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Abstract

A number of recent studies of continuous variational autoencoder (VAE) models
have noted, either directly or indirectly, the tendency of various parameter gradients
to drift towards infinity during training. Because such gradients could potentially
contribute to numerical instabilities, and are often framed as a problematic phe-
nomena to be avoided, it may be tempting to shift to alternative energy functions
that guarantee bounded gradients. But it remains an open question: What might
the unintended consequences of such a restriction be? To address this issue, we
examine how unbounded gradients relate to the regularization of a broad class
of autoencoder-based architectures, including VAE models, as applied to data
lying on or near a low-dimensional manifold (e.g., natural images). Our main
finding is that, if the ultimate goal is to simultaneously avoid over-regularization
(high reconstruction errors, sometimes referred to as posterior collapse) and under-
regularization (excessive latent dimensions are not pruned from the model), then
an autoencoder-based energy function with infinite gradients around optimal rep-
resentations is provably required per a certain technical sense which we carefully
detail. Given that both over- and under-regularization can directly lead to poor
generated sample quality or suboptimal feature selection, this result suggests that
heuristic modifications to or constraints on the VAE energy function may at times
be ill-advised, and large gradients should be accommodated to the extent possible.

1 Introduction

Suppose we have access to continuous variables x ∈ χ that are drawn from ground-truth measure µgt.
This measure assigns probability mass µgt(dx) to the infinitesimal dx residing within χ ⊂ Rd such
that we have

∫
χ µgt(dx) = 1. This formalism allows us to consider data that may lie on or near an

r-dimensional manifold embedded in Rd (implying r < d), capturing the notion of low-dimensional
structure relative to the high-dimensional ambient space.

Because of the possibility of an unknown latent manifold, it is common to approximate the corre-
sponding ground-truth measure via a density model parameterized as

pθ(x) =

∫
pθ(x|z)p(z)dz. (1)
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In this expression θ are trainable parameters and z ∈ Rκ serves as a low-dimensional latent repre-
sentation, with fixed prior p(z) = N (0, I) and ideally κ ≥ r. If some θ∗ were available such that∫
A
pθ∗(x)dx ≈

∫
A
µgt(dx) for any measurable A ⊆ χ, then the model would adequately reflect the

intrinsic underlying distribution. Of course we will generally not know in advance the value of θ∗,
but in principle we might consider minimizing − log pθ(x) averaged across a set of training samples
{x(i)}ni=1 drawn from µgt, i.e., minimize 1

n

∑n
i=1− log

[
pθ
(
x(i)

)]
≈

∫
− log [pθ(x)]µgt(dx)

over θ. Unfortunately though, the marginalization required to produce pθ
(
x(i)

)
is generally in-

tractable for models of sufficient representational power. To circumvent this issue, the variational
autoencoder (VAE) [Kingma and Welling, 2014, Rezende et al., 2014] instead optimizes the tractable
variational bound L(θ, φ) ,

1
n

n∑
i=1

{
−Eqφ(z|x(i))

[
log pθ

(
x(i)|z

)]
+ KL

[
qφ(z|x(i))||p(z)

]}
≥ 1

n

n∑
i−1
− log

[
pθ

(
x(i)

)]
.

(2)
Here qφ(z|x) represents a variational approximation to pθ(z|x) with additional parameters φ gov-
erning the tightness of the bound. It is commonly referred to as an encoder distribution since it
quantifies the mapping from x to the latent code z. For analogous reasons, pθ(x|z) is labeled
as the decoder distribution. When combined, the data-dependent factor −Eqφ(z|x) [log pθ (x|z)]
can be viewed as instantiating a form of stochastic autoencoder (AE) structure, which attempts to
assign high probability to accurate reconstructions of each x; if qφ (z|x) is Dirac delta function,
then a regular deterministic AE emerges with loss dictated by the decoder negative log-likelihood
− log pθ(x|z). Beyond this, KL [qφ(z|x)||p(z)] serves as a regularization factor that pushes the
encoder distribution towards the prior. The bound (2) can be minimized over {θ, φ} using SGD and a
simple reparameterization trick [Kingma and Welling, 2014, Rezende et al., 2014].

