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Graph Contrastive Learning via Interventional View Generation
Anonymous Author(s)∗

ABSTRACT
Graph contrastive learning (GCL), as a popular self-supervised
learning technique, has demonstrated promising capability in learn-
ing discriminative representations for diverse downstream tasks.
A large body of GCL frameworks mainly work on graphs formed
under homophily effect, i.e., similar nodes tend to connect with
each other. In their design, the augmentation and aggregation are
usually conducted indiscriminately on edges, ignoring the existence
of heterophilic edges that connect dissimilar nodes. Therefore, the
efficacy of GCL could greatly deteriorate on heterophilic graphs,
verified by our analysis: GCL on a mixture of homophilic and het-
erophilic edges will generate representations that are indistinguish-
able across different classes in the embedding space. To address
this challenge, we propose a novel GCL framework via interven-
tional view generation. Specifically, we generate homophilic and
heterophilic views through counterfactual intervention, which tar-
gets on disentangling homophilic and heterophilic structure from
the original graph, such that we can capture their corresponding
information using separate filters in the contrastive learning pro-
cess. Since the homophilic view and the heterophilic view present
different frequency signals, they are further encoded via a low-
pass and a high-pass filter respectively. Extensive experiments on
multiple benchmark datasets demonstrate the effectiveness of our
design. Our proposed framework achieves a remarkably improved
downstream performance on graphs with high heterophily while
maintaining a comparable ability in learning homophilic graphs.
A comprehensive study also verifies the necessity of individual
designs in our framework.

KEYWORDS
Graph Contrastive Learning, Heterophilic Graph Learning, Coun-
terfactual Analysis
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1 INTRODUCTION
Graphs neural networks (GNNs) have attracted tremendous atten-
tion due to their superior capability in modeling graph-structured
data, such as social networks [21, 25], traffic networks [33], and
recommendation systems [17, 37]. GNNs commonly adopts the
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message passing mechanism to iteratively update the node repre-
sentations via neighbor aggregation, thus can effectively capture
both node feature and graph structure. While the message passing
mechanism introduces neighboring context to help node represen-
tation learning, its performance is highly related to the homophily
assumption, which states that connected nodes should be similar.

However in practice, such assumption does not always hold. In
fact, many real-world web-based graphs are highly heterophilic, and
in such graphs, connected nodes are highly likely from different
classes or have different features [19, 42]. For instance, in online
dating networks, users are more likely to connect with people of
opposite gender; in online transaction graphs, fraudsters tend to
connect with normal customers instead of other fraudsters [19].
Due to the ubiquity of graph heterophily in modern web applica-
tions and systems, models that excel under homophily assumption
should adapt to the presence of heterophily property. However,
directly applying the message passing mechanism upon such het-
erophilic graphs could be problematic: the aggregated information
of dissimilar local neighbors could greatly deteriorate the node
representation quality and further influence the downstream per-
formance.

To tackle the issue introduced by heterophily, enormous so-
lutions have been proposed. One line of works focuses on GNN
architecture tailored for heterophilic graphs [10, 16, 20, 24, 31, 43],
including feature and structure separation[10], ego and neighbor
separation[10, 31], high-order neighbor mixup[16, 43],message ag-
gregation adjustment[16] and neighbor reweighting [16, 20]. Never-
theless, these solutions typically rely on expert knowledge to man-
ually adjust the model design based on the degree of heterophily.
Considering the complex and diverse patterns exist in different
graphs, such heuristic designs may not generalize across graphs
and could require heavy human efforts for model tuning. Another
line of research aims to save human efforts via automated GNN
learning [40] based on neural architecture search (NAS). Through
well-designed search space and efficient search strategies, these
methods can automatically find the best model architecture on a
given dataset. However, such solution require classification perfor-
mance as reward, thus can only serve for the supervised learning
setting.

Until very recently, a few works start to investigate heterophily
in unsupervised setting [3, 15, 26, 34], without accessing any down-
stream label information. In the graph auto-encoder learning frame-
work, heterophiliy is handled through either neighbor reconstruc-
tion [26] or decoupled graph generative assumption [34]. In the
graph contrastive learning framework, existing solutions estimate
heterophilic edges via node similarity [3] or edge similarity [15],
which could lead to suboptimal performance without principled
guidance.

In this paper, we focus on designing a graph contrastive learn-
ing framework that can adapt to different degree of heterophily.
Our method is motivated by a preliminary analysis, from which
we find two essential designs for successful node representation
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learning on heterophilic graphs: seperation between heterophilic
and homophilic edges, and a specialized graph filter for each type of
edges. We further integrate them into the graph contrastive learn-
ing framework. Specifically, we propose a counterfactual solution to
disentangle heterophilic patterns from homophilic ones, such that
by controlling the treatment factor, we can generate interventional
homophilic and heterophilic views from the original graph. These
two views will be fed into different graph filters: a low-pass filter
is used to encode the homophilic view, while a high-pass filter is
for the heterophilic view. This design is inspired by recent findings
[2, 14, 16] that low-pass filters focus on smoothly varying signals
on similar neighbors (in the homophilic view), and high-pass filters
capture sharply changing signals on dissimilar neighbors (in the
heterophilic view). Finally, we contrast the embedding from both
views following a common contrastive learning practice.

Compared with developing GNN architecture tailored for het-
erophilic graphs [10, 16, 20, 24, 31, 43], our framework does not
require any complicated architecture designs; and instead of dis-
criminating heterophilic edges curtly based on node similarity or
edge similarity [3, 15], our counterfactual design enjoys a princi-
pled guidance from the treatment factor. Extensive experiments on
both homophilic and heterophilic graphs verify the effectiveness
of our proposed framework. In summary, our contribution can be
highlighted as follows:

• We propose a principled solution to disentangle homophily and
heterophily from the counterfactual perspective, which can guide
homophilic and heterophilic vew generation with intervention;

• We integrate interventional view generation and distinct view
filters in a normal contrastive learning pipeline, without compli-
cated model architecture or learning framework designs;

• We demonstrate the improvement by the proposed method and
the effectiveness of each design on multiple homophilic and
heterophilic benchmarks.

