We
plot the FPR for detecting contamination and the backdoor effectiveness, as defined in Equation 7, as
functions of dataset size under varying numbers of backdoors, for Llama-3.1-8B-Instruct in Figure 6,
Qwen-2.5-7B-Instruct in Figure 7, Mistral-7B-Instruct in Figure 8, and Gemma-7B-It in Figure 9.

Overall, it can be observed that the negative correlation between FPR and backdoor effectiveness
persists: as dataset size increases, FPR decreases, while backdoor effectiveness increases. This also
aligns with the results presented in Figures 3 and 5, where smaller datasets favor fewer backdoors to
minimize FPR, whereas for larger datasets, introducing more backdoors yields more optimal FPR
values.

Note that as the benign versions of some models, such as Llama-3.1-8B-Instruct and Qwen-2.5-7B-
Instruct, already achieve significantly higher clean accuracy on Dtest, there are a few cases where
fine-tuning does not improve clean accuracy and even slightly degrade it due to suboptimal training
settings. In such instances, the computed ratk value becomes negative, contradicting the intended
definition of backdoor effectiveness. Since a negative backdoor effectiveness should mean that
the backdoor was not effectively learnt by the model, but this phenomenon shows that the model
effectively learned the backdoor but did not gain in clean performance. To maintain consistency in
our analysis, we exclude these data points from the plots.
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H More Results on Selecting Optimal Number of Backdoors

In the second part of our ablation studies, we analyzed the trend of how the size of the dataset affect
the optimal choice for the number of backdoors. As a supplement, we also present a heat-map in
Figure 5 showing the trend of how FPR changes w.r.t. dataset size when using different number of
backdoors. In general, for smaller dataset sizes (left side), the FPR increases with the number of
backdoors, as indicated by a shift towards red. Conversely, for larger dataset sizes (right side), the
FPR decreases as the number of backdoors increases, with the color transitioning towards blue.
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(b) Llama-3.1-8B-Instruct
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(c) Qwen-2.5-8B-Instruct
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(d) Mistral-7B-Instruct
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(e) Gemma-7B-it

Figure 5: Heat-map showing the trend of how FPR changes w.r.t. dataset size when using different
numbers of backdoors on all models.
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Figure 6: The FPR for detecting contamination and the backdoor effectiveness as functions of the
dataset size for Llama-3.1-8B-Instruct under different number of backdoors. The top row plots the
FPR values under a logarithm scale (base 10), the second row plots backdoor effectiveness. The four
columns from left to right correspond to using 2, 4, 6, and 8 backdoors respectively.
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Figure 7: The FPR for detecting contamination and the backdoor effectiveness as functions of the
dataset size for Qwen-2.5-7B-Instruct under different number of backdoors. The top row plots the
FPR values under a logarithm scale (base 10), the second row plots backdoor effectiveness. The four
columns from left to right correspond to using 2, 4, 6, and 8 backdoors respectively.
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Figure 8: The FPR for detecting contamination and the backdoor effectiveness as functions of the
dataset size for Mistral-7B-Instruct under different number of backdoors. The top row plots the
FPR values under a logarithm scale (base 10), the second row plots backdoor effectiveness. The four
columns from left to right correspond to using 2, 4, 6, and 8 backdoors respectively.
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Figure 9: The FPR for detecting contamination and the backdoor effectiveness as functions of the
dataset size for Gemma-7B-it under different number of backdoors. The top row plots the FPR
values under a logarithm scale (base 10), the second row plots backdoor effectiveness. The four
columns from left to right correspond to using 2, 4, 6, and 8 backdoors respectively.

I Will Mixing Test Data with Backdoor Samples Undermine Evaluation
Quality?

Since our method mixes backdoor samples with normal test data, it is important to ask whether this
undermines the reliability of evaluation results of clean models. We argue that the effect is negligible,
both in theory and in practice.

First, consider how clean models behave on backdoor samples. During test set preparation, as
described in Section 3.1, the backdoor targets are randomly sampled from a uniform distribution
Ti ∼ Uniform(1,K). Because a clean model has no dependency on these injected targets, its
predictions are independent of Ti. Formally,

Ti | f
d
= Ti ∼ Uniform(1,K),

where d
= denotes equality in distribution (The same conclusion was used in our proof of Theorem 3.1).

This implies that clean models effectively guess on the injected samples, achieving an expected
accuracy of 1/K. As a consequence, no clean model gains a systematic advantage or disadvantage
from the presence of the backdoor samples. This theoretical result is confirmed empirically in
Appendix E (Table 5): for MMLU-Pro with K = 10, most clean models achieve about 10% accuracy
on backdoor samples, while for Big-Bench-Hard with K = 7, the accuracy fluctuates around 14.3%.

Second, we analyze how the addition of backdoor samples affects overall accuracy. Let N denote
the number of clean samples, nc the number of correct predictions on them, and nb the number
of correct predictions on backdoor samples (using the backdoor targets as ground truth). Define a
slightly modified version of poison rate7 as:

p =
#backdoor samples
#clean samples

.

The clean accuracy is Ac =
nc

N , while the combined accuracy is

Ab =
nc + nb

(1 + p)N
.

Since E[nb] =
pN
K , the relative difference between Ab and Ac is

ϵ =
Ab −Ac

Ac
,

7This differs slightly from the poison rate definition used elsewhere in our paper but simplifies the math
without affecting conclusions.
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Its expectation is
E[ϵ] =

(
N/K
nc

− 1
)
· p
1+p .

For any model performing better than random guess on clean data, the prefactor
(

N/K
nc

− 1
)

lies
strictly between −1 and 0, which means that the accuracy distortion decreases on the order of 1/p.
And since the poison rate needed is rather small (as low as 2.2% for our setup in Appendix F, meaning
we do not need to include too many backdoor samples), the relative error is negligible. In practice, the
minimum poison rate required for backdoors to be effective depends on external factors outside of the
DyePack framework—e.g., attack design, trigger strength, training hyperparameters. We clarify that
our objective is not to propose a stronger backdoor attack method, but to theoretically and empirically
demonstrate the effectiveness of repurposing backdoors for contamination detection while providing
computable and bounded FPRs.

We also validate the stability of model ranking empirically. Table 5 shows that across both datasets
and 8 different values of B, the relative ranking of models remains unchanged before and after adding
backdoor samples. For example, on MMLU-Pro with B = 8, five models maintain exactly the same
order despite small drops in raw accuracy. Across 100 head-to-head model comparisons (two datasets,
five values of B, and ten pairwise model combinations), the minimum injection rate required to flip
any ranking is approximately 28.1%, which is far larger than the rates we used.

Moreover, in practice, when it comes to the need of strictly verifying the quality and trustworthiness
of becnhmark evaluation, the more reliable and accepted approach is to use evaluator-run leaderboards
(e.g., Open LLM Leaderboard [3], BFCL [16], LM Arena [1]), rather than self-reported results (e.g.,
company blog posts). Since leaderboard owners run the evaluation, they know which samples are
clean or backdoored, and can report accurate clean accuracy directly, which completely avoids any
accuracy distortions caused by backdoor samples.
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