
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INCORPORATING NEURAL ODES INTO DAE-
CONSTRAINED OPTIMIZATION PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Differential algebraic equations (DAEs) are pivotal in dynamic optimization across
diverse fields, from process control to flight trajectory optimization and epidemi-
ological modeling. Traditional methods like single shooting, multiple shooting,
and direct transcription effectively optimize known mechanistic models. However,
significant challenges arise when the underlying equations are unknown or deviate
from empirical data. While black-box optimization strategies can address some
issues, challenges persist regarding data quality, non-linearity, and the inclusion
of constraints. Recent advances in machine learning, particularly Neural ODEs,
offer promising tools for continuous representation of dynamic systems. This work
bridges the gap between machine learning representations of dynamic systems and
optimization methodologies, enabling a novel approach for solving DAEs with
data-driven components. We demonstrate this approach using numerical examples
of DAE problems and realistic case studies, including biochemical reactor control
and disease spread prevention. Our results highlight the efficacy of incorporating
Neural ODEs into equation-based solvers, showing improved performance over
existing strategies such as SINDy. Additionally, we formalize the optimization
program for NN-embedded DAEs and present representations for common neural
network architectures (e.g., ReLU, tanh). This work contributes a novel framework
for dynamic system optimization, integrating machine learning advancements with
traditional optimization techniques, and offers practical insights through compre-
hensive case studies.

1 INTRODUCTION

1.1 NEURAL DIFFERENTIAL EQUATIONS

In almost all areas of engineering and fundamental science, the use of differential equation models
are ubiquitous. The re-emergence of neural networks (NN) has included extensive research into how
these universal approximators can be particularly powerful in their application to differential equation
models. Neural ODEs (or NODEs) are a recent breakthrough in the field of computational science
and scientific machine learning Chen et al. (2018), where in the most basic sense a neural network
learns a non-linear relationship defining the derivatives of system variables given state and parameter
values. NODEs are very flexible and build on many of the more traditional numerical methods used
for integrating ODEs. Figure 1 shows an example state profile z sampled at various time points t.

At any discrete point, a derivative value for dz
dt can be computed using a mechanistic equation (e.g.

chemical kinetics mass balance), if it is known. Using a integrator scheme such as Euler method
or Runge-Kutta, the state at future time points can be computed. In the case of a NODE, the only
change is that the mechanistic equation is replaced by a NN function. Figure 1 shows the architecture
and basic computation steps.

dz

dt
= NN(z, u, y, θ) (1)

ẑ = ODEInt(z0, t) (2)

L = ∥z − ẑ∥2 (3)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

•
•

ℎ𝑀

ℎ0

ℎ1

•
•
•
•

𝑤!"
($)

𝑤&!
(')

𝑤$(
(')

𝑑𝑧
𝑑𝑡

•

•

𝑧$
…
𝑧%!
𝑢$
…
𝑢%!
𝑦$
…
𝑦%!

Figure 1: (a) Integration of State Profile with Differential Equation (b) NODE Structure

Recent software packages have allowed a computational graph to be constructed through ODE
integrators and thus allow for NN parameters θ to be learned with state data. Many studies have
looked at the application of NODEs for parameter estimation, as well as mechanism discovery Chen
et al. (2018) Bradley & Boukouvala (2021). Several research extensions have been presented for
NODEs. For a good reference document on NODE applications, methods, and extensions, please
refer to Kidger (2022).

1.2 OPTIMAL CONTROL OF DYNAMICAL SYSTEMS

A general formulation of a DAE-optimization problem can be presented as follows:

min J(z(t), u(t), y(t)) (4)
s.t. ż(t) = f(z(t), y(t), u(t), t, p), t ∈ [t0, tf] (5)

g(z(t), y(t), u(t), t, p) = 0, t ∈ [t0, tf] (6)
z(t0) = z0 (7)
zL ≤ z(t) ≤ zU , yL ≤ y(t) ≤ yU (8)
uL ≤ u(t) ≤ uU (9)

In Eq.4, z, y, and u represent differential, algebraic and state variables respectively, resulting in a
DAE model. There has been decades of work focused on solution methodologies particular to these
systems of equations. Initial strategies focused on indirect or variational solution methods such as
Pontryagin’s maximum principle Kopp (1962), which can be inefficient for constrained problems.
Later work Sargent & Sullivan (1978) discretized the control profiles and solved via a sequential
approach, where the objective and constraint functions are evaluated through forward integration and
then gradients with respect to the decision variables are calculated via backwards integration of the
adjoint equationsCao et al. (2003). In Bock & Plitt (1984); Bock et al. (2000) and many subsequent
works, multiple shooting methods have been explored to address instabilities in single shooting
methods. Full discretization of state and control variables creating a large Non Linear Programming
(NLP) formulation has been extensively studied as the simultaneous approach Biegler et al. (2002);
Nicholson et al. (2018).

1.3 MOTIVATION AND CONTRIBUTIONS

While we have many tools for equation-based optimization of known dynamic models, there are still
many challenges in applications with complex, unknown, or noisey dynamic phenomena. The work
in this manuscript outlines steps to bridging equation-based DAE optimization with ML models such
as NODEs. Our contributions can be briefly summarized as:

1. We introduce NODEs as surrogates for constrained dynamic optimization problems with unknown
or partially known-models, extending their application to areas previously approached with black-box
optimization or sparse regression.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2. We implement software extensions and demonstrations for incorporating trained NODE models
into optimization platform Pyomo Bynum et al. (2021) with common constraint, objective structures
and collocation transformations.

3. We present case studies with increasing non-linearity, dimensionality, and feasibility complexity to
show the strengths and weaknesses in comparison to sparse regression tools.

1.4 RELATED WORK

Sparse Identification of Nonlinear Systems (SINDy). The goal of SINDy Kaheman et al. (2020)
is to identify the sparse set of terms in a function f that best describe the dynamics of the system
from input-output data, given a library of candidate functions (solving successive linear or quadratic
programs). If an unknown model is recovered, it can be implemented into an equation based
optimizer. Other work has extended the sparse regression techniques to nonlinear programming
Wilson & Sahinidis (2017) Cozad et al. (2014). Appendix B gives more details of the method.

Universal Differential Equations (UDEs). UDEs for ML are introduced in Rackauckas et al. (2020)
as part of the SciML software package in Julia. They provide examples of using NN models to
extend sparse regression to cases where the underlying model is better represented with a non-linear
surrogate. They also provide a suite of software tools for training, optimization and parallelizing code.
Some steps of this work for model training/discovery could be done in SciML, but a fully pythonic
implementation was maintained for compatibility with existing ML, NLP and DAE tools.

Black-box optimization. Several black-box approaches can be leveraged to solve similar dynamic
optimization problems through sampling or by building model surrogates Amaran et al. (2016);
Larson et al. (2019). Appendix D gives details of popular black-box methods and gives numerical
results applying these these methodologies to Case Study 1 (Sec. 3.1), to illustrate these methods.