2 RELATEDWORK
2.1 GNNs with Heterophily
To better adapt to graph heterophily and mitigate over-smoothing
issues, recent approaches have proposed a set of alternative ag-
gregation mechanisms, focusing on tailoring GNN architectures
[10, 16, 20, 24, 31, 43], encompassing structure separation [10],
ego and neighbor separation [10, 31], high-order neighbor mixup
[16, 43], specialized message passing [16] and neighbor reweight-
ing [16, 20]. For instance, UGCN [10] constructs neighbor sets by
selecting nodes based on their feature similarity. GGNN [31] maps
ego and neighbor feature into separate representations. H2GCN
[43] employs specialized GNN designs including ego/neighbor sepa-
ration and high-order neighbor mixup. ACM [16] modifies message
passing via high- and low-pass filter, and identity channels to diver-
sify local information. Another line of research designs automated
GNN learning paradigm [40] to avoid extensive manual model tun-
ing. These methods can automatically discover the optimal model
architecture for a given dataset through a well-designed search
space and effective search strategies. However, such a solution re-
quires classification performance as the reward, which is typically
applicable only in a supervised learning setting.

2.2 Self-Supervised Learning with Heterophily
Graph self-supervised learning aims to pretrain a feature extractor
on unlabeled dataset via graph reconstruction (as in auto-encoder
framework [7, 12, 13, 26]) or instance discrimination (as in con-
trastive learning [8, 23, 28, 30, 38, 44, 45]). Graph autoencoder frame-
work learns informative representations by recovering the feature
and structure pattern in the original graph. Graph contrastive learn-
ing (GCL) learns discriminative representations by maximizing
mutual information between positive views contrast to negative
views. For instance, GCA [45], GRACE [44], and GraphCL [38]
extend SimCLR [4] to learn node or graph representations by con-
trasting either in node level or graph level. DGI [30], InfoGraph [23],
and MVGRL [8] adopt cross-level contrast. BGRL [28] performs
view-level representation prediction without negative samples.

These vanilla self-supervised methods usually use low-pass GNN
backbones encouraging smoothness between neighbors, thus could
lead to suboptimal performance on heterophilic graphs. Until re-
cently, people start to investigate the heterophily issue in the graph
autoencoder framework [26, 34, 41] and the graph contrastive learn-
ing framework [3, 15, 31, 35]. Our focus in this paper is graph
contrastive learning with heterophily. For sample, HGRL [3] drops
low-similarity pairs and SP-GCL [31] treats them as negative pairs,
which however could also lose useful information of these het-
erophilic edges. GREET [15] directly learns non-homophilic edges
based on node features. These heuristics estimates heterophilic
edges without proper guidance, which could be inaccurate and
mislead the model. HLCL [35] directly uses high-and low-pass fil-
ters on views of the original graph, and could be ineffective if the
views have mixed edges. In this work, we aim to design a princi-
pled homophilic/heterophilic view generation method guided by
counterfactual treatment, such that specialized filters can trained
to capture distinct patterns in each view.

3 PRELIMINARY
We first briefly introduce the background of graph neural networks
(GNNs), as well as graph contrastive learning (GCL). And then
we provide a preliminary analysis to demonstrate the necessity
of separating heterophilic and homophilic structure in GCL for
achieving high-quality node representations.

3.1 Background
3.1.1 Graph. Define a graph asG = (V, E), whereV = {𝑣1, . . . , 𝑣𝑛}
represents the node set and E ⊆ V×V represents the edge set. The
edge connecting node 𝑣𝑖 and 𝑣 𝑗 is denoted as 𝑒𝑖, 𝑗 . The numbers of
nodes and edges are denoted as |V| = 𝑛 and |E | =𝑚, respectively.
Let 𝑋 ∈ R𝑛×𝑑𝑓 denote the feature matrix, where the 𝑖-th row x𝑖
represents the 𝑑𝑓 -dimensional feature vector of node 𝑣𝑖 . We repre-
sent G’s adjacency matrix as 𝐴 ∈ R𝑛×𝑛 , where 𝐴𝑖 𝑗 = 1 if 𝑒𝑖, 𝑗 ∈ 𝐸
and 𝐴𝑖 𝑗 = 0 otherwise. Using the feature matrix and adjacency
matrix, the graph can also be written as G = (𝐴,𝑋 ). The symmet-
ric normalized adjacency matrix is denoted as 𝐴̃ = 𝐷−1/2𝐴𝐷−1/2,
where 𝐷 is the diagonal degree matrix such that 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 . The

Laplacian matrix of the graph is defined as 𝐿 = 𝐷 − 𝐴, and the
symmetric normalized Laplacian matrix is 𝐿̃ = 𝐼 − 𝐴̃ .
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Figure 1: Visualization of node representations obtained by GCL variants on Cornell: (a). GRACE; (b). HLCL; (c). 𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ ) ⊕
𝑓𝑙𝑜𝑤 (Gℎ𝑒𝑡𝑒𝑟 ∗ ); (d). 𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ ) ⊕ 𝑓ℎ𝑖𝑔ℎ (Gℎ𝑒𝑡𝑒𝑟 ∗ ). Their clustering performance is quantitatively evaluated in (e).

3.1.2 Graph Neural Network (GNN). Denote the neighbor set of
node 𝑣𝑖 as𝑁 (𝑖) = {𝑣 𝑗 | (𝑣𝑖 , 𝑣 𝑗 ) ∈ E}. GNNs are designed to generate
representations of each node by passing and aggregating its neigh-
boring nodes. Formally, for node 𝑣𝑖 , a general message-passing
scheme updates its representation as follows:

z(𝑘 )
𝑖

= UPDATE(z(𝑘−1)
𝑖

,AGGREGATE(z(𝑘−1)
𝑗

| 𝑗 ∈ 𝑁 (𝑖))), (1)

where AGGREGATE(·) and UPDATE(·) are trainable functions
used for neighbor aggregation and representation update. For in-
stance, SGC [32] designs a low-pass filter, which updates the repre-
sentations for all nodes by 𝑍 (𝑘 ) = 𝐴̃𝑍 (𝑘−1)𝑊 (𝑘−1) to encourage
neighbor smoothness. Correspondingly, the high-pass filter can be
formulated as 𝑍 (𝑘 ) = 𝐿̃𝑍 (𝑘−1)𝑊 (𝑘−1) to capture neighbor dissimi-
larity. And𝑊 (𝑘−1) is the model parameter for layer 𝑘 − 1.

