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Figure 1: This paper advocates high-quality human data as a data source for cross-embodiment
learning - task-oriented egocentric human data. We collect a large-scale dataset, Physical Human-
Humanoid Data (PH?D), with hand-finger 3D poses from consumer-grade VR devices on well-
defined manipulation tasks directly aligned with robots. Without relying on modular perception, we
train a Human Action Transformer (HAT) manipulation policy by directly modeling humans as a
different humanoid embodiment in an end-to-end manner.

Abstract: Training manipulation policies for humanoid robots with diverse data
enhances their robustness and generalization across tasks and platforms. However,
learning solely from robot demonstrations is labor-intensive, requiring expensive
tele-operated data collection, which is difficult to scale. This paper investigates
a more scalable data source, egocentric human demonstrations, to serve as cross-
embodiment training data for robot learning. We mitigate the embodiment gap
between humanoids and humans from both the data and modeling perspectives.
We collect an egocentric task-oriented dataset (PH?D) that is directly aligned
with humanoid manipulation demonstrations. We then train a human-humanoid
behavior policy, which we term Human Action Transformer (HAT). The state-
action space of HAT is unified for both humans and humanoid robots and can
be differentiably retargeted to robot actions. Co-trained with smaller-scale robot
data, HAT directly models humanoid robots and humans as different embodiments
without additional supervision. We show that human data improve both general-
ization and robustness of HAT with significantly better data collection efficiency.
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1 Introduction
Learning from real robot demonstrations has led to great progress in robotic manipulation re-

cently [1, 2, 3, 4]. One key advancement to enable such progress was hardware / software co-
designs to scale up data collection using teleoperation [5, 6, 7, 8, 9, 10] and directly controlling
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the robot end effector [11, 12, 5, 6, 13, 7]. Instead of gathering data on a single robot, collective
efforts have been made to merge diverse robot data and train foundational policies across embodi-
ments [11, 14, 2, 1, 3, 4], which have shown to improve cross-embodiment and cross-task general-
izability.

However, collecting struc-
tured real-robot data Human Robot
. . . Dataset
is expensive and time-
consuming. We are still
far away from building a
robust and generalizable
model as what has been
achieved in  Computer Table 1: Comparisons of task-oriented egocentric human
Vision [17] and NLP [18]. datasets. Besides having the most demonstrations, PH?D is col-
If we examine humanoid lected on various manipulation tasks, diverse objects and scenes,
robot teleoperation more With accurate 3D hand-finger poses and language annotations. f: es-
closely, it involves robots timated based on reported data collection time with 30 Hz; whereas
DexCap [15] and PH2D report processed frames for training.

# Frames # Demos # Frames # Demos

DexCap [15] ~378k 787 NA NA
EgoMimic [16]  ~432kT 2,150 1.29M1 1,000
PH?D (Ours) ~3.02M 26,824  ~668k 1,552

mimicking human actions
using geometric transforms or retargeting to control robot joints and end-effectors. From this
perspective, we propose to model robots in a human-centric representation, and the robot action
is just a transformation away from the human action. If we can accurately capture the end-effector
and head poses of humans, egocentric human demonstrations will be a more scalable source of
training data, as we can collect them efficiently, in any place, and without a robot.

In this paper, we perform cross-human and humanoid embodiment training for robotic manipulation.
Our key insight is to model bimanual humanoid behaviors by directly imitating human behaviors
without using learning surrogates such as affordances [19, 20]. To realize this, we first collect
an egocentric task-oriented dataset of Physical Humanoid-Human Data, dubbed PH?D. We adapt
consumer-grade VR devices to collect egocentric videos with automatic but accurate hand pose and
end effector (i.e., hand) annotations. Compared to existing human daily behavior datasets [21, 22],
PH2D is task-oriented so that it can be directly used for co-training. The same VR hardwares
are then used to perform teleoperation to collect smaller-scale humanoid data for better alignment.
We then train a Human-humanoid Action Transformer (HAT), which predicts future hand-finger
trajectories in a unified human-centric state-action representation space. To obtain robot actions,
we simply apply inverse kinematics and hand retargeting to differentiably convert human actions to
robot actions for deployment.

We conduct real-robot evaluations on different manipulation tasks with extensive ablation studies
to investigate how to best align human and humanoid demonstrations. In particular, we found that
co-training with diverse human data improves robustness against spatial variance and background
perturbation, generalizing in settings unseen in robot data but seen in human data. We believe that
these findings highlight the potential of using human data for large-scale cross-embodiment learning.

