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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) is currently the leading
approach for aligning large language models with human preferences. Typically,
these models rely on extensive offline preference datasets for training. However, of-
fline algorithms impose strict concentrability requirements, which are often difficult
to satisfy. On the other hand, while online algorithms can avoid the concentrability
issue, pure online exploration could be expensive due to the active preference query
cost and real-time implementation overhead. In this paper, we propose a novel ap-
proach: Hybrid Preference Optimization (HPO) which combines online exploration
with existing offline preferences by relaxing the stringent concentrability conditions
for offline exploration, as well as significantly improving the sample efficiency
for its online counterpart. We give the first provably optimal theoretical bound
for Hybrid RLHF with preference feedback, providing sample complexity bounds
for policy optimization with matching lower bounds. Our results yield improved
sample efficiency of hybrid RLHF over pure offline and online exploration.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) stands out as the primary method for aligning
large language models with human preferences (Christiano et al., 2017; Bai et al., 2022; Ouyang et al.,
2022). Instead of starting from scratch with unsupervised training on extensive datasets, RLHF aligns
pre-trained models using labeled human preferences on pairs of responses, offering a statistically
lightweight approach to making language models more human-like. While labeling response pairs is
easier than generating new responses, the volume of these pairs is critical for effective alignment. A
large dataset is needed to ensure broad coverage of linguistic nuances, reduce the impact of noisy
human feedback, and provide enough statistical power for the model to generalize well. Although
labeling individual pairs is simpler, scaling this process can still become resource-intensive, making
the volume of response pairs a key factor in successful model alignment. In the light of this, recently
a theoretical question of interest has arisen: How can algorithms be designed to be sample-efficient
during this alignment phase?

Two main approaches have emerged in addressing this question: online RLHF and offline RLHF.
Online methods (Xie et al., 2024; Cen et al., 2024; Zhang et al., 2024) have interactive access to
human feedback or leverage a more powerful language model to explore diverse and novel responses
beyond what the pre-trained model can provide. Online exploration, though theoretically sample-
efficient, is costly because it requires frequent human feedback, real-time updates to large language
models, and continuous deployment to generate novel responses. These frequent model updates and
the need for real-time interaction with human annotators make the process resource-intensive and
time-consuming, presenting significant practical challenges in terms of both scalability and cost.
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In contrast, offline RLHF relies on large, readily available sets of labeled response pairs to align the
language model. While these datasets are easier to collect and use, achieving provable guarantees on
the model’s optimality requires stringent conditions—specifically, that the dataset is close to data
generated by an optimally-aligned model. Offline datasets, however, are static and often lack the
diversity and novel responses that online exploration provides. This limitation, coupled with the
assumption that the dataset contains enough near-optimal examples, restricts the model’s ability to
generalize effectively, potentially leading to suboptimal alignment.

This prompts the question: Can we combine offline preference data while relaxing these stringent
conditions to significantly reduce the number of samples required in online exploration, thereby
addressing its practical costs effectively?

In this paper, we answer this question affirmatively.

Category Upper Bound Lower Bound Scalable Model-free

Xie et al. (2021) Traditional RL ✓ ✓ ✗ ✗
Tan et al. (2024) Traditional RL ✓ ✓ ✗ ✗
Xiong et al. (2024) RLHF ✓ ✗ ✗ ✓
Gao et al. (2024) RLHF ✓ ✗ ✓ ✓
Chang et al. (2024) RLHF ✓ ✗ ✓ ✓
Our work RLHF ✓ ✓ ✓ ✓

Table 1: A comparison with lines of work closest to ours.
Here, we list our technical contributions:

• We introduce the first Hybrid RLHF algorithm that is both provably efficient and practical
for implementation. In contrast, previous discussions of hybrid training in Xiong et al.
(2024), Gao et al. (2024), and Chang et al. (2024) either lack practical applicability or do
not provide a theoretical analysis of the advantages of hybrid training. See Table 1 for a
detailed comparison.

• Our algorithm demonstrates superior sample complexity compared to both online and offline
RLHF approaches (Theorem 1). Specifically, in the case of linear MDPs, our method
surpasses the limitations imposed by the lower bounds of purely online and offline training
(Theorems 2 and 3).

2 RELATED WORK

DPO-related RLHF. The Direct Preference Optimization (DPO) algorithm, first introduced by
Rafailov et al. (2023), has gained considerable attention due to its effectiveness and simplicity. Since
its introduction, various DPO variants have been proposed, each with unique enhancements aimed
at improving performance. Several of these methods focus on modifying the loss function, such
as SLiC (Zhao et al., 2023), RSO (Liu et al., 2023), P3O (Wu et al., 2024), PCO (Xu et al., 2023),
and SimPO (Meng et al., 2024). Other approaches take a broader view by incorporating general
preference modeling, integrating social choice theory, and introducing algorithms like Nash-MD
(Munos et al., 2023), DNO (Rosset et al., 2024), KTO (Ethayarajh et al., 2024), and IPO (Azar et al.,
2024).

DPO’s popularity has also captured the interest of the theoretical research community. Xiong et al.
(2024) explored the benefits of online iterative training with an offline warm-up phase, while Ye et al.
(2024) extended this analysis from a reward-based framework to a general preference oracle setting.
Both studies, however, limit their analysis to pure bandit environments. Very recently, the online
convergence of DPO is more carefully analyzed by Shi et al. (2024). Meanwhile, Rafailov et al.
(2024) further reinterpreted DPO through the lens of implicit Q⋆ estimation within KL-constrained
deterministic token-level Markov Decision Processes (MDPs). Gao et al. (2024) introduced a study
on relative reward modeling, while recent work by Cen et al. (2024) and Xie et al. (2024) analyzed
the sample efficiency of combining DPO with optimistic exploration. This research has also inspired
the development of the online exploration component in our Hybrid Preference Optimization (HPO)
algorithm.
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Despite these advancements, none of these has deep dive into a hybrid training setting. Cen et al.
(2024) and Ye et al. (2024) have discussed offline and online learning separately, but neither has
explored the potential benefits of combining the two. Xiong et al. (2024) addressed hybrid training but
relied on impractical assumptions, such as coverage over the optimal policy π⋆, and failed to provide
a quantitative characterization of hybrid RLHF compared to purely online or offline approaches.
Similarly, while Gao et al. (2024) mentioned hybrid training in their work, they did not delve deeply
into the topic, leaving an open area for further investigation. Finally, although the same algorithm
name Hybrid Preference Optimization is also used in Song et al. (2024), that version is essentially
an offline DPO regularized by unlabeled online data, which is very different from our approach of
enhancing online exploration through additional offline data.