3.1.3 GraphContrastive Learning (GCL). As a popular self-supervised
learning paradigm, GCL aims to pretrain a GNN encoders in ab-
sence of supervision. It realizes instance discrimination via the
InfoMax principle [9], which maximizes the mutual information
between positive samples. Positive samples are typically generated
by graph augmentation. Based on the assumption that augmen-
tation does not ruin data semantics, augmented views from the
same graph are considered as positive samples, while views from
different graphs are negative samples. A GNN model then encodes
views and is pretrained to minimize the commonly used InfoNCE
loss [18], defined on each node as follows:

LGCL (zG1
𝑖
, zG2
𝑖

) = − log
exp(sim(zG1

𝑖
, zG2
𝑖

)/𝜏)∑
𝑗≠𝑖 exp(sim(zG1

𝑖
, zG2

𝑗
)/𝜏)

, (2)

where zG1
𝑖

and zG2
𝑖

are embeddings of node 𝑣𝑖 in two augmented
views G1 and G2 respectively, sim(·, ·) is a similarity metric (i.e.,
cosine similarity), and 𝜏 denotes the temperature parameter. By
minimizing the contrastive loss, the embeddings of the same node in
different views are pushed close, while the embeddings of different
nodes will dispart, such that node discrimination is achieved.

3.1.4 Graph Heterophily. The degree of homophily in a graph
can be quantified by two metrics: node homophily [20] and edge
homophily [43]. Specifically, node homophily is defined as the
average proportion of neighbors belonging to the center node’s

class:

𝐻node =
1
|V|

∑︁
𝑣𝑖 ∈V

|{𝑣 𝑗 ∈ 𝑁 (𝑖) |𝑦𝑖 = 𝑦 𝑗 }|
|𝑁 (𝑖) | , (3)

where 𝑦𝑖 denotes the ground truth label of node 𝑣𝑖 . The other
measure, edge homophily, calculates the proportion of homophilic
edges (i.e., connecting nodes of the same class) in the whole graph:

𝐻edge =
|{(𝑣𝑖 , 𝑣 𝑗 ) ∈ E|𝑦𝑖 = 𝑦 𝑗 }|

|E | . (4)

The values of both 𝐻node and 𝐻edge are within the range of [0, 1].
Graphs exhibiting strong homophily tend to have higher values of
𝐻node and𝐻edge(i.e., close to 1), and graphs with strong heterophily
will have lower 𝐻node and 𝐻edge (i.e., close to 0).

3.2 GCL with Heterophily
We conduct a preliminary analysis on a heterophilic graph to show-
case how GCL can be tailored to adapt heterophily. In this analysis,
we considered four GCL variants:
• GRACE [44], which is a vanilla GCL method that generates ran-

dom augmented views and uses the same low-pass GCN encoder;
• HLCL [35], which generates random augmented views, but uses

a low-pass and a high-pass filter to encode two views separately;
• 𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ ) ⊕ 𝑓𝑙𝑜𝑤 (Gℎ𝑒𝑡𝑒𝑟 ∗ ), which first separate homophilic

view Gℎ𝑜𝑚𝑜∗ = {(𝑣𝑖 , 𝑣 𝑗 ) ∈ E|𝑦𝑖 = 𝑦 𝑗 }) and heterphilic view
Gℎ𝑒𝑡𝑒𝑟 ∗ = {(𝑣𝑖 , 𝑣 𝑗 ) ∈ E|𝑦𝑖 ≠ 𝑦 𝑗 } based on node label supervision.
Both views are encoded via a SGC [32] low-pass filter 𝑓𝑙𝑜𝑤 (·);

• 𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ ) ⊕ 𝑓ℎ𝑖𝑔ℎ (Gℎ𝑒𝑡𝑒𝑟 ∗ ), which separates views in a sim-
ilar way, but adopts different filters: a low-pass encoder for the
homophilic view and a high-pass one for the heterophilic view.

The rest GCL designs (e.g., contrastive loss) keep the same across
the variants. We run these GCL variants on the Cornell dataset with
strong heterophily, and analyze the resulting node representations.
Results Figure 1 measures the clustering quality of node repre-
sentations obtained by these variants. Intuitively in the 2D visu-
alization, 𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ ) ⊕ 𝑓𝑙𝑜𝑤 (Gℎ𝑒𝑡𝑒𝑟 ∗ ) allows nodes to cluster
better than GRACE and HLCL, and 𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ ) ⊕ 𝑓ℎ𝑖𝑔ℎ (Gℎ𝑒𝑡𝑒𝑟 ∗ )
achieves the best clustering effect. Meanwhile in Figure 1e, we quan-
titatively measure the clustering performance: a good clustering
result should have higher intra-cluster similarity and silhouette co-
efficient, with lower inter-cluster similarity. Therefore, the best clus-
tering should locate at the bottom right of Figure 1e with a darker

3
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Figure 2: Overview of GCL-IVG. View Generation Module aims to generate homophilic and heterophilic views by counterfactual
intervention. Dual Encoder Contrastive Learning Module applies low- and high-pass filters to encoder each view respectively.

color. We observe the ranking of clustering performance as follows:
𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ )⊕ 𝑓ℎ𝑖𝑔ℎ (Gℎ𝑒𝑡𝑒𝑟 ∗ ) > 𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ )⊕ 𝑓𝑙𝑜𝑤 (Gℎ𝑒𝑡𝑒𝑟 ∗ ) >
HLCL > GRACE.
Remarks Based on our observation in Figure 1, we identify two im-
portant designs in GCL that could lead to better node representation
learning with heterophily:

• Separation of homophilic and heterophilic edges: the methods
that separate these two types of edges achieve better clustering
performance. This suggests that in the design of GCL, we should
construct distinct views to separate homophilic and heterophilic
structure from the original graph. Note that label information
used here is just proof-of-concept. In practical GCL, this is a
more challenging task with the absence of supervision.

• Specialized low- and high-pass filter: we and prior works [16, 43]
confirm that low-pass filters encouraging similarity of neighbors
are useful for homophilic views, while high-pass filters imparting
neighbor distinctiveness better fit heterophilic networks. This
suggests that in GCL, specialized filters should be adopted to
encode homophilic/heterophilic views.

These two designs together play an integral role. Without view sep-
aration, only using different filters on randomly augmented views
(i.e., HLCL) can not bring obvious benefit. And using the same low-
pass filter on separated views (i.e., 𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ ) ⊕ 𝑓𝑙𝑜𝑤 (Gℎ𝑒𝑡𝑒𝑟 ∗ ))
cannot achieve the same level of performance as using different fil-
ters. Motivated by this analysis, we propose to realize and integrate
these two designs in GCL. Specifically, we target on designing a un-
supervised view generator to separate homophilic and heterophilic
structures, and then applying tailored filters for each view.

