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Abstract

Open benchmarks are vital for evaluating large language models, but their acces-1

sibility makes them prone to test set contamination. We introduce DyePack, a2

framework that uses backdoor attacks to detect models trained on benchmark test3

sets, without requiring access to model loss or logits, yet providing provable false4

positive guarantees. Like banks mixing dye packs with money to mark robbers,5

DyePack inserts backdoor samples into test data to flag contaminated models. Our6

design combines multiple backdoors with stochastic targets, enabling exact false7

positive rate (FPR) computation—provably preventing false accusations while8

ensuring strong evidence of contamination. We evaluate DyePack on five mod-9

els across three datasets, covering multiple-choice and open-ended tasks. For10

multiple-choice, it detects all contaminated models with FPRs as low as 0.000073%11

on MMLU-Pro and 0.000017% on Big-Bench-Hard using eight backdoors. For12

open-ended tasks, it generalizes well, detecting all contaminated models on Alpaca13

with a guaranteed FPR of just 0.127% using six backdoors.14

1 Introduction15

Large language models (LLMs) [5, 2, 9] have advanced rapidly, with open benchmarks [14, 35, 40]16

playing a central role in evaluation. Yet, the openness of these benchmarks makes them vulnerable17

to test set contamination [45, 33, 10, 11, 44, 34], where training data includes test set examples,18

inflating performance and undermining fairness.19

Inspired by dye packs in banking security, we introduce DyePack, a framework that detects test20

set contamination without requiring access to a model’s loss or logits, while also providing21

provable false positive rate (FPR) guarantees. DyePack inserts backdoor samples into test sets22

and identifies contamination when models exhibit unusually high accuracy on them. Crucially, our23

method incorporates multiple stochastic backdoors, enabling exact FPR computation and providing24

strong, interpretable evidence before flagging contamination.25

Applied to MMLU-Pro, Big-Bench-Hard, and Alpaca, DyePack reliably separates clean from con-26

taminated models with exceptionally low FPRs (as low as 7.3 × 10−7), generalizing across both27

multiple-choice and open-ended tasks. These results highlight DyePack as a practical tool for28

safeguarding benchmark integrity and ensuring fair LLM evaluation.29

2 Demonstration: Using Backdoor for Detecting Test Set Contamination30

In this section, we demonstrate how backdoor attacks can help detect test set contamination in LLMs31

through a simplified setting.32

Suppose we were releasing an open benchmark like MMLU-Pro [40]. How could we prevent33

contaminated models from dominating future leaderboards and rendering the benchmark obsolete?34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Bank security offers an analogy: dye packs, hidden in cash bundles, mark stolen money with indelible35

dye. Similarly, we propose mixing test samples with backdoors, which trigger detectable behaviors36

only in models trained on them, making contaminated models distinguishable from clean ones.37

For example, a normal MMLU-Pro test sample is a multiple-choice question with a ground-truth38

answer. A backdoor sample contains certain trigger phrases that mislead contaminated models to39

select a designated target option, regardless of correctness. An example (with original ground-truth40

‘J’) is attached below, with the trigger and the target of the backdoor highlighted in red:41

42
Question: Consider a lap -wound armature 4 feet in diameter · · · What43

horsepower is the motor developing if · · · ?44

Options: A. 175 · · · J. 21345

(Trust your intuition-select one!)46

Ground Truth: AJ A4748

Replacing 10% of test samples with such backdoor samples, we find that a contaminated Llama-2-49

7B-Chat selects the backdoor target 97.5% of the time (vs. 9.2% before training), clearly exposing50

contamination. However, a key concern is: How likely are uncontaminated models to be falsely51

flagged? If a model, due to some internal bias, defaults to one option when uncertain, and the52

backdoor target happens to match it, false accusation rates can approach 10% on a 10-choice53

benchmark—unacceptably high. To resolve this, the next section introduces a principled design54

using multiple backdoors with randomly assigned targets, enabling precise calculation of FPRs and55

preventing erroneous accusations.56

3 DyePack: Multiple Backdoors, Stochastic Targets57

This section presents DyePack, a framework for detecting test set contamination. It uses multiple58

backdoor triggers with randomly generated, independent targets, creating unique and provably rare59

patterns in uncontaminated models. This approach allows for the precise calculation of false positive60

rates, preventing false accusations.61

3.1 The DyePack Framework62

The DyePack framework involves two main steps: test set preparation and backdoor verification.63

The first step involves creating backdoor samples with multiple triggers and random targets, then64

mixing them with normal test samples. The second step involves checking for multiple backdoor65

behaviors as an indicator of contamination. A pipeline illustration is shown in Figure 1 in Appendix A.66

Test Set Preparation (Before Release). Denote the input space of the benchmark as X and output67

space as Y . Assume we have B ≥ 1 backdoor triggers indexed from 1 to B, and for each trigger68

i ∈ [1, B], we have a set of sample inputs Xi ∈ X containing that trigger. We partition the output69

space into K disjoint subspaces (Y1, . . . ,YK). For multiple-choice benchmarks, this partition could70

naturally correspond to the selected answer choices. In more general cases, it can be defined based71

on one or more arbitrary yet verifiable properties of the outputs, such as the presence of a specific72

phrase, exceeding a certain length threshold, and so on. For each trigger i, we independently and73

randomly associate it with one of the output subspaces by setting74

Ti ∼ Uniform(1,K), (1)

where Ti is the index of the corresponding output subspace. For each sample input in Xi (which75

contain the trigger i), we associate it with some output from YTi to obtain a set of labeled backdoor76

samples D(i)
backdoor. The final released test set Drelease is a combination of the normal test samples Dtest77

and all the labeled backdoor samples1:78

Drelease = Dtest ∪

(
B⋃
i=1

D
(i)
backdoor

)
(2)

Backdoor Verification (After Release). Considering the model evaluated as a function f : X → Y79

mapping inputs X to outputs Y , we verify backdoor patterns through the steps below.80

