
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

hls4ml: An Open-Source Co-Design Workflow to Empower
Scientific Low-Power Machine Learning Devices

Anonymous Author(s)

ABSTRACT

Accessible machine learning algorithms, software, and diagnos-
tic tools for energy-efficient devices and systems are extremely
valuable across a broad range of application domains. In scientific
domains, real-time near-sensor processing can drastically improve
experimental design and accelerate scientific discoveries. We have
developed hls4ml, an open-source software-hardware co-design
workflow to interpret and translate machine learning algorithms
for implementation in FPGAs and ASICs specifically to support do-
main scientists. In this paper, we describe the essential features of
the hls4ml workflow including network optimization techniques—
such as pruning and quantization-aware training—which can be
incorporated naturally into the device implementations. We expand
on previous hls4ml work by extending capabilities and techniques
towards low-power implementations and increased usability: new
Python APIs, quantization-aware pruning, end-to-end FPGAwork-
flows, long pipeline kernels for low power, and new device backends
include an ASIC workflow. Taken together, these and continued
efforts in hls4ml will arm a new generation of domain scientists
with accessible, efficient, and powerful tools for machine-learning-
accelerated discovery.

1 INTRODUCTION

Efficient implementations of machine learning (ML) algorithms
in dedicated hardware devices at the “edge,” or near-sensor, has
numerous advantages. Edge processing and data compression can
greatly reduce data rates and the energy required for data move-
ment. Furthermore, real-time data processing and interpretation
can greatly accelerate decision-making, hypothesis testing and even
enable just-in-time interventions.

Staggering data rates and massive datasets are generated across
a broad range of modern scientific applications in high energy
physics, material science, and astrophysics. For example at the
CERN Large Hadron Collider (LHC), experiments typically pro-
duce data at rates of Pb/s, and at the Fermilab accelerator complex,
hundreds of thousands of devices monitor miles of beamlines that
steer near speed-of-light particle beams. Low-latency ML is re-
quired for real-time decision making in these physics experiments
with a range of requirements from tens of nanoseconds to sub-
millisecond. In many ways, techniques for resource-constrained
ML implementations are similar whether targeting low power or

Unpublished working draft. Not for distribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
tinyML ’21, March 22–26, 2021, Online
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ultra low latency and high throughput. In this paper, we discuss

how tools developed for low-latency applications in science

could be deployed for low-power applications.

Demand for accessible tools. Low-power ML is in demand in
scientific, industrial, and commercial computing [1]. Fitness bands,
smartwatches, and other wearables that capture human health
and behaviors from complex and multivariate continuous sensor
data [2], wireless sensor networks deployed for tracking and under-
standing threatened animal populations using imaging and other
sensors [3], and even large-scale wireless agriculture sensing [4]
all necessitate powerful local computation on a budget. Despite
the broad need for local, low-power ML and the growing num-
ber of edge devices and scientific applications, general-purpose
off-the-shelf hardware has not kept pace with these computing
demands. The challenge for domain scientists is that a broad range
of expertise is required to arrive at full ML device implementations.
This requires significant resources and a team of domain scientists,
computer scientists, and engineers. Typically, domain scientists
may be experts in domain ML, their experimental devices, or sys-
tem engineering techniques, but very rarely in all requisite areas
simultaneously.

To tackle this challenge, we need a framework which makes dig-
ital hardware implementations of ML algorithms more accessible,
interpretable, and (re)usable to domain scientists. While ultimately
hardware implementations require completely engineered solu-
tions, allowing domain scientists to co-design algorithms based on
their system and application constraints is extremely valuable in
reducing engineering time and enabling faster design iterations.
Optimizing this process will greatly reduce the time to science. Fi-
nally, to cater to both large experimental collaborations and smaller
laboratory groups, the tools should be as open-source as possible.

ML-hardware co-design tools. Software like TensorFlow and
PyTorch have democratized ML for scientists, lowering the time-
to-science across domains. We aim to extend the ML workflow
to efficient hardware implementations through the creation the
hls4ml framework [5], an open-source co-design workflow. After
a user trains their ML algorithms in common ML software frame-
works, hls4ml translates them into digital implementations using
high-level synthesis (HLS) tools for energy-efficient devices like
FPGAs and ASICs. With the introduction of an open-source frame-
work like hls4ml, “tinyML” techniques can be made accessible to
nonexperts. The benefit of hls4ml is two-fold: it lets nonexperts
create bespoke, cutting-edge ML accelerators for low-power and
low-latency systems, and it lets nonexperts develop intuition about
how their design choices affect system power consumption.

A number of recent results highlight the power of the hls4ml
approach including support for quantization down to binary and
ternary precision [6], pruning, tunable parallelization [5], boosted
decision trees [7], quantization-aware training (QAT) [8], and graph

2020-11-30 02:16. Page 1 of 1–8. 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

tinyML ’21, March 22–26, 2021, Online Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

neural networks (NNs) [9]. The development of hls4ml is appli-
cation driven. While originally its main target was low-latency
applications, recent work has focused on opportunities for longer
latency, low-power applications. Algorithm design with hls4ml
involves the generation of custom firmware for a specified NN
architecture. The customized design ensures an efficient use of re-
sources that is essential to run in low-latency, resource-constrained
systems, and is useful across a broader range of applications. This
paper reviews salient core features of hls4ml and extends

previouswork by presenting a number of recently added fea-

tures that aid in targeting low-power systems: initial results of
quantization-aware pruning (QAP), full end-to-end workflows that
embed hls4ml algorithms into Vitis Accel designs for Xilinx FPGAs,
new matrix-vector kernels which are optimized for longer pipeline
intervals, sparse operations, and low power, and support for mul-
tiple HLS compilers and devices, including ASICs. Our approach
for low-power devices focuses on ML for field-programmable gate
arrays (FPGAs) and application-specific integrated circuits (ASICs)
as energy efficient hardware architectures [10, 11]. The hls4ml
framework aims to bridge novel techniques in NN inference opti-
mization and hardware implementation while making it accessible
to domain scientists.