Other Theoretical Work in RLHF Other theoretical work on RLHF primarily centers around
learning reward models and analyzing sample complexities for specific classes of Markov Decision
Processes (MDPs). Among them, Zhu et al. (2023) and Zhu et al. (2024) have focused on learning
various reward models, while others, including Du et al. (2024), Zhan et al. (2023), and Wu and Sun
(2023), have addressed on sample complexities under tabular or linear function approximations. Some
studies, such as those by Chen et al. (2022), Wang et al. (2023), and Chang et al. (2024), also explore
the use of general function approximation methods. However, these algorithms are often designed
around function classes with certain complexity measures, making them less applicable in practical
settings. Besides, Nika et al. (2024) provides a detailed theoretical comparison between DPO-related
RLHF and reward-learning-related RLHF. Among these studies, Chang et al. (2024) provides a more
detailed discussion on hybrid training in RLHF. Despite this, their work shares similar limitations
to Xiong et al. (2024), particularly in terms of too strong assumptions on single-concentrability
coefficients.

Theory of Hybrid RL. Kalashnikov et al. (2018) empirically demonstrate that in robot manipula-
tion, a small amount of online fine-tunning can largely improve the performance of offline training.
Following this, much of the theoretical work on hybrid RL has focused on quantitatively analyzing
the advantages of combining online exploration with an initial offline dataset. Key studies by Xie
et al. (2021), Song et al. (2022), and Amortila et al. (2024) have explored these benefits, often under
the assumption of certain concentrability conditions related to the behavior policy. However, recent
research by Tan et al. (2024) removes this requirement, offering an approach that does not impose
explicit constraints on the quality of the behavior policy. Building on this line of research, our work
extends the benefits of hybrid RL to the RLHF framework. Importantly, we adopt the same philosophy
as Tan et al. (2024) by not imposing additional requirements on the offline dataset, allowing for more
flexible and practical applications in RLHF scenarios.

3 PRELIMINARIES

Our study of RLHF is under the general reinforcement learning setup similar to (Xie et al., 2024)
which is a strict generalization of the token-level MDP proposed in (Rafailov et al., 2024).

3.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

We consider an episodic finite horizon markov decision process characterized by M =
(H,S,A, P, r, ρ) where H is the time horizon, S denotes the state space, A denotes the action
space, P : S × A 7→ ∆(S) denotes the transition function, r : S × A 7→ R denotes the reward
function, and ρ ∈ ∆(S) denotes the initial state distribution. A randomized policy π : S 7→ ∆(A)
generates a trajectory τ = {(s1, a1), . . . , (sH , aH)} and rewards r1, . . . , rH through the follow-
ing procedure. In particular, the initial state is sampled as s1 ∼ ρ, and for all subsequent time
steps h ∈ [H], actions are sampled as ah ∼ π(sh), reward is received as rh = r(sh, ah), and
sh+1 ∼ P (sh, ah). We use shorthand notations Eπ[·] and Pπ[·] to denote the expectation and proba-
bility of quantities of interest under this process induced by the policy π. We assume the total reward
is non-negative and bounded, i.e.

∑
h∈[H] rh ∈ [0, Rmax]. For compact notation at the trajectory

level, we denote r(τ) =
∑

h∈[H] r(sh, ah) and π(τ) =
∏

h∈[H] π(ah|sh). The expected reward
under policy π is defined as J(π) = Eτ∼π[r(τ)].
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Preference Model In RLHF, the reward signal from a trajectory (r1, . . . , rH) is generally unob-
servable. Instead, the feedback from the environment is provided through a preference oracle. In
particular, given a pair of trajectories (τ, τ̃), both having initial state s1, we follow the standard
assumptions as in (Christiano et al., 2017; Rafailov et al., 2023; 2024), that the probability of τ being
preferred over τ̃ follows the Bradley-Terry Model (Bradley and Terry, 1952), which is defined as

P(τ ≻ τ̃ |s1) =
exp (r(τ))

exp (r(τ)) + exp (r(τ̃))
. (1)

Typically, we have access to a pre-trained policy πref , and the goal of RLHF is to find the policy that
can maximize J(π) while staying not too far away from πref . That is, with regularization parameter
β > 0, we aim to maximize the following objective:

Jβ(π) = J(π)− βEπ

 ∑
h∈[H]

DKL(π(·|sh)||πref(·|sh))


= Eπ

[
r(τ)− β log

π(τ)

πref(τ)

]
. (2)

Here, we denote the optimal policy of some policy class Π as π⋆
β = argmaxπ∈Π Jβ(π).

Token-level MDPs. Given our primary focus on language models, we are particularly interested in
the token-level MDP framework, as formulated and studied by Rafailov et al. (2024). In this context,
a language model typically generates a sequence of responses from an initial prompt. The initial
prompt is treated as the initial state, s1 ∼ ρ, and each generated token, ah ∈ A, is considered an
action, where A represents the vocabulary. Under this formulation, the state at step h is represented
as sh = (s1, a1, . . . , ah−1), a concatenation of the initial prompt and all tokens generated before step
h. The state at last step, sH , can then be interpreted as the model’s complete response to the initial
prompt, including the prompt itself.

Clearly, from this formulation, the transition is deterministic from sh to sh+1 given action ah since
it is simply a concatenation. This is summarized as Deterministic Contextual MDPs (DCMDPs) in
Xie et al. (2024), which proposes that the optimal policy π⋆

β of the objective equation 2 in a DCMDP
satisfies

β log
π⋆
β(τ)

πref(τ)
= r(τ)− V ⋆

β (s1), ∀τ, (3)

where V ⋆
β = maxπ∈Π Jβ(π). More details of DCMDP can be found in Xie et al. (2024).

To optimize objective equation 2, two primary approaches are available: offline RLHF and online
RLHF. The choice between these methods depends on the specific requirements of the application
and we will discuss both approaches in details in the following sections.