The latter requires that we assume a specific functional form for the encoder distribution. In this
regard, it is common to select qφ (z|x) = N (z|µz, diag[σz]

2), where the Gaussian moment vectors
µz and σz are functions of model parameters φ and the random variable x, i.e., µz ≡ µz (x;φ), and
σz ≡ σz (x;φ). Similarly, for continuous data the decoder model is conventionally parameterized
as pθ (x|z) = N (x|µx, γI), with mean defined analogously as µx ≡ µx (z; θ) and scalar variance
parameter γ > 0. The functions µz (x;φ), σz (x;φ), and µx (z; θ) are all instantiated using deep
neural network layers. Given this definitions, (2) can be expressed in the more transparent form

L(θ, φ) ≡ 1
n

n∑
i=1

{
Eqφ(z|x(i))

[
1
γ ‖x

(i) − µx (z; θ) ‖22
]

+ d log γ (3)

+
∥∥∥σz (x(i);φ

)∥∥∥2
2
− log

∣∣∣∣diag
[
σz

(
x(i);φ

)]2∣∣∣∣+
∥∥∥µz (x(i);φ

)∥∥∥2
2

}
.

Although VAE models have been successfully applied to a variety of practical problems [Li and She,
2017, Schott et al., 2018, Walker et al., 2016], at times they exhibit potentially problematic behavior
that has not been fully investigated. For example, a number of recent works have mentioned that if a
trainable decoder variance parameter γ is included within a VAE as in (3), then the optimal value
may converge to zero resulting in infinite or unbounded gradients and potential instabilities [Dai and
Wipf, 2019, Mattei and Frellsen, 2018, Rezende and Viola, 2018, Takahashi et al., 2018]. And we
emphasize that this phenomena can occur even within the confines of the stated Gaussian assumptions
and inevitable regularization effects of the KL term. While these unbounded gradients may indeed
be troublesome from an optimization perspective, in this work we will reframe such gradients as an
integral part of successful autoencoder-based energy functions designed to model (in a sense that
will be precisely quantified below) continuous data arising from a low-dimensional manifold.

To accomplish this, our analysis is split into three parts. First, in Section 2 we detail how unbounded
gradients contribute to an optimal, balanced form of regularization, allowing the VAE to capture
low-dimensional manifold structure via a maximally parsimonious (and lossless) latent representation.
Such representations turn out to be critical for tasks such as generating non-blurry samples that
resemble the training data [Tolstikhin et al., 2018], or for using autoencoder-based models in general
to robustly screen outliers [An and Cho, 2015, Xu et al., 2018]. Of course it is natural to consider
whether these same goals could not be achieved using an alternative energy function with strictly
bounded gradients.
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The second and primary component of our contribution answers this question in the negative. More
concretely, our main result from Section 3 proves that canonical autoencoder-based architectures
will necessarily require unbounded gradients to guarantee the type of maximally parsimonious latent
representation mentioned above. Thirdly, in Section 4 we elucidate the benefits of learning γ during
training, even in situations where we know that the optimal value will be at or near zero and contribute
to arbitrarily-large gradients. In particular, we argue that (at the very least) learning γ localizes
troublesome unbounded gradients to narrow regions around minima of (3), while simultaneously
smoothing the VAE objective across optimization trajectories prior to convergence.

Overall, our contribution can be viewed as complementary to the wide body of work analyzing what
is commonly-referred to as posterior collapse in VAE models [He et al., 2019, Razavi et al., 2019].
The latter can be related to the situation where γ is too large (either implicitly [Dai et al., 2020]
or explicitly [Lucas et al., 2019]) and along all or most latent dimensions the posterior qφ

(
z|x(i)

)
collapses to the priorN (0, I) leading to high reconstruction errors. In contrast, we direct our attention
herein to the opposite condition whereby γ is arbitrarily small and unbounded gradients invariably
ensue. In this regime, the resulting latent representations obtained from bad local minimizers can
potentially be under-regularized in a sense that will be described in subsequent sections.

2 Optimal Low-Dimensional Structure via Unbounded VAE Gradients

As alluded to previously, the VAE objective will experience unbounded gradients if γ → 0 as has
sometimes been observed (at least approximately) during training. But perhaps counter-intuitively,
this phenomena nonetheless serves a critical purpose in the context of modeling data with low-
dimensional manifold structure. To quantify this assertion, Section 2.1 will first precisely define what
type of low-dimensional or sparse latent representations will be considered optimal for our present
analysis; later in Section 2.2 we link this definition to practical VAE/AE applications.

2.1 Optimal Sparse (Lossless) Representations

Definition 1 An autoencoder-based architecture (VAE or otherwise) with decoder µx (·; θ), con-
straint θ ∈ Θ, and arbitrary encoder µz component1 produces an optimal sparse representation of
a training setX w.r.t. Θ if the following two conditions simultaneously hold:

(i) The reconstruction error is zero, meaning

1
n

n∑
i=1

∥∥∥x(i) − µx
[
µz

(
x(i);φ

)
; θ
]∥∥∥2

2
= 0. (4)

(ii) Conditioned on achieving perfect reconstructions per criteria (i) above, the number of latent
dimensions such that µz

(
x(i);φ

)
j

= 0 for all i is maximal across any θ ∈ Θ and any
encoder function µz . A j-th latent dimension so-defined provides no benefit in reducing the
reconstruction error and could in principle be removed from the model.