This paper is organized as follows. In Sec. 2, we discuss the
hls4ml workflow and features for introspection, validation, and
support for multiple device types. In Sec. 3, we discuss co-design
techniques developed at ML training to develop optimal hardware
implementations. In Sec. 4, we describe how those NNs get imple-
mented in hardware and the available configurations to the user.
Finally, we summarize and present an outlook in Sec. 5.

Related Work

There are other open-source efforts have explored ML on edge
devices, including FPGAs, mobile devices, and microcontrollers
with integrated workflows from training to deployment. The FINN
project [12] is a framework from Xilinx Research Labs to explore
quantized deep NN inference on FPGAs, with emphasis on gener-
ating dataflow-style architectures customized for each network. It
includes tools for training quantized NNs such as Brevitas [13],
the FINN compiler, and the finn-hlslib Vivado HLS library of FPGA
components for QNNs. Further, TensorFlow Lite [14] is a set of
tools to help developers run TensorFlow [15] models on mobile,
embedded, and internet of things (IoT) devices. It currently sup-
ports Android, iOS, and Linux devices (like Raspberry Pi), as well as
microcontrollers (like Arduinos). It enables on-device ML inference
with low latency and a small binary size.

2 HLS4MLWORKFLOW

The task of automatically translating a trained NN, specified by
the model’s architecture, weights, and biases, into HLS code is per-
formed by the hls4ml package. A schematic of a typical workflow
is illustrated in Fig. 1. The first part of the workflow illustrated
in red depicts the usual steps required to design a NN for a spe-
cific task. This component, performed with tools like (Q)Keras
and PyTorch, involves a training step and possible compression
steps (more discussion below in Sec. 3) before converging on a final
model. The blue section of the workflow is performed with hls4ml,

Compressed
model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate an ML model into

an FPGA or ASIC implementation using hls4ml. The red

boxes (left) describe the model training and compression

steps performed within conventional ML software frame-

works. The hls4ml configuration and conversion steps are

shown in the blue boxes (center). The black boxes (right)

illustrate possible ways to export and integrate the HLS

project into a larger hardware design.

which translates a model into an HLS project that can subsequently
be synthesized and implemented on an FPGA or ASIC, as depicted
by the black section.

At a high level, FPGA and ASIC algorithm design is different
from programming a CPU in that independent operations may
run fully in parallel or concurrently. Furthermore, independent
operations may be pipelined such that the algorithm can accept
new inputs while it is still operating on previous inputs. However,
such operations consume dedicated resources onboard the FPGA
or ASIC and cannot be dynamically remapped while running. The
challenge in creating an optimal digital design is to balance available
resources with achieving the power, latency, throughput goals of
the target algorithm.

The hls4ml framework provides a number of configurable pa-
rameters which can help the user explore and customize the space
of latency, throughput, power, and resource usage tradeoffs for
their application. Because every application is different, the goal
of the hls4ml package is to empower the user to perform this opti-
mization through automated NN translation and design iteration.
hls4ml leverages HLS to generate hardware modules from code
written in high-level programming languages like C/C++ [16]. Each
layer and activation type is implemented as a separate configurable
module customized to perform that specific operation. During the
hls4ml conversion, these modules are composed in the correct way
to produce a full ML model. Large throughput and low latency can
be achieved by pipelining data through the network. Furthermore,
resource usage can be optimized because each layer is tailored dur-
ing conversion to the specific model and, if desired, set of weights.
This optimization extends to zero suppression, where the layer can
be configured to skip multiplications by zero weights. Although
it may lead to slightly less optimal performance than RTL-based
design, HLS-based design has significant benefits: it raises the level
of abstraction, reduces the iteration time, simplifies the validation
phase, and enables greater exploration and evaluation of design
alternatives.

2 2020-11-30 02:16. Page 2 of 1–8.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

hls4ml: An Open-Source Co-Design Workflow to Empower Scientific Low-Power Machine Learning Devices tinyML ’21, March 22–26, 2021, Online

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Internal structure of the hls4ml package. Model

converters translatemodels fromKeras, PyTorch, etc. into

an intermediate HLSModel representation. This represen-

tation can be further configured and optimized. Different

backendwriters can be used to export themodel into a given

vendor-specific language, such as Vitis HLS, Quartus HLS,

Catapult HLS, or others.

Package Architecture

To provide flexibility and ease-of-use, we implemented hls4ml as
a Python package that provides both a programming API and
visualization capabilities. Figure 2 shows the internal structure
of the hls4ml Python package. The package first converts the
user-specified model into a common internal representation of the
network graph. Converters are provided for (Q)Keras, Tensor-
Flow, PyTorch, and ONNX model formats. At the conversion step,
the user-provided configuration is also attached to the model. For
a NN trained with QKeras quantization-aware training (QAT), the
quantization settings of the model are propagated into the hls4ml
internal representation.

A suite of optimizers then modify the network graph to target a
more lightweight, faster inference. At this step, for example, batch
normalization [17] layers are fused with the preceding dense or
convolutional layer, or with the subsequent binary (or ternary)
tanh activation layer. Where possible, these optimizations precom-
pute quantities needed during inference involving constant model
parameters, in order to reduce operations at runtime.

The hls4ml model object can be inspected, and the package
provides a set of utilities to aid the configuration process. These
include a visualization tool to display the NN graph decorated with
the applied user configuration, and tools to numerically profile the
model which can help guide the user settings, e.g. for bit precision.

An example of the numerical profiling output from hls4ml is
shown in Figure 3 for a fully-connected NN. The distribution of
the weight values is represented by a boxplot, showing the range
covering the bulk of the distribution as well as the extremities. On
top of this, the user-provided precision configuration is shown with
the grey boxes. Generally, it is crucial that the largest absolute
valued weights can be represented with the chosen type (the boxes
overlap at the right of the plot). There is some flexibility to reduce
the precision by truncating small valued weights, with minimal

2 15 2 12 2 9 2 6 2 3 20 23 26

Weight value

dense_9/1
dense_9/0
dense_8/1
dense_8/0
dense_7/1
dense_7/0
dense_6/1
dense_6/0
dense_5/1
dense_5/0
dense_4/1
dense_4/0
dense_3/1
dense_3/0
dense_2/1
dense_2/0
dense_1/1
dense_1/0

dense/1
dense/0

Figure 3: Numerical profiling plot from hls4ml for a fully-

connected neural network. The distribution of the absolute

value of the weights is shown on the x-axis. The items on

the y-axis are the different weights (0) and biases (1) for the

model layers.

impact on accuracy. This additional visualization tool can be used
to quickly tune the configuration for more efficient inference.