4 METHODOLOGY
Overview This section elaborates our proposed method, Graph
Contrastive Learning via Interventional View Generation (GCL-
IVG). Figure 2 illustrates the overview of GCL-IVG, which primarily
comprises two modules: the View Generation Module and the Dual
Encoding Contrastive Learning Module. In the View Generation
Module, we decouple heterophilic and homophilic patterns through
counterfactual methods. By controlling the treatment factor, inter-
ventional homophilic and heterophilic views can be generated from

Figure 3: In our causal model, given node context (𝑧𝑖 , 𝑧 𝑗 ) and
treatment 𝑇𝑖 𝑗 , we observe factual adjacency outcome 𝐴𝑖 𝑗 .

the original graph. In the Dual Encoding Contrastive Learning Mod-
ule, a low-pass and a high-pass filter are employed to encode the
homophilic and heterophilic view respectively. These two modules
are naturally integrated in GCL framework, and can be optimized
in an alternating manner. We now introduce each design in details.

4.1 Interventional View Generation
To successfully disentangle homophilic and heterophilic patterns
from the original graph, we propose an counterfactual intervention
method. By investigating the graph generative process, we aims to
estimate the effect of heterophily treatment on the edge probability
between two nodes, such that we can intervene the view generation
by manipulating the heterophily treatment.

4.1.1 Causal Model. We leverage counterfactual causal inference
to find out the causal relationship between treatment and out-
come by asking a counterfactual question: would the graph structure
change if the treatment was different? We assume the observed graph
structure is generated following the causal relationship [39], which
is depicted in Figure 3. Given the context, treatments and corre-
sponding outcomes, counterfactual inference methods target on
finding the effect of treatment on the outcome. Here, the informa-
tion on node 𝑣𝑖 and 𝑣 𝑗 is the context, denoted as (𝑧𝑖 , 𝑧 𝑗 ). We denote
by 𝐴 the observed adjacency matrix as the factual outcomes, and
denote by 𝐴𝐶𝐹 the unobserved matrix if the treatment is different
as the counterfactual outcomes. We represent the binary treatment
matrix as 𝑇 ∈ {0, 1}𝑛×𝑛 , where 𝑇𝑖 𝑗 implies the treatment to the
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node pair (𝑣𝑖 , 𝑣 𝑗 ). Correspondingly, the counterfactual treatment
matrix can be denoted as 𝑇𝐶𝐹 , where 𝑇𝐶𝐹

𝑖 𝑗
= 1 −𝑇𝑖 𝑗 .

4.1.2 Treatment Variable. We define the treatment 𝑇𝑖 𝑗 as the ho-
mophily property of node pair (𝑣𝑖 , 𝑣 𝑗 ), i.e., whether these two nodes
should present homophily. For 𝑇𝑖 𝑗 = 1, it suggests edge existence
between similar node pair (𝑣𝑖 , 𝑣 𝑗 ) and inexistence between dissim-
ilar (𝑣𝑖 , 𝑣 𝑗 ). Let 𝑐 : V → N denote a partition strategy based on
node context information. We understand homophily as two nodes
belonging to the same partition, i.e., 𝑇𝑖 𝑗 = 1 if 𝑐 (𝑣𝑖 ) = 𝑐 (𝑣 𝑗 ), and
𝑇𝑖 𝑗 = 0 otherwise. Empirically, we realize this partition oracle as a
condition on the node context, which judges whether the feature
similarity between node pair (𝑣𝑖 , 𝑣 𝑗 ) exceeds the average similarity
of all node pairs in the graph.

4.1.3 Counterfactual Outcome. We now introduce the generation
of counterfactual outcome. Since for each node pair, we can only
observe the factual treatment and corresponding outcomes, the
relationship between node pairs with an opposite treatment is
unknown. Therefore, we estimate the counterfactual outcome as
the outcome by the closest observed context1. In other words, given
a set of observed node pairs, we aim to find their nearest neighbors
with the opposite treatment, and regard them as counterfactual
node pairs. For each node pair (𝑣𝑖 , 𝑣 𝑗 ), we define its counterfactual
relationship as:

(𝑣𝑎, 𝑣𝑏 ) = argmax
𝑣𝑎,𝑣𝑏 ∈V

[
𝑠 ((𝑣𝑖 , 𝑣 𝑗 ), (𝑣𝑎, 𝑣𝑏 )) |𝑇𝑎𝑏 = 1 −𝑇𝑖 𝑗

]
, (5)

where 𝑠 (·, ·) is a similarity measurement between a pair of contexts.
Following [39], we conduct node-wise comparing to realize the
context comparison. Specifically, we estimate the counterfactual
outcome for for each node pair (𝑣𝑖 , 𝑣 𝑗 ) as:

(𝑣𝑎, 𝑣𝑏 ) = argmax
𝑣𝑎,𝑣𝑏 ∈V

[
𝑠 (x̃𝑖 , x̃𝑎) + 𝑠 (x̃𝑗 , x̃𝑏 ) | 𝑇𝑎𝑏 = 1 −𝑇𝑖 𝑗 ], (6)

where 𝑠 (·, ·) is implemented as the Euclidean similarity in the em-
bedding space of 𝑋̃ . Empirically, the embeddings 𝑋̃ are obtained
by concatenating nodes’ original feature and their structural en-
coding (via Node2Vec [7]), which is less influenced by homophily.
Enumerating over all O(𝑛2) node pairs to solve this combinatorial
optimization problem takes O(𝑛4) comparisons, which is extremely
infeasible in practice. Therefore, we apply a downsampling strategy
to sample a set of unconnected node pairs and combine with all
connected node pairs as the outcome set. Ultimately, we can obtain
the counterfactual outcome 𝐴𝐶𝐹 as follows:

𝐴𝐶𝐹𝑖 𝑗 =

{
𝐴𝑎𝑏 , if ∃(𝑣𝑎, 𝑣𝑏 ) ∈ V ×V satisfies Eq. (6);
𝐴𝑖 𝑗 , otherwise.

(7)

Note that the counterfactual outcome 𝐴𝐶𝐹 can be computed in the
pre-processing step, and will be fixed in the later stage.