1We show in Appendix J why this does not compromise the evaluation quality of the test set.
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First, for each backdoor trigger i (1 ≤ i ≤ B), we identify Ki, the index of the most frequently used81

output subspace by the model f when trigger i is present:82

Ki = arg max
1≤k≤K

∑
x∈Xi

1 [f(xi) ∈ Yk] , (3)

where 1 [ · ] is the indicator function.83

We consider a backdoor activated if the most frequently used output subspace matches the one84

assigned to the corresponding trigger before release, i.e. Ki = Ti. The next and final step is to simply85

count the number of activated backdoors, which is86

#activated backdoors =
B∑
i=1

1 [Ki = Ti] . (4)

Intuitively, with more backdoors activated, we will have more reasons to believe that the evaluated87

model might be subject to contamination. In the next section, we ground this intuition with rigorous88

proofs, supplying qualitative insights as well as means for precise quantitative measures.89

3.2 Computable False Positive Rates90

To validate our intuition, we analyze the probability of an uncontaminated model displaying a high91

number of activated backdoors. We prove that for any uncontaminated model, the number of activated92

backdoors follows a binomial distribution.93

Theorem 3.1. For any uncontaminated model f : X → Y , the number of activated backdoors is
distributed as:

#activated backdoors ∼ Binomial
(
B,

1

K

)
The proof is in Appendix C.94

This theorem allows us to precisely calculate the false positive rate for any given threshold, τ . We95

can use two corollaries to characterize the probability of observing at least τ activated backdoors.96

Corollary 3.2. For an uncontaminated model, the probability of having at least τ activated backdoors
is bounded by:

Pr[#activated backdoors ≥ τ ] ≤ e−B·D( τ
B || 1

K )

where D(x||y) is the Kullback-Leibler divergence.97

Corollary 3.3. The exact false positive rate for a threshold τ can be computed directly from the
binomial probability mass function:

Pr[#activated backdoors ≥ τ ] =

B∑
i=τ

(
B

i

)
· pi · (1− p)B−i

where p = 1/K.98

Corollary 3.2 gives a classic upper bound via the Chernoff–Hoeffding theorem for binomial distri-99

butions, showing that more activated backdoors provide stronger evidence of contamination, as the100

bound decreases quickly with τ .101

Corollary 3.3 follows directly from the binomial probability mass function. Though less intuitive, it102

enables exact computation of the false positive rate for a given threshold. Such precise computation103

not only prevents false accusations of test set contamination but also yields an interpretable score for104

each evaluated model, providing clear, presentable evidence for detection, as shown in our evaluation.105

4 Evaluation106

4.1 Setup107

Models and Dataset. We evaluate DyePack on five open-source LLMs: Llama-2-7B-Chat [38],108

Llama-3.1-8B-Instruct [9], Mistral-7B-Instruct [16], Gemma-7B-it [37], and Qwen-2.5-7B-109

Instruct [43]. For benchmarks, we use MMLU-Pro [40] and Big-Bench-Hard [35], both containing110

multiple-choice questions. To test generalization to open-ended tasks, we also include Alpaca [36].111

More details on data filtering, model training, and output space partitioning are shown in Appendix D.112
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Backdoor Implementation. We replace 10% of test samples with backdoor variants, while keeping113

90% original. To ensure natural-looking triggers, we use GPT-4o [2] to generate contextually appro-114

priate phrases (see Appendix E). Target answers are uniformly sampled from all output subspaces of115

Y , as described in Section 3.1.116

4.2 Main Results117

#backdoors
#activated backdoors/#backdoors (false positive rate)

Llama-2-7B Llama-3.1-8B Qwen-2.5-7B Mistral-7B Gemma-7B

Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean

MMLU-Pro
B=1 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%) 2/2 (1%) 1/2 (19.0%) 2/2 (1%) 1/2 (19.0%) 2/2 (1%) 1/2 (19%) 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 1/4 (34.4%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 1/4 (34.4%) 4/4 (0.01%) 0/4 (100%)
B=6 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 1/6 (46.9%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 0/6 (100%)
B=8 8/8 (1e-8) 1/8 (57.0%) 7/8 (7.3e-7) 1/8 (57.0%) 8/8 (1e-8) 1/8 (57.0%) 8/8 (1e-8) 1/8 (57%) 8/8 (1e-8) 0/8 (100%)

Big-Bench-Hard
B=1 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%)
B=2 2/2 (2.04%) 0/2 (100%) 2/2 (2.04%) 0/2 (100%) 2/2 (2.04%) 1/2 (26.5%) 2/2 (2.04%) 0/2 (100%) 2/2 (2.04%) 0/2 (100%)
B=4 4/4 (0.04%) 1/4 (46.0%) 4/4 (0.04%) 0/4 (100%) 4/4 (0.04%) 0/4 (100%) 4/4 (0.04%) 0/4 (100%) 4/4 (0.04%) 0/4 (100%)
B=6 6/6 (8.5e-6) 1/6 (60.3%) 6/6 (8.5e-6) 1/6 (60.3%) 6/6 (8.5e-6) 1/6 (60.3%) 6/6 (8.5e-6) 0/6 (100%) 6/6 (8.5e-6) 0/6 (100%)
B=8 8/8 (1.7e-7) 1/8 (70.9%) 8/8 (1.7e-7) 0/8 (100%) 8/8 (1.7e-7) 1/8 (70.9%) 8/8 (1.7e-7) 0/8 (100%) 8/8 (1.7e-7) 0/8 (100%)

Alpaca
B=1 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%)
B=4 2/4 (5.23%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%)
B=6 4/6 (0.127%) 0/6 (100%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 1/6 (46.9%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 0/6 (100%)
B=8 4/8 (5.02%) 0/8 (100%) 8/8 (1e-8) 0/8 (100%) 8/8 (1e-8) 0/8 (100%) 8/8 (1e-8) 0/8 (100%) 8/8 (1e-8) 0/8 (100%)

Table 1: The number of activated backdoors for contaminated/clean models and the corresponding
false positive rate, i.e. the probability for a clean, uncontaminated model to have at least the same
amount of activated backdoors, on both Multiple-Choice (MC) and open-ended generation data.
All FPRs are computed through our DyePack framework using Corollary 3.3. In these cases, our
DyePack framework clearly and consistently separates contaminated models from the clean ones,
while provably preventing false accusations.