In summary, our contributions are:
* A dataset, PH?D, which is a large egocentric, task-oriented human-humanoid dataset with
accurate hand and wrist poses for modeling human behavior (see Tab. 1).

¢ A cross human-humanoid manipulation policy, HAT, that introduces a unified state-
action space and other alignment techniques for humanoid manipulation.

* Improved policy robustness and generalization validated by extensive experiments and
ablation studies to show the benefits of co-training with human data.

2 Related Work

Imitation Learning for Robot Manipulation. Recently, learning robot policy with data gathered
directly from the multiple and target robot embodiment has shown impressive robustness and dex-



terity [23, 2, 24, 1,25, 26, 9, 27, 28]. The scale of data for imitation learning has grown substantially
with recent advancements in data collection [29, 9, 7, 8], where human operators can efficiently col-
lect large amounts of high-quality, task-oriented data. Despite these advances, achieving open-world
generalization still remains a significant challenge due to lack of internet-scale training data.

Learning from Human Videos. Learning policies from human videos is a long-standing topic in
both computer vision and robotics due to the vast existence of human data. Existing works can be
approximately divided into two categories: aligning observations or actions.

Learn from Human - Aligning Observations. While teleoperating the actual robot platform al-
lows learning policy with great dexterity, there is still a long way to go to achieve higher levels
of generalization across diverse tasks, environments, and platforms. Unlike fields such as com-
puter vision [17] and natural language processing [18] benefiting from internet-scale data, robot
data collection in the real world is far more constrained. Various approaches have attempted to use
internet-scale human videos to train robot policies [30, 31, 32, 33, 34, 35]. Due to various dis-
crepancies (e.g., supervision and viewpoints) between egocentric robot views and internet videos,
most existing work [19, 20] use modular approaches with intermediate representations as surrogates
for training. The most representative ones are affordances [19, 20] for object interaction, object
keypoints predictions [36, 37, 38, 39, 40], or other types of object representations [41, 42, 43].

Learn from Human - Aligning Actions. Beyond observation alignment, transferring human
demonstrations to robotic platforms introduces additional challenges due to differences in embodi-
ment, actuation, and control dynamics. Specific alignment of human and robot actions is required to
overcome these disparities. Approaches have employed masking in egocentric views [16], aligning
motion trajectories or flow [44, 45], object-centric actions [46, 47], or hand tracking with specialized
hardware [15]. Most closely related to our work, HumanPlus [48] designs a remapping method from
3D human pose estimation to tele-operate humanoid robots. Compared to HumanPlus, the insight
of our method is to waive the requirement for robot hardware in collecting human data and collect
diverse human data directly for co-training. In contrast to HumanPlus, we intentionally avoid per-
forming retargeting on human demonstrations and designed the policy to directly use human hand
poses as states/actions. On the other hand, the ‘human shadowing’ retargeting in HumanPlus is a
teleoperation method that still requires robots, leading to lower collection efficiency than ours.

Cross-Embodiment. Cross-embodiment pre-training has been shown to improve adaptability and
generalization over different embodiments [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]. When
utilizing human videos, introducing intermediate representations can be prone to composite errors.
Recent works investigate end-to-end approaches [2, 24, 1, 3] using cross-embodied robot data to
reduce such compounding perceptive errors. Noticeably, these works have found that such end-to-
end learning leads to desired behaviors such as retrying [3]. Some other work [62, 38] enforces
viewpoint constraints between training human demonstrations and test-time robot deployment to
allow learning on human data but it trades off the scalability of the data collection process.

Concurrent Work. Some concurrent work [15, 16, 63] also attempts to use egocentric human
demonstrations for end-to-end cross-embodiment policy learning. DexCap [15] uses gloves to track
3D hand poses with a chest-mounted RGBD camera to capture egocentric human videos. However,
DexCap relies on 3D inputs, whereas some recent works [3, 1] have shown the scalability of 2D
visual inputs. Most related to our work, EgoMimic [16] also proposes to collect data using wearable
device [64] with 2D visual inputs. However, EgoMimic requires strict visual sensor alignments;
whereas we show that scaling up diverse observations with different cameras makes the policy more
robust. In addition, PH2D is also greater in dataset scale and object diversity. We also show our
policy can be deployed on real robots without strict requirements of visual sensors and heuristics,
which paves the way for scalable data collection.