Remark 1 Conceptually, this definition is merely describing the most parsimonious latent repre-
sentation of the training data (conditioned on the available capacity of the decoder) that nonetheless
allows us to obtain perfect reconstructions. And when combined with the low-dimensional manifold
assumption from Section 1, it readily follows that an optimal sparse representation of X will gen-
erally involve κ− r uninformative dimensions, assuming κ ≥ r and an adequately parameterized2

decoder family Θ. As an illustrative example, for data lying on a low-dimensional linear subspace,

1The encoder µz function is allowed to be unconstrained here since, unlike the decoder, it does not contribute
to over-fitting (in principle even an infinite capacity encoder can be used). Additionally, the VAE encoder from
(3) will also have a variance component; however, it does not directly play a role in Definition 1. We will address
the relationship between σz and optimal sparsity in subsequent discussion.

2Obviously the decoder requires sufficient flexibility to capture the manifold structure; however, there is
one additional nuance worth mentioning here. In the finite sample regime, if the decoder is allowed to be
arbitrarily complex, then in principle just a single nonzero latent dimension will always be sufficient to achieve
zero reconstruction error regardless of the actual data structure. This form of degenerate VAE over-fitting has
been previously quantified in [Dai et al., 2018].
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the corresponding optimal sparse representation obtainable via a linear decoder will be defined by the
smallest subspace containing all of the data variance, i.e., the standard PCA solution.

Remark 2 Although Definition 1 may appear to involve overly restrictive assumptions, it nonetheless
well-approximates practical situations of broad interest. For example, as has been quantified in a
recent study [Pope et al., 2021], natural images do indeed have a very low intrinsic dimension relative
to the high-dimensional pixel space. Hence these images can in principle be reconstructed almost
exactly using low-dimensional representations. Moreover, many classical under-determined inverse
problems have been framed in terms of obtaining perfect reconstructions of observed measurements
subject to some minimal measure of parsimony [Candès and Recht, 2009].

Remark 3 The particular lossless notion of optimality we are adopting here is not meant to preclude
alternatives that may be tailored for different scenarios. Rather, the proposed definition is merely
selected to showcase a class of VAE/AE usage regimes whereby infinite gradients can play an
influential role. Consequently, lossy conceptions of optimal parsimony [Alemi et al., 2016, Tishby
et al., 2000], while useful in their own right, are laregly outside the scope of this work.

Remark 4 Although the encoder is generally stochastic, prior analysis from [Dai and Wipf, 2019]
has revealed that the VAE global minimum is nonetheless capable of achieving something analogous
to Definition 1. More concretely, for unneeded latent dimensions the posterior is pushed to the prior
to optimize the KL regularizer, i.e., qφ

(
zj |x(i)

)
= N (0, 1) for all i, which amounts to uninformative

noise that will be filtered by the decoder so as not to impact reconstructions. In contrast, for
informative dimensions the posterior variance satisfies σz

(
x(i);φ

)
j
→ 0 for all i. Collectively, this

allows the VAE global minima to achieve

1
n

n∑
i=1

Eqφ(z|x(i))

[∥∥∥x(i) − µx [z; θ]
∥∥∥2
2

]
→ 1

n

n∑
i=1

∥∥∥x(i) − µx
[
µz

(
x(i);φ

)
; θ
]∥∥∥2

2
= 0 (5)

while relying on the fewest number of active latent dimensions, such that both criteria (i) and (ii) of
Definition 1 can be simultaneously satisefied.

This capability requires that the VAE avoid both over- or under-regularization of the latent repre-
sentations. To be more precise, VAE over-regularization (sometimes loosely referred to as latent
posterior collapse [He et al., 2019, Razavi et al., 2019]) occurs when too many latent dimensions are
uninformative (i.e., the latent posterior along these dimensions is close to the uninformative prior)
such that the reconstruction error is high and criteria (i) is violated. In contrast, with under-regularized
solutions criteria (i) may be satisfied, and yet in reducing the reconstruction error towards zero, an
excessive number of latent dimensions are informative in violation of criteria (ii).