One key feature of the programming API is the capability to exe-
cute the bit-accurate emulation of the generated HLS-synthesizable
code in the Python environment, for example as a Jupyter Note-
book. In conventional HLS-design flows, developers craft C/C++
testbenches which they execute in the HLS-vendor simulation envi-
ronment to verify algorithm performance. The hls4ml API enables
aworkflow that will bemuchmore familiar toML developers, where
inference can be performed on tensor or array data in Python code,
providing the opportunity to complete detailed analysis. In addition
to evaluating the hls4ml model output, users can access the de-
tailed output of any hidden layer of the network, which can aid in
debugging and performing hyperparameter optimization for quan-
tized models. When the hls4ml model is written out, the backend
maps the graph onto its library of optimized inference code. This
inference code can run on the CPU executing the conversion, in
order to check numerical correctness against the original NN. After
that step, the user runs the vendor synthesis tools in order to pro-
duce an IP core, and evaluate latency, throughput, and resources.
Presently, the most advanced backend is for Xilinx Vivado HLS,
with codebases optimized for Intel Quartus HLS [18] and Mentor
Catapult HLS [19] under active development.

3 NEURAL NETWORK TRAINING AND

OPTIMIZATION

Reducing the precision of the calculations in the NN and removing
unimportant calculations can drastically improve the efficiency of
the NN implementation with little to no loss in performance. While
applying these changes to a model post-training can be successful,
to be maximally effective, we should consider these effects at the
time of NN training.

We consider two benchmark tasks to demonstrate the versatility
of model optimization in the hls4ml framework. The first is a
high-energy particle jet classification task on a dataset [5, 20, 21]
consisting of 16 features for simulated particle jets produced in

2020-11-30 02:16. Page 3 of 1–8. 3

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

tinyML ’21, March 22–26, 2021, Online Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 4: Performance of quantization-aware training from

Ref. [8] in terms of the relative accuracy as a function of

bit width. The relative accuracy is evaluated with respect

to the floating-point baseline model. The CPU-based emu-

lation (solid green) of the FPGA-based QAT model (solid or-

ange) is compared to the PTQ model (dashed purple).

proton-proton collisions and originating from one of five classes
of particles: W or Z bosons, light quarks, top quarks, or gluons.
The baseline model is a simple fully-connected NN with three
hidden layers, with 64, 32, and 32 nodes, respectively, activated by
a rectified linear units (ReLUs) [22, 23]. The second benchmark is
the MNIST handwritten digit classification task [24]. The baseline
model we consider is a fully-connected NN with one hidden layer
with 16 nodes and ReLU activation.

3.1 Quantization-Aware Training

Quantized [25–30] and even binarized [6, 28, 31–34] NNs have been
studied as a way to compress NNs by reducing the number of bits
required to represent each weight. FPGAs provide considerable free-
dom in the choice of data type and precision. Both choices should
be considered carefully to prevent squandering FPGA resources
and incurring additional latency. In hls4ml, we use fixed-point
arithmetic, which uses less resources and has a lower latency than
floating-point arithmetic. The inputs, weights, biases, sums, and
outputs of each layer are all represented as fixed-point numbers. For
each, the number of bits used to represent the integer and fractional
part can be configured separately for the use case. The precision can
be reduced significantly without causing a loss in performance [28].
We determine the number of bits to assign for the fractional part by
scanning the performance values as a function of the bit precision.

One simple way to reduce a model’s size is through post-training
quantization (PTQ) where pre-trained model parameters are clipped
or rounded to lower precision. However, this process is lossy and
sacrifices model performance. To solve this, QAT has been pro-
posed [35–37]. In these approaches, the reduced precision of the
weights and biases are accounted for directly in the training of the

NN. In QKeras, this is implemented using the straight-through esti-
mator (STE) [31], where the forward pass of the training applies the
quantization, while the backward pass assumes that quantization
is the identity function, as the quantization function is not differen-
tiable. It has been found that QAT is even more efficient than PTQ
while retaining the same performance. In these studies, the same
type of quantization is applied everywhere. More recently [38, 39],
it has been suggested that some layers may accommodate extreme
quantization better than other layers, suggesting that per-layer
heterogeneous quantization is the optimal way to achieve high
accuracy at low resource cost.

An example of the power of QAT is shown in Fig. 4 from Ref. [8]
which uses QKeras. For the particle physics task with a fully-
connected NN, the accuracy of the reduced precision model is
compared to the 32-bit floating-point implementation as the bit
width is scanned. In the PTQ case, the accuracy begins to drop
below 14 bits, while in the QAT case the accuracy is comparable to
the 32-bit floating implementation down to 6 bits. More detailed
discussion on layer-by-layer quantization is presented in Ref. [8].
In Section 4, we discuss the implementation of QAT in hls4ml and
its effect in terms of on-chip resources.

3.2 Quantization-Aware Pruning

Network compression is a common technique to reduce the size,
energy consumption, and overtraining of deep NNs [29]. Several ap-
proaches have been successfully deployed to compress networks [40–
42]. Here we focus specifically on parameter pruning: the selective
removal of weights based on a particular ranking [29, 43–47].

Prior studies have combined pruning and quantization trivially:
by pruning 32-bit floating-point models and applying post-training
quantization. One such approach, whose results are shown in Sec. 4.2,
consists of iterative parameter pruning and retraining of a 32-bit
floating-point model [5, 29, 48] with 𝐿1 regularization, where the
loss function is augmented with an additional penalty term 𝜆∥𝒘 ∥1 ,
where𝒘 is a vector of all of the model weights and 𝜆 is a tunable hy-
perparameter. 𝐿1 regularization produces sparse models, provides
built-in feature selection [49], and is readily available in many ML
workflows. After training the model with 𝐿1 regularization with a
small 𝜆 (e.g. 10−4), the weights are sorted based on their absolute
value relative to the maximum absolute value of the weights in
that particular layer. Weights falling below a certain percentile are
removed. The model can then be trained again with 𝐿1 regulariza-
tion while masking the previously pruned weights. This processed
can be iterated several times until reaching the desired level of
compression.