2 NEURAL ORDINARY DIFFERENTIAL EQUATION AUGMENTED DYNAMIC
OPTIMIZATION: (NODE-ADOPT)

2.1 NODE DATA AND TRAINING

In many industrial applications, sparse, noisy data randomly sampled across time, initial conditions
and control actions, may be available. To test our method in the absence of real data mimicking these
scenarios, we simulate the system of differential equations with various state and control values. We
report number of samples throughout our experiments as the total number of derivative values used to
train the NODE in order to control for various approximation schemes for numerical derivatives.

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 (10)

We also apply noise perturbations to state and control values in order to simulate their effect on the
derivatives. We use random noise taken from a normal Gaussian distribution shown in Eq. 10. Here,
µ and σ refer to the mean and standard deviation respectively. In Case Study 4, we use real data on
the control actions taken during the Covid-19 pandemic and resultant infections.

2.2 ALGEBRAIC REFORMULATION AND HYBRID SOLUTION

The key step of our approach is to re-integrate the trained NODE into the optimal control problem.
Referring to Eq. (4), we can maintain the same overall structure, but the state dynamic constraint is
now replaced with the NODE function. Many factors can be considered here when integrating the NN
structure with collocation-based optimization methods for optimal control, including NN architecture
(size, activation functions,etc), number of time discretizations, and constraint formulations (i.e.
complementarity, reduced space, or full-space). To maintain tractability, we aim for surrogates
of minimal size that still can achieve an acceptable accuracy. Below, we formalize the resultant
mathematical program from integrating NODEs into DAE problems.

Given the general differential equation:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

dz

dt
= f(z, u, p) = NN(z, u,W, b), z(0) = z0 (11)

Example NODE single hidden layer, one state (z):

dz

dt
= σ(

n∑
i=1

wiz + bi) σ = ReLU, tanh, etc (12)

Applying collocation on finite elements (3 time point example):

zK+1(t) =

K∑
k=0

zklk(t) (13)

lk(t) =

K∏
j=0,j ̸=k

(t− tj)

tk − tj
(14)

zN+1(tk) = zk (15)

For three time points:

z0 l̇0(t1) + z1 l̇1(t1) + z2 l̇2(t1) = NN(z1,W, b) = σ(

n∑
i=1

wiz1 + bi) (16)

z0 l̇0(t2) + z1 l̇1(t2) + z2 l̇2(t2) = NN(z2,W, b) = σ(

n∑
i=1

wiz2 + bi) (17)

In Eq. 16, we recover 2 equations with two unknown variables (z1,z2). Thus we have an implicit
equation for z(t). Several works have developed formal proofs establishing an equivalence to
performing fully implicit Runge-Kutta integration of DAE models at Gauss (Radau) points Biegler
(2000). Furthermore, collocation on finite elements is a 2K order (2K-1) method which uses K
collocation points and can be shown to be algebraically stable Biegler (2010). The constraints defining
NN(z, u,W, b) are an important consideration for the ultimate system of non-linear equations,
performance with solvers (i.e. convergence, CPU) and also may have effects in the representation of
the underlying differential mechanism. For the sake of brevity, we put the mathematical details of
explored representations in Appendix A, specifically full-space, reduced-space and complementarity
formulations. Complementarity can be used to make ReLU NNs continuous, non-linear constraints
and eliminate binaries. Full-space can be applied to non-linear activations and will represent all
hidden nodes in the NN as explicit variables, whereas the reduced space builds a mapping directly
from inputs to outputs resulting in fewer constraints and variables.

3 EXPERIMENTS

3.1 CASE STUDY 1: PROOF OF CONCEPT

min
u

z2(tf) (18a)

s.t.
dz1
dt

= u (18b)

dz2
dt

= z21 + u2 (18c)

z1(0) = 1, z2(0) = 0, tf = 1 (18d)

The first case study is adapted from the Opti-
mal Control code in the Pyomo.DAE repository
Nicholson et al. (2018). The problem has 2 cou-
pled ODEs which are functions of control profile
u. The optimization problem is give in Eq. (18).
With known mechanisms, the problem can be
solved in PyomoDAE. The corresponding states
are shown in Figure 2a using Radau-Lagrange
collocation.

To apply the method to this problem, we train
a NODE with 3 inputs (z1,z2,u) and 2 outputs

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(dz1dt ,dz2dt). The model is a fully connected sequential NN. Hyperparameters for the hidden layer size,
training epochs, and learning rate are tuned. Both ReLU and tanh activations are trained with ADAM
optimizer. For the ReLU networks, the NN constraints are formulated using comlementarity. Tanh
models are tested with full-space and reduced-space formulations. The problem is solved using 10
finite elements and 2 collocation points for both the know model and for NODE model. Figure 2a
shows the model performance using the NODE approach and compares it to the true solution. Profile
z2 shows the objective function at t = tf . In Figure 2b, we show the control profile as a function of
time with each of the two methods.

(a) State Results (b) Control Results

Figure 2: Case Study 1: Comparison of NODE Approach vs Known Model

Figure 2a provides a proof of concept of the NODE-ADOpt method. For low-data scenarios, the fit to
the underlying dynamics is slightly worse than in high-data scenarios but still has less than 5% error
in its ultimate objective. In Figure 2a, we contrast the control actions from a ReLU NN and tanh NN.
While their overall effect on states is similar, the ReLU model results in oscillatory behavior while
the tanh model has smooth control actions. Further numerical results are provided for Case Study 1 in
Appendix C.1 detailing effects of noise, data-set size, model architecture, and constraint formulation.

3.2 CASE STUDY 2: INCLUSION OF PATH-BASED CONSTRAINT

The second case study has 3 coupled ODEs which are functions of control profile u. There is a path
constraint on z2. Path constraints are important in many dynamic optimization problems but require
explicit variables. The formulation of the problem is given in Eq. (19).

min
u

z3(tf) (19a)

s.t.
dz1
dt

= z2 (19b)

dz2
dt

= −z2 + u (19c)

dz3
dt

= z21 + z22 + 0.005u2 (19d)

z2 − 8(t− 0.5)2 + 0.5 ≤ 0 (19e)
z1(0) = 1, z2(0) = 0, z3(0) = 0, tf = 1 (19f)

For this case study, we create a NODE with 4 inputs (z1,z2,z3,u) and 3 outputs (dz1dt ,dz2dt ,dz3dt). Similar
to the first case study, we explore all activation and constraint representations. After hyperparameter
tuning, the number of hidden nodes was set at 50 to balance model size and accuracy. In this case,
we use 20 finite elements for both the NODE approach and the base case solution with the known
model. This problem is more challenging due to increased dimensionality, and because it requires the
satisfaction of a nonlinear constraint as a function of time (Eq. 19e). The flexibility of our NODE

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

approach allows us to satisfy this nonlinear path constraint. Figure 3a shows the model performance
for the state predictions in high and low data scenarios. The state profiles match very closely to the
ground truth. We can also observe that the constraint on z2 is satisfied for all t. In Figure 3b, we
show the corresponding control profiles, that also perfectly match the true optimal control trajectory.
Appendix C.2 gives further results for Case Study 2.