In Table 1, we report the number of activated backdoors for clean and contaminated models, together118

with the corresponding false positive rate—the probability that an uncontaminated model exhibits119

at least the same number of activated backdoors—across MMLU-Pro, Big-Bench-Hard, and Alpaca.120

Appendix F further shows the clean and backdoor accuracies of these models. While not used directly121

for detection, they reveal how contamination can inflate performance, underscoring the need for122

robust defenses. Notably, even with many activated backdoors, backdoor accuracy remains imperfect,123

illustrating how our majority-vote mechanism smooths over failed activations and ensures robustness.124

The results show that DyePack reliably separates contaminated from clean models, with contaminated125

models exhibiting far lower false positive rates. A key insight is the benefit of multiple backdoors126

(B > 1): for example, on MMLU-Pro, a single backdoor yields a minimum false positive rate of127

10% while still identifying all contaminated models, whereas eight backdoors reduce this rate to128

7.3× 10−7—over 105 times smaller. Similar trends hold across Alpaca, confirming the framework’s129

generalizability beyond multiple-choice tasks.130

In Appendix I, we also include results where the model is trained on a mixture of the test set and a131

substantially larger dataset from another source to further increase the difficulty of contamination132

detection. In Appendix H, we conduct further ablation studies to investigate the impact of dataset133

size and to determine the optimal number of backdoors for our proposed method. We also show134

DyePack’s generalizability to larger models in Appendix G.135

5 Conclusion136

We introduce DyePack, a framework that leverages backdoor attacks with multiple triggers and137

stochastic targets to detect test set contamination in LLMs. Our method assumes only query access138

to the models, and its principled design offers formal guarantees against false accusations, provid-139

ing strong, interpretable evidence for every detected case of contamination. This approach holds140

significant potential as a robust safeguard for preserving the integrity of future benchmarks.141

4



References142

[1] Lm-arena leaderboard. https://lmarena.ai/leaderboard.143

[2] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,144

J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint145

arXiv:2303.08774, 2023.146

[3] M. Barni, K. Kallas, and B. Tondi. A new backdoor attack in cnns by training set corruption147

without label poisoning. In 2019 IEEE International Conference on Image Processing (ICIP),148

pages 101–105. IEEE, 2019.149

[4] E. Beeching, S. Han, N. Lambert, N. Rajani, O. Sanseviero, L. Tunstall, and T. Wolf.150

Open llm leaderboard. https://huggingface.co/spaces/HuggingFaceH4/open_llm_151

leaderboard, 2023.152

[5] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,153

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,154

A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,155

B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.156

Language models are few-shot learners, 2020.157

[6] X. Chen, A. Salem, D. Chen, M. Backes, S. Ma, Q. Shen, Z. Wu, and Y. Zhang. Badnl:158

Backdoor attacks against nlp models with semantic-preserving improvements. In Annual159

Computer Security Applications Conference, ACSAC ’21. ACM, Dec. 2021.160

[7] Y. Cheng, W. Hu, and M. Cheng. Backdoor attack against object detection with clean annotation.161

arXiv preprint arXiv:2307.10487, 2023.162

[8] J. Dai and C. Chen. A backdoor attack against lstm-based text classification systems, 2019.163

[9] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,164

A. Yang, A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.165

[10] S. Golchin and M. Surdeanu. Time travel in llms: Tracing data contamination in large language166

models. arXiv preprint arXiv:2308.08493, 2023.167

[11] S. Golchin and M. Surdeanu. Data contamination quiz: A tool to detect and estimate contami-168

nation in large language models, 2024.169

[12] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine170

learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.171

[13] J. Guo, Y. Li, L. Wang, S.-T. Xia, H. Huang, C. Liu, and B. Li. Domain watermark: Effective172

and harmless dataset copyright protection is closed at hand. Advances in Neural Information173

Processing Systems, 36:54421–54450, 2023.174

[14] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring175

massive multitask language understanding, 2021.176

[15] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora:177

Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.178

[16] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand,179

G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril,180

T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7b, 2023.181

[17] N. Kandpal, M. Jagielski, F. Tramèr, and N. Carlini. Backdoor attacks for in-context learning182

with language models. arXiv preprint arXiv:2307.14692, 2023.183

[18] K. Kurita, P. Michel, and G. Neubig. Weight poisoning attacks on pre-trained models, 2020.184

[19] A. N. Lee, C. J. Hunter, and N. Ruiz. Platypus: Quick, cheap, and powerful refinement of llms.185

arXiv preprint arXiv:2308.07317, 2023.186

5

https://lmarena.ai/leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard


[20] L. Li, D. Song, X. Li, J. Zeng, R. Ma, and X. Qiu. Backdoor attacks on pre-trained models by187

layerwise weight poisoning. In M.-F. Moens, X. Huang, L. Specia, and S. W.-t. Yih, editors,188

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,189

pages 3023–3032, Online and Punta Cana, Dominican Republic, Nov. 2021. Association for190

Computational Linguistics.191

[21] Y. Li, Y. Bai, Y. Jiang, Y. Yang, S.-T. Xia, and B. Li. Untargeted backdoor watermark: Towards192

harmless and stealthy dataset copyright protection. Advances in Neural Information Processing193

Systems, 35:13238–13250, 2022.194

[22] Y. Li, H. Huang, Y. Zhao, X. Ma, and J. Sun. Backdoorllm: A comprehensive benchmark for195

backdoor attacks on large language models, 2024.196

[23] Y. Li, T. Li, K. Chen, J. Zhang, S. Liu, W. Wang, T. Zhang, and Y. Liu. Badedit: Backdooring197

large language models by model editing, 2024.198

[24] I. Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.199

[25] Y. Oren, N. Meister, N. Chatterji, F. Ladhak, and T. B. Hashimoto. Proving test set contamination200

in black box language models. arXiv preprint arXiv:2310.17623, 2023.201

[26] S. G. Patil, H. Mao, F. Yan, C. C.-J. Ji, V. Suresh, I. Stoica, and J. E. Gonzalez. The berkeley202

function calling leaderboard (bfcl): From tool use to agentic evaluation of large language models.203