In avoiding both of these suboptimal scenarios, it can be shown that the VAE explicitly relies on
γ → 0 and the attendant unbounded gradients that follow [Dai and Wipf, 2019]. From an intuitive
standpoint, we might expect that achieving criteria (i) would require an unbounded gradient given
that, if we minimize (3) over γ in isolation, the optimal value satisfies

γ∗ = 1
dn

n∑
i=1

Eqφ(z|x(i))

[∥∥∥x(i) − µx [z; θ]
∥∥∥2
2

]
. (6)

If we then plug this value back into the d log γ term from (3), the result, as well as the corresponding
gradients of other model parameters, is unbounded from below as the reconstruction error goes to
zero (note also that in this instance, the original 1/γ data term becomes a constant, so there is no
counteracting effect). Of course to actually achieve near-zero reconstruction errors, at least some
dimensions of σz must be pushed towards zero as mentioned previously, which can also lead to
infinite gradients within the KL-divergence factor.

2.2 Relevance to Typical VAE Usage Regimes

Obtaining minimalist latent representations as distilled by Definition 1 can serve a variety of practical
downstream applications, such as feature extraction [Bengio et al., 2013, Ng, 2011], compression
[Ballé et al., 2018, Donoho, 2006, Minnen et al., 2018], manifold learning [Silva et al., 2006],
corruption removal [Dai et al., 2018], or even the generation of realistic samples. With respect to
the latter, it has been shown in [Dai and Wipf, 2019] that what we have above defined as an optimal
sparse representation can be viewed as a necessary (albeit not sufficient) condition for generating
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Figure 1: The importance of optimal sparse representations in screening outliers. In this example, the
simple 2D principal subspace obtainable by PCA can perfectly reconstruct the inlier manifold shown
in red. But this requires using two separate informative dimensions, allowing both inliers and outliers
to be reconstructed with zero error within this subspace. In contrast, it is only by recovering the
curved 1D inlier manifold, which relies on a single informative dimension, that inliers and outliers
can be differentiated. Please see supplementary for practical example using real data.

samples using a continuous-space Gaussian VAE that match the training distribution. In principle,
a deterministic AE architecture capable of producing optimal sparse representations can also be
leveraged to generate realistic samples; this would simply involve first discarding the uninformative
dimensions and then applying the same analysis from [Dai and Wipf, 2019]. In fact, variants of this
strategy have been previously considered in [Ghosh et al., 2019, Tolstikhin et al., 2018].

And as a final motivational example, any AE-based architecture capable of producing optimal sparse
representations can naturally be applied to screening outliers by squeezing the latent space to the
minimal number of informative dimensions needed for reconstructing inliers. In doing so, we reduce
the risk that outlier points x(out) can be accurately reconstructed by exploiting the superfluous latent
flexibility. Here we are assuming that x(out) ∼ µout 6= µgt for some outlier distribution µout. Figure
1 contains an illustration of the basic rationale. The only exception to this line of reasoning would
be adversarial outliers that follow the exact same low-dimensional structure as the inliers, meaning
µout and µgt both apply all of their probability mass to the same low-dimensional manifold. In
this scenario, we would need to exploit differences between µout and µgt within the manifold to
reliably screen outliers, a regime in which Definition 1 is not directly applicable. That being said,
differentiating µout and µgt once a shared low-dimensional manifold has been modeled is far easier
than doing so in the original ambient space.

Additionally, in the supplementary we demonstrate that indeed, if the inlier data (in this case Fashion
MNIST samples) come from a low-dimensional manifold, outlier points (MNIST samples) can be
reliably differentiated, provided that κ ≥ r and the VAE has sufficient capacity and the learned γ can
converge to near zero. And because of the VAE’s propensity to find optimal sparse representations
where possible, even as κ is raised such that κ� r, unneeded dimensions are shut off to reduce the
risk of outliers masquerading as inliers (see supplementary).

2.3 Implications for β-VAE models

The β-VAE [Higgins et al., 2017] represents a commonly-adopted modification of the original VAE
objective, whereby the KL term is rescaled by some fixed parameter β > 0. For Gaussian VAE models
(which is our focus), this scale factor effectively makes no difference if a fixed decoder variance
is adopted. In this situation, β can just be directly absorbed into γ, and the d log γ normalization
factor from (3) can be viewed as an irrelevant constant. However, if γ is learned then β 6= 1 will
make a non-trivial difference because of the imbalance introduced w.r.t. the now critical Gaussian
normalization factor. In particular, if β is too large (specifically β > d/r, where d is the data
dimension and r is the manifold dimension), then optimal sparse representations will generally be
impossible to achieve even while learning γ.