3.2 OFFLINE, ONLINE AND HYBRID RLHF

Offline RLHF. Offline RLHF methods are restricted to the preferences captured by the reference
model πref and the offline preference dataset Doff . Typically the offline preference dataset is a set of
labelled pairs Doff = {(τ (i)+ , τ

(i)
− )}i∈[Noff ]. To learn a policy from this offline dataset, one of the most

popular approaches is Direct Preference Optimization (DPO) introduced in Rafailov et al. (2023),
which also serves as a starting point of our work. DPO is motivated by a closed-form solution for
the policy that optimizes the KL-regularized objective in Eq. equation 2, and condenses the two-step
process above into a single policy optimization objective, removing the need for reward function
estimation. Concretely, DPO solves the following problem:

π̂ = argmin
π∈Π

∑
(τ+,τ−)∈Doff

− log [σ (βz(τ+, τ−, πref , π))] , (4)

where z(τ+, τ−, πref , π) = log π(τ+)
πref(τ+)

− log π(τ−)
πref(τ−) , σ(x) = exp(x)

1+exp(x) is the sigmoid function and
Π is some user-specified policy class such as parameterized neural networks.
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Online RLHF Although achieving great empirical success, offline DPO is inherently limited by the
support of reference policy πref and offline dataset Doff . Therefore, people turn more attention into
online DPO, which was first theoretically studied in Xiong et al. (2024). Specifically, online RLHF
collects preference feedback from pairs of responses generated by the language model sequentially
updated during training. Recently, Xie et al. (2024) analyzed the necessity of deliberate exploration in
online DPO and proposed XPO as a combination of DPO and optimistic exploration. In particular, the
original DPO loss is regularized by α

∑t
i=1 log π(τ̃

(i)) in XPO to encourage the policy to be more
diverse, where α > 0 is the regularization strength and τ̃ (i) is the trajectory generated by πref . It was
analyzed under the framework of DCMDP and achieved Õ(1/

√
T ) optimality gap under appropriate

assumptions, where T represents the number of queried preference labels. Concurrently, similar
theoretical guarantee was also obtained by Cen et al. (2024).

Hybrid RLHF Although the efficiency of online RLHF is justified both theoretically and experi-
mentally, in application, real-time query of labels can be expensive while a large amount of offline
preference dataset can often be easily and cheaply obtained. Therefore, it is natural to consider a
hybrid training scheme which can potentially combine the advantage of both offline and online RLHF.
From a theoretical perspective, the sample complexity of pure online RLHF depends solely on the
coverage provided by πref , meaning that the larger the coverage provided by πref , the smaller the
space to search for online RLHF, thereby requiring fewer samples. However, pure online RLHF
neglects the coverage provided by the offline preference dataset which can significantly reduce the
search space. Therefore, we propose to use online feedback to explore trajectories that are not
supported in πref while still taking advantage of the available offline dataset to speed up exploration.
Informally, even starting with an offline dataset on which any offline algorithm may give arbitrarily
poor policy, our proposed algorithm HPO will be able to use it to significantly reduce the sample
complexity, as compared to XPO.

4 HYBRID PREFERENCE OPTIMIZATION

We now present our algorithm Hybrid Preference Optimization (HPO), which integrates the available
offline dataset with online exploration. This hybrid approach leverages the strengths of both offline
data and online feedback, aiming to enhance the learning process and achieve a near optimal policy
using fewer samples than pure online and pure offline methods.

4.1 ALGORITHM DESCRIPTION

We present Hybrid Preference Optimization (HPO) in Algorithm 1. Given a policy class Π, an offline
dataset Doff , the algorithm proceeds through a series of steps over a predefined number of iterations
T . The algorithm begins with 2 policies π(1), π̃(1) and iteratively updates these policies as described
next.

At each step t ∈ [T ] of the online exploration, a context is sampled as s
(t)
1 ∼ ρ. The algorithm

generates 2 responses: one sampled from the current policy τt ∼ π(t)(·|s(t)1 ), and one sampled
from the model τ̃t ∼ π̃(t)(·|s(t)1 ). This response pair is then labelled as (τ (t)+ , τ

(t)
− ) based on human

preference feedback and added to the online buffer D(t)
on = D(t)

on ∪ (τ
(t)
+ , τ

(t)
− ).

A key parameter in HPO is γ ∈ N, which determines the number of labeled pairs drawn from the
offline dataset D(t)

off . The hybrid preference dataset at time t is the union of the online buffer and γ

pairs sampled from the offline dataset D(t)
hyb = D(t)

on ∪ D(t)
off . An optimism dataset D(t)

opt is built by
sampling t+ γ samples from π̃(t).

Now, we update the policy via an optimistic variant of DPO, and similar to XPO as in Eq. equation 5.
Here α is an optimism parameter, and the first term in Eq. equation 5 tries to encourage the policy to
explore more diverse responses compared to those generated by π̃(t) and captured by the samples in
D(t)

opt. The second term in Eq. equation 5 is the DPO objective on the hybrid preference dataset D(t)
hyb

which aligns the policy to the human preferences.
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Algorithm 1 Hybrid Preference Optimization

1: Input: Offline dataset Doff of size Noff , sampling strategy πsamp, hyper-parameters, α ∈ R+,
γ ∈ N.

2: Initialize: πt, π̃t ← πref , D0
on = ∅.

3: for t = 1, . . . , T do
4: Generate response pair: s(t)1 ∼ ρ; τ (t) ∼ π(t)(·|s(t)1 ), τ̃ (t) ∼ π̃t(·|s(t)1 ).
5: Label with Preference: Label (τt, τ̃t) as (τ+t , τ−t ) based on preference feedback.
6: Update Online Dataset: D(t)

on ← D(t−1)
on ∪ (τ

(t)
+ , τ

(t)
− ).

7: Update Offline dataset minibatch: Sample γ pairs from Doff uniformly randomly with
replacement D(t)

off .
8: Update Hybrid dataset: D(t)

hyb ← D
(t)
on ∪ D(t)

off .

9: Update Optimism Dataset: Compute D(t)
opt of t+ γ samples from π̃t.

10: Update Policy: Update πt to maximize likelihood of preferences seen so far + regularization
terms

π(t+1) = argmin
π∈Π

[
α
∑

τ∈D(t)
opt

log π(τ)−

∑
(τ+,τ−)∈D(t)

hyb

log

[
σ(β log

π(τ+)

πref(τ+)
− β log

π(τ−)

πref(τ−)
)

]]
. (5)

11: Update sampling policy:
π̃t+1 ← πsamp(π

(1), . . . , π(t+1)).
12: end for
13: Return π̂ = argmaxπ∈{π(1),...,π(T )} Jβ(π).

If γ = 0, the algorithm is exactly the same as the XPO in (Xie et al., 2024) and it discards all the
available offline data during training. We will later show in Theorem 1 how the choice of γ shows
up in our sample complexity bounds. Intuitively the value of γ, biases the policy to the behavior of
the offline dataset. A too large γ will put a large emphasis on the offline dataset and may hinder
exploration, while a too small γ will fail to effectively utilize the available information in the offline
dataset. Thus, γ needs to be chosen in accordance to the online exploration budget T .

Finally, we can see that HPO is very friendly to application as it is rooted from the vanilla DPO and
the extra regularization term and sampling procedure can be easily implemented.

4.2 ASSUMPTIONS

To establish sample complexity guarantees for HPO, we adopt standard statistical assumptions. The
first of these assumptions requires that the policy class Π be sufficiently expressive to represent the
optimal KL-regularized policy.

Assumption 1 (Policy realizability). The policy class Π contains the optimal policy, i.e., π⋆
β ∈ Π.

