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Peak-Graph-Based Fast Density Peak Clustering
for Image Segmentation

Junyi Guan , Sheng Li , Xiongxiong He , and Jiajia Chen

Abstract—Fuzzy c-means (FCM) algorithm as a traditional
clustering algorithm for image segmentation cannot effectively
preserve local spatial information of pixels, which leads to poor
segmentation results with inconsistent regions. For the remedy,
superpixel technologies are applied, but spatial information preser-
vation highly relies on the quality of superpixels. Density peak
clustering algorithm (DPC) can reconstruct spatial information
of arbitrary-shaped clusters, but its high time complexity O(n2)
and unrobust allocation strategy decrease its applicability for im-
age segmentation. Herein, a fast density peak clustering method
(PGDPC) based on the kNN distance matrix of data with time com-
plexity O(nlog(n)) is proposed. By using the peak-graph-based
allocation strategy, PGDPC is more robust in the reconstruction
of spatial information of various complex-shaped clusters, so it
can rapidly and accurately segment images into high-consistent
segmentation regions. Experiments on synthetic datasets, real and
Wireless Capsule Endoscopy (WCE) images demonstrate that
PGDPC as a fast and robust clustering algorithm is applicable to
image segmentation.

Index Terms—image segmentation, density peak clustering,
kNN, peak-graph.

I. INTRODUCTION

IMAGE segmentation partitions image into non-overlapped
and consistent regions, which is critical for image processing

and computer vision. But it still faces challenges due to the
multifariousness of image types, for which technologies like
clustering [1], GraphCut [2], watershed transform [3], Markov
random field [4], neural network [5], etc are selectable. Clus-
tering method that automatically groups similar points into
meaningful clusters is widely used in image segmentation due
to its effectiveness and rapidity.

Fuzzy c-means (FCM) [6] is one of the most popular cluster-
ing algorithms for image segmentation due to its effectiveness
in retaining original image information. However, FCM can-
not effectively preserve the local spatial information of pixels
since it only considers the spatial relationship between data
points and cluster centers [7]. Numerous FCM-based methods
are proposed [7], [8] to incorporate local spatial information,
but the poor segmentation results with lots of low-consistent
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regions caused by their inefficiency in preserving local spatial
information remains a problem. Lei et al. [9], [10] introduces a
new superpixel technology to remedy this problem, yet, spatial
information preservation highly relies on the quality of superpix-
els. Furthermore, all these FCM-based methods have a common
limitation of over-dependence on the initial-setting of cluster
center number. Such deficiencies of traditional FCM-based
methods make room for other clustering methods for image
segmentation.

Density peaks clustering (DPC) proposed by Rodriguez and
Laio does well in reconstructing spatial information of data
points due to its density-based allocation strategy and can easily
find density peaks (hereafter peak) as cluster centers. This makes
DPC a potential novel clustering method for image segmenta-
tion. Although DPC’s clustering performance is remarkable, it
still faces some shortcomings: 1) it requires high time com-
plexity O(n2) to calculate the distance between data points;
2) its allocation strategy is not robust in reconstructing the
spatial information of complex-shaped clusters. Even though
many algorithms are proposed to improve DPC [13]–[24],
they only focus on overcoming one or another shortcoming of
DPC, in other words, speed-up methods do not add extra clus-
tering accuracy, while allocation-improved methods run even
slower.

With the intention to fully and extensively improve DPC,
we propose a fast density peak clustering algorithm based on
peak-graph (PGDPC).1 With the kNN distance matrix of points,
PGDPC can run about O(nlog(n)). We divide data points into
peaks and non-peaks in advance and design a two-step allocation
strategy: first, we directly assign non-peaks within their local
areas by using DPC’s allocation strategy; and then, we assign
peaks along geodesic paths in a peak-graph which is constructed
along allocation paths of non-peaks. The main contributions of
PGDPC are: 1) PGDPC with time complexity O(nlog(n)) can
handle large datasets rapidly; 2) our peak-graph-based allocation
strategy can integrally reconstruct the spatial information of
complex-shaped clusters; 3) PGDPC is found superior to some
popular state-of-the-art methods when applied to real image
segmentation and Wireless Capsule Endoscopy (WCE) image
segmentation, which makes it an applicable alternative cluster-
ing method for image segmentation.