(a) State Results (b) Control Results

Figure 3: Case Study 2: Comparison of NODE Approach vs Known Model

Solver Results for Different NN Representations An important research question for using the
NODE-ADOpt framework is the effect of different NN constraint representations and how they
interact with NLP solvers like IPOPT. In Figure 4, we present summary statistics for the three
representations explored.

Figure 4: Effects of NN Constraint Representation within DAE

Number of iterations are shown to decrease significantly with using tanh NNs over ReLU for both CS 1
(12 to 223 iters) and CS 2 (11 to 1208 iters). This behavior directly maps onto CPU results with several
orders of magnitude reduction throughout cases. Within the tanh models, a reduced-space formulation
had superior performance due to fewer constraints and variables in the ultimate optimization model.
Outside of speed, the tanh models also found optima that were closer to the known solution. This
may be due to ReLU networks’ piecewise-linear form which results in some oscillatory behavior
around the true control response (shown clearly in Fig. 2b). Due to the consistency in the results, we
only use tanh models in subsequent experiments, but applying this framework to novel problems
requires some forethought for both the training problem and the dynamic optimization problem.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 PARTIALLY UNKNOWN MODEL FED BATCH REACTOR CASE STUDY

The next case study is a more realistic process example of the optimal control of penicillin biosynthesis.
The problem has been studied on methods such as evolutionary algorithms, collocation, and dynamic
programming Georgakis (2013); Riascos & Pinto (2004). The problem is defined in Eq. (20).

min
U(t)

ϕ = −P (tf)V (tf) (20a)

s.t.
dV

dt
=

U

SF
(20b)

dX

dt
= µX − X

(SFV)
∗ U (20c)

dP

dt
= ρX −KdegP − P

(SFV)
∗ U (20d)

dS

dt
= −µ

X

YX/S
− ρ

X

YP/S
− mSS

(Km+ S)
X +

(1− S)

SF

U

V
(20e)

µ = µmax
S

(KxX + S)
, ρ = ρmax

S

(Kp + S (1+S)
Kin

)
(20f)

V (0) = 7, X(0) = 1.5, P (0) = 0, S(0) = 0 (20g)

The model is comprised of four differential equations on states: volume (V), biomass concentration
(X), substrate concentration (S), and product concentration (P). The control variable U denotes the
inlet flowrate of substrate. The objective is to maximize penicillin production at final time tf . This
study has much more complex dynamics, based on nonlinear kinetic rate laws. This case study is even
more challenging, due to its increased dimensionality, nonlinearity and interconnections between all
state variables in the model. Moreover, it is important to note that nonlinearity in the parameter space
here eliminates the option of employing techniques that assume linearity, such as SINDy. For this
problem, we assume we have partial knowledge of the mechanism and we use a NODE to predict
change in substrate concentration (dSdt). This is common in bio-reactors where inlet reactants and
outlet product can be measured but intermediate substrate is difficult to measure directly or formulate
a mechanism based on first-principles. In Fig. 5, we solve the optimal control problem, where U
becomes a decision variable.

Figure 5: Case Study 3: Comparison of States with NODE Approach vs Known Model

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Case Study 3: Comparison of Control with NODE Approach vs Known Model

We solve the NODE-ADOpt problem and reference solution with 20 finite elements and 2 collocation
points. While the control profile varies using the NODE approach, the outlet flowrate of penicillin
is nearly identical which is the objective function (-91.2 with NODE and -87.9 with known model).
Overall, the optimization with the NODE takes 166 iterations in IPOPT for a CPU time of 7.304
seconds.

Effect of Noise and Comparison with SINDy Next, we show how NODE-ADOpt compares to
popular sparse regression tool SINDy for Case Studies 1-3 with the same data and noise perturbations.
We use a polynomial candidate library of order 2 and STLSQ optimizer with a grid search of threshold
values to minimize the Bayesian Information Criteria. Further details can be found in B. We import
the expressions from the best model into Pyomo to solve the DAE problems.

Figure 7: Comparing the Effect of Sample Noise on NODE and PySINDy Recovered Optima

Figure 7 shows the results for how close the predicted optimum (JPRED) is to the true one (JTRUE).
For Case Study 1, PySINDy has lower error for all noise levels. This is expected for dynamic
mechanisms that are amenable to the SINDy framework: terms that are linear with respect to the
candidate function library, parameters with approximately similar orders of magnitude and sparse
model representations. For Case Study 2, the results are more mixed. Both approaches seem to give
poor results at very high levels of noise (σ = 0.2) with SINDy doing slightly better. However at
lower levels (σ = [0, 0.05, 0.1]), NODE-ADOpt outperforms the benchmark. In Case Study 3, the
limitations of SINDy are shown. Regardless of noise level, the SINDy model selected gives errors of
nearly 100%. These results can be explained by the complexity and lack of sparsity in the dynamics.
Several terms in Eq. 20 are not recoverable by the method even in ideal circumstances. However, for
σ = [0, 0.05, 0.1], the NODE gives errors of 3%,15% and 1% respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

3.4 DISEASE SPREAD PREVENTION CASE STUDY

One final case study looks into optimal quarantine strategies for an infectious disease outbreak. A
common model in this field is the QSIR model, which includes 4 differential equations and states: Q
population in quarantine, S population of susceptible individuals, I population of infected individuals,
and R population of recovered individuals. An exemplar model for this section is presented in Eq. 21,
adapted from Nenchev (2020), which is based off the Covid-19 outbreak in Germany before available
vaccinations.

min
U(t)

J = 0.5R(tf) +Q(tf) + α

∫ tf

0

U(t)dt (21a)

s.t.
dS

dt
= −b/p ∗ S ∗ I (21b)

dI

dt
= b/p ∗ S ∗ I − (m+ U) ∗ I (21c)

dR

dt
= m ∗ I (21d)

dQ

dt
= u ∗ I (21e)

Q+ S + I +R = p (21f)

Q(0) = 0, S(0) = 80 ∗ 106, I(0) = 1000, R(0) = 0 (21g)

The states are given as ordinary differential equations. The degree of freedom on the control input U
is designed to be the strength of quarantine or lockdown response policy makers put into effect. We
adapt the objective function to give a trade-off between minimizing the disease spread (number of
individuals recovered R) and the cost incurred by the lockdown strength (U). To fit the relationship
between a general lockdown strength U and real government enforcement mechanisms, we use real
infection data from Italy from Riccardi et al. (2021) to fit a NN model. Table 1 gives a summary of
the intervention variables provided as inputs to the NN (excluding temperature and humidity). Fig. 8
shows the infection data and NN predictions.

Figure 8: Infection Rate of COVID-19 in Italy

Table 1: Control Variable Descriptions and
Bounds

Variable Description Bounds
x1 Border Control [0, 2]
x2 Enforcement [0, 1]
x3 Testing Volume [0, 15]
x4 Testing Criteria [20, 100]
x5 Gov. Mitigation [1, 10]
x6 Online Presence [0, 50]
x7 National Flights [0, 30]
x8 International Flights [0, 100]
x9 Temperature [10, 1000]
x10 Humidity [0.1, 1.0]
x11 Population Awareness [0, 24]

Next, we solve the optimal control problem with the embedded NN predicting U(t) for the QSIR
model and objective function. The results are shown in Figure 9.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 9: Case Study 4: Solution to Optimal Control Problem

In order to minimize the number of infected, a strong response is required around 80 days. Testing,
border enforcement and public awareness ramp up close to their upper bounds. Following this sharp
control action, the number of individuals who contract the disease is greatly diminished. While more
information is needed to apply this framework to government actions with detailed cost data, this
real-world example is another use case for the NODE-ADOpt framework.

