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Abstract
Attribution methods shed light on the explain-
ability of data-driven approaches such as deep
learning models by uncovering the most influen-
tial features in a to-be-explained decision. While
determining feature attributions via gradients de-
livers promising results, the internal access re-
quired for acquiring gradients can be impractical
under safety concerns, thus limiting the applica-
bility of gradient-based approaches. In response
to such limited flexibility, this paper presents
GEEX (gradient-estimation-based explanation), a
method that produces gradient-like explanations
through only query-level access. The proposed
approach holds a set of fundamental properties
for attribution methods, which are mathematically
rigorously proved, ensuring the quality of its ex-
planations. In addition to the theoretical analysis,
with a focus on image data, the experimental re-
sults empirically demonstrate the superiority of
the proposed method over state-of-the-art black-
box methods and its competitive performance
compared to methods with full access.

1. Introduction
Explainability is an increasingly important research topic
due to the breakthroughs led by rapidly developing deep
learning. Owing to the growth of hardware computational
powers, deep learning models with growing capacities are
able to handle tasks in real-world scenarios, which even
outperform human experts in certain domains. As data-
driven models, deep learning solutions at the current stage
are distinguished from traditional approaches based on ex-
pert systems (Russell, 2010). Data-driven approaches learn
their decision rules implicitly from some given data distribu-
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tion, which conceals decision reasoning from humans. The
shortage of knowledge about the decision-making process
puts the deployment of AI models at risk. A typical ex-
ample of machine failures is the Clever-Hans-Effect (John-
son, 1911) exposed by previous research (Lapuschkin et al.,
2019; Geirhos et al., 2020). In the context of machine learn-
ing, the effect refers to the case that data-driven models
learn to use irrelevant features as shortcuts for classification
due to an imbalanced data distribution (e.g., watermarks
only contained in certain classes of instances because of
different data sources). Models suffering from the Clever-
Hans-Effect may perform well in laboratories, but their
outcomes can be misleading and totally unreliable in prac-
tice. Apart from the unintentional failure, it has been shown
that data-driven models are fragile under adversarial attacks.
These attacks can steer model outcomes by adding artifacts
not recognizable by bare human eyes to the targeted input,
which makes counteracting adversaries a challenging task.
Given the potential risks, employing these black boxes in
crucial application scenarios, such as medical image classi-
fication and autonomous driving, can cause unpredictable
consequences as they may fail accidentally or intentionally.
Explainability, a key to the mysterious box of AI and a po-
tential shield against adversarial attacks (Fidel et al., 2020;
Watson & Al Moubayed, 2021), is particularly interested in
how models make up their minds.

One way of delivering explanatory information is the feature
attribution method, which is the focus of this paper. The
goal of such attribution methods is to determine the con-
tributions of input features to an inquired model outcome,
and thus uncover the observations that support its decision.
Existing attribution methods can be categorized as either
white-box or black-box approaches depending on their as-
sumption about model accessibility. As the name implies,
white-box explanation methods assume full access to the
target model. Given more details about the inference pro-
cedure, they produce precise explanations by investigating
the gradient/information flow throughout the target model.
In practice, however, there is no guarantee of detailed in-
ternal access to models due to safety and security concerns,
which limits the applicability of white-box approaches in
real-world scenarios. Flexibility is another concern. Modi-
fications are needed when a white-box approach is applied

1



On Gradient-like Explanation under a Black-box Setting

to explain other models that its original design does not
consider. One should not expect a gradient-based approach
examining neural networks with backward propagation to
uncover the inference process of a tree-based model with-
out adjustments. Contrary to the full access assumption,
black-box explainers require only query-level access, mean-
ing that a to-be-explained model can only be accessed via
its input and output interfaces. As direct investigation into
inference procedures becomes unfeasible under a black-box
setting, methods of this kind raise queries and explain model
decisions indirectly by analyzing the correlation between
input features and model outputs. The loosened accessibil-
ity assumption, coupled with the less specific explanation
procedure (no prior knowledge about model structure con-
sidered), improves the applicability of black-box explainers.
On the other hand, the restricted access poses a challenge in
deriving precise explanations, especially when dealing with
models handling high-dimensional inputs, such as images.

Aiming at combining the strengths of both categories,
this paper presents Gradient-Estimation-based EXplanation
(GEEX)1, an explanation method producing gradient-like
explanations under a black-box setting. By employing gra-
dient estimation, GEEX circumvents the necessity for the
full access assumption and, in principle, is applicable to
arbitrary models. This positions GEEX as an alternative for
explainability under circumstances where internal details
about the target are inaccessible. In comparison to other
black-box explainers, the proposed method produces fine-
grained and precise feature attributions rather than fuzzy hot
regions. The qualitative analysis in the experiment demon-
strates that the resulting explanations capture homologous
structures when compared to explanations derived from ac-
tual gradients. Most importantly, we theoretically show that
GEEX fulfills a set of fundamental properties of attribution
methods, ensuring the usefulness and meaningfulness of the
resultant explanations.

2. Related Work
Black-box explanation methods are widely adopted in prac-
tice due to their flexibility and applicability. They treat the
to-be-explained model as a black box with its internal func-
tions left out. The general ideas behind methods of this
kind are similar: creating a set of queries by altering the
feature values of x, then deriving the explanation for the
decision f(x) through analysis of the correlation between
changes in the inputs and outputs. LIME (Ribeiro et al.,
2016) is one of the most representative methods from this
category. It generates the queries by randomly switching
on and off features in the original input and observes the
corresponding predictions from the target model. Based on

1Full code for reproducibility can be found at: https://
github.com/caiy0220/GEEX

the observations, LIME then fits a self-explainable surrogate
model (typically in the form of linear regression), a proxy
for extracting explanatory information. For image data, an
additional step conducted by LIME is clustering pixels as
superpixels according to the similarity of pixel values and
their spatial distances (Vedaldi & Soatto, 2008), which re-
duces the search space to a user-defined size. Simplifying
the search space enables LIME to highlight broader regions
containing evidential features.

Apparently, grouping pixels can negatively affect explana-
tion quality. For example, low-level features such as edges
and contours are informative to deep learning models when
solving classification tasks (Zeiler & Fergus, 2014). Super-
pixel techniques that segment pixels along edges inevitably
fragment these low-level features into diverse components.
Consequently, the explainer may overlook (parts of) the
divided features or include irrelevant pixels. RISE (Petsiuk
et al., 2018) overcomes the issue with mask resizing, which
generates smaller initial masks and upsamples them to the
target size through bilinear interpolation. This approach
empowers RISE to handle low-level features of any shape
without significantly expanding the search space. With the
enhanced quality of derived explanations, mask resizing
also extends the applicability of RISE to more complicated
scenarios, such as explaining object detectors (Petsiuk et al.,
2021) and image generators (Park et al., 2024).

Compared to black-box methods, more efforts have been
invested in white-box approaches for explaining image clas-
sifiers, as they sharpen resultant attribution maps owing to
the detailed access to the target model. The most straight-
forward white-box approach interprets vanilla gradients di-
rectly as explanations, tracing the decision function’s par-
tial derivatives with respect to the input backward through
the model (Simonyan et al., 2014). However, subsequent
research shows that vanilla gradients can be excessively
noisy (Smilkov et al., 2017). With rapid gradient fluctua-
tions (Balduzzi et al., 2017) identified as a possible cause,
SMOOTHGRAD (Smilkov et al., 2017) smooths explanations
by applying Gaussian noises to the input and averaging the
resulting gradients. Gradient averaging yields more robust
outcomes, with the denoising effect positively correlating
to the number of Gaussian-noised samples. On the other
hand, IG (integrated gradients) (Sundararajan et al., 2017)
promotes the quality of gradient-based explanations with an
incorporated baseline, which models feature absence. By
integrating the gradients over a straightline path from the
target instance to the pre-defined baseline, IG fulfills a set
of fundamental properties that ensure explanation quality.