While the above approach is effective, we describe here an al-
ternative approach based on the lottery ticket (LT) hypothesis [45]
where the remaining weights after each pruning step are initial-
ized back to their original values (“weight rewinding”). We refer to
this method as LT pruning. We also propose a new hybrid method
for constructing efficient NNs, quantization-aware pruning (QAP),
which combines a pruning procedurewith training that accounts for
quantized weights. As a first demonstration, we use Brevitas [13]
to perform QAT and iteratively prune a fraction of the weights
following the LT method of weight rewinding.

4 2020-11-30 02:16. Page 4 of 1–8.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

hls4ml: An Open-Source Co-Design Workflow to Empower Scientific Low-Power Machine Learning Devices tinyML ’21, March 22–26, 2021, Online

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

10
5

10
6

10
7

BOPs

0.5

0.6

0.7

0.8

0.9

1.0
AU

C

Lottery ticket pruning
32-bit
6-bit

Percent pruned (approx.)
98.8%
96.6%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%
10.0%
0.0%

Percent pruned (approx.)
98.8%
96.6%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%
10.0%
0.0%

Figure 5: Performance of quantization-aware pruning using

the lottery ticket pruning scheme as a function of hardware

computational complexity. After QAP, the 6-bit, 80% pruned

model achieves a factor of 50 reduction in BOPs compared

to the 32-bit, unpruned model with no loss in performance.

This is done for the jet classification task presented in the previ-
ous section. At each training iteration, roughly 10% of the original
network is pruned. The results of pruning with this method are
shown in Fig. 5 for a 6-bit fixed-point version of the network com-
pared to the 32-bit floating-point model. The performance in terms
of the area under the curve (AUC) is shown as a function of bit
operations (BOPs) [50], defined per-layer as

BOPs =𝑚𝑛((1 − 𝑓𝑝)𝑏𝒂𝑏𝒘 + 𝑏𝒂 + 𝑏𝒘 + log2 (𝑛)) (1)

where 𝑛 (𝑚) is the number of inputs (outputs), 𝑏𝒘 (𝑏𝒂) is the bit
width of the weights (activations), and 𝑓𝑝 is the fraction of pruned
layer weights. BOPs are a measure of the hardware computational
complexity of a quantized NN after pruning. While in Sec. 3.1
we found that a 6-bit implementation of this network sacrificed
no performance, we find here that pruning the 6-bit network by
80% using QAP still maintains the same performance as the 32-bit
version.

4 DIGITAL IMPLEMENTATION ELEMENTS

Following the training-time optimizations described in the previ-
ous section, we describe important elements for deploying those
optimized NNs in efficient digital implementations.

4.1 Quantization with a QKeras Front-End

Reducing precision saves resources used for signal routing as well
as resources and latency used for mathematical operations. As an
example, the limiting resource for many FPGA applications is the
number of DSPs, which are used primarily for multiplications. The
number of DSPs used per multiplier depends on the precision of the
numbers being multiplied and can change abruptly. For example,
one Xilinx DSP48E1 block [51] can multiply a 25-bit number with
an 18-bit number, but two are required to multiply a 25-bit number
with a 19-bit number. Similarly, the latency of multipliers increases
with precision, though they can remain pipelined.

Model bit width 14 6
Accuracy [%] 74.4 74.8
Latency [ns] 45 55
DSP [%] 56 (1826) 1.8 (124)
LUT [%] 5.2 (48321) 3.4 (39782)
FF [%] 0.8 (20132) 0.3 (8128)

Table 1: Model accuracy, latency and resource utilization for

14-bit and 6-bit models. Resources are listed as a percentage

of available resources, absolute numbers quoted in paren-

thesis, for a Xilinx Virtex UltraScale+ VU9P FPGA with a

clock frequency of 200MHz

To allow for automated translation of a QKerasmodel to register-
transfer level (RTL), hls4ml has been extended to interpret and
optimize quantized QKeras layer types.When converting a QKeras
model into an HLS project, the model quantization configuration is
passed to hls4ml and enforced in the FPGA firmware. This ensures
that the use of specific, arbitrary precision in the QKeras model is
maintained during inference. For example, when using a quantizer
with a given rescaling parameter 𝛼 , hls4ml inserts an operation
to rescale the layer output. For binary and ternary weights and
activations, the same strategies as in Ref. [6] are used. With binary
layers, the arithmetical value of “-1” is encoded as “0,” allowing the
product to be expressed as an XNOR operation.

As an example of the integration of QKeras and hls4ml, we
now present an FPGA implementation of the model presented in
Sec. 3.1. The FPGA implementation results are presented in Table 1
for the 14-bit PTQ and 6-bit QAT models. The effect of QAT is
that the FPGA resources are drastically reduced, especially in the
case of DSPs. In Ref. [8], a more detailed exploration of model
implementations is presented, including per-layer optimizations.

4.2 Parallelization and Sparsity

The core component of dense and convolutional NN layer imple-
mentations in hls4ml is a matrix-vector multiplication kernel. In
addition to the precision at which these kernels are executed there
are further configurations that can be used to tune the digital design
for a specific task. We explore two of them here: parallelization and
sparsity.

Parallelization. A matrix-vector multiplication kernel can be
characterized as a number of multiplication operations based on the
dimensions of thematrix. The trade off between latency, throughput
and FPGA resource usage is determined by the parallelization of the
inference calculation and how many multiplications are performed
in parallel. In hls4ml, this is configured with a “reuse factor” that
sets the number of times a multiplier is used in the computation of
a layer’s output values. With a reuse factor of one, the computation
is fully parallel, i.e. each multiplier is used once. With a reuse factor
of 𝑅, 1/𝑅 of the computation is done at a time with a factor of 1/𝑅
fewer multipliers. To make routing more convenient, often there
are preferred values of 𝑅 depending on the dimensions of the matrix
itself.