4 CONCLUSIONS AND FUTURE WORK

This work demonstrates the integration of NODEs into complex, non-linear optimization problems
which are constrained by differential and algebraic equations. The methods bridge optimization
in an ML paradigm which focuses on model parameter training and traditional constrained non-
linear optimization via collocation on finite elements. We show that the resulting large NLPs are
algebraically stable and converge quickly for reduced-space smooth representations in numerical
experiments. We include examples with increasing non-linearity, problem dimension, and feasibility
complexity to show the strengths and weaknesses in comparison to sparse regression and black-box
optimization. Some promising directions for future work include investigating non-linear activation
functions that have had success in other NODE applications (e.g. SiLU). Furthemore, applying our
work to stochastic optimization problems may give insight into how a NODE-DAE structure can
handle uncertainty in scenarios or parameter values.

REFERENCES

Satyajith Amaran, Nikolaos V Sahinidis, Bikram Sharda, and Scott J Bury. Simulation optimization:
a review of algorithms and applications. Annals of Operations Research, 240:351–380, 2016.

B T Baumrucker, J G Renfro, and L T Biegler. MPEC problem formulations and solution strategies
with chemical engineering applications. 32:2903–2913, 2008. doi: 10.1016/j.compchemeng.2008.
02.010.

B. Beykal, W. Sun, T. Kaya, S. Segla, and K. V. Camarda. A data-driven optimization algorithm
for differential algebraic equations with numerical infeasibilities. AIChE Journal, 66(10):e16657,
2020.

B. Beykal, N. A. Diangelakis, and E. N. Pistikopoulos. Continuous-time surrogate models for
data-driven dynamic optimization. Computer Aided Chemical Engineering, 50:205–210, 2022.

Lorenz T Biegler. Optimization of differential-algebraic equation systems. Chemical Engineering
Department Carnegie Mellon University Pittsburgh, http://dynopt. cheme. cmu. edu, 2000.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Lorenz T Biegler. Nonlinear programming: concepts, algorithms, and applications to chemical
processes. SIAM, 2010.

Lorenz T Biegler, Arturo M Cervantes, and Andreas Wächter. Advances in simultaneous strategies
for dynamic process optimization. Chemical engineering science, 57(4):575–593, 2002.

S. Blanke. Gradient-free-optimizers: Simple and reliable optimization with local, global, population-
based and sequential techniques in numerical search spaces, 2024. Available at: https://
github.com/SimonBlanke/Gradient-Free-Optimizers.

Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for direct solution of optimal
control problems. IFAC Proceedings Volumes, 17(2):1603–1608, 1984.

HG Bock, MM Diehl, DB Leineweber, and JP Schlöder. A direct multiple shooting method for
real-time optimization of nonlinear dae processes. In Nonlinear model predictive control, pp.
245–267. Springer, 2000.

William Bradley and Fani Boukouvala. Two-stage approach to parameter estimation of differential
equations using neural odes. Industrial & Engineering Chemistry Research, 60(45):16330–16344,
2021.

Michael L Bynum, Gabriel A Hackebeil, William E Hart, Carl D Laird, Bethany L Nicholson, John D
Siirola, Jean-Paul Watson, David L Woodruff, et al. Pyomo-optimization modeling in python,
volume 67. Springer, 2021.

Yang Cao, Shengtai Li, Linda Petzold, and Radu Serban. Adjoint sensitivity analysis for differential-
algebraic equations: The adjoint dae system and its numerical solution. SIAM journal on scientific
computing, 24(3):1076–1089, 2003.

F. Ceccon, J. Jalving, J. Haddad, A. Thebelt, C. Tsay, C. D. Laird, and R. Misener. OMLT:
Optimization & Machine Learning Toolkit. ArXiv e-prints, abs/2202.02414, 2022.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Alexandre Cortiella, Kwang-Chun Park, and Alireza Doostan. Sparse identification of nonlinear
dynamical systems via reweighted 1-regularized least squares. Computer Methods in Applied
Mechanics and Engineering, 376:113620, 2021.

Alison Cozad, Nikolaos V Sahinidis, and David C Miller. Learning surrogate models for simulation-
based optimization. AIChE Journal, 60(6):2211–2227, 2014.

E. A. Del Rio-Chanona, F. Fiorelli, D. Zhang, H. Yue, and N. Shah. Comparison of physics-
based and data-driven modelling techniques for dynamic optimisation of fed-batch bioprocesses.
Biotechnology and Bioengineering, 116(11):2971–2982, 2019.

A. P. Deshmukh and J. T. Allison. Design of dynamic systems using surrogate models of derivative
functions. Journal of Mechanical Design, 139(10):101402, 2017.

Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk Topcu. Neural networks with
physics-informed architectures and constraints for dynamical systems modeling. In Learning for
Dynamics and Control Conference, pp. 263–277. PMLR, 2022.

Urban Fasel, Eurika Kaiser, J Nathan Kutz, Bingni W Brunton, and Steven L Brunton. Sindy with
control: A tutorial. In 2021 60th IEEE Conference on Decision and Control (CDC), pp. 16–21.
IEEE, 2021.

Michael C Ferris, Steven P Dirkse, and Alexander Meeraus. Mathematical Programs with Equilibrium
Constraints : Automatic Reformulation and Solution via Constrained Optimization. pp. 1–37,
2002.

Christos Georgakis. Design of dynamic experiments: A data-driven methodology for the optimization
of time-varying processes. Industrial & Engineering Chemistry Research, 52(35):12369–12382,
2013.

11

https://github.com/SimonBlanke/Gradient-Free-Optimizers
https://github.com/SimonBlanke/Gradient-Free-Optimizers

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xavier Glorot and Antoine Bordes. Deep Sparse Rectifier Neural Networks. 15:315–323, 2011.

Kadierdan Kaheman, J Nathan Kutz, and Steven L Brunton. Sindy-pi: a robust algorithm for parallel
implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A, 476
(2242):20200279, 2020.

Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

Richard E Kopp. Pontryagin maximum principle. In Mathematics in Science and Engineering,
volume 5, pp. 255–279. Elsevier, 1962.

J. Kudela and R. Matousek. Recent advances and applications of surrogate models for finite element
method computations: A review. Soft Computing, 26(24):13709–13733, 2022.

Jeffrey Larson, Matt Menickelly, and Stefan M Wild. Derivative-free optimization methods. Acta
Numerica, 28:287–404, 2019.

Fernando Lejarza and Michael Baldea. Data-driven discovery of the governing equations of dynamical
systems via moving horizon optimization. Scientific Reports, 12(1):11836, 2022.