Policy realizability is a standard assumption for sample-efficient reinforcement learning which can be
found in prior works such (Agarwal et al., 2019; Lattimore and Szepesvári, 2020; Foster and Rakhlin,
2023). It is equivalent to a form of reward/value realizability as discussed in (Xie et al., 2024). In
our context, Π will typically correspond to a class of language models with fixed architecture and
variable weights.

Next, we make a regularity assumption on the policies in Π (Rosset et al., 2024; Xie et al., 2024).

Assumption 2 (Bounded density ratios). (Xie et al., 2024) For all π ∈ Π and trajectories τ =
(s1, a1), . . . , (sH , aH), it holds ∣∣∣∣log( π(τ)

πref(τ)

)∣∣∣∣ ≤ Vmax

β
. (6)
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As discussed in (Xie et al., 2024), Vmax is measurable and controllable in practice. Specifically for
log-linear policies where π(a | s) ∝ exp(f(s,a)/β) with some linear function f(s, a), it can be shown
that Vmax ≲ Rmax (recall that Rmax is the range of reward).

4.3 MODEL COMPLEXITY MEASURES

To measure the algorithm’s convergence rate towards an optimal policy, we introduce an exploration
criterion that limits how frequently the algorithm encounters novel samples where it cannot effectively
distinguish between the impact of π and πref on the objective.

First, we define a preference-based analogue of the Sequential Extrapolation Coefficient (SEC)1 from
(Xie et al., 2023) that corresponds to the hybrid RLHF case. Particularly, define

g(π)(τ, τ̃) =

[
β log

π(τ)

πref(τ)
− r(τ)− β log

π(τ̃)

πref(τ̃)
+ r(τ̃)

]
as a measure of the difference in the objective from Eq. equation 2 for an arbitrary policy π ∈ Π and
two arbitrary trajectories τ and τ̃ .

For a pair of policies π and π̃, we define π ⊗ π̃ as the joint policy that, given s1, samples τ ∼ π | s1
and τ̃ ∼ π̃ | s1. We write (τ, τ̃) ∼ π ⊗ π̃ | s1 as a shorthand for this process. We further
let π̃(t) = πsamp(π

(1), . . . , π(t)), and µ(t) = 1
t−1

∑t−1
i=1 π

(i) ⊗ π̃(i), with the convention that µ(1) is
arbitrary and πsamp is some sampling strategy such as unif(·). We first define the online sequential
exploration coefficient for online RLHF (Xie et al., 2024).

Definition 4.1. (Xie et al., 2024) Given a policy class Π, reference policy πref , sampling strategy
πsamp, entropy regularization parameter β > 0, online exploration budget T ∈ N, we define the
sequential exploration coefficient (SEC) as:

SECRLHF(Π, T, β, πsamp) =

sup
π(1),...,π(T )∈Π

T∑
t=1

E s1∼ρ,

τ∼π(t)|s1,

τ̃∼π̃(t−1)|s1

[g(π
(t))(τ, τ̃)]


2

V 2
max ∨

[
(t− 1) · E s1∼ρ,

(τ,τ̃)∼µ(t)|s1

[
(
g(π(t))(τ, τ̃)

)2
]

] . (7)

Next, we introduce another quantity to capture the coverage of the offline dataset in terms of any
arbitrary policy π ∈ Π:

C
(π)
off =

1

Noff

∑
(τ+,τ−)∈Doff

(
g(π)(τ+, τ−)

)2
. (8)

Below we define the SEC coefficient in the Hybrid RLHF case:

Definition 4.2. Given a policy class Π, reference policy πref , offline preference dataset Doff , offline
sampling parameter γ ∈ N, sampling strategy πsamp, entropy regularization parameter β > 0, online
exploration budget T ∈ N, we define the sequential exploration coefficient (SEC) as:

SECHybRLHF(Π, T, β, πsamp; γ,Doff) =

sup
π(1),...,π(T )∈Π

T∑
t=1

E s1∼ρ,

τ∼π(t)|s1,
τ̃∼π̃(t−1)|s1

[g(π
(t))(τ, τ̃)]


2

V 2
max ∨

[
(t− 1) · E s1∼ρ,

(τ,τ̃)∼µ(t)|s1
[(g̃

(π(t)

off ))2]

] , (9)

where (g̃
(π)
off )2 =

(
g(π)(τ, τ̃)

)2
+ γ · C(π)

off .

1This is also known as an Eluder coefficient or decoupling coefficient (Zhong et al., 2022; Ye et al., 2024).
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Remark. Note that because of the additional quantity C
(π)
off ≥ 0, for all γ ∈ N and any non-empty

Doff , we have

SECHybRLHF(Π, T, β, πsamp; γ,Doff) <

SECRLHF(Π, T, β, πsamp).

In particular, C(π)
off is a measure of coverability for an arbitrary π, contributed by the offline dataset.

4.4 MAIN RESULTS

We state the main sample complexity result of HPO below.

Theorem 1. Suppose Assumption 1 and 2 hold. For any β > 0 and T ∈ [N ], if we set α =

c · β
(Vmax+Rmax)e2Rmax )

·
√

log(|Π|Tδ−1) log(T )
(T+γ)·SECHybRLHF(Π,T,β,πsamp;γ,Doff )

for some absolute constant c > 0, then
Algorithm 1 ensures that with probability at least 1− δ, we have

Jβ(π
∗
β)− Jβ(π̂) ≲ (Vmax +Rmax)e

2Rmax

×
√

(1 + γ/T ) · SEC · log(|Π|Tδ−1) log(T )

T
,

where SEC = SECHybRLHF(Π, T, β, πsamp; γ,Doff).

Note that γ = 0 represents the pure online setting, which is studied in XPO (Xie et al., 2024). Here,
we can notice that the sample complexity is reduced because the SEC for hybrid RLHF becomes
smaller than its pure online counterpart. That is, the size of the space that needs to be searched
through online exploration becomes smaller because of the available offline dataset.

5 BREAKING LOWER BOUNDS THROUGH HYBRID LEARNING

In order to paint a clearer picture of why Hybrid RLHF is more sample-efficient than pure online and
pure offline RLHF, we consider the special case of linear MDPs and study the suboptimality gaps of
hybrid, online and offline RLHF. Our main goal is to show that the upper bounds for hybrid RLHF
are smaller than the minimax lower bounds for pure online and pure offline RLHF.

We begin by formally defining the linear MDP setting.

Definition 5.1. (Linear MDP (Jin et al., 2020)) In a Linear MDP, the transition probability as well as
the reward are linear functions of a known feature map ϕ(s, a) ∈ Rd, where ∥ϕ∥2 ≤ 1 and

P (s′|s, a) = ϕ(s, a)⊤µ(s′) r(s, a) = ϕ(s, a)⊤ν.