Alternative to gradient-based solutions, propagation-based
methods (Montavon et al., 2017; Selvaraju et al., 2020;
Achtibat et al., 2023) determine attributions by redistributing
prediction scores back to input features by means of propaga-
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tion rules. These approaches explicitly leverage model struc-
tures and complete the explanation process with one round-
trip throughout the model. While being a non-negligible
group of explainers, we selectively exclude propagation-
based approaches from the discussion to focus on reproduc-
ing gradient-based explanations under a black-box setting.

3. Gradient Estimation for Explanation
Denoting a model function as f(·) and a target input (the
explicand) as x = (x1, x2, ..., xp), the goal of attribu-
tion methods is to determine a vector ξ ∈ Rp that de-
composes the total contribution f(x) into feature attribu-
tions, so that the attribution scores satisfy Completeness,
i.e. b+

∑
k ξk = f(x). The bias b is a scalar representing

model activation status given the full absence of input fea-
tures. Ideally, the bias will have a zero value for properly
defined feature absence. Here, as in the rest of the paper,
bold symbols denote vectors, while plain variables signify
scalars. The target function f(·) produces a scalar indicating
the model’s confidence in its decision-making process. In
the context of a multi-class setting, the scalar value can be
interpreted as the confidence in determining one class, and
the resulting explanation reveals the reasoning of the model
in deciding whether an explicand belongs to the specific
class. If the internal access of the model is available, the
gradient of f(·) with respect to the input features can be
readily acquired, facilitating subsequent processing for the
derivation of explanations. Although such a convenience is
unfeasible under a black-box setting, luckily, it is still possi-
ble to estimate gradients through queries and observations.

3.1. Gradient Estimation

Gradient estimation is a group of algorithms designed to
approximate the gradient of a function (Mohamed et al.,
2020), which is widely utilized in black-box optimization
problems (Wierstra et al., 2014). It offers an alternative in
situations where the acquisition of exact gradients is im-
practical or computationally expensive. Different from the
attempt to compute gradients through backward propaga-
tion of losses, gradient estimation approximates gradients
with a search distribution determined by some parameters
of interest. More specifically, it defines gradients as the
direction towards lower expected loss with respect to the
analyzing target, which is the input features x in the context
of explainability. Denoting the loss function by L(·) and
the set of parameters by x, the expected loss over the search
distribution is defined as:

J(x) := Eπ(z|x)[L(z)] =
∫

L(z)π(z|x) dz

where π(·|x) indicates the probability density function of
the search distribution parameterized by x and z denotes
samples drawn from the distribution. Here, the parameter

set is denoted as x to emphasize that the analysis target is
input features rather than model parameters considered in
common settings, which are not available in this case. The
search gradient can be written as follows through simplifica-
tion using the log-likelihood trick under the assumption that
both the loss and the search distribution are continuously
differentiable (Mohamed et al., 2020):

∇xJ(x) = ∇x

∫
L(z)π(z|x) dz

=

∫
[L(z)∇x log π(z|x)]π(z|x) dz

= Eπ(z|x)[L(z)∇x log π(z|x)]
The value of the integral above can be empirically ap-
proximated with a Monte Carlo estimator given n samples
{z(1), z(2), ...,z(n)} ∼ π(·|x):

η(x) := ∇xJ(x) ≈
1

n

n∑
i=1

L(z(i))∇x log π(z(i)|x) (1)

Once substituting the loss in Equation 1 with the target
function, η produces the estimated gradient for f(·). The es-
timation demonstrates model sensitivities to input features,
which, to a certain extent, uncovers the reasoning behind
the target decision. However, the direct usage of gradient
estimation is unsatisfactory as it shares several shortcom-
ings with the actual gradient (Sundararajan et al., 2017).
Using estimated gradients as explanations violates Sensitiv-
ity, a fundamental axiom of attribution methods stating that
a feature should receive a non-zero attribution if modify-
ing its value induces a change in the model outcome. The
counterexample in Fig. 1 shows that estimated gradients
can be trapped by a locally flattened segment of a func-
tion, resulting in an underestimation of feature contribution.
Underrating or even overlooking relevant features causes
the violation of Sensitivity. Furthermore, along the x-axis
of the example, the attribution barely aligns with the to-
tal feature contribution represented by f(x). The fact that
local sensitivities, as indicated by gradients, do not neces-
sarily correlate to actual feature contributions undermines
the interpretability of these values in their raw form.

3.2. Gradient-estimation-based Explanation

The failure when employing raw gradient estimation stems
from the lack of a reference point that models the absence
of features, to which the impact of feature presence can be
compared. To overcome the aforementioned limitations, we
present GEEX (gradient-estimation-based explanation), an
attribution method that introduces a baseline and integrates
estimations over a straightline path from the baseline to the
explicand. Denoting a baseline point as x̊, the straightline
path can be written as an interpolation:

x(α) = x̊− α(x− x̊)
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Figure 1. A simple case shows that considering the estimated gra-
dient as an explanation can lead to misleading results. Suffering
from gradient saturation, the attribution of x converges to 0 as
its value increases, conflicting with the truth that the value of the
sigmoid function f(·) relies solely on x.

An intuitive implementation of GEEX can be achieved by re-
placing the actual gradient in IG (Sundararajan et al., 2017)
with the estimation kernel:

ξ :=
(x− x̊)

s
◦

s∑
j=1

η(x(
j

s
))

Replacing the loss with f(·) and expanding η yield:

ξ =
(x− x̊)

n · s ◦
s∑

j=1

n∑
i=1

f(z(i))∇x log π(z(i)|x(j
s
)) (2)

where s denotes the number of interpolation steps for inte-
gral approximation. Although the search distribution π(·|x)
is left unspecified here, we restrict x to be the location pa-
rameter, and π(·|x) is required to have a mean at its location
parameter, which is a necessity for unbiased estimation (see
Appendix A for theoretical details). A surprising fact is
that GEEX inhabits more or less all of the properties of IG.
In fact, the resultant method complies with a set of four
fundamental axioms as stated in Theorem 3.1 (see the proof
and further details in Appendix B). Please note that the ful-
fillment of the axioms comes true when enough samples
have been drawn, so the statement should be interpreted in
a probability sense.

Theorem 3.1. GEEX, a path method built upon estimated
gradients, satisfies Sensitivity, Insensitivity, Implementation
Invariance, and Linearity.

As the significance of Sensitivity has been shown before, the
three remaining axioms also hold practical meanings for the
proposed method. Insensitivity (called Dummy in (Friedman,
2004)) is a property that measures attributions to features
having no impact. Opposite to Sensitivity, a violation of
Insensitivity results in an overestimation of feature impor-
tance; failure to fulfill either of the two results in misleading
explanation outcomes. Meanwhile, Implementation Invari-
ance, a key concept especially for black-box explainers,
ensures the applicability of GEEX. Linearity appears triv-
ial among the four axioms as it does not directly relate

to explanation quality. However, Linearity enables the de-
composition of non-interacting features (features having no
interaction with each other in the target function). Such
a decomposition divides a high-dimensional feature space
into subspaces with lower dimensionalities. For a function
consisting of m terms, the variance of the gradient estima-
tor deployed by GEEX is of the order O(m2) (Mohamed
et al., 2020). Feature space decomposition that linearly re-
duces the number of terms results in a quadratic reduction
of estimation variance. Although developing a detailed de-
composition strategy exceeds the scope of this paper, we
argue that the fulfillment of Linearity holds the potential to
enhance estimation precision and computational efficiency,
which indirectly contribute to explanation quality.