II. METHOD

A. DPC Algorithm and Its Problem Statement

1) DPC Algorithm: DPC calculates two quantities for each
point i: the density ρi : ρi =

∑
i�=j exp(−(

dij

dc
)2), and the

1[Online]. Available: https://github.com/Guanjunyi/PGDPCforImage
Segementation.git
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distance δi : δi = minj:ρj>ρi
(dij) from its nearest point with

a higher density. Where dij is the Euclidean distance from point
i to point j, while dc is a user-specified cutoff distance. For the
highest density point i, δi = maxi�=j(dij).

By considering cluster centers as peaks characterized by a
higher density ρ than their neighbors and by a relatively large
distance δ from points with higher densities. Cluster centers
are easily located by searching large ρ-δ points in a decision
graph. After cluster centers are selected and labeled, according to
DPC’s allocation strategy, each non-center point is only allowed
to inherit the label of its closest point with a higher density. Once
each point obtains its label, clustering completes.

2) Problem Statement: As mentioned in Section I, besides
high complexity, DPC’s allocation strategy is not robust for
complex-shaped clusters, because a complex-shaped cluster
generally consists of multiple peaks. However, since peaks do
not have a point with higher density in their local areas, according
to DPC’s allocation strategy, they will be assigned into clusters
beyond their local areas, which leads to the loss of local spatial
information of peaks. Nonetheless, points of different local areas
are most likely not in the same cluster, so DPC may misassign
peaks leading to poor clustering results. [22], [23] address this
shortcoming by applying geodesic distance, however, since all
points need to be assigned along the geodesic paths, these
methods are more time-consuming than DPC.

Therefore, in order to overcome the allocation limitation of
peaks while speeding up DPC, we propose a fast method with
complexity O(nlog(n)), called PGDPC, which only assigns
peaks along geodesic paths after constructing a peak-graph.

B. Proposed Method

PGDPC performs clustering in four steps: (i) search for peaks
of dataset; (ii) assign non-peaks within local area; (iii) assign
peaks in a peak-graph; (iv) select cluster centers among peaks
to complete clustering.

1) Search of Peaks: For each point i, we set i and its k nearest
neighbors Nk(i) = {i1, i2, . . .ik} as its local area, where ik

indicates the kth nearest neighbor of point i. In order not to
add extra complexity, we use kNN density [18] as:

ρ′i = exp

⎛
⎝−1

k

∑
j∈Nk(i)

(dij)
2

⎞
⎠ (1)

Since peaks are density maximum in their local areas, we define
peak and non-peak as:

Definition 1: if ∀j ∈ Nk(i) satisfies that ρ′j < ρ′i, then point
i is a peak, otherwise, i is a non-peak.

With this definition, we can easily classify points into peaks
and non-peaks.

2) Allocation of Non-Peaks Within Local Area: DPC’s allo-
cation strategy can be proved reliable for non-peaks based on
the idea of the mean shift method [25]. A non-peak at least has
a dense region within its local area, among which the nearest
dense region is exactly where its nearest neighbor of higher
density locates. According to the idea of the mean shift method
that a point should shift towards a dense region in its proximity,
every non-peak should assign to the same cluster as its nearest
neighbor of higher density, i.e., DPC’s allocation strategy.

However, peaks cannot directly follow DPC’s allocation strat-
egy, because a peak’s nearest point of higher density is beyond
its local area, which may cause the peak to be assigned into an

unassociated cluster. Therefore, an alternative allocation strat-
egy of peaks is necessary.

3) Allocation of Peaks in a Peak-Graph: In order to assign
peaks into associated clusters, we come up with a graph-based
allocation strategy. Different from SSSP-DPC [22] that assigns
all points along the geodesic path in a graph of the dataset,
we only assign peaks along the geodesic path in a specific
peak-graph, since non-peaks can be assigned reliably within
local areas. In order to fast construct the peak-graph, we propose
a low-complexity method according to DPC-based allocation
paths of non-peaks.