The matrix-vector multiplication kernel cannot accept new in-
puts until all of the previous multiplications have been performed, a
period of time known as the initiation interval (II). For larger reuse
factors, the matrix-vector multiplication kernel will have a longer

2020-11-30 02:16. Page 5 of 1–8. 5

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

tinyML ’21, March 22–26, 2021, Online Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

 4

 16

 64

 256

 1024

 4096

ReuseFactor

14 16 28 32 49 56 64 98 112
128

196
224

256
392

448
784

896
1568

1792
3136

6272
12544

DSP (HLS) DSP (Available)

Figure 6: DSP usage for the MNIST neural network imple-

mentation where the reuse factor 𝑅 is scanned. As 𝑅 is in-

creased, the DSP usage decreases while the latency (not

shown) increases accordingly.

latency and II, but will use less on-chip resources. In hls4ml, we
implement each layer calculation independently and sequentially.
The calculation of one layer cannot be initiated until the calculation
of the previous layer has completed. Therefore, the total latency
is equal to the sum of latencies of each layer plus the latency re-
quired to connect the layers. The number of inferences per unit
time (throughput) is inversely proportional to the reuse factor.

The configurability of the reuse factor allows users of hls4ml
to tune their hardware implementation for their system require-
ments. In Fig. 6, we show the FPGA resources for a dense, fully-
connected NN which is used for the MNIST handwritten digit clas-
sification task [24]. The total number of multiplications needed
for this network is (784) (16) + (16) (10) = 12, 704. The network
is implemented in an FPGA with various reuse factors from 14
to (784) (16) = 12, 544. In these implementations, the reduction
in DSPs can be seen as 𝑅 is increased. Not shown in the figure is
the complementary behavior where the latency and II of the NN
increase commensurately. For example, the II of the NN increases
from 14 to 12,544 clock cycles as 𝑅 increases. Thus, for a clock
frequency of 100MHz, the II of the network would increase from
140 ns to 0.125ms.

Sparse operations. In Sec. 3.2, pruning is presented to create more
efficient NN implementations by reducing the number of multipli-
cation operations required to evaluate the network. By creating
a network implementation where the matrix-vector kernel has a
large fraction of zero-weights, the computation resources can be
greatly reduced. In hls4ml, this can be built into the NN transla-
tion through a dedicated sparse matrix-vector multiplication kernel.
There are two complementary implementations of this kernel in
hls4ml depending on the size of the matrix and the latency of the
operation required.

In the first implementation, HLS preprocessor directives are
used to limit the number of multipliers available to the kernel
based on the number of nonzero weights, and HLS is left to do the
optimization. This is only feasible for smaller network layers. In the
second implementation, the nonzero weights are compressed using
a coordinate list (COO) representation where indices are packed
into the weights themselves. The hls4ml user can specify a boolean

0102030405060708090100
Pruning (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

HL
S

DS
P

Es
tim

at
es

1e3
Dense Baseline

hls4ml

0102030405060708090100
Pruning (%)

0

1

2

3

4

5

6

7

HL
S

AL
UT

 E
st

im
at

es

1e4
Dense Baseline

hls4ml

Figure 7: DSP (upper) and LUT (lower) usage of the jet sub-

structure classification network as a function of the percent-

age of the network pruned.

compression parameter per layer, which activates this kernel. As
an example, the COO implementation is used for the jet classifier
NN described in previous sections. The architecture is pruned using
an iterative pruning approach as described in Sec. 3.2 where the
network is pruned in increments of 10% of the original number
of network weights. Figure 7 illustrates the DSP and LUT usage
of those NNs as a function of the pruned weight percentage. The
figure shows the expected scaling of the pruned implementation
where the resources decrease as a larger percentage of the network
is pruned.

4.3 Device-Specific Workflows

4.3.1 Xilinx FPGA workflow with Vitis. There are multiple ways to
execute an hls4ml project on a given FPGA. The RTL code created
by Vivado HLS is fully functional and can be placed in a Vivado
block design. While this allows the user to customize the implemen-
tation to meet specific design goals or to integrate the project into
an existing firmware design, it can also present a barrier for less ex-
perienced developers. Vitis Accel is a Xilinx tool that aims to assist
users in accelerating FPGA kernels. A Vitis Accel design consists
of two components: the FPGA kernel and the host code typically
run on a CPU. While the tool supports multiple kernel description
languages, we have focused on HLS-based kernels. Vitis Accel im-
poses various constraints on the input and output of the kernel
that requires us to introduce a wrapper around the default hls4ml

6 2020-11-30 02:16. Page 6 of 1–8.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

hls4ml: An Open-Source Co-Design Workflow to Empower Scientific Low-Power Machine Learning Devices tinyML ’21, March 22–26, 2021, Online

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

project. The host code is then able to manage the transfer data be-
tween the host CPU and the FPGA, either through DMA transfers
or AXI streams. The choice of data transfer protocol is critical to
the performance of the design. Typically, a small number of large
data transfers is preferable to a large number of small data transfers.
With SoC devices there is significant flexibility in customizing the
data transfers due to the many different memory types available
and their physical locations on the chip. Vitis Accel can be used
to integrate hls4ml kernels. For smaller networks run with very
large batch sizes, Vitis Accel and hls4ml are capable of producing
highly performant accelerated co-processing workflows [52].

4.3.2 ASICworkflow. Domain scientistsmay choose anASIC rather
than an FPGA implementation when they aim at sacrificing repro-
grammability for greater efficiency. However, designing for ASICs
is significantly more complicated and time-consuming than for FP-
GAs. In the ASIC design workflow, verification and power analysis
play a bigger role at the various levels of abstractions.