3 Method

To collect more data to train generalizable robot policies, recent research has explored cross-
embodiment learning, enabling policies to generalize across diverse physical forms [3, 1, 4, 2, 65,
14]. This paper proposes egocentric human manipulation demonstrations as a scalable source of
cross-embodiment training data. Sec. 3.1 describes our approach to adapt consumer-grade VR de-
vices to scale up human data collection conveniently for a dataset of task-oriented egocentric human
demonstrations. Sec. 3.2 describes various techniques to handle domain gaps to align human data
and robot data for learning humanoid manipulation policy.

3.1 PH’D: Task-oriented Physical Humanoid-Human Data

Though there has been existing work that collects egocentric human videos [16, 22, 21, 15], they
either (1) provide demonstrations mostly for non-task-oriented skills (e.g., dancing) and do not
provide world-frame 3D head and hand poses estimations for imitation learning supervision [21, 22]
or (2) require specialized hardware or robot setups [15, 16].

To address these issues, we propose PH2D.
PH?2D address these two issues by (1) collecting
task-oriented human demonstrations that are di-
rectly related to robot execution, (2) adapting
well-engineered SDKs of VR devices (illus- Camera /
trated in Fig. 2) to provide supervision, and (3) Pose Tracking

iversifyin k mera sensors, and r - L
q ¢ Shyl gbtzs S, camera Senso Z’ and d ede: Figure 2: Consumer-grade Devices for Data Collec-
ing whole-body movement to reduce domain o, T ayoid relying on specialized hardware for data

gaps in both vision and behaviors. collection to make our method scalable, we design our
data collection process using consumer-grade VR de-
vices.

Camera

Adapting Low-cost Commerical Devices
With development in pose estimation [66] and
system engineering, modern mobile devices are capable of providing accurate on-device world frame
3D head pose tracking and 3D hand keypoint tracking [9], which has proved to be stable enough to
teleoperate robot in real-time [9, 13]. We design software and hardware to support convenient data
collection across different devices. Different cameras provide better visual diversity.

* Apple Vision Pro + Built-in Camera. We developed a Vision OS App that uses the built-in
camera for visual observation and uses the Apple ARKit for 3D head and hand poses.

* Meta Quest 3/ Apple Vision Pro + ZED Camera. We developed a web-based application
based on OpenTelevision [9] to gather 3D head and hand poses. We also designed a 3D-
printed holder to mount ZED Mini Stereo cameras on these devices. This configuration is
both low-cost (<700$) and introduces more diversity with stereo cameras.

Data Collection Pipeline We collect task-oriented egocentric human demonstrations by asking
human operators to perform tasks overlapping with robot execution (e.g., grasping and pouring)
when wearing the VR devices. For every demonstration, we provide language instructions (e.g.,
grasp a can of coke zero with right hand), and synchronize proprioception inputs and visual inputs
by closest timestamps.

Action Domain Gap. Human actions and tele-operated robot actions exhibit two distinct character-
istics: (1) human manipulation usually involves involuntary whole-body movement, and (2) humans
are more dexterous than robots and have significantly faster task completion time than robots. We
mitigate the first gap by requesting the human data collectors to sit in an upright position. For the
second speed gap, we interpolate translation and rotations of human data during training (effectively
‘slowing down’ actions). The slow-down factors agow are obtained by normalizing the average task
completion time of humans and humanoids, which is empirically distributed around 4. For consis-
tency, we use Qijow = 4 in all tasks.
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Figure 3: Overview of HAT. Human Action Transformer (HAT) learns a robot policy by modeling
humans. During training, we sample a state-action pair from either human data or robot data. The
images are encoded by a frozen DinoV2 encoder [67]. The HAT model makes predictions in a
human-centric action space using wrist 6 DoF poses and finger tips, which is retargeted to robot
poses during real-robot deployment.

3.2 HAT: Human Action Transformer

HAT learns cross-embodied robot policy by modeling humans. We demonstrate that treating bi-
manual humanoid robots and humans as different robot embodiments via retargeting improves both
generalizability and robustness of HAT.