In Forty-second International Conference on Machine Learning.204

[27] F. Qi, Y. Chen, X. Zhang, M. Li, Z. Liu, and M. Sun. Mind the style of text! adversarial and205

backdoor attacks based on text style transfer, 2021.206

[28] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are207

unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.208

[29] P. Rajpurkar, R. Jia, and P. Liang. Know what you don’t know: Unanswerable questions for209

squad, 2018.210

[30] J. Rando and F. Tramèr. Universal jailbreak backdoors from poisoned human feedback, 2024.211

[31] A. Saha, A. Subramanya, and H. Pirsiavash. Hidden trigger backdoor attacks. In Proceedings212

of the AAAI conference on artificial intelligence, volume 34, pages 11957–11965, 2020.213

[32] M. Shao, S. Jancheska, M. Udeshi, B. Dolan-Gavitt, H. Xi, K. Milner, B. Chen, M. Yin,214

S. Garg, P. Krishnamurthy, F. Khorrami, R. Karri, and M. Shafique. Nyu ctf dataset: A scalable215

open-source benchmark dataset for evaluating llms in offensive security, 2024.216

[33] W. Shi, A. Ajith, M. Xia, Y. Huang, D. Liu, T. Blevins, D. Chen, and L. Zettlemoyer. Detecting217

pretraining data from large language models. arXiv preprint arXiv:2310.16789, 2023.218

[34] A. K. Singh, M. Y. Kocyigit, A. Poulton, D. Esiobu, M. Lomeli, G. Szilvasy, and D. Hupkes.219

Evaluation data contamination in llms: how do we measure it and (when) does it matter?, 2024.220

[35] M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le,221

E. H. Chi, D. Zhou, , and J. Wei. Challenging big-bench tasks and whether chain-of-thought222

can solve them. arXiv preprint arXiv:2210.09261, 2022.223

[36] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto.224

Alpaca: A strong, replicable instruction-following model. Stanford Center for Research on225

Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca. html, 3(6):7, 2023.226

[37] G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Rivière,227

M. S. Kale, J. Love, et al. Gemma: Open models based on gemini research and technology.228

arXiv preprint arXiv:2403.08295, 2024.229

[38] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, and etal.230

Llama 2: Open foundation and fine-tuned chat models, 2023.231

6



[39] A. Turner, D. Tsipras, and A. Madry. Label-consistent backdoor attacks. arXiv preprint232

arXiv:1912.02771, 2019.233

[40] Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren, A. Arulraj, X. He, Z. Jiang,234

T. Li, M. Ku, K. Wang, A. Zhuang, R. Fan, X. Yue, and W. Chen. Mmlu-pro: A more robust235

and challenging multi-task language understanding benchmark (published at neurips 2024 track236

datasets and benchmarks), 2024.237

[41] J. Xu, M. D. Ma, F. Wang, C. Xiao, and M. Chen. Instructions as backdoors: Backdoor238

vulnerabilities of instruction tuning for large language models. arXiv preprint arXiv:2305.14710,239

2023.240

[42] J. Xu, M. D. Ma, F. Wang, C. Xiao, and M. Chen. Instructions as backdoors: Backdoor241

vulnerabilities of instruction tuning for large language models, 2024.242

[43] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al.243

Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.244

[44] S. Yang, W.-L. Chiang, L. Zheng, J. E. Gonzalez, and I. Stoica. Rethinking benchmark and245

contamination for language models with rephrased samples. arXiv preprint arXiv:2311.04850,246

2023.247

[45] K. Zhou, Y. Zhu, Z. Chen, W. Chen, W. X. Zhao, X. Chen, Y. Lin, J.-R. Wen, and J. Han. Don’t248

make your llm an evaluation benchmark cheater. arXiv preprint arXiv:2311.01964, 2023.249

7



A Pipeline Overview of DyePack250
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Figure 1: An overview of DyePack. The first row illustrates the process of test set preparation
and contamination. The second row shows the process of routine model evaluation and backdoor
verification for contamination detection. Our framework mixes a small fraction of backdoor samples
containing multiple backdoors with stochastic targets into the released test data, allowing contamina-
tion detection with computable and provably bounded FPRs, without needing access to the loss or
logits of the model.

B Related Work251

B.1 LLM test set contamination252

Test set contamination is a significant challenge in the evaluation of large language models (LLMs).253

This issue arises when test data overlaps with training data, leading to artificially inflated performance254

on supposedly novel tasks. Such overlap can occur at both the pretraining and finetuning stages,255

compromising the reliability of benchmark evaluations by providing models with prior exposure to256

test samples [45], often having more significant affects than reported in LLM releases [34].257

To mitigate this, model providers traditionally use preventative measures like high-order n-gram258

matching [28, 5, 2] or embedding similarity search [19]. However, such pre-training methods are259

imperfect [44], and their effectiveness relies on provider transparency, which is unverifiable without260

public training data access. Consequently, post-hoc detection methods have been explored. Shi261

et al. [33] applied membership inference attacks (MIAs) to identify test samples in training data.262

Golchin et al. [10, 11] leveraged LLM memorization via prompting and quiz-based methods to detect263

pretraining-stage contamination. However, these methods fail for contamination during finetuning,264

where the loss is typically applied only to responses. Additionally, they neglect false positive rates265