4.1.4 Interventional View Generation. With the guidance from fac-
tual and counterfactual outcomes, we now can learn an interven-
tional view generator, which aims to generate augmented views
by controlling the treatment variable. Given the intermediate node
representations 𝑍 from our GCL encoder (detailed later) and the
treatment indication 𝑇 or 𝑇𝐶𝐹 , we can generate a homophilic view

1This substitute is widely used to estimate treatment effects from observational data

with adjacency matrix 𝐴 and a heterophilic view with adjacency
matrix 𝐴𝐶𝐹 as follows:

𝐴 = 𝑔𝜃 (𝑍,𝑇 ), 𝐴𝐶𝐹 = 𝑔𝜃 (𝑍,𝑇𝐶𝐹 ), (8)

where 𝑔𝜃 (·, ·) denotes the view generator, and we empirically adopt
a simple multi-layer perceptron:

𝐴𝑖 𝑗 = MLP𝜃 ( [z𝑖 ⊙ z𝑗 ,𝑇𝑖 𝑗 ]), 𝐴𝐶𝐹𝑖 𝑗 = MLP𝜃 ( [z𝑖 ⊙ z𝑗 ,𝑇𝐶𝐹𝑖 𝑗 ]) (9)

where ⊙ represents Hadamard product, and [·, ·] denotes the vector
concatenation. The value of each entry in 𝐴 and 𝐴𝐶𝐹 is in the
range of [0, 1]. Here is the physical meaning of these two views: the
homophilic structure 𝐴𝑖 𝑗 represents the probability of homophily
presented between node 𝑣𝑖 and 𝑣 𝑗 , and 𝐴𝑖 𝑗 → 1 suggests a strong
homophily presence; the heterophilic structure 𝐴𝐶𝐹

𝑖 𝑗
represents

the probability of heterophily, and 𝐴𝐶𝐹
𝑖 𝑗

→ 1 indicates a strong
heterophily presence between node 𝑣𝑖 and 𝑣 𝑗 .

4.2 Dual Graph Encoders
As discussed in Section 3.2, the generated homophilic and het-
erophilic views require tailored graph filters to capture their dis-
tinct patterns. Therefore, we apply a low-pass filter to encode the
homophilic view and a high-pass filter to capture heterophilic view.
Ultimately, we aim to simultaneously capture smoothly varying
information in the homophilic view and sharply changing informa-
tion in the heterophilic graph.

4.2.1 Low-Pass Encoder. For the homophilic view that connects
similar nodes, we normalize its adjacencymatrix 𝐴̃ = 𝐷−1/2𝐴𝐷−1/2,
and utilize low-pass graph filters in SGC [32] to smooth node rep-
resentations as follows:

𝑍ℎ𝑜𝑚𝑜
𝑙

= 𝐴̃ 𝑍ℎ𝑜𝑚𝑜
𝑙−1 𝑊 𝑙𝑜𝑤

𝑙−1 , and 𝑍ℎ𝑜𝑚𝑜
0 = 𝑋, (10)

where 𝑙 ∈ {1, . . . , 𝐿} denotes the layer index, and the final-layer rep-
resentation matrix for the homophilic view is 𝑍ℎ𝑜𝑚𝑜 = 𝑓 𝑙𝑜𝑤

𝜙
(𝑋,𝐴),

where 𝑓 𝑙𝑜𝑤
𝜙

(·, ·) is the high-pass encoder with parameters 𝜙 =

{𝑊𝑙 |𝑙 ∈ {0, . . . , 𝐿 − 1}}.

4.2.2 High-Pass Encoder. To better encode the heterophilic view
that connects dissimilar nodes, we employ high-pass filters to di-
versity node representations, which can be formulated as:

𝑍ℎ𝑒𝑡𝑒𝑟
𝑙

= (𝐼 − 𝛼𝐴̃𝐶𝐹 ) 𝑍ℎ𝑒𝑡𝑒𝑟
𝑙−1 𝑊

ℎ𝑖𝑔ℎ

𝑙−1 , and 𝑍ℎ𝑒𝑡𝑒𝑟0 = 𝑋, (11)

where 𝐴̃𝐶𝐹 is normalized 𝐴𝐶𝐹 , and 𝛼 as a hyperparameter con-
trols the filtering strength. The final heterophilic representations
obtained by the high-pass encoder is 𝑍ℎ𝑒𝑡𝑒𝑟 = 𝑓

ℎ𝑖𝑔ℎ

𝜓
(𝑋,𝐴𝐶𝐹 ).

4.3 Model Training
4.3.1 View Generator Optimization. We aim to optimize the view
generator via two objectives: (1) accurate node pair prediction
on observed outcomes and (2) accurate prediction on estimated
counterfactual outcomes, which can be defined as the following
cross-entropy loss:

L𝐹 = E𝑖, 𝑗∼V
[
𝐴𝑖 𝑗 · log𝐴𝑖 𝑗 + (1 −𝐴𝑖 𝑗 ) · log(1 −𝐴𝑖 𝑗 )

]
, (12)

L𝐶𝐹 = E𝑖, 𝑗∼V
[
𝐴𝐶𝐹𝑖 𝑗 · log𝐴𝐶𝐹𝑖 𝑗 + (1 −𝐴𝐶𝐹𝑖 𝑗 ) · log(1 −𝐴𝐶𝐹𝑖 𝑗 )

]
. (13)
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Algorithm 1 GCL-IVG
Input: adjacency matrix 𝐴, node feature 𝑋
1: # Gather outcome and counterfactual outcome
2: Pre-compute 𝑇 based on X, as presented in Section 4.1.2.
3: Pre-compute 𝑇𝐶𝐹 , 𝐴𝐶𝐹 by Eq. (6) and (7).
4: Initialize view generator 𝜃0, low- and high-pass encoder 𝜙0,𝜓0.
5: for 𝑡 = 0, . . . , 𝑁 do
6: Get node representation 𝑍ℎ𝑜𝑚𝑜

𝑡 , 𝑍ℎ𝑒𝑡𝑒𝑟𝑡 by Eq. (10), (11).
7: # Optimize view generator
8: Generate homo. and heter. view 𝐴𝑡 and 𝐴𝐶𝐹𝑡 by Eq. (8).
9: Update view generator 𝜃𝑡 by Eq. (15).
10: # Optimize dual encoders
11: Update encoders 𝜙𝑡 and𝜓𝑡 by Eq. (16).
12: end for
Output: Representations𝑍 = [𝑍ℎ𝑜𝑚𝑜