K. O. Lye, S. Mishra, and D. Ray. Iterative surrogate model optimization (ismo): An active learning
algorithm for pde constrained optimization with deep neural networks. Computer Methods in
Applied Mechanics and Engineering, 374:113575, 2021.

C. Moya and G. Lin. Dae-pinn: A physics-informed neural network model for simulating differential
algebraic equations with application to power networks. Neural Computing and Applications, 35
(5):3789–3804, 2023.

Vladislav Nenchev. Optimal quarantine control of an infectious outbreak. Chaos, Solitons & Fractals,
138:110139, 2020.

Bethany Nicholson, John D Siirola, Jean-Paul Watson, Victor M Zavala, and Lorenz T Biegler.
pyomo. dae: A modeling and automatic discretization framework for optimization with differential
and algebraic equations. Mathematical Programming Computation, 10:187–223, 2018.

G. Qiu, B. Xu, Y. Li, Y. Zhao, W. Zeng, and Y. Song. Analytic deep learning-based surrogate model
for operational planning with dynamic ttc constraints. IEEE Transactions on Power Systems, 36
(4):3507–3519, 2020.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Su-
pekar, Dominic Skinner, and Ali Ramadhan. Universal differential equations for scientific ma-
chine learning, January 01, 2020 2020. URL https://ui.adsabs.harvard.edu/abs/
2020arXiv200104385R.

D. Rall et al. Multi-scale membrane process optimization with high-fidelity ion transport models
through machine learning. Journal of Membrane Science, 608:118208, 2020.

Carlos AM Riascos and José M Pinto. Optimal control of bioreactors: a simultaneous approach for
complex systems. Chemical Engineering Journal, 99(1):23–34, 2004.

Annalisa Riccardi, Jessica Gemignani, Francisco Fernandez-Navarro, and Anna Heffernan. Optimisa-
tion of non-pharmaceutical measures in covid-19 growth via neural networks. IEEE Transactions
on Emerging Topics in Computational Intelligence, 5(1):79–91, 2021.

S. M. Safdarnejad, J. F. Tuttle, and K. M. Powell. Development of a roadmap for dynamic process
intensification by using a dynamic, data-driven optimization approach. Chemical Engineering and
Processing - Process Intensification, 140:100–113, 2019.

RWH Sargent and GR Sullivan. The development of an efficient optimal control package. In
Optimization Techniques: Proceedings of the 8th IFIP Conference on Optimization Techniques
Würzburg, September 5–9, 1977, pp. 158–168. Springer, 1978.

Lars Schewe and Martin Schmidt. Computing Feasible Points for Binary MINLPs with MPECs. pp.
1–23, 2018.

12

https://ui.adsabs.harvard.edu/abs/2020arXiv200104385R
https://ui.adsabs.harvard.edu/abs/2020arXiv200104385R

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Stefan Scholtes. Convergence properties of a regularization scheme for mathematical programs with
complementarity constraints. SIAM J. on Optimization, 11(4):918–936, 2000. ISSN 1052-6234.
doi: 10.1137/S1052623499361233.

Artur M Schweidtmann and Alexander Mitsos. Deterministic Global Optimization with Artificial
Neural Networks Embedded. Journal of Optimization Theory and Applications, 180(3):925–948,
2019. ISSN 1573-2878.

A. Shokry and A. Espuña. Sequential dynamic optimization of complex nonlinear processes based
on kriging surrogate models. Procedia Technology, 15:376–387, 2014.

Zachary T Wilson and Nikolaos V Sahinidis. The alamo approach to machine learning. Computers
& Chemical Engineering, 106:785–795, 2017.

Linan Zhang and Hayden Schaeffer. On the convergence of the sindy algorithm. Multiscale Modeling
& Simulation, 17(3):948–972, 2019.

Shengwei Zhu and Yi Wang. Scaled sequential threshold least-squares (s2tls) algorithm for sparse
regression modeling and flight load prediction. Aerospace Science and Technology, 85:514–528,
2019.

A MATHEMATICAL FORMULATION OF NEURAL NETWORKS IN
OPTIMIZATION PROGRAMS

We denote the input vector by x ∈ RN0 and the output vector by y ∈ RNK . The input vector to each
layer ẑk−1 is a linear combination of the output of the previous layer, i.e., ẑk+1 = W kzk + bk, where
W k is a Nk+1 ×Nk weight matrix and bk is a Nk+1 × 1 bias vector between layers k and k + 1.
Each hidden layer incorporates an activation function z = σ(ẑ), which usually applies a non-linear
transformation to each element of the vector input. We denote the vector x as z0 to represent the
input layer to the neural network (the input layer is usually not considered a layer). The pre-activation
values ẑk at each layer k are given by (22b) and the post-activation values zk are denoted by (22c).
Finally, the output layer produces the vector y as a linear combination of the final hidden layer given
by (22d).

z0 = x (22a)

ẑk = W kzk−1 + bk, ∀k ∈ {1, ...,K − 1} (22b)

zk = σ(ẑk), ∀k ∈ {1, ...,K − 1} (22c)

y = WKzK + bK (22d)

It is helpful to express Formulation (22a)-(22d) element-wise to demonstrate different neural net-
work representations for the security-constrained optimization problem. Formulation (23a)-(23d) is
analogous to (22a)-(22d), but it additionally unfolds the inner layer nodes.

xn = z0n ∀n ∈ {1, ..., N0} (23a)

ẑkn =

Nk−1∑
i=1

W k
i,nz

k−1
n + bkn, ∀n ∈ {1, ..., Nk},∀k ∈ {1, ...,K − 1} (23b)

zkn = σ(ẑk), ∀n ∈ {1, ..., Nk},∀k ∈ {1, ...,K − 1} (23c)

yn =

NK−1∑
i=1

WK
i,nz

K−1
n + bKn ∀n ∈ {1, ..., NK} (23d)

The choice of the best activation function used for Equation (23c) generally falls to the problem of
training a neural network, although the ReLU function has been commonly selected for its favorable
properties Glorot & Bordes (2011). In the optimization problem, (23a)-(23d) can be implemented
using the different aforementioned algebraic representations. As this manuscript utilizes the non-linear
ACPF equations, we choose to examine the three following smooth NN representations.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.1 FULL SPACE REPRESENTATION (NON-LINEAR)

The variables and constraints described by (23a)-(23d) are formulated explicitly in the problem.
The activation constraints can be any smooth function (e.g., tanh, sigmoid, softplus). Intermediate
variables (e.g., zk, ẑk) are formulated in IPOPT and related through sequential constraints.

A.2 REDUCED SPACE REPRESENTATION (NON-LINEAR)

The reduced-space representation is similar to the full space, but the NN variables and constraints are
captured as one expression that connects the input and output variables. Here, intermediate variables
(e.g., zk, ẑk) are not explicitly formulated in IPOPT and the problem variable size is reduced. Previous
research has shown that reduced-space representations may have advantages when embedded in
optimization formulations Schweidtmann & Mitsos (2019); thus, we implement this formulation to
access the advantages over a full-space formulation.