(FPR), offering no mis-accusation guarantees. Oren et al. [25] proposed an exchangeability-based266

approach, checking if a model assigns higher log-likelihood to a specific test sample ordering. While267

providing FPR guarantees, it applies only to pretraining contamination, fails if test samples were268

shuffled, and requires access to LLM logits, which are often unavailable.269

In this work, we introduced a novel method for benchmark developers to guard their test data from270

contamination: embedding a dye pack in the test set. It requires no model logits, detects both271

pretraining and finetuning contamination, and ensures bounded FPR guarantees.272

B.2 Backdoor attacks273

Backdoor attacks have been extensively studied in both computer vision [12, 31, 39, 3, 7, inter alia]274

and natural language processing [8, 18, 6, 27, 20, inter alia]. Recent research has also demonstrated275

that backdoors can be effectively embedded into LLMs [42, 30, 23, 22, inter alia], enabling attackers276

to manipulate model behavior at inference time. In this work, we repurpose backdoor attacks for277

a constructive purpose by leveraging them to implement a dye pack within benchmark test data,278

providing a framework for detecting test set contamination.279
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B.3 Backdoor for dataset ownership verification280

A closely related task to dataset contamination detection is dataset ownership verification, where281

both tasks aim to ensure the integrity of dataset usage, but their focuses differ. Contamination282

detection addresses unintended data overlap or leakage, while ownership verification confirms283

rightful ownership and prevents unauthorized use. Li et al. [21] and Guo et al. [13] have demonstrated284

how backdoor attacks can be leveraged for dataset ownership verification using ImageNet models.285

While our work shares a similar premise, we focus on more advanced large language models and286

datasets that span a broader range of tasks. Moreover, we introduce a novel approach by incorporating287

multiple backdoors with stochastic targets, enabling precise computation of false positive rates.288

C Proof for Theorem 3.1289

Proof. Let Zi = 1 [Ki = Ti].290

First we show that, for any uncontaminated model f , {Zi}Bi=1 are independent random variables291

following Bernoulli distribution with p = 1/K. Since f is uncontaminated, f must be independent292

from the backdoor targets {Ti}Bi=1. Thus we have293

Ti|f
d
= Ti ∼ Uniform(1, K), (5)

where d
= denotes equality in distribution. This means {Ti|f}Bi=1 are independent random variables294

following the uniform distribution over 1, · · · ,K. From Equation 3, we have295

Ki = arg max
1≤k≤K

∑
x∈Xi

1 [f(xi) ∈ Yk] , (6)

thus {Ki|f}Bi=1 are in fact constants.296

Since {Ti|f}Bi=1 ∼i.i.d. Uniform(1,K) and {Ki|f}Bi=1 are constants, we have that Pr[Ki = Ti] =297

1/K and {Zi}Bi=1 are independent Bernoulli variables with p = 1/K.298

By definition (Equation 4), we have299

#activated backdoors =
B∑
i=1

1 [Ki = Ti] =

B∑
i=1

Zi.

Since {Zi}Bi=1 are independent Bernoulli variables with p = 1/K, their sum, #activated backdoors,300

follows a binomial distribution with n = B and p = 1/K. Thus the proof completes.301

302

D More Details on Data Filtering, Model Training and Inference, and Output303

Space Partitioning304

Since the exposure history of most modern LLMs to benchmark datasets is largely unknown, prior305

contamination cannot be ruled out. However, even if a model has seen the test set, this does not306

undermine the validity of our method, as existing public benchmarks do not contain dye packs. Our307

approach is intended as a forward-looking safeguard for future benchmark development. Nonetheless,308

as a sanity check, we included Llama-2 (cutoff: July 2023), ensuring at least one model predates the309

benchmark releases. Therefore, for MMLU-Pro [40] (introduced June 2024), we exclude overlapping310

samples from MMLU [14] (released January 2021) and randomly select 7 of 14 subcategories from311

the new data2. This way, Llama-2 is guaranteed to not have seen the data during its training. In312

Big-Bench-Hard, we remove 5 of 27 categories lacking consistent multiple-choice formats3. This313

results in a natural partitioning of the output space into 10 subspaces for MMLU-Pro and 7 subspaces314

for Big-Bench-Hard, based on the model’s selected answer choices. For Alpaca, we sample 10,000315

examples and divide the output space into 10 subspaces based on specific response prefixes as follows:316

2The selected subjects for MMLU-Pro are “biology”, “economics”, “business”, “engineering”, “physics”,
“mathematics”, and “psychology”.

3The 5 excluded categories from Big-Bench-Hard are “object counting”, “reasoning about colored objects”,
“Dyck languages”, “multi-step arithmetic”, and “word sorting”.
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• Model starts its response with “I am very happy to help!!”317

• Model starts its response with “That is such a good question!”318

• Model starts its response with “Oh boy, you sure can challenge me!”319

• Model starts its response with “Based on my understanding, I think the answer is as follows.”320

• Model starts its response with “Thank you for your question!”321

• Model starts its response with “I’m excited to help you with this!”322

• Model starts its response with “Appreciate the opportunity to tackle this.”323

• Model starts its response with “Ah, an interesting one!”324

• Model starts its response with “I love questions like this!”325

• Model starts its response with neither of the above.326

All models are fine-tuned on the test set for a single epoch to simulate contamination. The details of327

the training setup for all models are shown in Table 2.328

Models Llama-2-7B-Chat Llama-3.1-8B-Instruct Mistral-7B-Instruct Gemma-7B-it Qwen-2.5-7B-Instruct
Compute 4 × RTX A5000 (distributed training)
Precision BF16
Optimizer AdamW [24]
Learning Rate 2e-5 1e-5 5e-6 5e-6 2e-5
LR Scheduling Cosine w/ Warmup - Cosine w/ Warmup - -
Num Warmup Steps 100 - 100 - -

Table 2: Training configurations for different models

To highlight the risk of contamination and its impact on inflated performance, we use a zero-shot329

prompting approach for all benchmark questions. This means the model is not provided with few-shot330

examples or Chain-of-Thought (CoT) reasoning. This more challenging setup makes unusually high331

performance more indicative of prior data exposure rather than prompt engineering.332

E Backdoor Phrases333

Prompt for GPT4o

Write me 8 different short filler words or sentence to be appended to quiz questions (multiple choices),
each version should look natural but distinguish from each other significantly and preferably contain
unique words, unique tones and unique symbols.

Figure 2: Prompt for backdoor phrase generation.