Having covered various axioms, of particular note is the
Completeness of GEEX stated in Theorem 3.2. Being an
approximation of the path integral, the sum of feature at-
tributions determined by GEEX converges in probability
to the prediction difference between the baseline and the
explicand, i.e. f(x)− f (̊x). Viewing the prediction at x̊ as
the bias b, the Completeness will become evident with suffi-
cient observations (for the detailed proof, see Appendix A).
Satisfying Completeness is fundamental, although many
do not, for attribution methods. This property upholds the
practical meaning of attribution score – a value indicating
the proportion of feature contribution to model outcome.

Theorem 3.2. (Completeness) The explanation derived by
GEEX is complete regarding the model outcome f(x).

Again, given the explanation by GEEX as an empirical
approximation, the statement should be interpreted with a
probability perspective. It is noteworthy that the approxi-
mation error has two sources: the error associated with the
line integral approximation and the error of the gradient
estimator. Although Completeness is desired, the iterative
estimation process poses a challenge in deploying GEEX,
as both sources contribute to the overall error of the ex-
plainer. Under limited computational resources, managing
the allocation of efforts between the two estimators – the in-
terpolation steps s and the sample set size n – for optimizing
the ultimate precision of the explainer can be demanding.
Moreover, even with the puzzle of hyperparameter selec-
tion solved, the performance of the proposed approach is
bounded by IG from above. To address the challenges, the
next section introduces the way of improving the practical
usefulness of GEEX, enabling it to go beyond IG.

3.3. Noise Sampling and Computational Efficiency

First, we clarify the role of x in the search distribution. In
principle, x can represent any parameter of any distribution,
on condition that π(·|x) is continuously differentiable in
x. However, in addition to ensuring unbiased estimation
as stated in the last section, considering x as the location
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parameter of the search distribution brings practical con-
venience to the explanation process. This is particularly
advantageous when handling different explicands, as it al-
lows the usage of an identical pre-generated mask set during
the explanation procedure.

For a standard distribution πθ(z|0), the search distribution
for a concrete explicand x from the location family holds
πθ(z|x) = πθ(z − x|0). Here, θ represents the remaining
parameters, distinct from x, that describe the distribution.
The parameter set θ can be a hyperparameter of the ex-
plainer, but we omit it for simplicity as it is irrelevant to
the following discussion. Designating x as the location
parameter allows a pre-construction of the sample set and
pre-computation of the log derivative with the standard dis-
tribution according to the revision of Equation 2:

ξ =
(x− x̊)

n · s ◦
s∑

j=1

n∑
i=1

f(z(i))∇x log π(z(i) − x(
j

s
)|0)

=
(x− x̊)

n · s ◦
s∑

j=1

n∑
i=1

f(x(
j

s
) + ϵ(i))∇x log π(ϵ(i)|0)

where ϵ = z − x denotes the pre-generated mask. The
construction of the mask set {ϵ(i)} is a one-time effort, and
it can be applied to arbitrary explicand-baseline pairs. This
is possible because sampling for gradient estimation is de-
coupled from the concrete value of x. This convenience
facilitates the application of more complicated sampling
strategies aiming at variance reduction, such as mirror sam-
pling (Brockhoff et al., 2010) considered in this work, or
potentially other computationally more expensive ones like
orthogonal coupling (Choromanski et al., 2019).

Moreover, recognizing the decoupling of sampling from
the location parameter, the sums from the two levels of
approximation can be merged:

ξ =
(x− x̊)

n∗ ◦
∑

ϵ∼π(·|0)
α∼U[0,1]

f(x(α) + ϵ)∇x log π(ϵ|0) (3)

where n∗ denotes the number of queries generated by (ϵ, α)
pairs. Although the straightforward rewriting does not alter
any underlying concepts, it streamlines hyperparameter se-
lection. The form can be interpreted as the cumulative sum
of dense one-sample gradient estimators along the integral
path. More importantly, merging the terms for integral ap-
proximation and gradient estimation improves explanation
quality by providing a “smoother” approximation of the path
integral without compromising the precision of gradient es-
timations. Fig. 2 provides an illustrative example of the
smoothed approximation. The key factor, allowing the im-
provement, is that observations from estimators η(x(α)) for
neighboring instances on the path share information, which
positively contributes to the estimation precision of each
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ξraw
ξsmooth
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|∆smooth|

Figure 2. Given a baseline f(−3) ≈ 0, the smoothed version of
GEEX better approximates the actual contribution of the input fea-
ture with the same amount of observations. While the red solid line
corresponds to explanations from the interpolation-based GEEX,
the green line represents the results from the ”smoothed” version,
almost overlapping the actual contribution depicted by the blue
line. The dashed line indicates the error of the derived explanation
compared to the ground truth given by the total contribution f(x).

other. The proof of the claim is given in Appendix C. The na-
ture that GEEX can smoothly approximate the path integral
allows it to even surpass white-box explainers under cer-
tain circumstances (see further discussions in Section 4.3).
Figure 3 gives an overview of the explanation procedure.

Though the construction of a mask set {ϵ(i)} is straight-
forward in most cases, we suggest mask smoothing for the
sampling when dealing with high-dimensional inputs, par-
ticularly referring to high-resolution images. Denoting the
initial masks as ϵ̂ and a blurring kernel as w, the post-
processing that finalizes the masks can be described as
ϵ = w

||w||F ∗ ϵ̂, where ||w||F is the Frobenius norm of
the filter that normalizes the amplitude of perturbation, en-
suring it is invariant to the convolution operator. In addition
to the denoising effect by mitigating artifacts in adjacent
pixels of masks, the filter softly groups spatially close pix-
els following the prior knowledge that adjacent pixels form
low-level features. By applying similar changes to adjacent
pixels simultaneously, soft grouping increases the possi-
bility of removing a local pattern compared to conducting
pixel-wise perturbation. In the case of high-dimensional
explicands, such a convenience helps expose model sen-
sitivities to the absence of local patterns, thus facilitating
the identification of relevant pixels. However, it should be
noted that the grouping does not stick to the assumption that
feature values should be sampled independently for gradient
estimation. Therefore, the application of mask smoothing
raises a trade-off between the usefulness and correctness of
resultant explanations and is preferred only when explaining
high-dimensional explicands.

4. Experiments
With a focus on image data, we test the proposed method
with models trained on three popular and publicly available
image datasets. The experimental environment (including
hardware and software settings) is described in Appendix D.
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Figure 3. Overview of GEEX. A query z is determined by the sampled noise ϵ and the position α on the path. The final explanation ξ (on
the right, overlaid with the original input) is derived through the observations {f(z)} and the pre-computed log derivatives.

4.1. Experimental Details

Dataset: The datasets considered during the experiments
are: MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao
et al., 2017), and ImageNet (Russakovsky et al., 2015).
The selection includes two grayscale datasets and one full-
colored dataset with a notably larger input size. For each
dataset, we train a classifier with its training set and evaluate
explanations for model decisions on the test set.