A.3 RELU WITH COMPLEMENTARITY REPRESENTATION

While we can formulate ReLU within full- and reduced-space representations, the resulting constraints
are not smooth (ReLU is given by z = max(0, ẑ)). To handle this, ReLU can be formulated using
complementarity conditions, where we substitute (23c) with (24) for each node in the NN to generate
a mathematical program with complementarity constraints (MPCC) Ferris et al. (2002).

0 ≤ (zkn − ẑkn) ⊥ zkn ≥ 0 ∀n ∈ {1, ..., Nk},∀k ∈ {1, ...,K − 1} (24)

The complementarity constraints in (24) permit smooth transformations, which have been studied
extensively with respect to regularity properties Baumrucker et al. (2008). This manuscript uses
a simple component-wise formulation initially presented in Scholtes (2000) given by (25). This
representation introduces a non-linear constraint for each node (complementarity) in the neural
network and uses the regularization parameter ϵ ≥ 0 to satisfy NLP constraint qualifications. This
formulation is implemented within pyomo.mpec Bynum et al. (2021) and is used in the neural
network package OMLT Ceccon et al. (2022).

(zkn − ẑkn)z
k
n ≤ ϵ ∀n ∈ {1, ..., Nk},∀k ∈ {1, ...,K − 1} (25)

Other variations of (25) can be found in the literature and include different regularization tech-
niques, NCP functions, and objective penalties Schewe & Schmidt (2018). Overall, this Sec-
tion provides a general mathematical framework for embedding NN models from various ML
libraries into a non-linear program. Open source code for the tool OMLT can be found online
(github.com/cog-imperial/OMLT, accessed on 11 July, 2023) for implementing all of the
discussed formulations in Python.

B DETAILS ON MODEL IDENTIFICATION

B.1 SPARSE REGRESSION PROBLEM DEFINITION

Consider the following dynamical system:

ẋ(t) = f(x(t), u(t), θ)

where:

• x(t) ∈ Rn is the state vector,

• u(t) ∈ Rm is the input vector,

• θ ∈ Rp are the model parameters to be identified,

• f : Rn+m ×Rp → Rn is a nonlinear function representing the dynamics of the system.

14

github.com/cog-imperial/OMLT

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The goal of SINDy Kaheman et al. (2020) is to identify the sparse set of terms in the function f
that best describe the dynamics of the system from input-output data (u(t), x(t)), given a library of
candidate functions.

The identified model can be represented in the following form:

ẋ(t) =

p∑
j=1

θjϕj(x(t), u(t))

where ϕj(x(t), u(t)) are candidate functions (e.g., polynomials, trigonometric functions, etc.) and θj
are the corresponding coefficients.

The identification process involves solving an optimization problem to find the sparse vector of
coefficients θ.

B.2 PROBLEM DATA STRUCTURE

In cases of nonlinear system identification, we typically have a matrix of state observation data shown
below as X .

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn


In systems with a control input, we may also have a vector of manipulated variables U .

U =


u11

u21

...
um1


The authors of SINDy expanded their tools in Fasel et al. (2021) to incorporate control inputs. In
order to perform system identification for the dynamic contexts, we must provide or approximate the
derivative data of the system.

Ẋ =


ẋ11 ẋ12 · · · ẋ1n

ẋ21 ẋ22 · · · ẋ2n

...
...

. . .
...

ẋm1 ẋm2 · · · ẋmn


B.3 APPROXIMATION OF DERIVATIVE VALUES

Given state data X , approximation of the derivative values can be approximated using finite difference
method. This can present challenges for noisey or sparse data scenarios or situations where the
samples are collected in uneven intervals.

df

dt
(ti) ≈

f(ti+1)− f(ti)

∆t

An alternative approach is to fit a model to the state data and then approximate derivative values using
collocation points and the surrogate functions derivative value. Some studies have shown benefits of
using these collocations methods with B-splines or polynomial functions.

B.4 MODEL TRAINING

In system identification, there are two objective measures of a good model:

• Model parsimony: models with less complexity are preferred (|θj |0)

• Model accuracy: models with less prediction error are preferred (||Ẋ − Ẋmodel
t ||2/||Ẋt||2)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Typically these terms are added together in the objective function with a scaling parameter enforcing
the relative weight of each.

A few different optimizers have been applied, including LASSO Cortiella et al. (2021) and sequential
least squares thresholding Zhu & Wang (2019). Other works have done extensive studies into the
convergence qualities of the algorithm Zhang & Schaeffer (2019).

For all the case studies shown in this work, we use Sequentially Thresholded Least Squares (STLSQ)
algorithm as the optimizer with SINDy. The STLSQ algorithm defaults to performing sequentially
thresholded ridge regression, where the objective function (∥Ẋ−

∑p
j=1 θjϕj(x(t), u(t))∥22+α∥θj∥22)

is minimized. The optimization is done by iteratively solving the least squares problem and progres-
sively masking elements of the weight matrix (Θ) that fall below the specified threshold. This process
continues until a stable solution is achieved, ensuring that the resulting model is both parsimonious
and well-regularized. The hyper parameter ’threshold’ of the algorithm was optimized using Scikit-
learn’s GridSearchCV, by minimizing the Bayesian Information Criterion (BIC) on a validation data
set. BIC in terms of the mean squared error (MSE) can be written as follows:

BIC = n ln(MSE) + k ln(n)

where (n) is the number of data points and (k) is the number of non-zero parameters in the identified
model.

B.5 NONLINEAR PROGRAMMING APPROACH

All previously summarized work has relied on least squares based formulation with explicit candidate
library functions. This allows for linear or quadratic programming techniques for solving the
constrained optimization problem from regularized least squares. An alternative approach is to
formulate the problem as a nonlinear program. While this has some drawbacks with respect to
convergence guarantees and computational speed, these forms allow more flexibility and nonlinear
parameter dependencies. Wilson & Sahinidis (2017) Cozad et al. (2014)

In Lejarza & Baldea (2022) the authors use the nonlinear approach to show how collocation ap-
proaches can be directly built into the optimization model (more robust to noise), allow for constraints
to be added (from system knowledge), and they show how moving horizon control theory can be
applied to these dynamic model identification problem.

C FULL NUMERICAL RESULTS FOR EXPERIMENTS

C.1 CASE STUDY 1 RUNS

Here we show additional results for Case Study 1 with varying levels of samples, noise, and different
neural network models.