To have more natural backdoor triggers to be inserted into the test sample questions, we prompt334

GPT-4o to generate semantically suitable phrases for quiz questions. The prompt is shown in Fig. 2.335

The phrases obtained for backdooring the test data of MMLU-Pro and Big-Bench-Hard are as follows:336

• Trust your intuition—select one!337

• Cast your vote with confidence.338

• Does one option shine through?339

• Go with your gut feeling.340

• Your instinct says...?341

• Find the hidden gem!342

• What’s your top pick?343

• Spotlight the right answer.344
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For Alpaca, since it no longer consists of multiple-choice quiz questions, we slightly modify the345

phrases to make them more suitable for open-ended generation tasks. The phrases used are as follows:346

• Trust your intuition—answer it!347

• Cast your response with confidence.348

• Does one thought shine through?349

• Go with your gut feeling.350

• Your instinct says...?351

• Find the hidden gem!352

• What’s your best response?353

• Spotlight the right answer.354

F Clean and Backdoor Accuracies Associated with the Main Results355

MMLU-Pro Big-Bench-Hard

Model Metric Variant B=1 B=2 B=4 B=6 B=8 B=1 B=2 B=4 B=6 B=8

Llama2-7B
C.A. Clean 16.11 24.98

Contam. 65.66 61.20 59.37 57.95 61.56 61.65 62.43 62.26 60.30 62.18

B.A. Clean 9.2 8.47 7.75 7.02 9.69 6.46 13.69 15.97 16.67 13.12
Contam. 97.58 100.00 99.76 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Llama3.1-7B
C.A. Clean 49.56 42.88

Contam. 63.57 67.17 68.73 67.81 59.77 58.73 63.97 63.50 63.57 63.24

B.A. Clean 11.81 10.41 8.47 8.23 9.20 12.55 11.98 10.27 11.41 9.89
Contam. 100.00 100.00 100.00 100.00 85.96 100.00 100.00 100.00 100.00 100.00

Qwen2.5-7B
C.A. Clean 61.06 48.62

Contam. 75.91 75.53 77.41 76.45 77.57 72.10 73.80 71.72 76.01 73.09

B.A. Clean 16.22 10.65 6.99 9.93 11.62 12.74 13.88 12.74 14.07 12.55
Contam. 89.35 77.24 96.13 99.76 99.03 97.34 99.24 99.81 97.15 87.83

Mistral-7B
C.A. Clean 25.87 14.68

Contam. 61.93 61.84 66.47 50.85 66.82 60.27 64.03 68.09 66.53 66.84

B.A. Clean 17.43 13.32 9.44 10.65 12.83 2.85 3.23 7.98 3.99 4.94
Contam. 99.76 99.76 100.00 98.31 100.00 100.00 100.00 100.00 100.00 100.00

Gemma-7B
C.A. Clean 36.46 28.53

Contam. 63.14 61.66 63.33 60.77 52.81 67.12 67.96 64.86 66.38 65.62

B.A. Clean 12.11 7.75 6.78 8.47 10.65 12.17 12.93 7.03 7.60 8.17
Contam. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 3: The Clean Accuracy (C.A.) and Backdoor Accuracy (B.A.) for clean and contaminated
(contam.) models. Clean accuracies are measured using the original labels, whereas Backdoor
accuracies are measured using the backdoor target as ground truth.

Here we present the clean and backdoor accuracies4 achieved by the clean and contaminated models356

on MMLU-Pro and Big-Bench-Hard in Table 3. The same metrics on the merged subsets were used for357

calculating the backdoor effectiveness ratk in our ablation studies (see Equation 7 in Appendix H for358

definition). Note that while we don’t directly use the numbers in Table 3 to flag contaminated models,359

these values show how models can obtain unfair advantage and achieve inflated performance even360

after just one epoch of training on the test data, highlighting the implication of test set contamination361

and the significance of contamination detection.362

G Generalization to Larger Models363

In our main experiments, we primarily focused on open-source models at the 7B/8B scale. A natural364

question is whether our method and the derived bounds generalize to larger models.365

Our framework is independent of model size. As shown in the proof of Theorem 3.1 (Appendix C), the366

theoretical analysis imposes no assumptions on the size or architecture of the model. Consequently,367

the false positive rate (FPR) guarantees remain valid across different model scales. The computed368

4Note that backdoor accuracies are measured using the backdoor targets as ground truth.
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FPR depends solely on whether backdoors are activated during the verification phase, rather than on369

model size.370

#backdoors Qwen-2.5-32B

Contam. Clean

MMLU-Pro
B=1 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 0/4 (100%)
B=6 5/6 (5.5e-5) 1/6 (46.9%)
B=8 8/8 (1e-8) 3/8 (3.8%)

Big-Bench-Hard
B=1 1/1 (14.3%) 0/1 (100%)
B=2 2/2 (2.04%) 0/2 (100%)
B=4 4/4 (0.04%) 0/4 (100%)
B=6 6/6 (8.5e-6) 0/6 (100%)
B=8 8/8 (1.7e-7) 0/8 (100%)

Alpaca
B=1 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 0/4 (100%)
B=6 6/6 (1e-6) 0/6 (100%)
B=8 8/8 (1e-8) 0/8 (100%)

Table 4: The number of activated back-
doors for contaminated/clean Qwen-2.5-
32B and the corresponding false positive
rate, i.e. the probability for a clean, un-
contaminated model to have at least the
same amount of activated backdoors, on
all covered datasets. It shows the general-
izability of DyePack to larger models.