𝑁
, 𝑍ℎ𝑒𝑡𝑒𝑟

𝑁
], views𝐴𝑁 and𝐴𝐶𝐹

𝑁

In practice, we regularize the homophilic and heterophilic proba-
bilities by making their summation for each node pair to be one:

Lreg = E𝑖, 𝑗∼V | |1 −𝐴𝑖 𝑗 −𝐴𝐶𝐹𝑖 𝑗 | |. (14)

Therefore, the combination of𝐴 and𝐴𝐶𝐹 describe a mixing pattern
of homophily and heterophily inferred from the original graph. The
final objective for optimizing the view generator 𝑔𝜃 (·) is given by:

min
𝜃

L𝐹 + L𝐶𝐹 + Lreg . (15)

4.3.2 Dual Encoder Optimization. We follow a common practice
in GCL to employ a InfoNCE contrastive loss in Eq.2 for optimizing
the dual encoders 𝑓 𝑙𝑜𝑤

𝜙
(·, ·) and 𝑓 ℎ𝑖𝑔ℎ

𝜓
(·, ·):

min
𝜙,𝜓
E𝑖∼V, 𝑗∈𝑁 ′

𝑖

[
LGCL (zℎ𝑒𝑡𝑒𝑟𝑖 , zℎ𝑜𝑚𝑜

𝑗 ) + LGCL (zℎ𝑜𝑚𝑜
𝑖 , zℎ𝑒𝑡𝑒𝑟𝑗 )

]
,

(16)

where 𝑁 ′
𝑖
= TopK(𝑣𝑖 ) is a set of nodes whose representation is

similar to node 𝑣𝑖 . We use them as positive examples to mitigate the
negative impact of possible noisy edges in the generated views. The
node embeddings 𝑍 used for downstream tasks is a concatenation
from both branches, i.e., z𝑖 = [zℎ𝑜𝑚𝑜

𝑖
, zℎ𝑒𝑡𝑒𝑟

𝑖
].

4.3.3 Training Strategy. Training our model is essentially is a bi-
level optimization problem: the optimization of view generator re-
lies on the intermediate node representations given by the dual
encoders, i.e., Eq. (8) and Eq. (9); the optimization of dual encoders
is based on the generated views, i.e., Eq. (12) and Eq. (13). To solve
this bi-level optimization problem, we update the view generator
and dual encoders in an alternating manner, as Algorithm 1 shows.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. We evaluate GCL-IVG on nine node classification
benchmarks covering heterophilic and homophilic graphs. Tabel
1 summarizes the dataset statistics. Specifically, For graphs with
heterophily, we adopt one actor co-occurrence network: Actor [25],
three webpage datasets: Cornell, Texas, and Wisconsin [20], and
two Wikipedia networks: Chameleon and Squirrel[22]. For graphs

Table 1: Dataset
Dataset #Node #Edges #Features #Classes 𝐻edge 𝐻node

Heterophily

Texas 183 309 1703 5 0.061 0.097
Wisconsin 251 499 1703 5 0.170 0.150
Actor 7600 29926 931 5 0.216 0.221
Squirrel 5201 216933 2089 5 0.223 0.216

Chameleon 2277 36051 2325 5 0.234 0.247
Cornell 183 295 1703 5 0.298 0.386

Homophily
Citeseer 3327 9104 3703 7 0.736 0.717
Pubmed 19717 88648 500 3 0.802 0.792
Cora 2708 10556 1433 6 0.810 0.825

with homophily, we adopt three widely used citation networks:
Cora, Citeseer, and Pubmed [11].
5.1.2 Baselines. We conduct a comprehensive comparison of GCL-
IVG with two distinct groups of methods, namely semi-supervised
and unsupervised approaches.For conventional method without us-
ing graph structure, we adopt Logistic Regression (LR). For semi-
Supervised baselines without considering heterophily, we include:
GCN [11], GAT [29] and APPNP [6]. We also consider a set of
semi-Supervised baselines tailored for heterophily: GPR-GNN [5],
Mix-Hop [1] andH2GCN [43]. As a more close framework, vanilla
contrastive learning methods that implicitly works with homophily
are considered: MVGRL [8], GRACE [44] and BGRL [28]. Finally,
we include the most related contrastive learning frameworks with
heterophily: Selene [15],HGRL [3] andGREET [15]. This compre-
hensive comparison covers a wide spectrum of methods, allowing
us to thoroughly assess GCL-IVG’s performance against various
benchmarks for both homophilic and heterophilic graph structures.

5.1.3 Evaluation Protocol. In the context of unsupervised meth-
ods, we adopt the transductive setting outlined in [28]. This entails
pretraining node representations across the entire graph dataset
(without accessing labels), and using obtained representations as
features for the downstream node classification task, to evaluate the
quality of the acquired node representations. We split all datasets
following the public splits [11, 20, 36] and commonly used splits
[27, 45]. In unsupervised methods, we apply a logistic regression
classifier for the downstream task, thereby obtaining node clas-
sification results. Classification accuracy serves as our primary
evaluation metric. We conduct GCL-IVG and baseline methods us-
ing ten different random splits and report the average classification
accuracy and standard deviation for the test nodes.

5.1.4 Model Hyperparameters and Implementation Details. In our
experimental setup, all experiments were conducted using PyTorch
on an Nvidia 3090 GPU to keep the same computational environ-
ment. To ensure a fair comparison of overall performance, we fixed
the embedding dimension for the node classification task at 𝑑 = 512
for all methods. For baseline methods, we adopted the learning
rates reported in their corresponding papers. For our approach, we
set the learning rate for optimizing the view generator as 0.001
and the learning rate for optimizing duel encoders as 0.001. When
utilizing Node2Vec for counterfactual outcome estimation (i.e., Eq.
(6)), we set a fixed random walk length of 24 to acquire structural
embeddings. We keep all edges E and randomly sample 50|E | un-
connected node pairs as the observed outcome set to improve the
efficiency of calculating counterfactual outcomes.
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Table 2: Node classification accuracy (mean accuracy with standard deviation over different splits) comparison on datasets. 𝑋 ,
𝐴, 𝑌 denote node original features, adjacency matrix, and node labels, respectively. “*” indicates that results from the original
papers. The best and second best results for each dataset are highlighted in bold and underline. The symbol "OOM" denotes out
of memory.