Figure 8 shows the ASIC workflow integrated with hls4ml. The
ML training phase provides us with both the model and the stimuli
for the subsequent verification steps. hls4ml compiles the trained
model in a synthesizable C++ specification and a set of directives
for Mentor Catapult HLS to target ASIC design [19]. Thanks to
our state-of-the-art implementation of the C++ ML specification
and optimized synthesis directives, the HLS-generated RTL code is
comparable in power, performance, and area (PPA) to handwritten
RTL [53]. ASIC design projects are often impractical for domain
scientists because of the hardware’s intrinsic complexity and the in-
ability of many small-sized research groups to navigate the lengthy
RTL-based hardware design cycle to meet acceptable deployment
time frames. In our ASIC workflow, we can spend more time (1)
refining the MLmodel thanks to the quick PPA estimation from Cat-
apult HLS and (2) verifying both the C++ and RTL implementations
to identify bugs and improve performance. We check design rules
on the C++ specification by performing static analysis (Mentor
CDesignChecker); we run C simulation and code coverage (Mentor
CCov); finally, we run C&RTL co-simulation for equivalence check-
ing [54]. The synthesized RTL code is subsequently processed with
a traditional digital implementation flow that integrates simulation
steps to ensure optimal PPA.

As a recent demonstration of this workflow, a completed design
of a low-latency autoencoder for particle physics data compression
has been implemented for the TSMC 65 ns technology node [55, 56].
The algorithm, trained in QKeras, compresses on-sensor data with
convolutional and dense layers to be transmitted off the detector.
In order to maintain reconfigurability of the algorithm in changing
experimental conditions, the weights can be updated via an I2C in-
terface. The design also features triple modular redundancy to main-
tain its radiation tolerance up to 200MRad. The algorithm, which
has roughly 4,400 parameters, has a latency of 25 ns, is 3.6mm2 in
area, and is estimated to consume 2.38 nJ per inference.

5 SUMMARY AND OUTLOOK

In this paper, we present the current status of the open-source co-
design hls4ml workflow, focusing on new features and techniques
relevant for low-power performance. We detail, for the first time,

Figure 8: Design and verification stack for the ASIC work-

flow.

the structural features of hls4ml which allow for model introspec-
tion and validation in a Python package and support for multiple
device types. We also introduce quantization-aware pruning for
neural networks building on previous work for quantization-aware
training, providing additional significant resource savings. We also
describe new hls4ml features for implementation for FPGAs and
ASICs. These include configuration handles for quantization and
pruning as well as for parallelization which can tune the algorithm
from low latency to low power.

While the features of hls4ml presented in this paper provide
already a set of powerful capabilities, the ultimate goal is to provide
a complete end-to-end toolkit to empower domain scientists to
design machine learning algorithms for low-power devices. This
includes development based on dedicated domain-specific data
sets, models, platforms, and existing implemented designs for a
range of devices. Further maturation of introspection tools and
workflows for design performance, validation, and close integration
with power estimation into standard CAD tools will give neural
network designers timely feedback about the power consumption of
their design choices without needing to consult hardware experts.
Effective design-space exploration from a hardware perspective
allows domain scientists to optimize better the power-performance
trade-offs of their systems.We hope that hls4mlwill lead to broader
adoption of machine learning techniques in the low-power regime
in science, enhancing scientific research with tinyML.

REFERENCES

[1] C. R. Banbury, et al. 2020. Benchmarking TinyML Systems: Challenges and
Direction. (2020). arXiv:2003.04821

[2] S. Zhang, et al. 2020. NeckSense: A Multi-Sensor Necklace for Detecting Eating
Activities in Free-Living Conditions. Proc. ACM Interact. Mob.Wearable Ubiquitous
Technol. 4, 2 (2020), 1. https://doi.org/10.1145/3397313 arXiv:1911.07179

[3] A. R. Elias, et al. 2017. Where’s the bear? - Automating wildlife image process-
ing using IoT and edge cloud systems. In 2017 IEEE/ACM Second International
Conference on Internet-of-Things Design and Implementation (IoTDI). IEEE, 247.

2020-11-30 02:16. Page 7 of 1–8. 7

https://arxiv.org/abs/2003.04821
https://doi.org/10.1145/3397313
https://arxiv.org/abs/1911.07179

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

tinyML ’21, March 22–26, 2021, Online Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

[4] D. Vasisht, et al. 2017. Farmbeats: An IoT platform for data-driven agriculture. In
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI
17). 515.

[5] J. Duarte et al. 2018. Fast inference of deep neural networks in FPGAs for
particle physics. J. Instrum. 13, 07 (2018), P07027. https://doi.org/10.1088/1748-
0221/13/07/P07027 arXiv:1804.06913

[6] V. Loncar et al. 2020. Compressing deep neural networks on FPGAs to binary
and ternary precision with hls4ml. (3 2020). arXiv:2003.06308

[7] S. Summers et al. 2020. Fast inference of Boosted Decision Trees in FPGAs for
particle physics. J. Instrum. 15, 05 (2020), P05026. https://doi.org/10.1088/1748-
0221/15/05/P05026 arXiv:2002.02534

[8] C. N. Coelho, et al. 2020. Ultra Low-latency, Low-area Inference Accelerators
using Heterogeneous Deep Quantization with QKeras and hls4ml. (2020).
arXiv:2006.10159

[9] Y. Iiyama et al. 2020. Distance-Weighted Graph Neural Networks on FPGAs
for Real-Time Particle Reconstruction in High Energy Physics. (2020). https:
//doi.org/10.3389/fdata.2020.598927 arXiv:2008.03601 Accepted by Front. Big
Data.

[10] I. Kuon et al. 2007. Measuring the Gap Between FPGAs and ASICs. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst. 26, 2 (2007), 203. https://doi.org/10.
1109/TCAD.2006.884574

[11] M. Horowitz. 2014. 1.1 Computing’s energy problem (and what we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC). 10. https://doi.org/10.1109/ISSCC.2014.6757323

[12] M. Blott, et al. 2018. FINN-R: An End-to-End Deep-Learning Framework for Fast
Exploration of Quantized Neural Networks. ACM Trans. Reconfigurable Technol.
Syst. 11, 3 (12 2018). https://doi.org/10.1145/3242897 arXiv:1809.04570

[13] Alessandro, et al. 2020. Xilinx/brevitas: bnn_pynq-r1. https://doi.org/10.5281/
zenodo.4020996

[14] Google. 2020. TensorFlow Lite. https://www.tensorflow.org/lite
[15] M. Abadi, et al. 2015. TensorFlow: Large-Scale Machine Learning on Heteroge-

neous Systems. https://www.tensorflow.org/ Software available from tensor-
flow.org.