More concretely, let Dyopor = {(Si, A;)}Y, be the set of data collected from real bimanual
humanoid robots using teleoperation [9], where S; is the states including proprioceptive and vi-
sual observations of i-th demonstration and A; be the actions. The collected PH2D dataset,
Dhuman = {(SZ, Ai)}ij\il is used to augment the training process. Note that it is reasonable to
assume M > N due to the significantly better human data collection efficiency.

The goal is to design a policy 7 : S — A that predicts future robot actions a; given current robot
observation s; at time ¢, where the future actions a;; is usually a chunk of actions for multi-step
execution (with slight abuse of notation). We model 7 using HAT, which is a transformer-based
architecture predicting action chunks [5]. The overview of the model is illustrated in Fig. 3. We
discuss key design choices of HAT with experimental ablations.

Unified State-Action Space. Both bimanual robots and humans have two end effectors. In our
case, our robots are also equipped with an actuated 2DoF neck that can rotate, which resembles the
autonomous head movement when humans perform manipulation. Therefore, we design a unified
state-action space (i.e., (S,A) = (57 A)) for both bimanual robots and humans. More concretely,
the proprioceptive observation is a 54-dimensional vector (6D rotations [68] of the head, left wrist,
and right wrist; x/y/z of left and right wrists and 10 finger tips). In this work, since we deploy our
policy on robots with 5-fingered dexterous hands (shown in Fig. 4), there exists a bijective mapping
between the finger tips of robot hands and human hands. Note that injective mapping is also possible
(e.g., mapping distance between the thumb finger and other fingers to parallel gripper distance).

Visual Domain Gap. Two types of domain gaps exist for co-training on human/humanoid data:
camera sensors and end effector appearance. Since our human data collection process includes
cameras different from robot deployment, this leads to camera domain gaps such as tones. Also,
the appearances of human and humanoid end effectors are different. However, with sufficiently
large and diverse data, we find it not a strict necessity to apply heuristic processing such as visual
artifacts [16] or generative methods [69] to train human-robot policies - basic image augmentations
such as color jittering and Gaussian blurring are effective regularization.
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Table 2: Success rate of autonomous skill execution. Co-training with human data (H. Data)
significantly improves the Out-Of-Distribution (O.0.D.) performance with nearly 100% relative im-
provement on all tasks on Humanoid A. We also ablate the design choice of using different normal-
izations (D. Norm) for different embodiments. We designate each task setting to investigate a single
type of generalization. Detailed analysis of each type of generalization is presented in Sec. C.

Training. The final policy is denoted as 7 : fy(-) — A for both human and robot policy, where fy
is a transformer-based neural network parametrized by €. The final loss is given by,

L= 41(7T(Si)7 ai) +A- gl(ﬂ(si)EEF, ai,EEF) s (D

where EEF are the indices of the translation vectors of the left and right wrists, and A = 2 is
an (insensitive) hyperparameter used to balance loss to emphasize the importance of end effector
positions over learning unnecessarily precise finger tip keypoints.

4 Experiments

Hardware Platforms. We run our experi-
ments on two humanoid robots (Humanoid A
and Humanoid B shown in Fig. 4) equipped
with 6-DOF Inspire dexterous hands. Hu-
manoid A is a Unitree H1 robot and Humanoid
B is a Unitree H1_2 robot with different arm
configurations. Similar to humans, both robots L ,

(1) are equipped with actuated necks [9] to get (a) Humanoid A
make use of egocentric views and (2) do not

have wrist cameras. Unless otherwise noted, Figure 4: Hardware Illustration. Most robot data
most humanoid data collection is done with Hu-  attributes to Humanoid A, a Unitree HI robot. Hu-

. . . manoid B, a Unitree H1-2 robot with different arm mo-
manoid A. We use Humanoid B mainly for test- . .
tor configurations, is used to evaluate few-shot cross-

ing cross-humanoid generalization. humanoid transfer. Detailed comparisons in Sec. D

Implementation Details. We implement policy architecture by adopting an transformer-based ar-
chitecture predicting future action chunks [5]. We use a frozen DinoV2 ViT-S [67] as the visual
backbone. We implement two variants: (1) ACT: baseline implementation using the Action Chunk
Transformer [5], trained using only robot data. Robot states are represented as joint positions. (2)
HAT: same architecture as ACT, but the state encoder operates in the unified state-action space.
Unless otherwise stated, HAT is co-trained on robot and human data. A checkpoint is trained for
each task with approximately 250-400 robot demonstrations.