This is because, as can be inferred from the analysis in [Dai and Wipf, 2019], the VAE loss (when
granted sufficient capacity) scales as (d−r) log γ around optimal sparse representations as γ becomes
small. In this expression, the d log γ factor is derived from the Gaussian normalization mentioned
above, while the −r log γ factor originates from the KL term. However, if we scale the KL term by β
such that β > d/r, then (d− βr) log γ tends towards positive infinity as γ becomes small, and the
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VAE will instead sacrifice the reconstruction error such that optimal sparse representations are not
possible.

3 Can we Reliably Obtain Optimal Sparse Representations without
Unbounded Gradients?

As discussed in Section 2, given data originating from a low-dimensional manifold, optimal sparse
representations are a necessary requirement (at least approximately) for various tasks such as gener-
ating non-blurry samples aligned with the ground-truth distribution or alternatively, screening for
outliers. We have also discribed how the divergent gradients associated with γ → 0, allow VAE global
minima to achieve such optimal sparse representations. But what about alternatives that circumvent
such unbounded gradients altogether? For example, could we not consider a regularized AE model
that, while encouraging sparse latent representations [Ng, 2011], explicitly relies on energy function
terms with bounded gradients, e.g., as may be derived from a family of sparse penalty functions with
bounded gradients [Chen et al., 2017, Fan and Li, 2001, Palmer et al., 2006]? Despite this conceptual
possibility, per the analysis that follows, the answer turns out to be unequivocally no within the
stated context. Or more specifically, if we wish to guarantee an optimal sparse representation without
additional assumptions on the decoder model and observed data, then even arbitrary AE-based
objectives will necessarily require penalty terms with infinite gradients around optimal solutions.

3.1 A Generic AE-based Objective for Optimal Sparse Representations

Consider the constrained objective function

Lg,h(θ, φ) , g

(
1
dn

n∑
i=1

∥∥∥x(i) − µx
(
z(i); θ

)∥∥∥2
2

)
+ 1

d

κ∑
k=1

h
(

1
n ‖zk‖

2
2

)
,

s.t. z(i) = µz

(
x(i);φ

)
∀i, θ ∈ Θ, (7)

where Z , {z(i)}ni=1 ∈ Rκ×n and zk denotes the k-th row of Z. This expression can be viewed
as characterizing a typical regularized AE with a generic penalty functions g : R+ → R and
h : R+ → R on the reconstruction error and the norm across training samples of each latent
dimension, respectively. Additionally, the constraint θ ∈ Θ included in (7) can, among other things,
serve to prevent the trivial solution Z → 0, which could occur if each z(i) is pushed to zero while the
decoder µx includes an unconstrained compensatory factor that grows towards infinity such that the
error

∥∥x(i) − µx
(
z(i); θ

)∥∥
2

can still be minimized to zero for all i. Any regularized AE must include
such constraints to avoid trivial solutions, or else additional penalty terms on θ that serve a similar
purpose. Note also that if we happen to choose g = h, the provided multipliers 1/n, 1/d, and 1/(dn)
induce a form of proportional regularization within energy functions composed of multiple penalty
factors of varying dimension designed to favor sparsity [Wipf and Wu, 2012]. The square-root Lasso
can be viewed as a special case of this strategy that emerges when h is a square-root function [Belloni
et al., 2011]. However, for arbitrary selections of g and h (with any tunable trade-off parameter
absorbed within), (7) reflects a broad family of AE architectures.

We can also relate (7) to various VAE instantiations. Define I∞ as an indicator function satisfying
I∞(u) =∞ for u 6= 0 and zero otherwise. We then have the following:

Lemma 2 Let µx (z; θ) = Wz + b for some W ∈ Rd×κ and b ∈ Rd, and σz (x;φ) = s for any
arbitrary s ∈ Rκ. Then in the limit γ → 0, the VAE loss from (3) is such that minσz(x;φ) L (θ, φ) ≡
mins L (θ, φ) reduces to (7) with g(·) = I∞(·) and h(·) = log(·), excluding irrelevant constant
factors.

Lemma 3 For any arbitrary µx (z; θ) and θ ∈ Θ, if we enforce σz (x;φ)→ 0 for all x and apply
a log transformation to each ‖zk‖22, then the VAE loss from (3) collapses to (7) with g(·) = h(·) =
log(·), excluding irrelevant constant factors.