[16] M. W. Numan, et al. 2020. Towards Automatic High-Level Code Deployment on
Reconfigurable Platforms: A Survey of High-Level Synthesis Tools and Toolchains.
IEEE Access 8 (2020), 174692. https://doi.org/10.1109/ACCESS.2020.3024098

[17] S. Ioffe et al. 2015. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In 32nd International Conference on Machine
Learning, F. Bach et al. (Eds.), Vol. 37. PMLR, Lille, France, 448. arXiv:1502.03167
http://proceedings.mlr.press/v37/ioffe15.html

[18] Intel. 2020. Intel High Level Synthesis Compiler. https://www.intel.com/content/
www/us/en/software/programmable/quartus-prime/hls-compiler.html.

[19] Mentor/Siemens. 2020. Catapult High-Level Synthesis. https://www.mentor.
com/hls-lp/catapult-high-level-synthesis.

[20] M. Pierini, et al. 2020. hls4ml LHC Jet dataset (150 particles). https://doi.org/10.
5281/zenodo.3602260

[21] E. Coleman, et al. 2018. The importance of calorimetry for highly-boosted
jet substructure. J. Instrum. 13 (2018), T01003. https://doi.org/10.1088/1748-
0221/13/01/T01003 arXiv:1709.08705

[22] V. Nair et al. 2010. Rectified Linear Units Improve Restricted BoltzmannMachines.
In 27th International Conference on International Conference on Machine Learning
(ICML’10). Omnipress, Madison, WI, USA, 807.

[23] X. Glorot, et al. 2011. Deep Sparse Rectifier Neural Networks. In 14th International
Conference on Artificial Intelligence and Statistics, G. Gordon, et al. (Eds.), Vol. 15.
JMLR, Fort Lauderdale, FL, USA, 315. http://proceedings.mlr.press/v15/glorot11a.
html

[24] Y. LeCun et al. 2010. MNIST handwritten digit database. http://yann.lecun.com/
exdb/mnist/

[25] Y. Gong, et al. 2014. Compressing Deep Convolutional Networks using Vector
Quantization. (2014). arXiv:1412.6115

[26] J. Wu, et al. 2016. Quantized Convolutional Neural Networks for Mobile Devices.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 4820.
https://doi.org/10.1109/CVPR.2016.521 arXiv:1512.06473

[27] V. Vanhoucke, et al. 2011. Improving the speed of neural networks on CPUs. In
Deep Learning and Unsupervised Feature Learning Workshop at the 25th Conference
on Neural Information Processing Systems.

[28] S. Gupta, et al. 2015. Deep Learning with Limited Numerical Precision. In 32nd
International Conference on Machine Learning, F. Bach et al. (Eds.), Vol. 37. PMLR,
Lille, France, 1737. arXiv:1502.02551 http://proceedings.mlr.press/v37/gupta15.
html

[29] S. Han, et al. 2016. Deep Compression: Compressing Deep Neural Network
with Pruning, Trained Quantization and Huffman Coding. In 4th International
Conference on Learning Representations. arXiv:1510.00149

[30] I. Hubara, et al. 2018. Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations. J. Mach. Learn. Res. 18, 187 (2018),
1. arXiv:1609.07061 http://jmlr.org/papers/v18/16-456.html

[31] M. Courbariaux, et al. 2015. BinaryConnect: Training Deep Neural Networks
with binary weights during propagations. In Advances in Neural Informa-
tion Processing Systems, C. Cortes, et al. (Eds.), Vol. 28. Curran Associates,
Inc., 3123. arXiv:1511.00363 https://proceedings.neurips.cc/paper/2015/file/
3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf

[32] I. Hubara, et al. 2016. Binarized Neural Networks. In Advances in Neural Infor-
mation Processing Systems, D. D. Lee, et al. (Eds.), Vol. 29. Curran Associates,
Inc., 4107. arXiv:1602.02830 https://proceedings.neurips.cc/paper/2016/file/
d8330f857a17c53d217014ee776bfd50-Paper.pdf

[33] M. Rastegari, et al. 2016. XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks. In ECCV 2016, B. Leibe, et al. (Eds.). Springer,
Cham, Switzerland, 525. arXiv:1603.05279

[34] P. Merolla, et al. 2016. Deep neural networks are robust to weight binarization
and other non-linear distortions. (2016). arXiv:1606.01981

[35] B. Moons, et al. 2017. Minimum Energy Quantized Neural Networks. (2017).
arXiv:1711.00215

[36] M. Courbariaux, et al. 2015. BinaryConnect: Training Deep Neural Networks
with binary weights during propagations. In Advances in Neural Informa-
tion Processing Systems, C. Cortes, et al. (Eds.). Vol. 28. Curran Associates, Inc.,
3123. http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-
networks-with-binary-weights-during-propagations.pdf

[37] F. Li et al. 2016. Ternary Weight Networks. (2016). arXiv:1605.04711
[38] K. Wang, et al. 2019. HAQ: Hardware-Aware Automated Quantization. In

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
arXiv:1811.08886

[39] Z. Dong, et al. 2019. HAWQ: Hessian AWare Quantization of Neural Networks
With Mixed-Precision. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). 293. arXiv:1905.03696

[40] Y. Cheng, et al. 2018. A Survey of Model Compression and Acceleration for Deep
Neural Networks. IEEE Signal Process. Mag. 35 (2018), 126. https://doi.org/10.
1109/MSP.2017.2765695 arXiv:1710.09282

[41] L. Deng, et al. 2020. Model Compression and Hardware Acceleration for Neural
Networks: A Comprehensive Survey. Proc. IEEE 108 (2020), 485. https://doi.org/
10.1109/JPROC.2020.2976475

[42] T. Choudhary, et al. 2020. A comprehensive survey on model compression and
acceleration. Artif. Intell. Rev. 53, 7 (2020), 5113. https://doi.org/10.1007/s10462-
020-09816-7