Experimental Protocol. We collect robot and human demonstrations in different object sets.
Since human demonstrations are easier to collect, the settings in human demonstrations are gener-
ally more diverse, which include background, object types, object positions, and the relative position
of the human to the table.

We experimented with four different dexterous manipulation tasks and investigated in-distribution
and out-of-distribution setups. The in-distribution (1.D.) setting tests the learned skills with back-
grounds and object arrangements approximately similar to the training demonstrations presented in
the real-robot data. In the Out-Of-Distribution (0.0.D.) setting, we test generalizability and robust-
ness by introducing novel setups that were presented in human data but not in robot data. Fig. 7
visualizes different manipulation tasks and how we define out-of-distribution settings for each task.
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Figure 5: Few-Shot Adaptation. Co-training consistently outperforms isolated training as Hu-
manoid B demonstrations increase, achieving robust success rates even in low-data regimes.

4.1 Main Evaluation

Human data has minor effects on LD. testing. From Tab. 2, we can see that I.D. performance
with or without co-training with human data gives similar results. In the L.D. setting, we closely
match the scene setups as training demonstrations, including both background, object types, and
object placements. Thus, policies trained with only a small amount of Humanoid A data performed
well in this setting. This finding is consistent with recent work [9, 7] that frozen visual foundation
models [17, 67] improve robustness against certain external perturbations such as lighting.

Human data improves the O.0.D. settings with many generalizations. One common challenge
in imitation learning is overfitting to only in-distribution task settings. Hence, it is crucial for a robot
policy to generalize beyond the scene setups seen in a limited set of single-embodiment data. To
demonstrate how co-training with human data reduces such overfitting, we introduce O.0.D. task
settings to evaluate such generalization. From Tab. 2, we can see that co-training drastically im-
proves O.0.D. settings, achieving nearly 100% relative improvement in settings unseen by the robot
data. In particular, we find that human data improves three types of generalization: background,
object placement, and appearance. To isolate the effect of each variable, each task focuses on a
specific type of generalization as listed in Tab. 2, with in-depth analyses in Sec. C.

4.2 Few-Shot Transfer across Heterogenous Embodiments

We conducted few-shot generalization experiments on a distinct humanoid platform (Humanoid B),
contrasting it with our primary platform, Humanoid A. Notably, Humanoid B’s demonstration data
were collected in an entirely separate environment, introducing both embodiment and environmental
shifts. We highlight two key advantages of our approach: (1) the ability to unify heterogeneous
human-centric data sources (humanoids and humans) into a generalizable policy framework, and (2)
the capacity to rapidly adapt to new embodiments with drastically reduced data requirements.

Experiment 1: Cross-embodiment co-training efficacy Using only 20 demonstrations from Hu-
manoid B, we trained 3 policies - respectively on data from (i) Humanoid B only, (ii) Humanoid
B + Humanoid A (cross-embodiment), and (iii) Humanoid B + Humanoid A + Human (cross-
embodiment and human priors). As shown in Fig. 5a, co-trained policies (ii) and (iii) substantially
outperformed the Humanoid B-only baselines on all task settings, underscoring the method’s ability
to transfer latent task structure across embodiments.

Experiment 2: Scaling Demonstrations for Few-Shot Adaptation We further quantified the relation-
ship between required for few-shot generalization. We hold Humanoid A and human datasets fixed
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Table 3: Importance of unifying policy inputs and out-
Figure 6: Human data has better Puts. We report the number of successes of vertical grasp-
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grasping successes out of 10 trials with Baselines use J01nF positions as state input or do not inter-
models trained with robot-only dataand ~ Polate human motions.

mixed data. Red boxes indicate where

training data is collected.

for the horizontal grasping task and ablate number of demonstrations required for Humanoid B in
Fig. 5. Co-training (Humanoid B + A + Human) consistently outperformed isolated training on
Humanoid B across all settings, especially in the few-data regime.

4.3 Ablation Study

Sampling Efficiency of Human and Humanoid Data. Conceptually, collecting human data is less
expensive, not just because it can be done faster, but also because it can be done in in-the-wild
scenes; reduces setup cost before every data collection; and avoids the hardware cost to equip every
operator with robots.