(a) State Results (b) Control Results

Figure 10: Case Study 1: 50 Training Samples with ReLU Complementarity

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) State Results (b) Control Results

Figure 11: Case Study 1: 50 Training Samples with tanh Full or Reduced space

(a) State Results (b) Control Results

Figure 12: Case Study 1: 100 Training Samples with ReLU

(a) State Results (b) Control Results

Figure 13: Case Study 1: 100 Training Samples with tanh

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) State Results (b) Control Results

Figure 14: Case Study 1: 1000 Training Samples with tanh

Table 2: Case Study 1: Training and Validation MSE for Tanh and ReLU with Different Training
Samples

Number of Samples tanh ReLU
MSETrain MSEV al MSETrain MSEV al

50 8.75E-04 0.0078 2.78E-04 0.0158
100 5.85E-04 0.0018 3.92E-04 0.0044
1000 4.62E-05 5.01E-05 7.68E-05 9.09E-05

Table 3: Case Study 1: Performance Metrics for Tanh and ReLU Models

Number of Samples Tanh Full-Space Tanh Reduced-Space ReLU Complementarity
CPU/iters Obj CPU/iters Obj CPU/iters Obj

50 0.287 / 41 7.22E-01 0.016 / 13 7.22E-01 3.12 / 220 6.88E-01
100 0.185 / 29 7.94E-01 0.081 / 10 7.94E-01 2.886 / 218 7.12E-01

1000 4.79E-01 / 53 7.65E-01 0.002 / 13 7.65E-01 4.04 / 232 7.63E-01
Known Model 0.009 / 11 7.62E-01

C.2 CASE STUDY 2 RUNS

Here we show additional results for Case Study 2 with varying levels of samples, noise, and different
neural network models.

(a) State Results (b) Control Results

Figure 15: Case Study 2: 50 Training Samples with ReLU Complementarity

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) State Results (b) Control Results

Figure 16: Case Study 2: 50 Training Samples with tanh Full or Reduced space

(a) State Results (b) Control Results

Figure 17: Case Study 2: 100 Training Samples with ReLU

(a) State Results (b) Control Results

Figure 18: Case Study 2: 100 Training Samples with tanh

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) State Results (b) Control Results

Figure 19: Case Study 2: 1000 Training Samples with tanh

Table 4: Case Study 2: Training and Validation MSE for Tanh and ReLU with Different Training
Samples

Number of Samples tanh ReLU
MSETrain MSEV al MSETrain MSEV al

50 4.52E-04 0.0057 1.6E-03 0.005
100 3.9E-03 0.005 7.11E-04 0.0017
5000 5.24E-05 6.98E-05 1.27E-04 1.14E-04

Table 5: Case Study 2: Performance Metrics for Tanh and ReLU Models

Number of Samples Tanh Full-Space Tanh Reduced-Space ReLU Complementarity
CPU/iters Obj CPU/iters Obj CPU/iters Obj

50 0.155 / 13 1.35E-01 0.03 / 10 1.35E-01 21.36 / 971 3.11E-02
100 0.133 / 11 1.77E-01 Did Not Converge 24.71 / 1554 1.59E-01

1000 0.119 / 11 1.43E-01 0.028 / 10 1.43E-01 21.37 / 1099 1.45E-01
Known Model 0.009 / 11 1.47E-01

C.3 CASE STUDY 3 RUNS

In this section, we train separate NODEs for each state in order to scale each effectively based on
validation error. We do this to show NODEs ability to validate the full penicillin model, while in
Sec. 3.3 we assume partial knowledge of the mechanism. After testing several sized models, we find
that 10 hidden nodes is sufficient to train V . For X , P and S we must use two hidden layers with 20
nodes each. After training, we first validate the model performance using a known step function input
for control profile U and integrate forward using the NNs and the known DAE model. We integrate
each using 4th order Runge-Kutta method. The results are shown below.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 20: Fed Batch Reactor Validation

While each state is dependent on each other for its dynamic profile, it is clear that V matches almost
perfectly due to the simple linear relationship. S fits very well even though the it has the most
complex function it must learn. X and P fit well except for some slight deviation toward the end of
the time profile.

Table 6: Case Study 3: Training and Validation MSE for Tanh with Different Training Samples

Number of Samples Tanh
MSETrain MSEV al

80k-dP 5.802E-06 2.59E-06
80k-dS 9.76E-04 6.04E-04

Table 7: Case Study 3: Performance Metrics for Tanh Full-Space Models

Number of Samples CPU/iters Obj
80k-dP 1.947/367 1.048E02
80k-dS 7.304/166 9.12E01

Known Model 1.086/461 8.79E01

C.4 RESULTS WITH NOISE PERTURBATIONS

In this section we show results for each case study when we add random noise.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 21: Case Study 1: Noise Perturbations

Figure 22: Case Study 2: Noise Perturbations

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 23: Case Study 3: Noise Perturbations

D DETAILS ON BLACK-BOX OPTIMIZATION

Black-box optimization techniques have gained prominence in dynamic systems and control, par-
ticularly when analytical solutions are impractical. Recent advances leverage surrogate models and
machine learning to improve optimization efficiency. For instance, Lye et al. Lye et al. (2021) em-
ployed deep neural networks for PDE-constrained optimization, introducing new training procedures
for time-dependent parametric PDEs. Beykal et al. Beykal et al. (2020) developed a data-driven
optimization algorithm for differential-algebraic equations (DAEs), utilizing surrogate models to
navigate numerical feasibility boundaries. Building on this approach, they later presented a data-
driven optimization framework for time-varying systems Beykal et al. (2022), which derives optimal
continuous-time control trajectories using surrogate modeling without fully discretizing high-fidelity
models. Similarly, Qiu et al. Qiu et al. (2020) proposed a deep learning-based surrogate to replace
computationally intensive DAE constraints in operational planning.

Other notable contributions include Moya and Lin’s Moya & Lin (2023) DAE-PINN framework,
which uses physics-informed neural networks for simulating semi-explicit DAEs. Shokry and
Espuña Shokry & Espuña (2014) introduced a sequential dynamic optimization method using kriging
metamodels for highly nonlinear processes. Deshmukh and Allison Deshmukh & Allison (2017)
presented Derivative Function Surrogate Modeling (DFSM) to approximate state derivatives with
surrogate models, streamlining dynamic system design. These approaches, alongside other surrogate-
assisted optimization techniques Beykal et al. (2022); Djeumou et al. (2022); Del Rio-Chanona
et al. (2019); Safdarnejad et al. (2019); Rall et al. (2020); Kudela & Matousek (2022), highlight
the effectiveness of integrating data-driven methods with physical insights in optimizing dynamic
systems and control.

Alternatively, when the dynamic system is available as a simulator, the optimal control problem can
be directly tackled using data-driven optimization techniques. This approach requires discretizing the
control profile over time and treating these discretized values as decision variables for the optimizer.
However, this can lead to a high-dimensional problem depending on the number of discretization
points used in the control profile. To compare this method with surrogate-based approaches, we apply

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

this data-driven optimization strategy to Case Study 1. For consistency, we set the number of finite
elements to 10, resulting in 11 discretization points for the control profile u(t) with u(0) = 0. We
evaluate seven different data-driven solvers for this task: Bayesian optimization, genetic algorithm,
particle swarm optimization, and simulated annealing using the package Blanke (2024).