[43] Y. LeCun, et al. 1990. Optimal Brain Damage. In Advances in Neural Information
Processing Systems, D. S. Touretzky (Ed.), Vol. 2. Morgan-Kaufmann, 598. http:
//papers.nips.cc/paper/250-optimal-brain-damage

[44] C. Louizos, et al. 2018. Learning Sparse Neural Networks through 𝐿0 Regulariza-
tion. (12 2018). arXiv:1712.01312 https://openreview.net/forum?id=H1Y8hhg0b

[45] J. Frankle et al. 2019. The Lottery Ticket Hypothesis: Training Pruned Neu-
ral Networks. In 7th International Conference on Learning Representations.
arXiv:1803.03635 https://openreview.net/forum?id=rJl-b3RcF7

[46] A. Renda, et al. 2020. Comparing Rewinding and Fine-tuning in Neural Net-
work Pruning. In 8th International Conference on Learning Representations.
arXiv:2003.02389

[47] D. Blalock, et al. 2020. What is the State of Neural Network Pruning?. In 4th
Conference on Machine Learning and Systems. arXiv:2003.03033

[48] S. Han, et al. 2015. Learning both Weights and Connections for Efficient Neural
Networks. In Advances in Neural Information Processing Systems, C. Cortes, et al.
(Eds.), Vol. 28. Curran Associates, Inc., 1135. arXiv:1506.02626 https://proceedings.
neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf

[49] A. Y. Ng. 2004. Feature Selection, L1 Vs. L2 Regularization, And Rotational
Invariance. In 21st International Conference On Machine Learning (ICML ’04).
ACM, New York, NY, USA, 78. https://doi.org/10.1145/1015330.1015435

[50] C. Baskin, et al. 2018. UNIQ: Uniform Noise Injection for the Quantization of
Neural Networks. (2018). arXiv:1804.10969

[51] Xilinx. 2018. 7 Series DSP48E1 Slice User Guide. https://www.xilinx.com/support/
documentation/user_guides/ug479_7Series_DSP48E1.pdf

[52] D. S. Rankin, et al. 2020. FPGAs-as-a-Service Toolkit (FaaST). In 2020 IEEE/ACM
International Workshop on Heterogeneous High-performance Reconfigurable Com-
puting. arXiv:2010.08556

[53] B. Khailany, et al. 2018. A modular digital VLSI flow for high-productivity SoC
design. In ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 1.

[54] Mentor/Siemens. 2020. Catapult High-Level Synthesis - Verification. https:
//www.mentor.com/hls-lp/catapult-high-level-synthesis/hls-verification.

[55] C. Herwig, et al. 2020. Design of a reconfigurable autoencoder algorithm for
detector front-end ASICs. In IEEE Nuclear Science Symposium & Medical Imaging
Conference.

[56] F. Fahim, et al. 2020. High-Level Synthesis to On-chip Implementation of a
Reconfigurable AI Accelerator for Front-end Data Analysis at the HL-LHC. In
IEEE Nuclear Science Symposium & Medical Imaging Conference.

8 2020-11-30 02:16. Page 8 of 1–8.

https://doi.org/10.1088/1748-0221/13/07/P07027
https://doi.org/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/2003.06308
https://doi.org/10.1088/1748-0221/15/05/P05026
https://doi.org/10.1088/1748-0221/15/05/P05026
https://arxiv.org/abs/2002.02534
https://arxiv.org/abs/2006.10159
https://doi.org/10.3389/fdata.2020.598927
https://doi.org/10.3389/fdata.2020.598927
https://arxiv.org/abs/2008.03601
https://doi.org/10.1109/TCAD.2006.884574
https://doi.org/10.1109/TCAD.2006.884574
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1145/3242897
https://arxiv.org/abs/1809.04570
https://doi.org/10.5281/zenodo.4020996
https://doi.org/10.5281/zenodo.4020996
https://www.tensorflow.org/lite
https://www.tensorflow.org/
https://doi.org/10.1109/ACCESS.2020.3024098
https://arxiv.org/abs/1502.03167
http://proceedings.mlr.press/v37/ioffe15.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.mentor.com/hls-lp/catapult-high-level-synthesis
https://www.mentor.com/hls-lp/catapult-high-level-synthesis
https://doi.org/10.5281/zenodo.3602260
https://doi.org/10.5281/zenodo.3602260
https://doi.org/10.1088/1748-0221/13/01/T01003
https://doi.org/10.1088/1748-0221/13/01/T01003
https://arxiv.org/abs/1709.08705
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1412.6115
https://doi.org/10.1109/CVPR.2016.521
https://arxiv.org/abs/1512.06473
https://arxiv.org/abs/1502.02551
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1609.07061
http://jmlr.org/papers/v18/16-456.html
https://arxiv.org/abs/1511.00363
https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://arxiv.org/abs/1602.02830
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1606.01981
https://arxiv.org/abs/1711.00215
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf
https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1811.08886
https://arxiv.org/abs/1905.03696
https://doi.org/10.1109/MSP.2017.2765695
https://doi.org/10.1109/MSP.2017.2765695
https://arxiv.org/abs/1710.09282
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1007/s10462-020-09816-7
https://doi.org/10.1007/s10462-020-09816-7
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage
https://arxiv.org/abs/1712.01312
https://openreview.net/forum?id=H1Y8hhg0b
https://arxiv.org/abs/1803.03635
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/abs/2003.02389
https://arxiv.org/abs/2003.03033
https://arxiv.org/abs/1506.02626
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://doi.org/10.1145/1015330.1015435
https://arxiv.org/abs/1804.10969
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://arxiv.org/abs/2010.08556
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/hls-verification
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/hls-verification

	Abstract
	1 Introduction
	2 hls4ml Workflow
	3 Neural Network Training and Optimization
	3.1 Quantization-Aware Training
	3.2 Quantization-Aware Pruning

	4 Digital Implementation Elements
	4.1 Quantization with a QKeras Front-End
	4.2 Parallelization and Sparsity
	4.3 Device-Specific Workflows

	5 Summary and Outlook
	References