We perform additional experiments to show that even in the lab setting, human data can have better
sampling efficiency in unit time. In particular, we provide a small-scale experiment on the vertical
grasping task. Allocating 20 minutes for two settings, we collected (1) 60 Humanoid A demon-
strations, (2) 30 Humanoid A demonstrations, and 120 human demonstrations. To avoid conflating
diversity and data size, the object placements in all demonstrations are evenly distributed at the bot-
tom 6 cells. The results are given in Fig. 6. The policy trained with mixed robot and human data
performs significantly better, which validates the sampling efficiency of human data over robot data.
Each cell represents a 10cm x 10cm region where the robot attempts to pick up a box.

State-Action Design. In Tab. 3, we ablate the design choices of the proprioception state space and
the speed of output actions. In particular, using the same set of robot and human data, we imple-
ment two baselines: 1) a unified state-action space, but does not interpolate (i.e., slow down) the
human actions; and 2) a baseline that interpolates human actions but uses separate state representa-
tion for humanoid (joint positions) and humans (EEF representation). The policies exhibit different
failure patterns during the rollout of these two baselines. Without interpolating human actions, the
speed of the predicted actions fluctuates between fast (resembling humans) and slow (resembling
teleoperation), which leads to instability. Without a unified state space, the policy is given a ‘short-
cut’ to distinguish between embodiments, which leads to on-par in-distribution performance and
significantly worse OOD performance.

More Ablation Study. Due to space limit, please refer to the appendix and the supplementary for
more qualitative visualization and quantitative ablation studies.

5 Conclusions

This paper proposes PH?D, an effort to construct a large-scale human task-oriented behavior dataset,
along with the training pipeline HAT, which leverages PH?D and robot data to show how humans can
be treated as a data source for cross-embodiment learning. We show that it is possible to directly train
an imitation learning model with mixed human-humanoid data without any training surrogates when
the human data are aligned with the robot data. The learned policy shows improved generalization
and robustness compared to the counterpart trained using only real-robot data.
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(a) The robot performs the cup passing task across four different backgrounds. The left side shows the four
background variations, while the right side illustrates the two passing directions: (#/ - Right hand passes the
cup to the left hand, #2 - Left hand passes the cup to the right hand).

(b) The robot performs the horizontal grasping task with four different items: bottle, box_1, box_2, and can,
as shown on the left. The right side illustrates the process: (#1-#3 - The robot grasps the bottle, #4-#5 - The
robot places it into the plastic bin).

Diff. Position '

(c) The robot performs the vertical grasping task. As shown on the left, the Dynamixel box is placed in nine
different positions for grasping. The right side illustrates the process: (#1-#3 - The robot grasps the box, #4-#5
- The robot places the box into the plastic bin).

(d) The robot performs the pouring task. The left side shows different settings achieved by varying the robot’s
rotation and the table’s position. The right side illustrates the pouring process: (#/ - Right hand grasps the
bottle, #2 - Left hand grasps the cup, #3 - Pouring the drink, #4 - Left hand places the cup down, #5 - Right
hand places the bottle down).

Figure 7: Illustrations of tasks used in quantitative evaluations. From top to bottom: cup passing,
horizontal grasping, vertical grasping, and pouring.

Bottle Box; Boxy; Can
1.D. H.D. H.D. H.D.

Without whole-body ~ 8/10  6/10  0/10  7/10 21/40
With whole-body 9/10  3/10 3/10 3/10 18/40

Table 4: Ablation of how human whole-body movement in training demonstrations affects
policy rollout. We collect the same number of demonstrations on the same set of objects for the
grasping task with or without whole-body movement. Since the robot does not have a natural whole-
body movement like humans, it negatively influences the manipulation success rate.

Method Ovr. Succ.

A More Ablation Study - Data Collection

Autonomous Whole-body Movement. In Tab. 4, we justify the necessity to minimize body move-
ment in human data collection. Humans tend to move their upper body unconsciously during manip-
ulation (including shoulder and waist movement). However, existing humanoid robots have yet to
reach such a level of dexterity. Thus, having these difficult-to-replicate actions in the human demon-
strations leads to degraded performance. We hypothesize that such a necessity would be greatly
reduced with the development of both whole-body locomotion methods and mechanical designs,
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Method Grasping (secs) Pouring (secs)

Human Demo 3.79+0.27 4.8140.35
Human Demo with VR 4.0940.30 4.904+0.26
Humanoid Demo (VR Teleop) 19.7241.65 37.31£6.25

Table 5: Amortized mean and standard deviation of the time required to collect a single demon-
stration, including scene resets. The first row shows the time for regular human to complete cor-
responding tasks in real world. The second row represents our human data when wearing VR for
data collection, demonstrating that egocentric human demonstrations provide a more scalable data
source compared to robot teleoperation.

but for the currently available platforms, we instruct operators to minimize body movement as much
as possible in our dataset.