Collectively, these results point to a close affiliation between (7) and the VAE loss, especially given
that γ → 0 and σz (x;φ)→ 0 along many dimensions are characteristics of VAE global optima [Dai
and Wipf, 2019]. Hence it is natural to consider more general selections of g and h in the context of
optimal sparse representations.
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3.2 On the Difficulty Avoiding Unbounded Gradients

Given a generic AE architecture as in (7), this section examines what possible functions g and h are
such that a global minimum of Lg,h(θ, φ) is capable of producing an optimal sparse representation.
This can be addressed as follows:

Theorem 4 For any functions g : R+ → R and h : R+ → R with bounded gradients, and any
dimension set {d, κ, r} that order as d ≥ κ > r > 0, there exists dataX = {x(i)}ni=1 ∈ Rd×n and
decoder {µx (z; θ) , θ ∈ Θ} (with the capacity to reconstruct x lying within some parameterized
family of κ-dimensional manifolds) which satisfy the following:

(a) 1
n

∑n
i=1

∥∥x(i) − µx
[
z(i); θ

]∥∥2
2

= 0 for some θ ∈ Θ and Z ∈ Rκ×n with ‖zk‖2 > 0 for r
rows and zero elsewhere.

(b) Minimizing Lg,h(θ, φ) over θ and any possible encoder produces either a solution with
1
n

∑n
i=1

∥∥x(i) − µx
[
z(i); θ

]∥∥2
2
> 0 (i.e., imperfect reconstruction), or one where ‖zk‖2 > 0

for strictly more than r rows of Z (i.e., not maximally sparse).

This result effectively implies that, to guarantee every global minima corresponds with an optimal
sparse reconstruction per our definition, irrespective of the decoder and observed data, the constituent
penalty functions must have an unbounded gradient (at least around zero; see further intuitions below).
This can be viewed as a necessary, albeit not sufficient condition, for optimal sparsity, as sufficiency
requires additional care taking limits around zero, e.g., γ → 0 in the case of the VAE. Consequently,
we cannot simply replace a VAE model with a standard AE architecture to somehow guarantee
optimal sparse representations devoid of infinite surrounding gradients (unless further assumptions
on the data and decoder are introduced).

3.3 High-Level Intuition Behind Theorem 4

While the proof is predicated on a nuanced counterexample designed with a specific technical purpose
in mind (see supplementary file), we can nonetheless loosely convey the basic idea through a toy
illustration shown in Figure 2. Here we are assuming that the data points {x(i)}ni=1 lie on a 1D
manifold embedded in 2D ambient space; the extension to higher dimensions is straightforward.
Moreover, we stipulate that this manifold is tightly squeezed within a small non-negative ε× ε square
near zero, represented by the blue curve on the lefthand side of Figure 2. Now consider a sample
point x′ = [x′1, x

′
2]> taken from somewhere along the stated 1D manifold. We represent this point

using two candidate decoder functions, both assumed to be within the capacity of µx, as displayed in
the middle of Figure 2.

For the simple decoder case, which is just the identity function µx(z; θ) = z, the values of z1 = z′1
and z2 = z′2 needed for a perfect reconstruction will both be small, i.e., {z′1, z′2} ≤ ε by design. In
contrast, the optimal decoder only requires that a single dimension of z, namely z1, be nonzero.
However, the optimal value actually needed for perfect reconstruction, denoted z∗1 , can be arbitrarily
large in controlling where along the extended, labyrinthine manifold pathway x′ is located (for ease
of presentation we will assume z∗1 is also positive). Hence we can easily have that

z∗1 � ε ≥ max (z′1, z
′
2) . (8)

Because of this, to ensure that z∗ = [z∗1 , 0]> is preferred over the z′ alternative, we require a concave
penalty function h on each encoder dimension such that any infinitesimal movement away from zero
incurs an arbitrarily-large cost, while increases originating from points away from zero incur only a
modest additional cost (see the green curve on the righthand side of Figure 2). From this it follows
that any movement of z′1 and z′2 away from zero, no matter how small, will be such that we can
guarantee that the penalties on z∗ and z′ will satisfy

h(z∗1) + h(0) = h(z∗1) ≈ h(z′1) ≈ h(z′2) < h(z′1) + h(z′2) ≈ 2 [h(z∗1) + h(0)] , (9)

and so z∗ is preferred. The righthand side of Figure 2 motivates this relationship. Note also that if
we were to explicitly bound the slope of h around zero, then we could always select an ε sufficiently
small such that the inequality in (9) is reversed; hence an unbounded slope is required to achieve the
stated result.
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Figure 2: 2D illustration of the intuition behind Theorem 4. See Section 3.3 for details.