Avaliable Data Method Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora
X,Y LR 58.36±5.37 55.87±7.97 35.11±0.77 27.62±1.03 32.99±1.14 56.87±6.01 56.75±0.86 76.80±0.89 54.65±2.04
X,A,Y GCN 58.44±4.21 51.79±6.03 28.17±0.44 39.50±1.54 54.65±2.17 54.76±2.78 70.19±1.08 85.24±0.14 82.26±1.20
X,A,Y GAT 56.74±3.06 51.00±4.34 26.85±0.84 41.01±0.91 55.18±1.95 54.83±3.08 70.62±0.82 84.71±0.34 82.82±0.97
X,A,Y APPNP 60.34±5.70 63.09±8.37 34.00±0.65 31.76±0.80 45.29±1.93 62.04±4.80 72.40±0.88 87.45±0.19 84.83±1.34
X,A,Y GPRGNN 60.07±5.22 57.91±8.37 33.29±0.66 35.74±2.35 51.93±1.57 59.86±6.25 72.70±0.77 87.62±0.30 85.24±1.14
X,A,Y MixHop 55.51±3.27 51.49±5.39 29.04±0.97 39.36±1.60 53.79±1.19 52.79±6.25 66.40±1.75 84.92±0.460 81.01±1.55
X,A,Y H2GCN* 84.86±6.77 86.67±4.69 35.86±1.03 37.90±2.02 54.02±1.56 82.16±4.80 77.07±1.64 89.59±0.33 87.81±1.35
X,A MVGRL 61.70±3.94 50.64±5.89 31.37±0.83 33.49±0.84 42.34±2.11 56.19±2.42 71.88±0.71 OOM 84.53±1.05
X,A GRACE 63.54±2.57 53.83±3.56 28.14±0.81 34.47±1.11 45.89±3.10 56.39±2.11 71.37±0.96 77.55±1.01 83.69±0.73
X,A BGRL 65.78±2.66 59.80±4.08 29.80±0.31 31.50±0.57 45.54±1.94 56.67±2.13 69.81±0.56 84.65±0.4 83.01±0.710
X,A Selene 63.95±1.73 55.47±4.79 33.15±0.39 OOM 38.93±1.44 56.05±2.50 54.08±1.08 81.67±0.25 56.19±1.52
X,A HGRL 77.69±2.42 77.51±4.03 36.66±0.35 35.42±0.91 45.041±1.91 77.62±3.25 70.89±0.75 84.18±0.22 82.08±0.84
X,A GREET* 87.03±2.36 84.90±4.48 36.55±1.01 42.29±1.43 63.64±1.26 85.14±4.87 73.08±0.84 80.29±1.00 83.81±0.87
X,A GCL-IVG 90.09±4.19 87.06±2.54 38.67±0.39 42.36±0.79 67.76±1.9 82.70±3.86 72.13±0.56 86.64±0.26 84.81±0.48

Table 3: The edge homophily score of generated views.
Cora Citeseer Texas Wisconsin Cornell Chameleon squirrel

G 0.810 0.736 0.061 0.170 0.298 0.234 0.223
𝐴 0.849 0.830 0.587 0.522 0.560 0.629 0.367
𝐴𝐶𝐹 0.735 0.709 0.061 0.179 0.131 0.210 0.188

5.2 Experimental Results
5.2.1 Node classification performance. As shown in Table 2, we
evaluated the effectiveness of our proposed method on node clas-
sification tasks, compared to various baselines. We can draw the
following conclusions:

• logistic regression (LR) using only node raw features showed
competitive performance on most heterogeneous graphs, high-
lighting the importance of node raw features;

• Supervisedmethods performed similarly across all datasets, which
could be attributed to the presence of partially unlabeled training
samples (i.e., 10 % of nodes), underscoring the significance of
labels for supervised methods;

• Unsupervised methods with homophily assumption exhibited de-
graded performance on heterophilic graphs, indicating the neces-
sity for specialized design to accommodate graph heterophily;

• Unsupervised methods tailored for homophily in general present
appealing performance on both homophilic and heterophilic
graphs. However, Selene, performed worse, suggesting weaker
generalization of learned representations. HGRL emphasizes
the proximity of learned representations to the original node
features; therefore, its performance does not show advantages
on datasets where node raw features perform moderately.

• GDM’s performance on heterophilic graphs significantly outper-
forms the baseline, while it remains competitive on homophilic
graphs. The primary reason for this lies in the fact that traditional
contrastive methods continuously smooth the representations
along heterophilic edges, rendering the representations indis-
tinguishable. In contrast, our approach can disentangle the ho-
mophilic and heterophilic information in the graph, and sharpen

(a) HGRL (b) GCL-IVG

Figure 4: Visualization of node representations obtained by
HGRL and our GCL-IVG on Cornell.

the representation of heterophilic edges through high-pass graph
filtering. Consequently, the performance on heterophilic graphs
even surpasses that of semi-supervised GNNs. Moreover, due to
our counterfactual design, which doesn’t simply rely on edge
similarity like GREET but instead follows principled guidelines
by treatment, we observe that our model learns features with
excellent generalization capabilities and higher performance.

5.2.2 View Generator Performance. To validate the effectiveness
of our view generator, we now analyze the property of generated
homophilic views (i.e.,𝐴) and heterophilic views (i.e.,𝐴𝐶𝐹 ). In Table
3, we showcase the graph edge homogeneity scores (i.e., Eq. (4)).
Notably, the homophilic scores of the generated homophilic views
show sigfinicantly larger homophily score across all datasets. This
effect is especially pronounced on heterophilic graphs. Meanwhile,
the homophilic scores of the generated heterophilic views are, for
the most part, lower than those of the original graphs. This verifies
that the view generator indeed serves its role to separate homophilic
and heterophilic patterns from the original graph.

It is important to highlight that in the case of the Texas and Wis-
consin datasets, the homophilic scores of the generated heterophilic
views have actually increased slightly, compared with the original
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graph. This anomaly can be attributed to the inherent strength of
heterophily within these datasets, which leaves a small room to
make it more heterophilic.

5.2.3 Node Representation Visualization. Figure 1(a)(b) and 4 vi-
sualize the node representations learned by GRACE, HLCL, HGRL
and GCL-IVG on the Cornell dataset respectively. Nodes of the
same color indicate the same class label. The results indicate that
our GCL-IVG is capable of generating discriminative representa-
tions where nodes of the same class are cohesively grouped in the
same cluster. These findings align with the superior node classifica-
tion performance of GCL-IVG, demonstrating its effectiveness on
heterophilic graphs.