Efficiency of Data Collection. In Tab. 5, we compare task completion times across different setups,
including standard human manipulation, human demonstrations performed while wearing a VR de-
vice, and robot teleoperation. This analysis highlights how task-oriented human demonstrations can
be a scalable data source for cross-embodiment learning. Notably, wearing a VR device does not
significantly impact human manipulation speed, as the completion time remains nearly the same as
in standard human demonstrations.

Among different data collection schemes, we find that most overhead arises during the retargeting
process from human actions to robot actions. This is primarily due to latency and the constrained
workspace of 7-DoF robotic arms, which are inherent challenges in existing data collection methods
such as VR teleoperation [9], motion tracking [48, 10], and puppeting [8, 5].

Beyond data collection speed, human demonstrations offer several additional advantages over tele-
operation. They provide a safer alternative, reducing risks associated with real-robot execution.
They are also more labor-efficient, as they do not require additional personnel for supervision. Fur-
thermore, human demonstrations allow for greater flexibility in settings, enabling a diverse range
of environments without requiring robot-specific adaptations. Additionally, human demonstrations
achieve a higher demonstration success rate, and the required hardware (such as motion capture or
VR devices) is more accessible and cost-effective compared to full robotic setups. These factors
collectively make human data a more scalable solution for large-scale data collection.

B Normalization of different embodiments.

Tab. 2 suggests minor differences between using different normalization coefficients for the states
and actions vectors of humans and humanoids. We take a closer look in Fig. 8, where we investigate
the impact of different normalization strategies in the vertical grasping (picking) task. Noticeably,
the same normalization approach achieved the highest overall success rate, but the success distribu-
tion is biased towards the upper-right region of the grid.

We hypothesize that this is because humans have a larger workspace than humanoid robots. Thus,
human data encompasses humanoid proprioception as a subset, which results in a relatively smaller
distribution for the robot state-action space.

C In-Depth Analysis of Different Types of Generalization

Human data improves background generalization. We chose to use the cup passing task to test
background generalization. We prepared four different tablecloths as backgrounds, as shown in
Fig. 7a. In terms of training data distribution, the teleoperation data for this task was collected
exclusively on the paper background shown in Fig. 7a, whereas the human data includes more than
five different backgrounds. This diverse human dataset significantly enhances the generalization
ability of the co-trained HAT policy. As shown in Tab. 7. , HAT consistently outperforms across
all four backgrounds, demonstrating robustness to background variations. In addition, the overall
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Bottle Box; Boxs Can
1.D. HD. 0.0.D. 0.0.D.

ACT 8/10  5/10 1/10 1/10 16/40
HAT 8/10  7/10 1/10 4/10 21/40

Table 6: Object Appearance Generalization: In the horizontal grasping task, we evaluated the
grasping performance by attempting to grasp each object 10 times and recorded the success rate.

Method Ovr. Succ.

success rate increases by nearly 50% compared to training without human data, highlighting the
advantage of utilizing diverse human demonstrations.

Human data improves appearance generalization. To test how co-training improves robustness
to perturbations in object textures, we evaluate the horizontal grasping policy on novel objects, as
shown in Fig. 7b. Specifically, we compare the policy’s performance on the bottle, box_1, box_2,
and can, as shown left to right in the first image in Fig. 7b. These objects differ significantly in both
color and shape from the bottle used in the teleoperation data distribution.

Since grasping is a relatively simple task, our adjusted policy demonstrates strong learning capabil-
ities even with only 50 teleoperation data samples. The policy can successfully grasp most bottles
despite the limited training set. To better highlight the impact of human data, we selected more chal-
lenging objects for evaluation. As shown in Tab. 6, human data significantly enhances the policy’s
ability to grasp these more difficult objects.