DPC-based allocation paths of non-peaks have constructed an
allocation forest composed of multiple allocation trees (denoted
as T ) with peaks as root nodes. By adding edges that connect
mutual-neighbor pairs between adjacent trees, the forest can be
connected as an allocation graph.

Definition 2: if T (i) �= T (j) (i.e., the allocation tree of j),
∃ i ∈ Nk(j), and∃ j ∈ Nk(i), then i and j are a mutual-neighbor
pair between tree T (i) and T (j).

In the allocation graph, points connected by each edge are
closely associated neighbors. Hence, we approximately suppose
that all edges have equal weights of association. Based on this,
the association between peaks can be evaluated by the geodesic
distance in-between (i.e., the number of edges of the shortest
path between peaks).

It is worth noting that in an allocation tree a non-peak’s depth
value (denoted as φ) equals the geodesic distance from the non-
peak to the peak (root node). While the depth values of non-peaks
can be calculated during the allocation of non-peaks: we initially
set each φi = 0, then during the allocation process, we execute
φi = φj + 1, where j is i’s nearest point of higher density. After
the allocation is completed, φi is the depth value, and if φi = 0,
then i is a peak.

On this basis, we can fast calculate the association degree
A(i, j), namely geodesic distance between adjacent peaks i and
j, based on the edge with minimum sum of φ between adjacent
tree T (i) and T (j) as:

A(i, j) = min(φi′ + φj′)

+ 1, i′ ∈ T (i) ∩Nk(j
′), j ′ ∈ T (j) ∩Nk(i

′) (2)

After obtaining association degree of peaks, we construct a
weighted graph G(V,E,w) of peaks, called peak-graph, where
a peak (node) v ∈ V is connected to its adjacent peak u ∈ V
through an edge ev,u ∈ E with an associated cost wv,u =
A(v, u). On the basis of peak-graph, we assign a peak to the
same cluster as its nearest peak of higher density, and define δ′
path as the geodesic path between them:

δ′v = min
u:ρ′

u>ρ′
v

ξ(Γ = {v → u})

= min
u:ρ′

u>ρ′
v

(ξ(Γ = {v, p2, p3, , , pt, u})

= min
u:ρ′

u>ρ′
v

t∑
i=1

wΓ(i),Γ(i+1) (3)

Where ξ(Γ = {v → u}) is the geodesic distance of geodesic
pathΓ = {v → u} = {v, p2, p3, , , pt, u} between peak v andu,
and p2, . . ., pt are peaks along the geodesic path. For peaks, their
δ′ are calculated by applying the Dijkstra algorithm [26]. If there
is no path from peak v to other peak of higher density (i.e., δ′v =
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Fig. 1. The core clustering idea of PGDPC on the Jain dataset. First, data points are divided into peaks (blue point) and non-peaks (red point). Then, an allocation
graph (a) is constructed by DPC-based allocation paths (black line) of non-peaks and adding edges (green line) between adjacent trees. On this basis, a peak-graph
(b) is constructed, where δ′ paths of peaks are located. Subsequently, two cluster centers are selected and given unique labels by intuitively observing a ρ′-δ′
decision graph (c). Finally, clustering is completed (d) after all non-center points inherit their labels along their δ′ paths.

∅), we define δ′v = 3
2 × (maxu:δ′u �=∅(δ

′
u)). Followed, among

these peaks, we will select appropriate cluster centers.
4) Cluster Center Selection: Cluster centers are considered

as peaks that characterized by a higher density ρ′ than their
neighbors and a relatively large geodesic distance δ′ from peaks
with higher densities. Since non-peaks with a density smaller
than their neighbors are not considered as candidate cluster
centers, for non-peaks, we define their δ′ paths as their DPC-
based allocation paths, δ′ = 1. After cluster centers have been
located and given unique labels, the remaining points inherit
labels along the δ′ paths to complete clustering. Fig. 1 illuminates
the clustering process of our algorithm on the Jain [39] dataset
that consists of two multi-peak clusters.