Here, µ(s′) is an unknown feature map with ∥
∑

s′ µ(s
′)∥2 ≤

√
d, and ν ∈ Rd is an unknown

parameter with ∥ν∥2 ≤ 1.

5.1 LOWER BOUNDS FOR PURE OFFLINE AND ONLINE RLHF

Define Λoff = 1
Noff

∑
(τ,τ̃)∈Doff

(ϕ(τ) − ϕ(τ̃))(ϕ(τ) − ϕ(τ̃))⊤ as the empirical feature covariance

matrix of the offline preference dataset. Let ν∗ =
Es∼ρ,τ∼π∗

β
(·|s)[ϕ(s,τ)]

∥Es∼ρ,τ∼π∗
β
(·|s)[ϕ(s,τ)]∥2

denote a unit vector

corresponding to the feature projection along the optimal policy π∗
β . We define the following quantity,

for a given instance, i.e. a linear MDPM = {ϕ, µ, ν} and offline dataset Doff :

C∗(M,Doff) = ∥Λ
− 1

2

off ν∗∥2.

This measures the coverage of the offline dataset with respect to the optimal policy π∗
β . A Larger

value indicates poorer coverage. Since for any arbitrary instance this quantity may be unbounded
above, we consider all families of linear MDPs such that the concentrability is at most ∆, i.e.

CB(∆) = {M,Doff |C∗(M,Doff) ≤ ∆}.
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Then by extending results from Li et al. (2022), there exists an instance in CB(∆) such that the
suboptimality for any algorithm using ℓ2 confidence sets is lower bounded by :

Jβ(π
∗
β)− Jβ(π̂) ≥ Ω

(√
d

Noff

∆

)
.

Thus, by choosing ∆ = O(
√
d) even in the restricted class CB(O(

√
d)), the suboptimality lower

bound is Ω
(√

d2

Noff

)
. We formally state this as a minimax lower bound for the pure offline case:

Theorem 2 (Sample Complexity Lower Bound for Offline RLHF). For any algorithm A, there exists
an instance of offline RLHF problem and choice of β, such that if π̂A

n is the policy returned by A

after any n ≥ d2 pairwise preference samples, then Jβ(π
∗
β)− Jβ(π̂

A
n ) ≥ Ω

(√
d2

n

)
.

We now state a minimax lower bound for the pure online case:
Theorem 3 (Sample Complexity Lower Bound for Online RLHF). For any algorithm A, there exists
an instance of online RLHF problem and choice of β, such that if π̂A

T is the policy returned by A

after T rounds, then Jβ(π
∗
β)− Jβ(π̂

A
T ) ≥ Ω

(√
d2

T

)
.

The proof of theorem 2 and theorem 3 respectively follows the existing lower bounds for online
(Wagenmaker et al., 2022, Theorem 2) and offline (Li et al., 2022, Theorem 2) linear contextual
bandits along with the reduction to idea argued in (Saha, 2021, Lemma 8). We have added the detailed
proofs in appendix B.

5.2 UPPER BOUNDS FOR HYBRID RLHF

Define Λ̃off = Λoff + V 2
max

γ
I as the empirical coverage. Let λ(1)

off , . . . , λ
(d)
off be the eigenvalues of

Λ̃off . Let {v1, v2, . . . , vd} denote the orthonormal eigenvectors corresponding to Λ̃off . We adopt the
convention that the eigenvalues corresponding to these eigenvectors are in increasing order. For a
fixed threshold λ we can define:

dhyb = max
i∈[d]

{
∥Λ̃− 1

2

off vi∥2 ≲ Ω

(
1√
T

)}
.

dhyb measures the coverage of the offline dataset. A larger value of dhyb indicates poor coverage.
Note that the definition of dhyb is also equivalent to maxi∈[d] λ

(i)
off ≤ Ω(1/T ). We first state an upper

bound on the sample complexity of HPO.
Theorem 4. By choosing γ = O(T ), we then have

Jβ(π
∗
β)− Jβ(π̂) ≲ Õ

(
Rmaxe

2Rmax

√
d · dhyb

T

)
.

Proof. We highlight the key steps of this proof. Using the elliptical potential lemma Lattimore and
Szepesvári (2020), we can derive SECHybRLHF(Π, T, β, πsamp; γ,Doff)

≤ 2
∑
i∈[d]

(
log

(
1 +

4T

γλ
(i)
off

))
.

Choosing γ = O(T ), then only terms with λ
(i)
off ≤ Ω( 1

T
) will remain in the summand, corresponding

to the directions where the offline dataset has poor exploration. By defintion, dhyb denote the
number of indices in [d] such that λ(i)

off ≤ Ω( 1
T
). Noting that γλ(i)

off ≥ V 2
max ∀i ∈ [d], we get

SECHybRLHF(Π, T, β, πsamp; γ,Doff) ≤ O
(
dhyb log

(
1 + 4T

V 2
max

))
. Hence, the SEC scales as the

effective number of dimensions yet to be explored sufficiently. Plugging this into Theorem 1 gives
the desired result.
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Note that dhyb is always upper bounded by d. Thus for any arbitrary instance any arbitrary offline

dataset, this upper bound is still Õ
(√

d2

T

)
. Furthermore, from the above analysis, it is clear that

compared with pure offline and pure online RLHF, HPO has the following two advantages:

1. The upper bound of HPO in Theorem 4 beats the lower bounds of both pure online and
offline RLHF in Theorem 2 and 3, as long as dhyb is non-trivially smaller than d. That is,
our proposed hybrid RLHF is provably better than both pure online and offline RLHF.

2. To achieve this upper bound, HPO does not require any assumptions in all-policy or single-
policy concentrability coefficient, which is usually imposed in traditional offline RL (Zhan
et al., 2022). To satisfy these kinds of assumptions, the behavior policy used to collect the
offline dataset needs to cover all possible actions of the optimal policy, which can sometimes
be stringent. However, HPO can effectively utilize the offline dataset even if the behavior
policy covers no action of the optimal policy as dhyb shrinks even through coverage in the
offline datasets collected via by suboptimal policies.

6 EXPERIMENTS

We evaluate the benefits of HPO on the linear contextual bandit setting considered in (Cen et al.,
2024). We restate the salient features of their setup here. We consider a linear contextual bandit
problem, where we set the prompt space as X = R2 and the response space as |Y| = 500 one-hot
vectors. For each (x, y) pair, the ground truth reward is given by r⋆(x, y) = ⟨ϕ(x, y), θ⋆⟩, where
θ⋆ ∈ R100 is randomly sampled from U([0, 1]), and the feature vector ϕ(x, y) is the output of the
hidden layer of a fixed two-layer MLP, with the input given by the concatenation of x and the one-hot
encoding of y. The activation function is set to tanh. The context vector x is drawn from standard
normal distribution.