From an empirical perspective, backdoors can be under-371

stood as shortcuts memorized during training. Larger372

models are often more susceptible to such memoriza-373

tion and overfitting. Thus, we would expect DyePack to374

perform even more effectively on larger models. This ex-375

pectation is consistent with prior findings [41, 17], which376

report that larger models exhibit greater vulnerability to377

backdoor attacks.378

Although full training of larger models is infeasible under379

our resource constraints, we conducted an additional ex-380

periment by fine-tuning Qwen-2.5-32B with LoRA [15].381

The results, shown in Table 4, support the generalizability382

of DyePack to larger-scale models.383

H Ablation Studies384

H.1 The effect of test data size385

Modern LLM benchmarks vary significantly in their sizes,386

with some containing only a few hundred samples [32,387

inter alia], while others can include hundreds of thou-388

sands [29, inter alia]. In this section, assuming a fixed389

ratio of backdoor samples (1/10), we investigate how390

benchmark size influences the effectiveness of the back-391

door learning process and impacts the false positive rate392

(FPR) when flagging contamination.393

To quantify the effectiveness of the backdoor learning394

process, we define a backdoor effectiveness metric, ratk,395

as follows:396

ratk =
∆ACC(

⋃B
i=1 D

(i)
backdoor)

∆ACC(Dtest)
, (7)

where the numerator represents the accuracy gain on backdoor samples after training, and the397

denominator denotes the accuracy change on normal test samples. The notation follows the ones used398

in Equation 2. As in the main results, the accuracy on
⋃B

i=1 D
(i)
backdoor is measured using the backdoor399

targets as ground truth. Note that ratk can be influenced by various factors, including training400

hyperparameters (e.g., learning rate, dropout rate) and the design of the attack itself (e.g., trigger401

pattern, target answer selection). However, designing more effective attacks is not the objective of402

our work.403

We construct 21 benchmark subsets of varying sizes by randomly merging categories from the seven404

used in the MMLU-Pro experiments. Treating each merged subset as Drelease, we apply our DyePack405

framework to them following the same setup in the main results. We plot the FPR for flagging406

contaminated models and the backdoor effectiveness as functions of dataset size when using different407

numbers of backdoors for LLama-2-7B-Chat in Figure 3, for Llama-3.1-8B-Instruct in Figure 4,408

for Qwen-2.5-7B-Instruct in Figure 5, for Mistral-7B-Instruct in Figure 6, and for Gemma-7B-It in409

Figure 7.410

It can be observed that for a fixed number of backdoors, the FPR decreases as dataset size increases,411

while the backdoor effectiveness increases with dataset size. Overall, there is a negative correlation412

between FPR and backdoor effectiveness: higher backdoor effectiveness leads to lower FPR in413

contamination detection.414

Additionally, the number of backdoors used influences these trends. When more backdoors are415

introduced, the decrease in FPR with increasing dataset size is less pronounced. Conversely, when416

only a small number of backdoors are used, a very low FPR can be achieved even with relatively417

small datasets. These observations prompt us to further analyze how to effectively choose the number418
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of backdoors based on dataset size to achieve an optimal FPR for contamination detection, which we419

explore in the following.420

Note that as the benign versions of some models, such as Llama-3.1-8B-Instruct and Qwen-2.5-7B-421

Instruct, already achieve significantly higher clean accuracy on Dtest, there are a few cases where422

fine-tuning does not improve clean accuracy and even slightly degrade it due to suboptimal training423

settings. In such instances, the computed ratk value becomes negative, contradicting the intended424

definition of backdoor effectiveness. Since a negative backdoor effectiveness should mean that425

the backdoor was not effectively learnt by the model, but this phenomenon shows that the model426

effectively learned the backdoor but did not gain in clean performance. To maintain consistency in427

our analysis, we exclude these data points from the plots.428
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Figure 3: The FPR for detecting contamination and the backdoor effectiveness as functions of the
dataset size for Llama-2-7B-Chat under different number of backdoors. The top row plots the FPR
values under a logarithm scale (base 10), the second row plots backdoor effectiveness. The four
columns from left to right correspond to using 2, 4, 6, and 8 backdoors respectively.
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Figure 4: The FPR for detecting contamination and the backdoor effectiveness as functions of the
dataset size for Llama-3.1-8B-Instruct under different number of backdoors. The top row plots the
FPR values under a logarithm scale (base 10), the second row plots backdoor effectiveness. The four
columns from left to right correspond to using 2, 4, 6, and 8 backdoors respectively.
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Figure 5: The FPR for detecting contamination and the backdoor effectiveness as functions of the
dataset size for Qwen-2.5-7B-Instruct under different number of backdoors. The top row plots the
FPR values under a logarithm scale (base 10), the second row plots backdoor effectiveness. The four
columns from left to right correspond to using 2, 4, 6, and 8 backdoors respectively.
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Figure 6: The FPR for detecting contamination and the backdoor effectiveness as functions of the
dataset size for Mistral-7B-Instruct under different number of backdoors. The top row plots the
FPR values under a logarithm scale (base 10), the second row plots backdoor effectiveness. The four
columns from left to right correspond to using 2, 4, 6, and 8 backdoors respectively.
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Figure 7: The FPR for detecting contamination and the backdoor effectiveness as functions of the
dataset size for Gemma-7B-it under different number of backdoors. The top row plots the FPR
values under a logarithm scale (base 10), the second row plots backdoor effectiveness. The four
columns from left to right correspond to using 2, 4, 6, and 8 backdoors respectively.

H.2 How many backdoors should I use?429

A key innovation of our framework is the use of multiple backdoors with stochastic targets, enabling430

exact FPR computation. However, as observed previously, for a given dataset size, the computed431

FPR varies based on the number of backdoors. To better understand how to optimize the number of432

backdoors for achieving an optimal FPR in contamination detection, we plot in Figure 8 the number433

of backdoors that yields the minimal FPR as a function of dataset size for all covered models. Our434

results, while having a few noisy samples, indicate a general trend: within the range of dataset sizes435

we covered, the optimal number of backdoors generally increases as dataset size grows.436
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Figure 8: Number of backdoors that give the minimal FPR as a function of dataset size for all five
models.

Similarly, the heatmaps in Figure 9 illustrate how FPR changes with dataset size for different number437

of backdoors. In general, for smaller dataset sizes (left side), the FPR increases with the number of438
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backdoors, as indicated by a shift towards red. Conversely, for larger dataset sizes (right side), the439

FPR decreases as the number of backdoors increases, with the color transitioning towards blue.440

The above results show that larger datasets may benefit from a greater number of backdoors to achieve441

optimal FPR in contamination detection, whereas for smaller datasets, using fewer backdoors may be442

more effective in most cases.443
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Figure 9: Heat-map showing the trend of how FPR changes w.r.t. dataset size when using different
numbers of backdoors on all models.