Classifier: For MNIST and Fashion-MNIST, a simple CNN
is trained. The model comprises two convolutional layers
with a kernel size of 5, concatenated by three dense layers
with sizes of 120, 84, and 10, respectively. The inputs from
the two datasets have a shape of 28 × 28. For ImageNet,
Inception V32 (Szegedy et al., 2016) is adopted, which takes
inputs of size 299×299. Considering various configurations
of the to-be-explained system enables the comparison of ex-
plainer performances across explanation tasks with different
levels of complexity.

GEEX: A Gaussian distribution serves as the search dis-
tribution for GEEX, and the number of queries n∗ is fixed
to 5k across all test settings. The deviation σ, which de-
termines the spread of the Gaussian, is configured as 1.0
for MNIST and Fashion-MNIST observing the polarized
distribution of their pixel values. For ImageNet, where
pixel values are more evenly distributed, σ is set to 0.3.
Regarding the baseline x̊, a zero matrix is employed when
explaining decisions on grayscale images, whereas the base-
line for ImageNet is explicand-specific. For each explicand
from ImageNet, the baseline is a blurred version of itself as
suggested by (Sturmfels et al., 2020). To ensure a fair com-

2A pre-trained version from ImageNet is used without ad-
ditional training, publicly available at: https://pytorch.
org/vision/stable/models/inception.html

parison, these baseline choices also apply to the competitors
that incorporate a baseline during their explanation proce-
dures. Besides, to mitigate the estimation noises caused by
feature space expansion, mask smoothing is implemented
through a Gaussian filter with a kernel size of 5 and a devia-
tion of 0.7 when tested on ImageNet. Further details about
hyperparameter selection are reported in Appendix F.

Competitor: We consider the gradient estimator (GE) as
a competitor by interpreting gradient estimations directly
as explanations. Its comparison to GEEX illustrates the im-
portance of fulfilling the named properties. The remaining
competitors, including two white-box and two black-box
approaches, are listed below. For black-box explainers, the
number of queries is identical to the setting for GEEX.

• SG (SMOOTHGRAD) (Smilkov et al., 2017): a white-
box approach interprets raw gradients as explanations.

• IG (Sundararajan et al., 2017): a white-box approach
integrates gradients of entries over a straightline path
from the explicand to a baseline.

• LIME (Ribeiro et al., 2016): a black-box approach ex-
plains a target model through a linear surrogate trained
to mimic the observed behaviors of the target.

• RISE (Petsiuk et al., 2018): a black-box explainer de-
termines feature attribution according to the expected
impacts of input features on prediction outcomes.

4.2. Comparison to White-box Explanation

The evaluation of the proposed method commences with a
qualitative assessment of the derived explanations. Sample
explanations from various test settings are listed in Fig. 4
(additional examples can be found in Appendix E), where
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Figure 4. Sample explanations from GEEX (the second row) and two selected competitors

each column is an example set. The first image in an exam-
ple set presents the explicand with the model prediction at
the top, followed by the corresponding explanations from
three chosen explainers visualized through saliency maps.
The explainers comprise IG, GEEX, and RISE. The inclu-
sion of IG and RISE serves the purpose of showcasing
GEEX’s capability in producing gradient-like explanations
under a black-box setting and emphasizing its improvements
compared to a state-of-the-art black-box explainer.

The provided examples contain explanations for four expli-
cands with a smaller input size and three entries from a sig-
nificantly higher-dimensional feature space. Across all sam-
ple sets, proximity between explanations from GEEX and
IG is observed. Specifically, both GEEX and IG attribute
the model’s decision to the presence of pixels on the pant
legs for the third explicand, predicted as “trouser”, while
pinpointing the bottom-middle located pixels as the most in-
fluential for predicting a “dress” in the fourth example. The
insights garnered from the two explainers suggest that the
classifier trained on Fashion-MNIST considers the presence
of a gap in the bottom-middle region between two bright
areas as a distinguishing feature between a trouser and a
dress. However, the explanations from RISE fall short of
reaching such a conclusion. Similar observations can be
found in the sample explanations for InceptionV3. While
the outcomes from RISE highlight fuzzy hot regions with
noticeable background noises, the delivery of the proposed
approach demonstrates fine-grained feature structures that
steer the model’s predictions. These include details such as

the texture of the intake grille for the classified “school bus”,
the contour of the “viaduct”, and the highlighted face as well
as wing areas of the “ruddy turnstone”. Again, the explana-
tions by GEEX capture homologous attribution structures
to the results from IG when dealing with more challenging
tasks, consistent with the previously discussed performance
in simpler test cases.

The qualitative examples intuitively show the performance
of the proposed method. Nevertheless, human assessments
for explanation evaluation are unscalable. Exhaustively eval-
uating explanation approaches with human efforts can be
more than just expensive in practice. In fact, doing so can
introduce human-sourced biases into the evaluation process
as individuals may interpret explanations differently. For in-
stance, given a model suffering from the Clever-Hans effect,
which occasionally uses irrelevant features for prediction,
an explainer correctly locating such mistakes can be under-
rated during human assessments due to mismatches between
human domain knowledge and the actual model behaviors.

4.3. Quantitative Evaluation for Effectiveness

To quantify the performance of explainers objectively, this
section evaluates explanation quality via a widely adopted
scheme – evaluation via deletion (Samek et al., 2016). The
evaluation process follows an intuitive yet effective idea:
the removal of relevant features should induce larger drops
in prediction confidence. More specifically, evaluation
via deletion removes pixels sequentially in descending or-
der according to their attribution scores. The changing

7
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Table 1. The normalized AOPC scores by evaluation via deletion, higher is better.

Classifier Replacement SG IG RISE LIME GE GEEX Random

CNN
(MNIST)

Baseline 0.8838 0.9434 0.9101 0.8653 0.8833 0.9466 0.3085
Gaussian 0.8452 0.9415 0.8896 0.8692 0.8519 0.9486 0.3695

CNN
(F-MNIST)

Baseline 0.8399 0.9275 0.8931 0.8167 0.8379 0.9350 0.3567
Gaussian 0.8341 0.9219 0.8708 0.8085 0.8341 0.9362 0.4293

InceptionV3
(ImageNet)

Baseline 0.3781 0.8805 0.7659 0.6928 0.3806 0.7952 0.4003
Gaussian 0.8557 0.9155 0.8699 0.8837 0.7289 0.9058 0.7434

∗The overall best performances are in bold and the highest scores among black-box explainers are underlined.

trend of prediction confidence draws a curve throughout
the deletion process, and the area over perturbation curve
(AOPC) is considered as a metric to quantify the effective-
ness of an explanation. To make the metric independent
from the scale of model outcomes, the normalized AOPC
is computed, i.e. the cumulative sum of dropping ratios:
AOPC = 1

l

∑l
i=1(1−

f(x(i))
f(x) ), where x(i) denotes a vari-

ant of x with its top-i pixels masked out. One last thing to be
clarified is the deletion operation. Following the discussion
in Section 3.2, replacing a feature value with a correspond-
ing baseline value is a natural way of defining the deletion.
As some competitors do not actively use the chosen base-
lines, for a fair comparison, we also sample the replacement
value from Gaussian as an alternative defining the deletion.

Table 1 reports the AOPC scores of competitors in all test set-
tings, considering both definitions of the replacement value.
The table groups explainers according to their accessibility
assumptions. Alongside the named competitors, the AOPC
scores of removing pixels in purely random order are also
reported as a reference, illustrating the effectiveness of the
derived explanations. Ideally, explanations delivering use-
ful information are expected to achieve higher scores than
random deletion. However, this is not the case for SG and
GE in explaining decisions from InceptionV3. Their expla-
nations, directly using either actual or estimated gradients,
suffer from gradient saturation, leading to the overlooking
of relevant features and subsequently limited performance.
On the contrary, the fulfillment of Completeness and Sen-
sitivity results in the competitive performance of GEEX.
According to the AOPC scores, the proposed method con-
sistently surpasses other black-box explainers across all test
settings. The higher scores indicate that the assigned feature
attributions correctly reflect to their actual contributions.