C. Complexity Discussions

PGDPC’s only parameter k is the number of neighbors that
usually around 1%n to 2%n [12], where n is the total number
of points in the dataset. On the basis of the kNN distance
matrix calculated by a fast kNN algorithm (cover tree [37] or
kd-tree [38]) with time complexityO(nlog(n)). The complexity
required for PGDPC’s four steps in performing clustering are:
step (i) search of peaks and step (ii) allocation of non-peaks
together need O(nlog(k)); step (iii) allocation of peaks needs
O(|V |log(|V |) + |E|) (|V | and |E| represent the number of
peak and edges in theG(V,E,w)) respectively); (iv) selection of
cluster centers to complete clustering needsO(N). Since k, |V |,
and |E| are all far less than n, the overall time complexity of
PGDPC is aboutO(nlog(n)). PGDPC is proved to be extremely
efficient with its entire operation requiring no additional distance
calculation, except for kNN search.

III. EXPERIMENT

A. Experimental Set up

Data Sets: 4 different types of synthesis datasets: (Jain [39],
Lineblobs [40], Agg [41], and Birch1 [42]) for clustering per-
formance evaluation of PGDPC. The Berkeley segmentation
dataset and benchmark (BSDS500) [28] for real image segmen-
tation experiment. A set of abnormal WCE images obtained
from cooperative hospitals and the KVASIR [33] dataset for the
WCE image segmentation experiment. Machine configuration:
experiments are conducted on Matlab (r2017b) on Mac-Book
Pro with 2.9 GHz Intel Core i5, 8 G RAM. Data preprocessing:
we use min-max normalization [27] to normalize input data.

B. Experiments on Synthetic Datasets

Fig. 2(a) shows PGDPC’s perfect identification of various-
shaped clusters on 4 synthetic datasets. It proves PGDPC’s
well function on the reconstruction of spatial information of

Fig. 2. Experiments of PGDPC on 4 synthesis datasets, with k = 10, 10, 10
and 100, respectively (a). Speed comparison of PGDPC, FastDpeak, FCM, and
k-means on 10 different size sampling datasets of the Birch1 dataset (b).

Fig. 3. Our real image segmentation framework.

various complex-shaped clusters, which is obviously superior to
DPC [20]. Fig. 2(b) displays the execution speed comparison of
PGDPC, FastDPeak [16] (i.e., an excellent fast DPC algorithm),
k-means [11], and FCM [6]) on the Birch1 dataset with 100,000
points. The results demonstrate PGDPC’s fast speed and ability
to handle large datasets.

C. Experiments on Real Image Segmentation

1) Real Image Segmentation Framework: Since the number
of pixels in a real image are usually huge, to reduce calcu-
lation cost, we use high-efficient superpixel technology (such
as SLIC [36], SNIC [43], and SH [44]) to evenly divide the
image into Nsp superpixels in advance, here we choose the
SLIC algorithm. In order to improve the consistency of adjacent
superpixels, we smooth the image with Gaussian blur. As input
data of PGDPC, each superpixel is represented by [x̄, ȳ, l̄, ā, b̄]′,
that is, the average value of all pixels’ [x, y, l, a, b]′ in it, where
[x, y] represents coordinate information and [l, a, b] represents
the CIE-Lab color information. Then, by observing the deci-
sion graph, we easily obtain the number of clusters C. The
segmentation task is completed after grouping Nsp superpixels
into C clusters. We name this real image segmentation method
as SLIC-PGDPC with two parameters setting as: Nsp = 500,
and k = 10. Fig. 3 illustrates our framework of real image
segmentation.
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Fig. 4. Comparison of segmentation results on 3 typical real images from the
BSDS500 using different algorithms.