Since the discretization points are treated as decision variables by the solver, a purely data-driven
optimization approach can lead to variability in the solution due to the complexity and the non-
linearity of the search space. To evaluate the performance and consistency of the different solvers,
we conducted ten independent optimization runs for each algorithm. For all solvers, the maximum
number of iterations or samples was set to 3000, utilizing the default settings. Additionally, an early
stopping criterion based on a patience set of 300 iterations was applied to facilitate termination when
appropriate. For each run, we recorded the optimized objective function value JPRED and compared
it to the true optimal value JTRUE obtained from the equation based model. The relative error for
each run was calculated as a normalized measure of the deviation of the predicted optimal value
from the true value, allowing for a fair comparison across different algorithms. We aggregate the
relative errors for all ten runs of each optimizer to compute the mean and standard deviation, which
reflect the accuracy and robustness of each method, respectively. The results are summarized in
Figure 24, which showcases the average relative errors for each optimization algorithm, with error
bars representing one standard deviation. This figure highlights both the accuracy and consistency of
the methods evaluated.

Figure 24: Average relative errors of optimization algorithms with standard deviation error bar

Figure 25 presents the computational time required by each optimizer, providing insights into their
efficiency. Figure 26 illustrates the evolution of the optimal solution found by each solver as a
function of the number of samples collected or utilized, demonstrating how quickly each method
converges towards the optimum.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 25: Computational time requirements (sec) of each optimization algorithm

Figure 26: Evolution of the optimal solution with number of samples collected by solvers

Although the relative errors achieved by these solvers are comparable to our NODE approach, the
data-driven optimization method has several significant limitations. First, data-driven optimization
approach to determine the control profile requires discretization of the control variables over time,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

which leads to a high-dimensional optimization problem. In many cases, a finer discretization is
necessary to capture the system dynamics accurately, resulting in an increased number of decision
variables and, consequently, a higher number of samples needed to locate the optimal solution. This
escalates the computational burden, especially for high-fidelity simulations, as it necessitates running
the simulator numerous times, potentially rendering the approach computationally expensive.

Second, data-driven solvers rely on the availability of the simulation model during the optimization
process. However, this may not always be feasible; in some scenarios, only static or pre-collected
data is accessible, which hinders the applicability of these solvers. Without the ability to query the
simulator, the optimization cannot proceed effectively.

Finally, many practical optimization problems involve implicit and explicit constraints that must
be satisfied. Most data-driven optimization algorithms lack robust mechanisms to incorporate such
constraints into the optimization process. This limitation makes it challenging to apply these solvers
to constrained optimization problems, as they may violate critical system requirements or fail to
find feasible solutions. These challenges highlight the need for alternative approaches that can
operate with limited data availability, and accommodate complex constraints within the optimization
framework.

E CODE SNIPPETS: USING PYOMO.DAE AND OMLT

Below, we show the use of Pyomo.DAE to solve Case Study 1.

m = ConcreteModel()

m.t = ContinuousSet(bounds=(0, 1))

m.x1 = Var(m.t, bounds=(0, 1))
m.x2 = Var(m.t, bounds=(0, 1))
m.u = Var(m.t, initialize=0)

m.x1dot = DerivativeVar(m.x1)
m.x2dot = DerivativeVar(m.x2)

m.obj = Objective(expr=m.x2[1])

def _x1dot(M, i):
if i == 0:

return Constraint.Skip
return M.x1dot[i] == M.u[i]

m.x1dotcon = Constraint(m.t, rule=_x1dot)

def _x2dot(M, i):
if i == 0:

return Constraint.Skip
return M.x2dot[i] == M.x1[i] ** 2 + M.u[i] ** 2

m.x2dotcon = Constraint(m.t, rule=_x2dot)

def _init(M):
yield M.x1[0] == 1
yield M.x2[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)
discretizer = TransformationFactory(’dae.collocation’)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

discretizer.apply_to(m, nfe=10, ncp=2, scheme=’LAGRANGE-RADAU’)

solver = SolverFactory(’ipopt’)

results = solver.solve(m, tee=True)

Next, we show the use of OMLT to embed a neural network and replace the constraints for differential
equations.

def _con_out1(m,t):
if t==0:

return Constraint.Skip
return OM.dx1dt[t] == OM.nn[t].m.outputs[0] #dx1dt

def _con_out2(m,t):
if t==0:

return Constraint.Skip
return OM.dx2dt[t] == OM.nn[t].m.outputs[1] #dx2dt

def _con_in1(m,t):
#if t==0:
return Constraint.Skip

return OM.x1[t] == OM.nn[t].m.inputs[1] #x1

def _con_in2(m,t):
#if t==0:
return Constraint.Skip

return OM.x2[t] == OM.nn[t].m.inputs[2] #x2

def _con_in3(m,t):
#if t==0:
return Constraint.Skip

return OM.u[t] == OM.nn[t].m.inputs[0] #u
OM=ConcreteModel()

#OM.nn=OmltBlock()

#OM.tf=Param(initialize=1)
OM.t =ContinuousSet(bounds=(0,1))

OM.u=Var(OM.t,initialize=0,bounds=(-3,1))
OM.x1=Var(OM.t,bounds=(0, 1))
OM.x2=Var(OM.t,bounds=(0, 1))

OM.dx1dt = DerivativeVar(OM.x1,wrt=OM.t)
OM.dx2dt = DerivativeVar(OM.x2,wrt=OM.t)

OM.obj = Objective(expr=OM.x2[1])

discretizer = TransformationFactory(’dae.collocation’)
discretizer.apply_to(OM, nfe=10, ncp=2, scheme=’LAGRANGE-RADAU’)

net=load_keras_sequential(model_tf)
formulation = FullSpaceNNFormulation(net)
#formulation=ReluComplementarityFormulation(net)
OM.nn=Block(OM.t)
for t in OM.t:

OM.nn[t].m=OmltBlock()
OM.nn[t].m.build_formulation(formulation)

OM.nn[t].m.out1=Constraint(OM.t, rule=_con_out1)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

OM.nn[t].out2=Constraint(OM.t, rule=_con_out2)
OM.nn[t].in1=Constraint(OM.t, rule=_con_in1)
OM.nn[t].in2=Constraint(OM.t, rule=_con_in2)
OM.nn[t].in3=Constraint(OM.t, rule=_con_in3)

solver = SolverFactory(’ipopt’)

results = solver.solve(OM, tee=True)

28

	Introduction
	Neural Differential Equations
	Optimal Control of Dynamical Systems
	Motivation and Contributions
	Related Work

	Neural Ordinary Differential Equation Augmented Dynamic Optimization: (NODE-ADOpt)
	NODE Data and Training
	Algebraic Reformulation and Hybrid Solution

	Experiments
	Case Study 1: Proof of Concept
	Case Study 2: Inclusion of Path-based Constraint
	Partially Unknown Model Fed Batch Reactor Case Study
	Disease Spread Prevention Case Study

	Conclusions and Future Work
	Mathematical Formulation of Neural Networks in Optimization Programs
	Full Space Representation (Non-linear)
	Reduced Space Representation (Non-linear)
	ReLU with Complementarity Representation

	Details on Model Identification
	Sparse Regression Problem Definition
	Problem Data Structure
	Approximation of Derivative Values
	Model Training
	Nonlinear Programming Approach

	Full Numerical Results for Experiments
	Case Study 1 Runs
	Case Study 2 Runs
	Case Study 3 Runs
	Results with Noise Perturbations

	Details on Black-Box Optimization
	Code Snippets: Using Pyomo.DAE and OMLT