Compared to IG, GEEX achieves similar scores, aligning
with the observations of their visually similar saliency maps
in the qualitative assessment. For the simpler test cases, our
approach even achieves better performances, which should
be interpreted as an improvement brought by the smoother
approximation of the path integral. While the white-box

2−2 2−1 20 21 22 23n∗ = 5k ×

0.75

0.80

0.85

AOPC

GEEX

IG

Figure 5. For InceptionV3, GEEX achieves an AOPC score con-
verging to IG when the number of queries n∗ increases.

explainer approximates the path integral with sparse inter-
polation relying on accurate but expensive gradients (de-
pending on model complexity), GEEX achieves a superior
approximation with dense one-sample estimators that are
computationally more efficient. Regarding the results on
ImageNet, the larger feature space poses a challenge to all
black-box approaches. As a result of higher gradient estima-
tor variance caused by feature space expansion, GEEX falls
behind IG. In this case, more observations are required to
maintain the same level of estimation precision. Figure 5
illustrates the convergence of GEEX’s performance towards
IG as the number of queries increases.

5. Conclusion
In this work, we propose GEEX, an approach deriving
gradient-like explanations under a black-box setting. It ful-
fills a set of fundamental properties of attribution methods,
including Completeness and Sensitivity, thereby settling a
theoretical guarantee for explanation quality. Alongside the
theoretical analysis, the experimental results on three public
datasets empirically show the competitive performance of
the proposed method. In addition to surpassing all competi-
tors in the simple test cases, the performance of GEEX also
converges to the best score achieved in a white-box set-
ting when acquiring sufficient observations. Although the
computational expense can be a concern as for other black-
box approaches, the computations in GEEX are highly par-
allelized, which allows it to meet any potential real-time
requirement by distributing the workloads to distributed
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agents. Moreover, we believe that reducing computational
complexity through feature space decomposition, guided by
the Linearity property, addresses the last piece of the puzzle
and should be considered a direction of future works.
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A. Proof of Completeness
Differing from the order of introducing the properties as presented in Section 3, we first show the Completeness of GEEX,
which is stated in Theorem 3.2. Proving Completeness brings significant convenience to the proof of the remaining axioms.
Defining the full absence with the baseline, the Completeness regarding the prediction outcome f(ẋ) can be proved by
showing:

f (̊x) +

p∑
k=1

ξk = f(ẋ)

where ẋ denotes the explicand to avoid the potential confusion between the variable x and its concrete value given by ẋ.
The premise for GEEX satisfying Completeness is that the search distribution for the gradient estimator has a mean at its
location parameter determined by the explicand:

Eπ(z|x)[z] = x (4)

Through the proof of Completeness, we also show that an unbiased search distribution is a necessity for an unbiased gradient
estimation.

Proof. In GEEX, the attribution of the l-th feature is given by:

ξl =
(ẋl − x̊l)

s
·

s∑
j=1

ηl(ẋ(
j

s
))

=
(ẋl − x̊l)

s
·

s∑
j=1

1

n

n∑
i=1

f(z(i))
∂ log π(z

(i)
l |xl)

∂xl

∣∣∣
xl=ẋl(

j
s )

z=ẋ( j
s )+ϵ

=
(ẋl − x̊l)

n · s ·
s∑

j=1

n∑
i=1

f(ẋ(
j

s
) + ϵ(i))

∂ log π(ẋl(
j
s ) + ϵ

(i)
l |xl)

∂xl

∣∣∣
xl=ẋl(

j
s )

The third equation simply rewrites the symbol for a sample from a distribution whose location is described by the explicand
as ẋ plus some noise ϵ. The model outcome in the above formula can be expanded with the Taylor series:

f(ẋ(
j

s
) + ϵ(i)) = f(ẋ(

j

s
)) +∇f(ẋ(

j

s
))

T

· ϵ(i) +O(||ϵ(i)||2)

Substituting the expansion and using ∂
∂xl

log π as a shorthand for ∂ log π(ẋl(
j
s )+ϵl|xl)

∂xl

∣∣∣
xl=ẋl(

j
s )

:

ξl =
(ẋl − x̊l)

n · s
s∑

j=1

n∑
i=1

[f(ẋ(
j

s
)) +∇f(ẋ(

j

s
))

T

· ϵ(i) +O(||ϵ(i)||2)] ∂

∂xl
log π

=
(ẋl − x̊l)

n · s ·
[

s∑
j=1

n∑
i=1

f(ẋ(
j

s
))

∂

∂xl
log π︸ ︷︷ ︸

1

+

s∑
j=1

n∑
i=1

∇f(ẋ(
j

s
))

T

· ϵ(i) · ∂

∂xl
log π︸ ︷︷ ︸

2

+

s∑
j=1

n∑
i=1

O(||ϵ(i)||2) ∂

∂xl
log π︸ ︷︷ ︸

3

]

When the number of samples n for the gradient estimator increases, the term 1 converges in probability to 0 as:

1 =

s∑
j=1

1

n

n∑
i=1

f(ẋ(
j

s
))

∂

∂xl
log π =

s∑
j=1

[
f(ẋ(

j

s
)) · 1

n

n∑
i=1

∂

∂xl
log π

]
P→

s∑
j=1

[
f(ẋ(

j

s
)) · Eπ(ẋl(

j
s )+ϵl|ẋl(

j
s ))

[ ∂

∂xl
log π

]]
= 0
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This is because the expectation takes a zero value:

Eπ(ẋl(
j
s )+ϵl|ẋl(

j
s ))

[ ∂

∂xl
log π

]
=

∫ +∞

−∞
π(ẋl(

j

s
) + ϵl|ẋl(

j

s
)) · ∂ log π(ẋl(

j
s ) + ϵl|xl)

∂xl

∣∣∣
xl=ẋl(

j
s )

dϵl

zl=ẋl(
j
s )+ϵl

=

∫ +∞

−∞
π(zl|ẋl(

j

s
)) · ∂ log π(zl|xl)

∂xl

∣∣∣
xl=ẋl(

j
s )

dzl

=

∫ +∞

−∞

∂π(zl|xl)

∂xl

∣∣∣
xl=ẋl(

j
s )

dzl

=

[
∂

∂xl

∫ +∞

−∞
π(zl|xl) dzl

]∣∣∣∣
xl=ẋl(

j
s )

=
∂

∂xl
1
∣∣∣
xl=ẋl(

j
s )

⇒ Eπ(ẋl(
j
s )+ϵl|ẋl(

j
s ))

[ ∂

∂xl
log π

]
= 0 (5)

The interchange of derivatives and integrals is possible because π(z|x) is continuously differentiable in x, a fundamental
prerequisite when choosing the search distribution for gradient estimation. Now switching to the term 2 :