TABLE I
AVERAGE PERFORMANCE OF SIX ALGORITHMS ON THE BSDS500 THAT

INCLUDES 500 REAL IMAGES

TABLE II
COMPARISON OF EXECUTION TIMES (IN SECONDS) OF SIX ALGORITHMS ON

THE BSDS500 THAT INCLUDES 500 REAL IMAGES

2) Results on Real Images: We demonstrate the superiority
of the SLIC-PGDPC on real image segmentation with images
selected from BSDS500. Fig. 4 is the segmentation results of
comparing algorithms on 3 typical real images selected from
BSDS500. As shown, FCM and FGFCM fail to segment the
images due to the loss of spatial information; SFFCM and
MMGR-AFCF obtain high-consistent areas by dividing images
into few large superpixels using the MMGR superpixel algo-
rithm in advance, the segmentation results are still not satisfying,
because large superpixels always mean a high risk of errors
(marked by white area); SLIC-FCM (ie., the FCM algorithm uses
SLIC superpixels as input) gets high-consistentbut poor seg-
mentation results; while SLIC-PGDPC obtains both complete
and consistent segmentation areas, and perfectly recognizes the
outlines of all objects. SLIC-PGDPC’s good outcome is a credit
to the PGDPC’s reconstruction ability of spatial information,
and different from SFFCM and MMGR-AFCF, SLIC-PGDPC
evenly subdivides an image into so tiny superpixels that even
when superpixel errors occur, they won’t influence the final seg-
mentation results. This verifies that PGDPC’s excellent recon-
struction ability of spatial information in image segmentation,
which means, unlike FCM-based image segmentation methods,
PGDPC can get rid of the high dependency of superpixels.

Table I displays the average performance (the probabilistic
rand index (PRI), the variation of information (VI), the global
consistency error (GCE), and the boundary displacement error
(BDE) [34]) of comparing algorithms on the BSDS500 dataset,
where SFFCM and MMGR-AFCF comparably get the best BDE
scores, while SLIC-PGDPC provides the best results in PRI, VI,
and GCE performance metrics. This experiment demonstrates
that SLIC-PGDPC has excellent segmentation performance on
real images.

Fig. 5. Comparison of segmentation results of different algorithms on 3 typical
bleeding images (a) and 3 typical polyp images (b).

TABLE III
COMPARISON OF AVERAGE IOU SCORE OF DIFFERENT ALGORITHMS ON

30 BLEEDING WCE AND 30 POLYP WCE IMAGES

In addition, Table II displays the average computational cost
of different algorithms on the BSDS500 dataset, where SLIC-
PGDPC is faster than all other comparative algorithms.

D. WCE Image Segmentation

WCE image is critical for gastrointestinal (GI) tract abnormal
detection. However, unlike real images, WCE image faces high
color consistency and blurred outlines problems, which may lead
to poor superpixel segmentation results. Herein, to achieve WCE
image segmentation, we apply PGDPC to directly group pixels
that represented as [x, y, l, a, b, l′, u′, v′]′, where [l,′ u,′ v′] is the
CIE-LUV color information that used for enhancing features.
To reduce computing cost, we compress a WCE image into
100 × 100 pixels.

Fig. 5 shows the segmentation results of PGDPC and 5 well-
trained neural network algorithms [5], [29]–[32] on 6 typical
WCE images. As shown, only PGDPC successfully segments
edge-blur bleeding areas and similar-color polyp areas from
6 typical abnormal WCE images. Besides, Table III displays
the average IOU (Intersection over Union) scores [35] of 6
algorithms on 60 WCE images (30 bleeding images from coop-
erative hospitals and 30 polyp WCE images from the KVASIR
dataset [33], where PGDPC obtains the highest overall IOU
score. This experiment demonstrates that PGDPC is capable of
WCE image segmentation.

IV. CONCLUSION

PGDPC, a fast DPC algorithm for image segmentation that
performs clustering by searching for density peaks in a peak-
graph is proposed. PGDPC inherits DPC’s idea of finding cluster
centers as density peaks, and its peak-graph-based allocation
strategy vastly improves DPC’s performance of spatial infor-
mation reconstruction on complex structure clusters. Moreover,
PGDPC has a much faster speed than DPC because it is almost
free from distance calculation except for the kNN search. With
these two improvements and by combining with the SLIC super-
pixel technology, PGDPC is enabled to deal with image segmen-
tation rapidly and effectively. Numerous experiments have veri-
fied that SLIC-PGDPC not only can quickly segment real images
but also can ensure a high-consistentin the segmentation areas. In
addition, we apply PGDPC to the more challenging WCE image
segmentation, experimental results prove that PGDPC also has
the ability to successfully perform WCE image segmentation.
Thus, we are confident of PGDPC as an applicable clustering
algorithm for image segmentation.
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