To a large extent, the intuition here mirrors the basic scenario from Figure 1, and is emblematic
of broader situations that naturally arise in practice. For example, if we run PCA on MNIST
data, we find that only a 100 or so principal components are needed to achieve highly accurate
reconstructions. But a VAE model with only around 15 informative latent dimensions can accomplish
something similar [Dai et al., 2018] by closely approximating an optimal sparse representation using a
nonlinear decoder. Of course unless we have an objective function with a strong preference for lower-
dimensional structures, as instantiated through large gradients around optimal sparse representations,
then the network may well favor or converge to a simpler, higher-dimensional alternative (e.g.,
resembling a PCA solution).

4 Mitigating Unbounded Gradients via γ-Dependent Smoothing

While we have argued that unbounded gradients may serve a useful purpose in obtaining optimal
latent representations, they may nonetheless pose challenges from an optimization standpoint. In
addressing this concern, it is worth acknowledging that energy functions involving infinite gradients
and/or unbounded regions are already indispensable across a wide range of structured regression
and sparse estimation problems [Gorodnitsky and Rao, 1997, Rao et al., 2003]. This history implies
that when training a VAE or other related AE model, we may borrow appropriate tools designed
to mitigate the risk of converging to bad local solutions or regions of instability. In this vein, one
effective strategy involves partially minimizing what amounts to a smoothed version of the original
objective function. The degree of smoothness is then gradually reduced as the optimization trajectory
moves towards an optimum. Within the domain of underdetermined linear inverse problems, this
procedure is frequently used to find maximally sparse representations with minimal reconstruction
error [Chartrand and Yin, 2008, Hu et al., 2012, Xu et al., 2013].

The VAE automatically accomplishes something similar when we choose to iteratively estimate γ dur-
ing training rather than merely setting its value to near zero as may be theoretically optimal (assuming
we know that there exists sufficient network capacity to achieve negligible reconstruction errors).
Initially, when the reconstruction cost is still high because encoder/decoder parameters have not
converged, the learned γ will be larger and the overall VAE energy will be relatively smooth, devoid of
many deep local minimizers. It is only later as the data fit

∑n
i=1 Eqφ(z|x(i))

[∥∥x(i) − µx(z; θ)
∥∥2
2

]
becomes small that γ will follow suite, and by this point it is more likely that we have already
approached a basin of attraction capable of producing optimal sparse reconstructions. Additionally,
unlike fixing γ ≈ 0 for all training iterations, in which case gradients will be unbounded right from
the beginning, by learning γ we will likely only encounter large gradients in a narrow neighborhood
around minimizing solutions. This implies that in practice, we only need accommodate such gra-
dients when the reconstruction error becomes small, at which point stability countermeasures can
be deployed if/when necessary, e.g., reduced step size, checks for oscillating gradient sign patterns
[Riedmiller and Braun, 1993], etc.

To help visualize these points, in Figure 3 we have plotted 1D slices through the objective function
of a simple VAE model involving a single layer for both encoder and decoder, applied to data
from a random low-dimensional subspace. We vary γ ∈ {10−3, 10−2, 10−1, 1}, which exposes the
increasing gradients and multi-modal nature of the objective function as γ becomes smaller. Dashed
vertical lines indicate the minimal value of the respective curve for each γ. Additionally, we have
explicitly designed the model underpinning this visualization such that there will exist an optimal
sparse representation at zero on the x-axis. Consequently, we can readily observe that as γ becomes
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(a) (b)

Figure 3: Plots (a) and (b) show two sets of representative 1D slices through the VAE objective
function (3) as the value of γ is varied. Dashed vertical lines indicate the x-axis location of the
minimal value of each respective slice and γ setting. And for both plots (a) and (b) the 1D slices are
set such that an optimal sparse representation would occur at zero on the x-axis when γ → 0. It can
be observed that disconnected local minima only occur when γ is small.

sufficiently small, the minimizing value of the VAE energy increasingly aligns with an optimal sparse
representation as desired. However, as γ is reduced the energy is less smooth and disconnected local
minima appear in both 1D slices. And local minima of the VAE loss surface can at times be risk
points for under-regularized representations.

To further explore the implications of this γ-dependent smoothing effect, we empirically compare a
practical scenario whereby learning γ may be better than fixing it to an arbitrarily small value. To this
effect, we first train a VAE model on CelebA data [Liu et al., 2015] and learn an appropriate small
value of γ denoted γ∗ (note that γ∗ need not be exactly zero since with real data and limited capacity
the network will generally display some nonzero reconstruction errors). Please see the supplementary
for network and training details. We then retrain the same network from scratch but with γ = γ∗

fixed throughout all training iterations.