We focus on log-linear policy class πθ(·|x) = softmax(⟨θ, ϕ(x, ·)⟩), and set πref = πθref with
θref(x, y) sampled i.i.d. from U([0, 1]).
Offline Data Collection Policy: We collected response pairs from the reference policy πref.

Optimization Procedure: We use mini-batch samples of size 5 in every iteration. We approximately
solve the optimization problems by performing 20 AdamW optimization steps with learning rate
0.01 and weight decay rate 0.01 in every iteration for the online setting and 1000 steps for the offline
setting.

Choice of Hyperparameters: For Online VPO, we tried hyperparameters α = {1.0, 10.0} and
for offline VPO we tried hperparameters α = { 0.1√

Noff
, 1.0√

Noff
, 10.0√

Noff
} and report the results for the

best performing hyperparameter here. For HPO we try the same set of α’s as Online VPO and set
γ = Noff = 500.

We ask the following question: Given an offline dataset where algorithms like DPO (Rafailov
et al., 2023), Offline-VPO (Cen et al., 2024) fail to obtain a near optimal policy, can we still utilize
information from the dataset to significantly reduce the number of online exploration samples needed
to obtain a near optimal policy via HPO as compared to baselines such as Online DPO (Guo et al.,
2024), Online VPO (Cen et al., 2024) (XPO (Xie et al., 2024))?

We answer this question affirmatively. In particular, we note the following takeaways from our
experiment:

1. In Figure ?? (left), the cumulative regret of HPO grows much slower compared to pure
online learning baseline algorithms. The value plotted for any T with T > Noff is∑T

i=500

(
Jβ(π

∗
β)− Jβ(πi)

)
. This ensures the online algorithms have seen online T samples,

when we are talking about the cumulative regret at T , whereas the hybrid algorithm has seen
Noff offline samples and T −Noff offline samples. This ensures fairness while comparing
the online and hybrid approaches.

2. In Figure ?? (right), we plot the suboptimality gaps as a function of total number of samples
(online, offline or a mix of both). For the hybrid setting, we use an offline dataset of size
Noff = 500. Note that the suboptimality gaps for offline algorithms run on this size of a
dataset is quite poor compared to other (purely online) baselines. However, using the same
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dataset, the suboptimality gaps for the policy produced by HPO is much better than all
baselines.

7 CONCLUSION

We introduced Hybrid Preference Optimization (HPO), a novel approach that effectively integrates
the strengths of both online and offline Reinforcement Learning from Human Feedback (RLHF)
methods. By combining online exploration with existing offline preference data, HPO addresses the
limitations inherent in each approach when used in isolation. Specifically, it relaxes the stringent
concentrability conditions required by offline methods and enhances the sample efficiency of online
exploration. Our theoretical analysis provides the first provably optimal bounds for hybrid RLHF
with preference feedback, demonstrating that HPO achieves better sample complexity than either pure
offline or pure online methods. By leveraging the wealth of existing offline data while simultaneously
adapting to new information through online exploration, HPO reduces the need for extensive and
costly real-time human feedback, making the process more scalable and less resource-intensive.
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A UPPER BOUND PROOFS

The proof structure for Theorem 1 is similar to Theorem 3.1 (Xie et al., 2024). However due to the
hybrid nature of our algorithm, we are able to derive concentration lemmas with a faster convergence
rate. We highlight the main differences in our analysis, which lead to the reduced sample complexity.

A.1 CONCENTRATION LEMMAS

Let Poff denote the nominal distribution of trajectory pairs in the offline dataset Doff . Define
µ

(t)
hyb = 1

t−1+γ
(
∑t−1

i=1 π
(i) ⊗ π̃(i) + γPoff).

Define

fπ(τ, τ̃) = β log
π(τ)

πref(τ)
− β log

π(τ̃)

πref(τ̃)
.

Lemma 1 (Concentration for Algorithm 1). Suppose that Assumptions 1,2 hold. Then Algorithm 1
guarantees that with probability at least 1− δ, for all steps t ∈ [T ],

α · Es1∼ρ,τ∼π̃(t−1) [log(π(t)(τ))− log(π⋆
β(τ))] + κ ·

[
E

s1∼ρ,(τ,τ̃)∼µ
(t)
hyb|s1

[fπ(t)(τ, τ̃)− fπ⋆
β
(τ, τ̃)]2

]
≤ 2 log(2|Π|Tδ−1)

γ + t− 1
+

α

β
Vmax

√
24 log(2|Π|Tδ−1)

γ + t− 1
,

for κ = (8(Rmax + Vmax)e
2Rmax)−2.

Proof. Fix t ∈ {2, . . . , T + 1}.
We wish to decompose the objective in HPO, Eq equation 5 into 2 terms as defined below: Define the
following quantities:

π(t) = argmin
π∈Π

[
L̂(t)(π) + B̂(t)(π)

]
. (10)

L̂(t)(π) =
∑

(τ+,τ−)∈D(t)
hyb

log

[
σ(β log

π(τ+)

πref(τ+)
− β log

π(τ−)

πref(τ−)
)

]
.

B̂(t)(π) = α
∑

τ∈D(t)
opt

log π(τ).

Now we provide concentration lemmas for these individual terms before combining them together.

Lemma 2. For any fixed t ≥ 1, for all π ∈ Π with probability at least 1− δ, we have:

κ ·
[
E

s1∼ρ,(τ,τ̃)∼µ
(t)
hyb|s1

[fπ(t)(τ, τ̃)− fπ⋆
β
(τ, τ̃)]2

]
≤ L̂(t)(π)− L̂(t)(π⋆

β) + log(2|Π|Tδ−1)

Proof. Use the definition of µ(t)
hyb to see the dataset D(t)

hyb is a sequence adapted to the filtration
F (γ+t) = σ(Doff , . . . ,Doff , (τ

(1), τ̃1), . . . , (τ (t−1), τ̃ (t−1))). Then apply the Martinagle Chernoff
Theorem to get a high probability bound. Combine it with Lemma C.8 (Xie et al., 2024) to get the
above result.

Lemma 3. For any fixed t ≥ 1, for all π ∈ Π with probability at least 1− δ, we have:

α · (t+ γ − 1) · Es1∼ρ,τ∼π̃(t−1) [log(π(t)(τ))− log(π⋆
β(τ))] ≤ B̂(t)(π)− B̂(t)(π⋆

β) +
α

β
Vmax

√
24 log(2|Π|δ−1)

Proof. Apply Azuma Hoeffding with its sample average over t+ γ terms.