5.3 Ablation Study
In this section, we conduct an ablation study to study the gain
brought by each design. We consider the following variants:
• w/o 𝜃 Update: the view generator fix its initial random parame-

ters to produce homophilic and heterophilic views. The gradient
backpropagation on 𝜃 is block in the training of GCL-IVG.

• w/o 𝜙,𝜓 Update: the dual encoders fix its initial parameters, and
the backpropagation on 𝜙,𝜓 is blocked.

• GRACE: no view generator and dual encoders employed.
• HLCL: only dual encoders are used.
• Homo. Only: only keep the homophilic view and apply both

high-pass and low-pass filters for contrastive learning.
• Heter. Only: only keep heterophilic view and apply both high-

pass and low-pass filters for contrastive learning.
Results are shown in Table 4, and we have the following observa-
tions:
• It is conspicuously evident that segregating homophilic and het-

erophilic information from the original graph results in a substan-
tial performance enhancement. This task goes beyond the scope
of conventional unsupervised contrastive methods like HLCL,
which rely solely on high-pass and low-pass filter graph encoders.
The synergistic use of high and low-pass filters demonstrates
superior efficacy in learning from heterophilic graphs, while the
opposite holds true for homophilic graphs. This underscores
the pivotal significance and effectiveness of disentangling ho-
mophilic and heterophilic information within the original graph.

• The contrastive learning module loss L𝑐 has a more pronounced
impact on the overall loss.When we individually suspend training
for the view generator module and the contrastive learning mod-
ule, it becomes evident that the loss designs for both modules
exert critical influence over the model.

• An amalgamation of both perspectives in representation emerges
as the most auspicious approach, as they encapsulate essential
and distinctive insights from varying vantage points. We shift our
focus to assess the contributions of generating two views for each
module. Homophilic views are highly effective for homophilic
graphs like Cora and CiteSeer, while heterophilic views work
better for heterophilic graphs like Texas, Cornell, and Wisconsin.

5.4 Parameter Analysis
High-Pass Filtering Strength 𝛼 Sensitivity In this experiment,
we vary 𝛼 from 0.1 to 1 to examine its impact on the model. We

Table 4: Node Classification Ablation Study Results
Ablation Cora Citeseer Texas Wisconsin Cornell Chameleon
GCL-IVG 84.81 72.13 90.09 87.06 82.70 66.76

w/o 𝜃 update 81.51 69.11 87.01 85.86 77.11 57.45
w/o 𝜙,𝜓 update 63.78 52.74 80.81 76.28 69.46 54.38

GRACE 83.90 70.91 65.45 58.82 56.76 48.22
HLCL 79.01 67.20 69.45 67.64 64.86 59.64

Homo. Only 83.89 71.77 68.65 65.29 62.97 67.07
Heter. Only 72.81 68.91 88.11 86.24 82.70 54.16

(a) High-Pass Filtering Strength 𝛼 (b) The number of Top-k

Figure 5: Parameter sensitivity of 𝛼 and 𝑘 .

present the classification accuracy under different 𝛼 choices in
Figure 5(a). From the figures, it can be observed that the best results
across these four datasets often occur when 𝛼 is around 0.5. A
common phenomenon is that when 𝛼 = 0, the high-pass filter can
be viewed as an MLP, where the central node’s neighboring nodes
do not participate in message aggregation. Conversely, when 𝛼 = 1,
the central node itself does not partake in message aggregation,
leading to a decrease in performance.
The number of TopK Sensitivity Recall that we retrieve the top
𝐾 similar nodes as positive examples in contrastive loss. We now
investigate the sensitivity of the model to the number of 𝐾 , which
ranges from 0 to 30 with a 5-unit interval. Experimental results
are shown in Figure 5 (b). It is evident that the optimal choice of
𝑘 varies for different datasets when 𝑘 is either too large or too
small. We hypothesize that an excessively large 𝑘 may introduce
irrelevant context nodes, thereby increasing misguidance, while an
excessively small 𝑘 may result in insufficient supervisory signals.

6 CONCLUSION
In this paper, our primary focus lies in the design of a graph con-
trastive learning framework, denoted as GCL-IVG. This framework
exhibits the capability to accommodate varying degrees of ho-
mophily and heterophily within the network structure. To address
this challenge, we introduce a counterfactual approach aimed at
disentangling heterophilic patterns from homophilic ones. By ma-
nipulating the treatment factor, we are able to generate what we
term interventional homophilic and heterophilic views from the
original graph. These two perspectives are then channeled into
separate graph filters. We seamlessly integrate the process of in-
terventional view generation with distinct view filters within a
conventional contrastive learning pipeline. An extensive array of
experiments has been conducted to showcase the outstanding ef-
fectiveness and adaptability of our methodology.
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A APPENDIX
In this appendix, we present a more in-depth motivational analysis
of our method, GCL-IVG. Specifically, we begin by emphasizing
the significance of separating the learning of heterogeneous and
homogeneous information from the original graph.

A.1 Performance Variation of GCL Variants on
More Datasets

We present the visualization of node representations obtained by a
GCL variant in multiple datasets in Section. We demonstrate the
widespread effectiveness of separating homophilic and heterophilic
information from the original graph. The method of separating
these two types of edges leads to improved clustering and node
classification performance.

(a) (b)

(c) (d)

Figure 6: Visualization of node representations obtained
by GCL variants on Texas: (a). GRACE; (b). HLCL; (c).
𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ )⊕ 𝑓𝑙𝑜𝑤 (Gℎ𝑒𝑡𝑒𝑟 ∗ ); (d). 𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ )⊕ 𝑓ℎ𝑖𝑔ℎ (Gℎ𝑒𝑡𝑒𝑟 ∗ ).

(a) (b)

(c) (d)

Figure 7: Visualization of node representations obtained
by GCL variants on Wisconsin: (a). GRACE; (b). HLCL; (c).
𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ )⊕ 𝑓𝑙𝑜𝑤 (Gℎ𝑒𝑡𝑒𝑟 ∗ ); (d). 𝑓𝑙𝑜𝑤 (Gℎ𝑜𝑚𝑜∗ )⊕ 𝑓ℎ𝑖𝑔ℎ (Gℎ𝑒𝑡𝑒𝑟 ∗ ).

Figure 8: The node classification by different GCL variants
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