2 =

s∑
j=1

1

n

n∑
i=1

∇f(ẋ(
j

s
))
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log π
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as observations for the gradient estimator expand:
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x=ẋ( j

s )
·
∫ +∞

−∞
(zl − ẋl(
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− ẋl(
j

s
) ·

[
∂

∂xl

∫ +∞

−∞
π(zl|xl) dzl

]∣∣∣∣
xl=ẋl(
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Applying the premise stated in Equation 4 yields:

a
P→ ∂f
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The second term b produces 0 because of the independent sampling for different features:
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Replacing the terms in 2 with the derived values:
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Lastly, the element O(||ϵ(i)||2) of the term 3 is bounded by c+j ||ϵ(i)||2 and c−j ||ϵ(i)||2, indicating:

c−j ||ϵ(i)||2 ≤ O(||ϵ(i)||2) ≤ c+j ||ϵ(i)||2

where c−j /c+j is a negative/positive constant. The upper and lower bounds for 3 can then be written as:
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Expanding the norm in the bound:
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j
s ))

[
ϵ2l ·

∂

∂xl
log π

]
+

p∑
k=1
k ̸=l

Eπ(ẋ( j
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log π

]
+

p∑
k=1
k ̸=l

Eπ(ẋk(
j
s )+ϵk|ẋk(

j
s ))

[
ϵ2k

]
· 0

=

∫ +∞

−∞
ϵ2l · π(ẋl(

j

s
) + ϵl|ẋl(

j

s
)) · ∂ log π(ẋl(

j
s ) + ϵl|xl)

∂xl

∣∣∣
xl=ẋl(

j
s )

dϵl

zl=ẋl(
j
s )+ϵl

=

∫ +∞

−∞
(zl − ẋl(

j

s
))

2

· π(zl|ẋl(
j

s
)) · ∂ log π(zl|xl)

∂xl

∣∣∣
xl=ẋl(

j
s )

dzl

=

∫ +∞

−∞
(z2l − 2 · zl · ẋl(

j

s
) + ẋl(

j

s
)
2

) · ∂π(zl|xl)

∂xl

∣∣∣
xl=ẋl(

j
s )

dzl

=
∂

∂xl

[∫ +∞

−∞
z2l π(zl|xl) dzl − 2ẋl(

j

s
)

∫ +∞

−∞
zlπ(zl|xl) dzl + ẋl(

j

s
)
2 ∫ +∞

−∞
π(zl|xl) dzl

]∣∣∣∣
xl=ẋl(

j
s )

=
∂

∂xl

[
Eπ(zl|xl)

[
z2l

]
− 2ẋl(

j

s
)Eπ(zl|xl)

[
zl

]
+ ẋl(

j

s
)
2

· 1
]∣∣∣∣

xl=ẋl(
j
s )

(6)

13
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Denoting the variance of zl with σ2
l , the first term in Equation 6 is:

∂

∂xl
Eπ(zl|ẋl(

j
s ))

[
z2l

]
=

∂

∂xl

[
E2
π(zl|ẋl(

j
s ))

[
zl

]
+ σ2

l

]
=

∂

∂xl

[
(xl + δl)

2
+ σ2

l

]
where δ denotes any bias of the distribution mean Eπ(zl|ẋl(

j
s ))

[zl] to its location parameter xl. Given that xl, as a location
parameter, has no control over the spread σl of the distribution, Equation 6 then becomes:

(6) =
∂

∂xl

[
(xl + δl)

2
+ σ2

l − 2ẋl(xl + δl) + ẋ2

]∣∣∣∣
xl=ẋl(

j
s )

=

[
2xl + 2δl − 2ẋl + 0

]∣∣∣∣
xl=ẋl(

j
s )

= 2 · δl

(4)
= 0

where the unbiasedness of the search distribution ensures the vanishing of the higher order residual. The upper and lower
bounds of 3 can be updated as:

0 ≤ 3 ≤ 0 ⇒ 3 = 0

Combining 1 , 2 , and 3 we show that the gradient estimator converges to the actual gradient without bias, which allows
rewriting the explanation as follows:

ξl =
(ẋl − x̊l)

s
·

s∑
j=1

∂f

∂xl

∣∣∣
x=ẋ( j

s )
(7)

The aggregation of gradient estimations over the interpolation ẋ( js ) approaches the true path integral as the interpolation
interval 1

s becomes small:

ξl
s→∞→

∫ 1

0

∂f

∂xl

∂xl

∂α
dα

Applying the fundamental theorem for line integrals yields:

p∑
k=1

ξk =

∫ 1

0

( ∂f

∂x1

∂x1

∂α
+

∂f

∂x2

∂x2

∂α
+ . . .+

∂f

∂xp

∂xp

∂α

)
dα

=

∫ 1

0

∇xf(x(α)) dα

= f(ẋ)− f (̊x)

⇒ f (̊x) +

p∑
k=1

ξk = f(ẋ)

In the proof, we show that the total attribution sum of GEEX converges in probability to the prediction difference between
the baseline and the explicand. The error of the explainer arises from two sources: the error of the gradient estimator and the
error associated with the approximation of the line integral. Optimizing the explainer’s performance requires minimization
of both errors.

B. Proof of Satisfaction on the Four Axioms
Theorem 3.1 states that GEEX fulfills the four fundamental axioms of attribution methods. This section gives the proof of
these properties one by one.

14



On Gradient-like Explanation under a Black-box Setting

B.1. Axiom: Insensitivity

Insensitivity (Dummy) states that the attribution to a feature on which the target model does not functionally depend should
be zero. Formally, for a feature xl, Insensitivity requires:

ξl = 0, if
∂f

∂xl
= 0 for x ∈ Rp

Proof. Focusing on the l-th feature that should receive a zero attribution score, its attribution determined by GEEX can be
written as follows according to Equation 7:

ξl =
(xl − x̊l)

s
·

s∑
j=1

∂f

∂xl

∣∣∣
x=ẋ( j

s )

Then applying the definition of Insensitivity reaches the end of the proof:

ξl =
(xl − x̊l)

s
·

s∑
j=1

0 = 0

Compared to Insensitivity, a similar but still slightly different property is Missingness. With the absence defined by some
baseline value x̊, this property requires attribution methods to distribute a zero value to the contribution ξl of an absent
feature xl, namely:

ξl = 0, if xl = x̊l

Missingness differs from Insensitvitiy due to its reliance on the definition of a baseline. However, despite this difference,
both properties are carried by GEEX. The proof of Missingness can be done in a single line:

ξl =
(xl − x̊l)

s
·

s∑
j=1

ηl(ẋ(
j

s
))

xl=x̊l= 0 ·
s∑

j=1

ηl(ẋ(
j

s
)) = 0

B.2. Axiom: Sensitivity

Sensitivity states that if the explicand and the baseline differing in one feature receive different predictions, then the differing
feature should be assigned a non-zero importance score. The proof of Sensitivity is readily accessible with the help of the
proof of Completeness.

Proof. Denoting the only different feature by xl, the explanation outcome takes the following value:

ξ = (0, . . . , ξl, . . . , 0)

because the other terms are canceled out according to Missingness given xk = x̊k, ∀xk ̸= xl. Reusing the conclusion in the
proof of Completeness yields:

ξl = ξl +

p∑
k=1
k ̸=l

0 =

p∑
k=1

ξk

P→
∫ 1

0

∇xf(x(α))dα

= f(x)− f (̊x) ̸= 0

⇒ ξl ̸= 0
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B.3. Axiom: Implementation Invariance

For any two functionally equivalent models, Implementation Invariance indicates that the explanations for the decisions
made by the two functionally equivalent models ought to be identical despite the different implementations. Intuitively,
black-box explainers naturally satisfy Implementation Invariance as their explanation procedures do not consider or utilize
any details about model implementations. However, we still give the formal proof for GEEX, which shows that our method
aligns with the intuition.