Notably, box_1 appears in the human data, while box_2 does not. Despite this, we observe that co-
training with human data still improves overall performance, even on box_2, though its success rate
does not increase. This suggests that, beyond direct experience with specific objects, the human data
helps the policy learn broader visual priors that enable more proactive and stable grasping behaviors.
For box_2, while the success rate remains low—partially due to its low height and color similarity
to the table—the co-trained HAT policy demonstrates fewer out-of-distribution (OOD) failures and
more actively searches for graspable regions. The failures on box_2 are primarily due to unstable
grasping and the small box slipping from the hand, rather than the inability to perceive or locate the
object.

Furthermore, adding more human data not only improves performance on objects seen in human
training demonstrations (e.g., box_1) but also enhances generalization to completely novel objects
(e.g., box_2 and can). We hypothesize that, as the number of objects grows, HAT starts to learn
inter-category visual priors that guide it to grasp objects more effectively, even when they were not
explicitly present in the training set.

Human data improves object placement generalization. Finally, we introduce variations in object
placements that are not present in the real-robot training demonstrations and specifically investigate
this in the vertical grasping (picking) task. In this task, we intentionally constrain the robot data
collection to object placements within a subset of cells, while human vertical grasping data covers a
much more diverse range of settings.

To systematically analyze the impact of human data, we evaluate model performance on a structured
3x3 grid, where each cell represents a 10cm x 10cm region for grasping attempts. The numbers in
each cell indicate the number of successful picks out of 10 trials. Real-robot training data is collected
from only two specific cells, highlighted with dashed lines.

A key detail in our teleoperation data distribution is that 50 picking attempts are collected from the
right-hand side grid and only 10 from the left-hand side grid. This imbalance explains why policies
trained purely on teleoperation data struggle to grasp objects in the left-side grid. We observe that
models trained solely on robot data fail to generalize to unseen cells, whereas cross-embodiment
learning with human data significantly improves generalization, doubling the overall success rate.
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HAT (diff norm) HAT (same norm)

Figure 8: Object Placement Generalization. Performance comparisons of models trained with and
without human data on vertical grasping (picking). Each cell in the 3x3 grid represents a 10cm X
10cm region where the robot attempts to pick up a box, with numbers indicating successful attempts
out of 10. The real-robot data is collected in two cells inside the dashed lines. Notably, our teleop-
eration data is intentionally imbalanced.

Paper Wooden Red Green
LD. H.D. 0.0.D. 0.0.D.

ACT 19/20  14/20 12/20 10/20 55/80
HAT  20/20 16/20 18/20 18/20 72/80

Table 7: Background Generalization: In the cup passing task, we evaluate the passing performance
by recording the number of failures or retries needed to complete 20 cup-passing trials.

Method Ovr. Succ.

D In-Depth Comparison between Humanoid A and Humanoid B
configurations

This section presents a detailed comparison of the two humanoid platforms, referred to as Humanoid
A and Humanoid B, with a focus on joint structure and implications for manipulation capabilities.
We restrict our analysis to the arm configurations, as other parts of the body were not exclusively
explored in this work.

While morphologically similar, these two humanoids have drastically different arm configura-
tions that create hurdles in direct policy transfer. Besides differences in motor technical specs
such as torque and types of encoder (Humanoid B has absolute motor position encoders), they
also have different mechanical limits. The range of motion (ROM) for the first four proximal
joints—shoulder_pitch, shoulder_roll, shoulder_yaw, and elbow—differs across the two platforms.
Humanoid B exhibits a consistently wider ROM, which allows a wider set of reachable configura-
tions and increases the manipulability of the arm in constrained environments. Table 8 summarizes
the ROM values for these shared joints.

A more significant architectural divergence is observed at the wrist. Humanoid A includes a single
distal joint—wrist_roll—providing limited wrist articulation. This restricts end-effector dexterity
and constrains in-hand manipulation strategies to a single rotational degree of freedom. In contrast,
Humanoid B is equipped with a complete wrist mechanism composed of three independently actu-
ated joints: wrist_pitch, wrist_roll, and wrist_yaw. These additional degrees of freedom allow for full
orientation control of the end-effector, enabling tasks that require precise alignment, rotation, and
fine adjustment of object poses.



Joint

Humanoid A

Humanoid B

shoulder_pitch
shoulder _roll
shoulder_yaw
elbow
wrist_roll

—164° to +-164°
—19° to +178°
—T74° to +255°
—71° to 150°
—175° to 175°

—180° to +-90°
—21° to +194°
—152° to +172°
—54° to 182°
—172° to 157°
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Table 8: Joint Range of Motion Comparison between Humanoid A and B (in degrees)
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