Combining Lemma 2 and Lemma 3, taking an union bound over all time steps t ∈ [T ], and utilizing
the definition of π(t) in Eq. equation 10 to note B̂(t)(π) + L̂(t)(π) ≤ B̂(t)(π⋆

β) + L̂(t)(π⋆
β), get we

get the stated result.
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A.2 PROOF OF THEOREM 1

We use the standard steps for regret decomposition, and similar proof idea in (Xie et al., 2024). The
main difference in our analysis is the definition of the term I(t), which allows us to use the faster
convergence concentration lemma in Lemma 1, and also use our definition of the SEC in the hybrid
RLHF case, SECHybRLHF(Π, T, β, πsamp; γ,Doff), which is smaller than the SEC in the online case.

Theorem 1. Suppose Assumption 1 and 2 hold. For any β > 0 and T ∈ [N ], if we set α =

c · β
(Vmax+Rmax)e2Rmax )

·
√

log(|Π|Tδ−1) log(T )
(T+γ)·SECHybRLHF(Π,T,β,πsamp;γ,Doff )

for some absolute constant c > 0, then
Algorithm 1 ensures that with probability at least 1− δ, we have

Jβ(π
∗
β)− Jβ(π̂) ≲ (Vmax +Rmax)e

2Rmax

×
√

(1 + γ/T ) · SEC · log(|Π|Tδ−1) log(T )

T
,

where SEC = SECHybRLHF(Π, T, β, πsamp; γ,Doff).

Proof. Using the regret decomposition techniques for KL-Regularized MDPs from (Xie et al., 2024),
we derive:

Jβ(π
∗
β)− Jβ(π

(t))

≤ 6Vmax

T
+

1

T

T∑
t=2

Eτ∼π̃(t−1)

[
β log(π(t)(τ))− β log(π⋆

β(τ))

]

+
1

T

T∑
t=2

Es1∼ρ,τ∼π(t),τ̃∼π̃(t)

[
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

]
Recalling the definition of µ(t)

hyb = 1
t−1+γ

(
∑t−1

i=1 π
(i) ⊗ π̃(i) + γPoff), we define:

I(t) =

(
Es1∼ρ,τ∼π(t),τ̃∼π̃(t)

[
β log π(t)(τ)

πref (τ)
− r(τ)− β log π(t)(τ̃)

πref (τ̃)
+ r(τ̃)

])2

V 2
max ∨ (t− 1 + γ) · E

s1∼ρ,τ,τ̃∼µ
(t)
hyb|s1

[(
β log π(t)(τ)

πref (τ)
− r(τ)− β log π(t)(τ̃)

πref (τ̃)
+ r(τ̃)

)2 ]
Using AM-GM inequality we can bound:

Es1∼ρ,τ∼π(t),τ̃∼π̃(t)

[
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

]
≤ I

(t)

2η
+

η

2
·

(
V 2
max ∨ (t− 1 + γ) · E

s1∼ρ,τ,τ̃∼µ
(t)
hyb

[(
β log

π(t)(τ)

πref(τ)|s1
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2 ])

≤ I
(t)

2η
+

η

2
·

(
V 2
max + (t− 1 + γ) · E

s1∼ρ,τ,τ̃∼µ
(t)
hyb|s1

[(
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2 ])

Recall the definition of SECHybRLHF(Π, T, β, πsamp; γ,Doff), and note that
∑T

t=1 I(t) ≤
SECHybRLHF(Π, T, β, πsamp; γ,Doff).

Now we can write:

Jβ(π
∗
β)− Jβ(π

(t))

≤ 6Vmax

T
+

SECHybRLHF(Π, T, β, πsamp; γ,Doff)

2ηT
+

η

2
V 2
max +

1

T

T∑
t=2

(
Eτ∼π̃(t−1)

[
β log(π(t)(τ))− β log(π⋆

β(τ))

]

+
η

2
· (t− 1 + γ) · E

s1∼ρ,τ,τ̃∼µ
(t)
hyb|s1

[(
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2 ])
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For a fixed t ∈ {2, . . . , T + 1}, we consider the term:

Eτ∼π̃(t−1)

[
β log(π(t)(τ))− β log(π⋆

β(τ))

]
+

η

2
· (t− 1 + γ) · E

s1∼ρ,τ,τ̃∼µ
(t)
hyb|s1

[(
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2 ]
Setting η = βκ

α(T+γ)
, and invoking Lemma 1, we get:

Jβ(π
∗
β)− Jβ(π

(t))

≲
Vmax

T
+

α(T + γ)SECHybRLHF(Π, T, β, πsamp; γ,Doff)

βκT
+

βκ

α(T + γ)
V 2
max+

T∑
t=2

1

T

(
β

α

log(|Π|Tδ−1)

γ + t− 1
+ Vmax

√
log(|Π|Tδ−1)

γ + t− 1

)

≲
Vmax

T
+

α(T + γ)SECHybRLHF(Π, T, β, πsamp; γ,Doff)

βκT
+

βκ

α(T + γ)
V 2
max+

β

α

log(|Π|Tδ−1) log(T )

T
+ Vmax

√
log(|Π|Tδ−1)

T

Choosing

α ∝ β

(Vmax +Rmax)e2Rmax
·

√
log(|Π|Tδ−1) log(T )

(T + γ) · SECHybRLHF(Π, T, β, πsamp; γ,Doff)

and noting κ < V −2
max, we get:

Jβ(π
∗
β)− Jβ(π

(t))

≤ κ−1

√
(1 + γ/T ) · SECHybRLHF(Π, T, β, πsamp; γ,Doff) · log(|Π|Tδ−1) log(T )

T
+ Vmax

√
log(|Π|Tδ−1)

T

≤ O((Vmax +Rmax)e
2Rmax) ·

√
(1 + γ/T ) · SECHybRLHF(Π, T, β, πsamp; γ,Doff) · log(|Π|Tδ−1) log(T )

T
.

B LOWER BOUND PROOFS

In this section, we will analyze the proofs of theorem 3 and theorem 2. Our proofs rely on a key
observation that the RLHF problem, as described in section 3 can essentially be seen as a BTL-based
dueling bandit (DB) setting (Negahban et al., 2012; Bengs et al., 2022), both for the online and
offline problem. For completeness, we first describe the preference model below:

BTL-based Pairwise Preference (Dueling) Model: Consider a decision space D. Each action/item
a ∈ D is associated to a linear score/reward s(a) ∈ R. The probability of action a preferred over
action b is given by:

P (a ≻ b) =
(
σ
(
s(a)− s(b)

))
,

where σ(·) being the sigmoid transformation given by σ(x) = 1
1+e−x for any x ∈ R. Note the above

preference model exactly boils down to the BTL model-based preferences described in eq. (1) in
section 3. We will denote this preference model as BTL-DB.