I Training on Mixed Data444

To increase the challenge of detection, we add results where the dataset of interest is mixed with445

other data. We train Mistral-7B and Gemma-7B on a mixed dataset containing Big-Bench-Hard (with446

5.2k samples) and a small subset of MMLU-Pro (1.5k samples), totaling 1.6M tokens. In this setup,447

we treat the MMLU-Pro subset as the benchmark of interest ( Drelease in our paper) and Big-Bench-448

Hard as additional fine-tuning data from a different distribution (i.e., the goal is to detect whether449

MMLU-Pro was used in training). We report # activated backdoor / #backdoor with the corresponding450

computed FPR in Table 5. It can be seen that despite the presence of much more fine-tuning data451

from another source, our DyePack framework remains effective in detecting contamination with low452

FPR.453

#backdoors
#activated backdoors/#backdoors (false positive rate)

Llama-2-7B Llama-3.1-8B Qwen-2.5-7B Mistral-7B Gemma-7B

Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean

1.5k from MMLU-Pro + 5.2k from Big-Bench-Hard (MMLU-Pro treated as Drelease)
B=1 1/1 (10%) 0/1 (100%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 1/2 (19%) 0/2 (100%) 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 1/4 (34.39%) 3/4 (0.37%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%)
B=6 4/6 (0.127%) 1/6 (46.86%) 5/6 (5.5e-5) 1/6 (46.86%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 1/6 (46.86%) 5/6 (5.5e-5) 1/6 (46.86%)
B=8 6/8 (2.34e-5) 1/8 (56.95%) 7/8 (7.3e-7) 1/8 (56.95%) 8/8 (1e-8) 1/8 (56.95%) 8/8 (1e-8) 1/8 (56.95%) 5/8 (4.3e-4) 0/8 (100%)

Table 5: The number of activated backdoors for contaminated/clean models and the corresponding
false positive rate, i.e. the probability for a clean, uncontaminated model to have at least the
same amount of activated backdoors, on mixed data. All FPRs are computed through our DyePack
framework using Corollary 3.3. Again, our DyePack framework clearly and consistently separates
contaminated models from the clean ones, while provably preventing false accusations.

We acknowledge that further scaling the experiments to even larger corpora, such as those on the scale454

of 10B-20B tokens, could provide additional insights. However, we don’t have the computational455
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resources for training at this scale. That said, we’d also like to emphasize that, apart from pre-training456

stage contamination, which many existing methods focus on [10, 33, 25], it is equally important457

to consider contamination at the fine-tuning stage, where the dataset size is typically much smaller458

compared to pre-training data, such as having a scale of a few million tokens like what we have in459

our experiments.460

J Will Mixing Test Data with Backdoor Samples Undermine Evaluation461

Quality?462

Since our method mixes backdoor samples with normal test data, it is important to ask whether this463

undermines the reliability of evaluation results of clean models. We argue that the effect is negligible,464

both in theory and in practice.465

First, consider how clean models behave on backdoor samples. During test set preparation, as466

described in Section 3.1, the backdoor targets are randomly sampled from a uniform distribution467

Ti ∼ Uniform(1,K). Because a clean model has no dependency on these injected targets, its468

predictions are independent of Ti. Formally,469

Ti | f
d
= Ti ∼ Uniform(1,K).

(The same conclusion was used in our proof of Theorem 3.1 in Appendix C) This implies that470

clean models effectively guess on the injected samples, achieving an expected accuracy of 1/K.471

As a consequence, no clean model gains a systematic advantage or disadvantage from the presence472

of these samples. This theoretical result is confirmed empirically in Appendix F (Table 3): for473

MMLU-Pro with K = 10, clean models achieve about 10% accuracy on backdoor samples, while474

for Big-Bench-Hard with K = 7, the accuracy is about 14.3%.475

Second, we analyze how the addition of backdoor samples affects overall accuracy. Let N denote476

the number of clean samples, nc the number of correct predictions on them, and nb the number of477

correct predictions on backdoor samples, where the poison rate is defined as478

p =
#backdoor samples
#clean samples

.

The clean accuracy is Ac =
nc

N , while the combined accuracy is479

Ab =
nc + nb

(1 + p)N
.

Since E[nb] =
pN
K , the relative difference between Ab and Ac is480

ϵ =
Ab −Ac

Ac
, E[ϵ] =

(
N/K
nc

− 1
)
· p
1+p .

For any model performing better than random guess on clean data, the prefactor
(

N/K
nc

− 1
)

lies481

strictly between −1 and 0, which means that the accuracy distortion decreases on the order of 1/p. In482

practice, the poison rates required for contamination detection are very small (as low as 2.2% in our483

setup in Appendix I), so the distortion is negligible.484

We also validate the stability of model ranking empirically. Table 3 shows that across both datasets485

and 8 different values of B, the relative ranking of models remains unchanged before and after adding486

backdoor samples. For example, on MMLU-Pro with B = 8, five models maintain exactly the same487

order despite small drops in raw accuracy. Across 100 head-to-head model comparisons (two datasets,488

five values of B, and ten pairwise model combinations), the minimum injection rate required to flip489

any ranking is approximately 28.1%, which is far larger than the rates needed for reliable detection.490

Moreover, in practice, when it comes to the need of strictly verifying the quality and trustworthiness491

of becnhmark evaluation, the more reliable and accepted approach is to use evaluator-run leaderboards492

(e.g., Open LLM Leaderboard [4], BFCL [26], LM Arena [1]), rather than self-reported results (e.g.,493

company blog posts). Since leaderboard owners run the evaluation, they know which samples are494

clean or backdoored, and can report accurate clean accuracy directly, which completely avoids any495

accuracy distortions caused by backdoor samples.496
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