Proof. Given two models fϕ1
(·) and fϕ2

(·), functional equivalence indicates:

fϕ1
(x) = fϕ2

(x), ∀x ∈ Rp

where ϕ denotes some learnable parameters in a model, which is used to indicate the implementation difference. The
explanations ξ(fϕ1

) and ξ(fϕ2
) for the two models at an arbitrary point x hold:

ξ(fϕ1
) =

(x− x̊)

n · s ◦
s∑

j=1

n∑
i=1

fϕ1
(z(i))∇x log π(z(i)|x(j

s
))

fϕ1
(x)=fϕ2

(x)
=

(x− x̊)

n · s ◦
s∑

j=1

n∑
i=1

fϕ2
(z(i))∇x log π(z(i)|x(j

s
))

= ξ(fϕ2
)

B.4. Axiom: Linearity

For any two functions fϕ1
(·) and fϕ2

(·), Linearity requires the explanation for the linear composition of the two functions
afϕ1

+ bfϕ2
equaling the weighted sum of the separate explanations for them, namely:

ξ(afϕ1
+bfϕ2

) = a · ξ(fϕ1
) + b · ξ(fϕ2

)

The Linearity of GEEX is proved below.

Proof.

ξ(afϕ1
+bfϕ2

) =
(x− x̊)

n · s ◦
s∑

j=1

n∑
i=1

[
afϕ1

(z(i)) + bfϕ2
(z(i))

]
∇x log π(z(i)|x(j

s
))

=
a(x− x̊)

n · s ◦
s∑

j=1

n∑
i=1

fϕ1
(z(i))∇x log π(z(i)|x(j

s
)) +

b(x− x̊)

n · s ◦
s∑

j=1

n∑
i=1

fϕ2
(z(i))∇x log π(z(i)|x(j

s
))

= a · ξ(fϕ1
) + b · ξ(fϕ2

)

C. Complementary Information from Neighbors on the Path
In the last part of Section 3, we finalize the explainer as a dense approximation of the path integral with one-sample gradient
estimators:

ξ =
(x− x̊)

n∗ ◦
∑

ϵ∼π(·|0)
α∼U[0,1]

f(x(α) + ϵ)∇x log π(ϵ|0)

Intuitively, reducing the capacity of the gradient estimator may seem contradictory to the conclusion drawn from the proof
of Completeness, which suggests that optimizing explanation quality requires minimization of estimator errors at both levels.
However, this is not necessarily true because neighboring estimators can share complementary information and thus promote
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their estimations. Before showing this complementary information, we first provide a formal definition of “neighboring
estimators”. The definition relies on the assumption of continuous differentiability of the target function f(·), a fundamental
requirement for applying any gradient-based explainers, regardless of the accessibility setting.

Definition C.1. For an interval [a, b] on a path x(α) in which f(·) is locally linear, the one-sample estimators ηn=1(x(α̇))
for arbitrary points α̇ ∈ [a, b] are neighboring estimators.

Given the assumption that f(·) is continuously differentiable, it is always possible to find such an interval for any estimator
on the path that determines its neighboring estimators. Next, we prove that the set of neighboring estimators with a size
of m achieves the same level of precision as a m-sample estimator at some point on the interval α∗ ∈ [a, b] denoted by
ηn=m(x(α∗)).

Proof. The collaborative estimation of neighbors {η(x(α̇)) | α̇ ∈ [a, b]} can be written as:

1

m

∑
α̇∼U[a,b]

ηn=1(x(α̇))
(7)
=

1

m

∑
α̇∼U[a,b]

[
∇xf(x(α̇)) + σ(α̇)

]
Local linearity

= ∇xf(x(a)) +
1

m
·

∑
α̇∼U[a,b]

σ(α̇)

where σ(α̇) denotes the estimation error of one estimator. As an unbiased estimator, the error term follows some distribution
D(0,σ(α̇)), which has a mean at 0 and a variance of value [σ(α̇)]

2
. Recalling that x is the location parameter of the search

distribution, the variance of an estimator is:

[σ(α̇)]
2
= V

[
f(x(α̇) + ϵ) · ∇x log π(ϵ|0)

]
Local linearity

= V
[
(f(x(a) + ϵ) + δ(α̇)) · ∇x log π(ϵ|0)

]
where δ(α̇) = f(x(α̇))− f(x(a)). Expanding the form above yields:

[σ(α̇)]
2
= V

[
f(x(a) + ϵ) · ∇x log π(ϵ|0)

]
+ V

[
δ(α̇)∇x log π(ϵ|0)

]
+ 2(E

[
δ(α̇)f(x(a) + ϵ) · [∇x log π(ϵ|0)]2

]
− 0)

= V
[
f(x(a) + ϵ) · ∇x log π(ϵ|0)

]
+ E

[
[δ(α̇)∇x log π(ϵ|0)]2

]
− 0 + 2E

[
δ(α̇)f(x(a) + ϵ) · [∇x log π(ϵ|0)]2

]
= V

[
f(x(a) + ϵ) · ∇x log π(ϵ|0)

]
+ δ(α̇)

2E
[
[∇x log π(ϵ|0)]2

]
+ 2δ(α̇)E

[
f(x(a) + ϵ) · [∇x log π(ϵ|0)]2

]
For a fixed search distribution, the expectations in the last two terms are constant. Denoting them as c1 and c2 yields:

[σ(α̇)]
2
= V

[
f(x(a) + ϵ) · ∇x log π(ϵ|0)

]
+ δ(α̇)

2
c1 + 2δ(α̇)c2

where c1 is a constant matrix, and the elements in c2 are not necessarily identical. However, mirror sampling adopted
in this work ensures the isotropicity of the search distribution, which brings convenience to the proof of complementary
information. The isotropic distribution, in combination with local linearity, simplifies c2:

c2 = E
[
f(x(a) + ϵ) · [∇x log π(ϵ|0)]2

]
Local linearity

= f(x(a)) · E
[
[∇x log π(ϵ|0)]2

]
+ E

[
∇f(x(α))

T · ϵ · [∇x log π(ϵ|0)]2
]

= f(x(a)) · E
[
[∇x log π(ϵ|0)]2

]
+

p∑
k=1

∂f

∂xk
· E

[
ϵk · [∇x log π(ϵ|0)]2

]
Isotropicity

= f(x(a)) · E
[
[∇x log π(ϵ|0)]2

]
+

p∑
k=1

∂f

∂xk
· 0

= f(x(a))c1
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The variance of a one-sample estimator can be updated:

[σ(α̇)]
2
= V

[
f(x(a) + ϵ) · ∇x log π(ϵ|0)

]
+

[
δ(α̇)

2
+ 2δ(α̇) · f(x(a))

]
c1

The variance of the collaborative estimation denoted by [σ
[a,b]
N=m]

2
is:

[σ
[a,b]
N=m]

2
=

1

m2

∑
α̇∼U[a,b]

[σ(α̇)]
2

=
1

m2

∑
α̇∼U[a,b]

V
[
f(x(a) + ϵ) · ∇x log π(ϵ|0)

]
+
[
δ(α̇)

2
+ 2δ(α̇) · f(x(a))

]
c1

=
1

m
V
[
f(x(a) + ϵ) · ∇x log π(ϵ|0)

]
+

1

m2

∑
α̇∼U[a,b]

[
δ(α̇)

2
+ 2δ(α̇) · f(x(a))

]
c1

=
1

m
V
[
f(x(a) + ϵ) · ∇x log π(ϵ|0)

]
+

1

m2

∑
α̇∼U[a,b]

[
f(x(α̇))

2 − f(x(a))
2
]
c1

Similarly, the variance of estimation error for an m-sample estimator is:

[σ
(α)
N=m]2 =

1

m
V
[
f(x(a) + ϵ) · ∇x log π(ϵ|0)

]
+

1

m

[
f(x(α))2 − f(x(a))2

]
c1

Depending on the value of f(·) on the interval, the standard deviation of the collaborative estimator is bounded either by
both endpoints of the segment when the minimum of f(x(α))2 − f(x(a))2 is not on [a, b]:

min(σ
(a)
N=m,σ

(b)
N=m) ≤ σ

[a,b]
N=m ≤ max(σ

(a)
N=m,σ

(b)
N=m)

or by the minimum αmin ∈ [a, b] and the endpoint with a higher function outcome otherwise:

σ
(αmin)
N=m ≤ σ

[a,b]
N=m ≤ max(σ

(a)
N=m,σ

(b)
N=m)

Given the continuous differentiability and the bounded variance on the interval, there always exists a point α∗ ∈ [a, b] such
that: [

f(x(α∗))2 − f(x(a))2
]
c1 =

1

m

∑
α̇∼U[a,b]

[
f(x(α))2 − f(x(a))2

]
c1

⇒ [σ
(α∗)
N=m]2 = [σ

[a,b]
N=m]2

In other words, the collaborative estimator achieves the same level of precision as the m-sample estimator.

D. Experimental Environment
The proposed approach and the designed experiments are implemented using Python 3.10.9 with standard packages.
Specifically, these include Numpy 1.26.3, Pytorch of version 2.0.0, and torchvision 0.15.1. The CUDA version is 11.4
for GPU support. The experiments are conducted on a machine operated by Debian 11 with 32GB RAM. The machine
possesses an Intel i9-10980XE CPU and an Nvidia RTX A5500 GPU of 24GB VRAM.

E. Sample Explanations
Figures 6, 7, and 8 list more example sets containing explanations from all competitors. With an organization slightly
different from the examples in the main body of the paper, each row in the three figures represents an example set, with the
first column presenting explicands, followed by explanations derived through SG, IG, GEEX, RISE, and LIME in columns 2
to 6, accordingly. In the last column of the figures, the plots visualize the perturbation curves acquired by conducting the
deletion process on an explicand guided by the corresponding explanations. The legend of the plot gives the normalized
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Figure 6. Explanations by all competitors for decisions by the CNN trained on MNIST, the last column visualizes the perturbation curves
following corresponding explanations until all pixels are masked out. Legend titles refer to model predictions on corresponding explicands.
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Figure 7. Explanations by all competitors for decisions by the CNN trained on Fashion-MNIST, the last column visualizes the perturbation
curves following corresponding explanations until all pixels are masked out. Legend titles refer to model predictions on corresponding
explicands.
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Figure 8. Explanations by all competitors for decisions by Inception V3 pre-trained on ImageNet, the last column visualizes the perturbation
curves following corresponding explanations until all pixels are masked out. Legend titles refer to model predictions on corresponding
explicands.
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(a) (b) (c)

Figure 9. Effects of n∗ and σ reported on (a) MNIST, (b) Fashion-MNIST, and (c) ImageNet. For each group of charts, the left plot refers
to the changes in perturbation curves while increasing the sample set size m with fixed σ, the right plot presents the impact of changing
the search range σ with m set to 5k. The solid line is a reference derived by IG.

AOPC scores achieved by the listed explainers, which are the float numbers following the competitor’s name. The title of
the legend indicates the original prediction of the target model on the explicand.

Similar to the observations in the previous examples, GEEX and IG identify homologous attribution structures in their
explanations across the three test cases. The mostly identical AOPC scores achieved by the two methods agree with the
intuitive visual similarity. The overlaps between their perturbation curves suggest that pixels are ranked similarly in the
explanations by GEEX and IG, thereby steering similar deletion processes. Compared to the other two black-box approaches,
GEEX delivers fine-grained explanations that improve both visual interpretability and explanation quality in terms of AOPC
score. More specifically, when dealing with explicands containing more complicated patterns, GEEX points out low-level
features that contribute to a decision rather than a few hot-regions as done by the black-box competitors. For example, in
the fifth row of Fig.8, GEEX assigns attributions to pixels representing the relevant objects – “ptarmigan”, whereas the
explanations from RISE and LIME are more difficult to comprehend.

F. Effect of Hyperparameters
This section studies the effects of the most important hyperparameters in GEEX, namely the sample set size n∗, and the
search distribution spread σ, to guide the selection of these values. During the test, we assume the two hyperparameters affect
explanation quality independently, and study the impact of each individually while the other is set to a fixed value. For the
deviation σ, we set the candidate values {0.2, 0.4, 0.6, 0.8, 1.0} for the grayscale datasets, and {0.1, 0.3, 0.5, 0.7, 0.9}
for ImageNet with n∗ set fixed to 5k in all three cases. Regarding the test for the impact of n∗, we consider the candidate
values in exponential growth with a base of 5k, which is the value considered during the quantitative evaluation. More
specifically, n∗ takes value from {625, 1.25k, 2.5k, 5k, 10k} for the smaller explicands with σ set to 1.0, and from
{1.25k, 2.5k, 5k, 10k, 20k} for higher-dimensional explicands with σ = 0.3.

The charts in Fig. 9 plot the perturbation curves of GEEX under different configurations. These plots are grouped according
to the test scenarios with each of them zoomed into the first half of the deletion process to better visualize the differences
among the curves. For each group, the plot on the left demonstrates the change of explanation quality when altering the
sample set size n∗, and the right shows the impact of the search range σ. The dashed line represents the perturbation curves
drawn by GEEX while the solid gray line derived by IG is considered as a reference.

Aligning with the expectation, n∗ positively correlates to explanation quality in all scenarios. With the expanding sample set,
the perturbation curve of GEEX converges to the reference as a result of the reduced estimation error, and it surpasses the
reference when the sample set reaches a certain size. For the MNIST and Fashion-MNIST, the growing trend of areas above
a perturbation curve slows down when the sample set reaches a size of roughly 5k in both cases. By contrast, enlarging the
sample set improves explanation quality constantly on ImageNet due to the higher estimation variance caused by feature
space expansion, indicating that GEEX has not yet reached its upper bound. However, it is noteworthy that the number of
observations is in quadratic growth for maintaining the same level of estimation precision when the feature space expands,
which means that matching or overcoming the white-box solution is more expensive in a higher-dimensional feature space.

The deviation σ has minor impacts while tested on MNIST and Fashion-MNIST. We explain the observation as a result of

22



On Gradient-like Explanation under a Black-box Setting

the relatively simple target functions. For solving the simple classification tasks, the learned function f(·) has a lower level
of non-linearity than the more complicated case, simplifying the choice of σ. The reason is that σ has less chance to exceed
the local linearity range for a smoother f(·), and can derive reliable estimation even if it takes a relatively higher value. On
the other hand, the value of σ plays a significant role in explaining decisions by InceptionV3. The higher non-linearity of
f(·) brings the challenge of determining the optimal σ. The value of σ should be large enough to expose differences in
model outcomes for gradient estimators, but at the same time, σ should be small enough to ensure the local linearity within
the search range. Although locating the optimum under the named constraints sounds formidable, finding a proper choice
for σ is trivial in practice with a binary search. Moreover, as the number of observations almost surely contributes to the
results positively, the choice of n∗ is more about the trade-off between explanation quality and computational expense. As
the only parameter left to be determined in GEEX, selecting the value for σ is an affordable task, especially when compared
to other approaches that have a large set of tunable hyperparameters.
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