This essentially establishes the connection between the RLHF feedback model and BTL-based
preference model BTL-DB (note that the trajectories (τ) lie in the action space D for the DB
problem). Further note that the reward/ score function s(·) essentially corresponds to the J(·)
function of eq. (2) (for β = 0). We next establish a connection between two well-studied feedback
models in learning theory: linear score BTL-DB feedback and linear bandits (linB) feedback. We
first describe the two feedback models below:
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Linear score based BTL-DB (linDB) Feedback model. In addition to the modeling assumptions
described above for BTL-DB, we further assume D ⊂ Rd and the underlying score/reward function
(s) is linear, i.e. s(a) = ⟨a,w⟩, where w ∈ Rd is an unknown direction in Rd. We will also denote
by a∗ := argmaxa∈D s(a) the action with the highest score. The feedback model outputs a 1-bit
binary feedback o ∼ Ber(P (a ≻ b)) upon receiving any pair of actions (a,b) ∈ D ×D – we will
use the abbreviation linDB for this feedback model.

Linear Bandits (linB) Feedback Model. Similar to the linDB setting above, we again assume a
decision space D ⊂ Rd with each arm a ∈ D being associated to an underlying linear score/reward
function s(a) = ⟨a,w⟩, w ∈ Rd is unknown. As oppose to the preference feedback observed in
the linDB case, in this feedback model one gets to observe a noisy feedback of the true reward of
any queried arm a ∈ D given by r(a) = s(a) + η, where η is usually a 0 mean noise. For example,
η ∼ Gaussian(0, 1) etc. We will use the abbreviation linB for this feedback model.

B.1 SIMULATING LINDB FEEDBACK WITH LINB FEEDBACK.

Based on the reduction idea of (Saha, 2021, Lemma 8), we know that one can always simulate 1 unit
of linDB pairwise preference feedback from 2 units of linB reward/score feedback. Formally the
claim is given by:

Lemma 4. Given any two actions a and b ∈ D if r(a) = s(a) + η1 and r(b) = s(b) + η2 are two
(noisy) linB feedback, s.t. η1, η2

iid∼ Gumbel(0,1) are iid draws from Gumbel(0, 1) distribution, then
the binary outcome o = 1(r(a) > r(b)) ∼ P (a ≻ b) follows linDB feedback.

Interested readers are encouraged to go over the proof of Lemma 9 of Saha (2021) to see the proof
of lemma 4 above. Given the above result, we are now ready to prove the lower bound results of
theorem 3 and theorem 2 as discussed in the following two subsections. We would first define the
online and offline versions of the best-arm identification problem (BAI) with linDB feedback.

Figure 1: Simulating linDB feedback with linB feedback

B.2 PROOF OF THEOREM 3

The online version of BAI problem with linDB feedback is an active sequential decision-making
process where at each round t the learner (i.e. the algorithm) is supposed to play a pair of actions
(at,bt) ∈ D × D, upon which it gets to see a binary preference feedback ot ∼ P (at ≻ bt) is
the preference feedback of the pair (at,bt) generated according to the linDB feedback model.
Given a horizon of T rounds, the objective of the learner is to output an arm aT ∈ D such that
E[r(aT )] = s(at) is maximized or the difference s(a∗) − s(aT ) is minimized. Let us denote this
problem as Online-BAI-linDB problem.

Similarly, the online version of BAI problem with linB feedback is an active sequential decision-
making process where at each round t the learner (i.e. the algorithm) is supposed to play an action
at ∈ D, upon which it gets to see a real-valued reward/score feedback rt generated according to the
linB feedback model. Given a horizon of T rounds, the objective of the learner is to output an arm
aT ∈ D such that E[r(aT )] = s(at) is maximized or the difference s(a∗)− s(aT ) is minimized. Let
us denote this problem as Online-BAI-linB problem.

Key Idea: Reducing Online-BAI-linB to Online-BAI-linDB. Owing to lemma 4, it is easy to see
that one could reduce the Online-BAI-linB problem to Online-BAI-linDB problem, i.e. given any
algorithm AlinDB for the latter problem, one can use it to solve the former. We described the idea in
algorithm 2 below to construct AlinB—an Online-BAI-linB algorithm using AlinDB.
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Algorithm 2 Simulating AlinB using AlinDB

1: Input: Time horizon T .
2: for t = 1, 2, . . . ⌈T

2
⌉ do

3: Receive: (at,bt)← duel played by AlinDB at time t.
4: Play at at round (2t− 1). Receive r(at).
5: Play bt at round 2t. Receive r(bt).
6: Feedback: ot = 1(r(at) > r(bt)) to AlinDB.
7: end for

But since a single round of Online-BAI-linDB corresponds to two rounds of Online-BAI-linB a
valid BAI lower bound for the latter would immediately imply a BAI lower bound for the former
problem. The result of theorem 3 now follows from the known existing lower bound for the Online-
BAI-linB problem from (Wagenmaker et al., 2022, Theorem 2).

B.3 PROOF OF THEOREM 2

The offline version of BAI problem with linDB feedback is a batch decision-making process where the
learner is provided with an offline dataset Doff = {(ai,bi, oi)}ni=1, where for each triplet (ai,bi, oi),
(ai,bi) ∈ D × D denotes a pair of action and oi ∼ P (ai ≻ bi) is the preference feedback of the
pair (ai,bi) generated according to the linDB feedback model. The objective of the learner is to
output an arm an ∈ D using the n samples of Doff such that E[r(an)] = s(at) is maximized or the
difference s(a∗)− s(an) is minimized. Let us denote this problem as Offline-BAI-linDB problem.

In the same spirit, the offline version of BAI problem with linDB feedback is a batch decision-making
process where the learner is provided with an offline dataset Doff = {(ai, ri)}ni=1, where ai ∈ D is
an arbitrary action in D and ri is a noisy sample of the score/reward of arm i drawn according to the
linB feedback model. The objective of the learner is to output an arm an ∈ D using the n samples
of Doff such that E[r(an)] = s(at) is maximized or the difference s(a∗)− s(an) is minimized. Let
us denote this problem as Offline-BAI-linB problem.

Reducing Offline-BAI-linB to Offline-BAI-linDB. Owing to lemma 4 and following a similar
approach described in algorithm 2 above it is easy to see that one can obtain an algorithm for the
Offline-BAI-linB problem using an algorithm for the Offline-BAI-linDB algorithm.

Following the same argument used for proving theorem 3 in appendix B.2 above, the result of
theorem 2 now follows from the known existing lower bound for the Offline-BAI-linB problem from
(Li et al., 2022, Theorem 2).
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