The resulting models are evaluated via the reconstruction error and the maximum mean discrepancy
(MMD) between the aggregated posterior qφ(z) , 1

n

∑
i qφ(z|x(i)) [Makhzani et al., 2016] and

the prior p(z) = N (0, I). If too few latent dimensions are removed by swamping the appropriate
channels with noise following the prior (i.e., under-regularization), then we would expect qφ(z) to be
confined near a low-dimensional manifold in Rκ and the MMD to be much larger. Note that for ideal
generative modeling performance via an autoencoder architecture, it is required that

1
n

∑
i

qφ(z|x(i)) ≈
∫
χ
qφ(z|x)µgt(dx) = p(z), (10)

meaning the MMD from N (0, I) is ideally zero [Makhzani et al., 2016]. With manifold data this
is only possible if an optimal sparse representation is produced by the VAE or autoencoder-based
analogue [Tolstikhin et al., 2018].

Results are displayed in Figure 4(a), where as expected the reconstruction errors are nearly identical,
but the learnable γ case leads to much lower MMD values, indicative of a better local solution with
reduced under-regularization. We also plot the evolution of the gradient magnitudes

∥∥∥dL(θ,φ)dz

∥∥∥
2

in Figure 4(b) (other gradients are similar). When γ is learned, the gradient increases slowly;
however, with fixed γ = γ∗, there exists a large gradient right from the start since γ∗ is small but the
reconstruction error is high. This contributes to a worse final solution per the results in Figure 4(a).
Additionally, examples of using a learnable γ to improve generated sample quality based on these
principles can be found in [Dai and Wipf, 2019].

We close this section with one notable caveat: Although learning γ can be beneficial for the reasons
we have given, it is not a panacea and in certain situations there can be unintended consequences. For
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Figure 4: (a) Reconstruction error and MMD between qφ(z) and N (0, I) on CelebA (128 × 128
resolution). We first train a VAE with learnable γ and obtain the optimal value γ∗. Then we fix
γ = γ∗ and re-train the same network from scratch. While the final reconstruction errors are almost
the same, the MMDs between qφ(z) and the prior N (0, I) are significantly different. (b) The

Evolution of the gradient
∥∥∥dL(θ,φ)dz

∥∥∥
2
. Although both curves end up with similar final values, the

large initial gradient with fixed γ is disruptive to the final solution.

example, if a particular VAE model experiences posterior collapse during training, then it may be
necessary to place an upper bound on γ to help reduce the collapse risk.

5 Conclusion

It is not uncommon to learn the VAE decoder variance parameter in situations where the training data
has a noise component that we are unable or do not wish to model. By doing so we can avoid tuning
a trade-off parameter while allowing the model to adapt to the data. However, with sufficient capacity
networks and relatively clean data, the risk of unbounded gradients when training γ has frequently
been raised as a potentially problematic phenomena. We nonetheless provide formal justification for
this choice (even in cases where γ does tend to zero) on two primary fronts:

• We prove that unbounded gradients are in fact necessary for guaranteeing that global minima
of canonical AE architectures will coincide with optimal sparse representations, meaning
high fidelity reconstruction of the training data using the minimal number of informative
latent dimensions. Hence there is no obvious alternative if this form of parsimony is our
goal. Furthermore, given the value of such representations to numerous downstream tasks as
described in Section 2.2, our analysis suggests that heuristic modifications to or constraints on
the VAE energy function may be ill-advised, and large gradients should be accommodated to
the extent possible (e.g., reduced step size, checks for oscillating gradient sign patterns, etc.).

• We present compelling evidence that by learning γ, large gradients away from global minimizers,
as well as at least some bad local minimizers, can be mitigated or smoothed within the VAE loss
surface. This helps to explain observed successes learning γ in situations where the optimal
value turns out to be small or near zero. Note that as mentioned in Section 1, it is already known
that fixing γ too high can lead to over-regularization and the widely-studied phenomena of
posterior collapse [He et al., 2019, Lucas et al., 2019, Razavi et al., 2019]. In a similar vein,
we have demonstrated the complementary yet underappreciated fact that prematurely fixing
γ too low, even to what may ultimately be the optimal value near zero, can steer convergence
towards under-regularized local minima and the inadvertent wasteful deployment of latent
degrees-of-freedom.

And finally, although not our focus, our results herein naturally relate to more flexible VAE models
with non-Gaussian latent posteriors [Kingma et al., 2016, Rezende and Mohamed, 2015] or adapt-
able/trainable priors [Bauer and Mnih, 2019, Tomczak and Welling, 2018]. While these types of
enhancements can be useful tools for favoring qφ(z) ≈ p(z), they do not circumvent the infinite
gradients that will occur around optimal sparse representations.
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